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Abstract— In this work, we introduce a contact-explicit tra-
jectory optimization framework adapted for zero-order opti-
mization methods. Our approach optimizes state–control trajec-
tories for predefined full-horizon contact sequences (including
both contact status and contact surface). We demonstrate the
effectiveness of our method on multiple quadruped locomotion
tasks. Even though zero-order methods do not require any
contact information, we show that explicitly providing it sig-
nificantly improves performance in challenging scenario, such
as clearing a long gap with two lateral walls support. This
approach is inherently parallelizable, which opens the door to
large-scale parallel data collection for contact-rich tasks, an
important direction given recent advances in imitation learning.

I. INTRODUCTION

Recent progress in fast parallel simulations has changed
the legged locomotion field in the past few years. Deep
Reinforcement Learning (DRL) is currently the most pop-
ular approach, achieving state-of-the-art results in dynamic
locomotion, even in highly constrained environments [1].
However, such results often come at the expense of tedious
reward shaping, carefully designed curriculum, and very long
training time.

More recently, sampling-based controllers (SBC) [2], [3],
[4] have gained interest in the community, mainly because
of their simplicity. Nonetheless, they are intrinsically limited
when applied to embodiments with numerous degrees
of freedom or for long-horizon tasks, due to the large
dimensionality of the sampling space [5]. Still, [6] recently
showed real-time whole-body control on quadrupedal
locomotion tasks and promising results on a humanoid
robot.

Contact interaction is at the heart of any locomotion
problem. Yet, both DRL and SBC treat contact implicitly,
as contact dynamics are handled by a black-box simula-
tor. Hence, it is common practice to specify hand-defined
reward/cost terms that help the algorithms make the right
contacts. Approaches considering contacts in a more explicit
manner have other advantages. They can potentially general-
ize better across tasks (as many tasks can be represented by
different contact sequences), which is still a challenge for
traditional DRL policies. This also allows them to capture
multi-modal behaviors, since multiple contact sequences may
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solve the same task. Such flexibility is crucial for adapting
to the diverse situations encountered in the real world.

As important as it may be, leveraging contact information
with DRL or SBC can be done in many different ways
and is still an open research question. [6], [7] considered
a reward term to encourage foot clearance. [7] additionally
specified a binary contact reward to realize a given gait
pattern. [8], [9] added reward terms to reach some desired
feet positions.

In this paper, we introduce a new contact-explicit frame-
work based on a sampling-based trajectory optimization
(also referred to as zero-order optimization later). In the
proposed formulation, we treat contacts as discrete variables
describing the contact status and contact surface (patch) of
each end-effector at each time step. We believe that this
provides enough information on how to solve the desired
task while not constraining too much the optimization of the
trajectories.

By using modern simulators as black boxes, our method
enables whole-body trajectory planning with realistic
dynamics and full collision models. We focus specifically
on solving the trajectory optimization (TO) problem for a
given candidate contact sequence. Planning for both the
trajectories and contact variables has been addressed in
many other works [10], [11], [12], [13]. More specifically,
in our previous work [14], we showed that Monte Carlo
Tree Search (MCTS) can plan all contact variables
given a TO solver optimizing the trajectories. Since the
proposed zero-order solver could easily be integrated in this
framework, we considered the full contact planning problem
less compelling for this work and focus only on the TO part.

The main contributions of this work are summarized
below:

• We propose a contact-explicit TO formulation tailored
for zero-order optimization techniques. The optimiza-
tion process results in a state-control trajectory realizing
a predefined contact sequence.

• We demonstrate that our framework can execute a wide
variety of contact sequences on a quadruped robot,
including a highly dynamic locomotion task.

• We show for a locomotion task in sparse environment
that, although zero-order methods do not require contact
information, providing it is crucial for successfully
solving the task.

The rest of the paper is structured as follows. In Section II,
we present the fundamentals about zero-order optimization.
In Section III, we present our method. In Section IV, we



show the results and discuss them. Finally, in Section V,
we conclude our findings and outline the potential future
research directions

II. ZERO-ORDER OPTIMIZATION

Zero-order optimization algorithms address the following
generic optimization problem minx∈Rn f(x) by only point-
wise evaluating a known function f to be minimized. The
gradient of f is not required which makes it popular for
non-smooth non-convex optimization.

For trajectory optimization, zero-order optimization is
usually used in a single shooting scheme, where the objective
is to find a control sequence {u0, . . . ,uT−1} minimizing
a cost function J while satisfying the system’s dynamics
xt+1 = fdyn(xt,ut), as formulated below:

min
u0,u1,...,uT−1

J(x0:T ,u0:T−1)

s.t. x0 = x, xt+1 = fdyn(xt,ut).
(1)

xt = (qt,vt) and ut denotes respectively the state (joint
positions and velocities) and control of the system at time t.
To satisfy the dynamics constraint, control sequences u0:T−1

are rolled-out from the initial state x0 using a black-box
simulator, which ultimately outputs state trajectories x0:T

needed to evaluate the cost J .
The most commonly used algorithms in robotics are Cross-

Entropy Method (CEM) [15] [16] and Model Predictive
Path Integral (MPPI) [17]. Both algorithms rely on similar
mechanisms as outlined in algorithm 1. In the literature, those
algorithms are mostly used in a receding horizon fashion,
warm-starting from the solutions of the previous time-step.

Algorithm 1 Zero-order Optimization in Robotics, Skeleton
Inputs µ ∈ RT ·nu ,Σ ∈ RT ·nu×T ·nu , N samples, K
iterations
for iteration k = 1, 2, . . . ,K do

Sample N control sequences {u(i)
0:T−1}Ni=1 ∼ N (µ,Σ)

for each sample i do
Roll out dynamics: x(i)

t+1 = fdyn(x
(i)
t ,u

(i)
t )

Evaluate cost: J (i) = J(xi
0:T ,u

i
0:T−1)

end for
Update parameters (µ,Σ) using {J (i)}Ni=1

e.g. CEM: average over the elite-set, MPPI: exponen-
tially weighted average
end for
Return best control sequence u∗

0:T−1

Recent works [18] [6] have shown theoretical links be-
tween an iteration of MPPI and a gradient descent step on a
smoothed version of the cost function J , which could explain
part of its effectiveness. Additionally MPPI can be seen as
a special case of Consensus Based Optimization [19], which
have theoretical guaranties to converge at the global optimum
under mild assumptions. This motivates the use of sampling-
based techniques as an optimizer in a TO setting.

III. METHOD

In this section, we present our framework, which uses
zero-order optimization to plan trajectories to realize a given
contact sequence. For clarity, we first present our contact
planning formalism in Section III-A. We then explain how
the contact constraints are handled by the zero-order opti-
mization process in Section III-B. Finally we present our
zero-order optimizer in Section III-C.

A. Contact planning formalism

We note in the following a contact plan C as a sequence
of contact modes M0 → . . .Mt · · · → MT . At each time
step t, the contact mode specifies which end-effectors are in
contact and, for those that are, their corresponding contact
patches. Each end-effector i ∈ J1, neeK has a binary contact
variable ct,i, equal to 1 if the end-effector is in contact and
0 otherwise. The set of end-effectors that are in contact at
time t is denoted by Ct. For every i ∈ Ct, we assign a contact
patch pt,i ∈ J1, npK. The contact mode is then written as

Mt = ((ct,i)i∈J1,neeK, (pt,i)i∈Ct). (2)

B. TO formulation

Evaluating if the end-effectors made contact with the
correct patches at the correct time steps from the trajectory
roll-outs can be done in practice using the state trajectory
x0:T and forward kinematics. Since simulators have to detect
contacts to simulate the robot, one could also directly access
the roll-outs simulation data (if available). We define an
indicator function IC(t, i,xt) for this purpose. IC(t, i,xt) is
equal to 0 if the end-effector i is in contact with the correct
patch pt,i imposed by the mode Mt at time step t, and to
1 otherwise. Contact constraints are then satisfied when the
following condition is verified:

ιC(x0:T ) :=

T∑
t=0

nee∑
i=1

IC(t, i,xt) = 0 (3)

One way to handle the contact constraints could be to
reject samples not realizing the desired contact sequence.
However, this would make the process very inefficient in
high-dimensional setting. To circumvent this, we relax the
problem by considering the contact constraint term 3 as an
additional cost term, as defined in the following optimization
problem:

min
u0,...,uT−1

J(x0:T ,u0:T−1) + wCιC(x0:T )

s.t. x0 = x, xt+1 = fdyn(xt,ut)
(4)

where wC ∈ R scales the importance of the contact con-
straint in the optimization. Note that with this formulation,
the 3D contact location within a patch is unconstrained and
is free to be optimized by the algorithm.



C. Zero-order optimizer

We solve 4 using CEM as an optimizer. Controls u0:T−1

correspond to a joint position target for a low level PD policy.
Following [16], we use momentum to update µ and Σ (noted
βµ and βΣ) and scale controls to lie inside the permitted
action interval. Moreover, we used cubic spline interpolation
to reduce the sampling space dimension. For each joint, the
full control trajectory is computed from s ≤ T equally time
spread control knots, reducing the sampling space dimension
to s · nu.

IV. RESULTS

We evaluate our method on a variety of locomotion tasks
with a quadruped robot. We present our experimental setup
in Section IV-A. In Section IV-B, we demonstrate the real-
ization of different gait patterns. We then show in Section IV-
C that our framework can also handle more challenging
scenarios, such as clearing a gap with lateral support walls.

A. Experimental setup

We used MuJoCo XLA (MJX) [20] to simulate roll-outs
in parallel on a NVIDIA GeForce RTX 4060 GPU. One can
access at each time step all the geometry pairs in contact
with MuJoCo, we relied on this to compute IC(t, i,xt). We
used a Go2 quadruped platform for our experiments. Torques
are computed from a low-level PD policy with Kp = 30 and
Kd = 1. We considered T = 200 discretization nodes in
the optimization problem. Roll-outs are performed with a
simulation timestep of 0.01 second, making each trajectories
2 seconds long. Splines are computed from s = 20 knots.
For all experiments, we used the same CEM parameters, as
detailed in Table I.

TABLE I
CEM HYPERPARAMETERS

Parameters Value
Number of samples N 1024
Elite set proportion ρ 0.05
Mean momentum βµ 0.99
Covariance momentum βΣ 0.3

B. Gaited locomotion

We first evaluate the algorithm on a simple task: locomo-
tion with a predefined gait. Three gaits are considered: trot,
pronk, and bound. For all of them, we used the same cost
function J . The cost J is defined as the sum of a running
cost for all t < T and a terminal cost at t = T , where each
term is a weighted sum of ℓ2 norms between state or control
variables and their reference values (see Table II). We set the
desired velocity to vdes = [0.5, 0, 0] and run the algorithm for
K = 200 iterations.

Results on Figure 1 show that the realized contact se-
quence is very similar to the one planed for all the gaits.
The mean contact error, defined as 1

T ·nee
ιC(x0:T ), equals 0.02,

0.02 and 0.06 for the trot, pronk and bound gait respectively.

C. Clearing a gap with lateral wall support

This task consist of clearing a gap of length lgap = 0.75m
by using two lateral walls of α = 45◦ inclination. The system
can make contact with 4 patches: the plane on which the

TABLE II
COST TERMS FOR TRAJECTORY OPTIMIZATION

Quantity Reference Weight value
Running costs

Base height z hnom 5
Base orientation q qupright 10
Joint positions qj qj,nom 5
Base lin. vel. v vdes [5, 1, 1]
Base ang. vel. ω wdes = 0 1

Terminal costs
Base position pT p0 + vdesTdt 200
Base orientation qT qupright 20
Joint positions qj,T qj,nom 10

Regularization
Joint velocities q̇j 0 10−2

Controls u 0 10−2

Contacts
Contact constraint wC C 7.5
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Fig. 1. Comparison of the planned and realized contact sequence for
the different gaits (top: trot, middle: pronk, bottom: bound). The planned
sequence is colored in light gray, the realized one in dark gray.

robot starts, the two walls and the goal plane to reach across
the gap.

We prespecified a contact sequence for this task and let
the algorithm run for K = 1000 iterations. We used a similar
cost function as in Section IV-B. We also set a forward
desired velocity that would lead to the goal at the end of
the trajectory (vdes = [0.5, 0, 0]). Snapshots of the final
trajectory can be seen on Figure 2. The mean contact error
is quite low at 0.1 as the planned contact sequence is tracked
well, as shown on Figure 3.

To highlight the importance of using contact-explicit meth-
ods for this kind of complex tasks, we tried our method
in a contact-implicit setting (wC = 0), where only invalid
contacts with the floor are penalized (with weight wfloor

C =
7.5), while keeping all other parameters the same. In this
case, our framework fails to find a solution that crosses the
gap without relying on the floor, as shown in Figure 4. This
result underlines the necessity of explicitly modeling contacts
when solving challenging locomotion problems.

V. CONCLUSION AND FUTURE WORK

We proposed a zero-order optimization approach for real-
izing given contact sequences with legged robots. Penalizing
invalid contacts from the roll-outs in the TO cost enabled



Fig. 2. Snapshots of the optimized trajectory for the clearing a gap task.
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Fig. 3. Comparison of the planned and realized contact sequence for the
cross gap task. Each color represents a different patch. Thicker bars in
background correspond to the planned sequence, the thinner ones to the
realized sequence. Note that no contact is made with the floor.

a quadruped robot to execute multiple gait patterns. On a
more complex locomotion task in sparse environment, our
method outperformed a traditional sampling-based contact-
implicit approach. Our framework naturally supports parallel
optimization of multiple contact plans, making it well-suited
for large-scale data collection in contact-rich scenarios.

Even though this method has inherent limitations in
very sparse environments and for long-horizon tasks, it
has potential on medium-horizon problems with multiple
contact switches. Building on this, future work will extend
the approach to try planning basic manipulation skills on
a humanoid robot, such as grasping, lifting, and placing
objects. The long-term objective is to build an efficient data
generation pipeline for those kinds of skills.
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