
Serial Scammers and Attack of the Clones: How Scammers
Coordinate Multiple Rug Pulls on Decentralized Exchanges

ABSTRACT
We explored in this work the ubiquitous phenomenon of serial
scammers, who deploy thousands of addresses to conduct a series

of similar Rug Pulls on popular decentralized exchanges (DEXs).

We first constructed a list of about 163,000 scammer addresses be-

hind all 1-day Rug Pulls on the two most popular DEXs, Uniswap

(Ethereum) and Pancakeswap (BSC), and identifiedmany distinctive

scam patterns including star-shaped, chain-shaped, and majority-
flow scam clusters. We then proposed an algorithm to build a com-

plete scam network from given scammer addresses, which consists

of not only scammer addresses but also supporting addresses in-

cluding depositors, withdrawers, transferrers, coordinators, and

most importantly, wash traders. We note that profit estimations

in existing works on Rug Pulls failed to capture the cost of wash
trading, leading to inflated figures. Knowing who the wash traders

are, we established a more accurate estimate for the true profit of
individual scam pools as well as of the entire (serial) scam network

by taking into account the wash-trading expenses.

ACM Reference Format:
. 2024. Serial Scammers andAttack of the Clones: How Scammers Coordinate

Multiple Rug Pulls on Decentralized Exchanges. In Proceedings of The Web
Conference (WWW ’25). ACM, New York, NY, USA, 14 pages. https://doi.

org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The total crypto scam revenue from 2019 to 2023, according to the

latest 2024 Crypto Crime Report by the leading blockchain analytics

firm Chanalysis [8, p. 104], reached a staggering amount of nearly

US $40 billion. The report also shows that Rug Pull, a common type

of scam in the decentralized finance (DeFi) ecosystem, was among

the top three fastest growing scams in 2023 [8, p. 105]. Rug Pull,

first reported in 2021 [7, 38], refers to scams in which the devel-

oper(s) of a cryptocurrency project (usually a new token) suddenly

vanished with investors’ fund, leaving their purchased assets worth-

less. Rug-Pull scams were responsible for the loss of more than US

$100 million in 2023 alone according to Immunefi’s Crypto Loss

Report [16], and are still costing millions of dollars every month in

2024
1
. Immunefi’s reports [16] also identified Etherem and BNB as

the two most targeted chains by hacks and Rug Pulls in 2023-2024.

Whenever there are scammers, there must be serial scammers.
Some evidence of that was initially observed in Xia et al. [38] when

1
Note that Immunefi’s report considers only Rug Pulls for its “fraud” category.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’25, April 28 - May 05, 2024, Sydney, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

they expanded their dataset of scam tokens on Uniswap by includ-

ing also tokens that were created by known scammer addresses,

which were later manually confirmed to be scam tokens (see [38,

Sect. 4.4]). In other words, there are addresses that created multiple

scam tokens on Uniswap. Recently, in a comprehensive study of

the token ecosystem in Ethereum and Binance Smart Chain (BNB),

Cernera et al. [6] also discovered a number of scammer addresses

that performed multiple 1-day Rug Pulls (exchange pools that were

rugged within a day). However, both works assumed that scammer

addresses are independent, and the Rug Pulls carried out by them

are unrelated, leaving the case of single scammers coordinating

multiple scam addresses for future research (see [6, Sect. 11]).

Xia et al. [38] also investigated a related concept of collusion ad-

dresses of a scam token/pool creator, which are addresses that likely

belong to the same scammer (there were money flow between them

and the main scammer address who created the token and the pool)

and operate on the same scam pool. While collusion addresses form

a small part of our study, they are defined for individual scam pools

and do not capture the setting of serial scammers where multiple
addresses operate on multiple related scam pools. Xia et al. also
noted that there might be more complex networks (e.g. to launder

their fund) operating behind the scams that their analysis failed

to capture, and hence there might be many more scam addresses

not identified by their heuristics (see [38, Sect. 6.3]). Similar to [38]

and [6], other existing works on Rug Pulls [15, 21, 23, 40] only

investigated snapshots of the Rug-Pull scam landscape by zooming

in to either individual scam tokens/pools or individual scammer

addresses and treating them as independent entities.

In this paper, we seek to address the aforementioned research

gap and settle the open problems raised by Xia et al. [38] and
Cernera et al. [6]. To that end, we go one step deeper into the world
of sophisticated serial (Rug-Pull) scammers by investigating groups

of tightly connected addresses (supposedly belonging to the same

scammers or scam organizations) that were behind multiple Rug-

Pull scam tokens (ERC-20 onUniswap and BEP-20 on Pancakeswap),

which, not surprisingly, have highly similar contracts. In other

words, we zoomed out and connected the dots to reconstruct a

more comprehensive and accurate picture of how serial Rug-Pull

scammers organized their operations.

To facilitate the exposition of the serial scammers, we restricted

our investigation to 1-day Simple Rug Pull tokens, which are easy

to identify and prevalent on Ethereum and BSC. Such tokens lived

for only one day and were paired with a high-value token such as

ETH or BNB in a pool, the liquidity of which was provided and

removed by a scammer address within a day (see [6]). As shown

in [6], 1-day Rug-Pull tokens were abundant on Ethereum and

BSC, accounting for nearly 50% of all tokens
2
on these chains from

inception to March 2022. Note that 1-day Simple Rug Pulls are much

easier to detect with higher confidence compared to longer-life Rug

2
It was reported in [6] that approximately 60% of tokens on Ethereum and BSC Smart

Chain (BNB) have lifetime shorter than a day, and more than 80% among which were

Rug Pulls at their time of study.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

WWW ’25, April 28 - May 05, 2024, Sydney, Australia

scammer

add liquidity

remove

pool
buy

sell

wash trader

investor

investor

investor

wash trader

liquidity

Figure 1: Typical activities in a DEX scam pool. There can be one

or more scammer addresses behind each pool. Wash traders bought
small amounts of scam tokens to increase its price and generate

fake activities. The arrow refers to the flow of ETH/BNB. If the scam

token is a Trapdoor [15] then it’s possible to buy but impossible to

sell the scam token to obtain ETH/BNB (henced the dashed arrows).

Pulls, which were usually labeled by less straightforward rules, e.g.

inactive tokens (no activities for more than a month) where the

corresponding pools had their liquidity completely removed or had

their price dropped more than 90% at some point. Longer-life Rug-

Pull tokens could be potentially mixed up with low-performing

tokens where the creator decided to remove the liquidity after a

long period of no profit without any ill intent.

Wash trading activities in the cryptocurrency ecosystem have

been observed and studied in different contexts. For example, wash

trading can be carried out to artificially increase the trading volume

of cryptocurrency exchanges [28, 33] to influence the perception of

their popularity. Wash trading can also be used to boost the trading

volume of a Non-Fungible Token (NFT) to reap the reward from an

NFT marketplace or inflate its price for reselling [9, 22, 34]. Wash

trading activities were also observed in the context of Rug Pulls

of ERC-20 tokens on Uniswap in Xia et al. [38, Sect. 5.3.3], under
their investigation of collusion addresses. However, under their

heuristics, only wash traders that have a direct transaction with

the scammers, i.e. 1-hop neighbors, are included. Even the recently

developed A-A Wash-Trading Detector for Uniswap V2 on Dune

from SolidusLab [18, 19] can only detect self wash trading (or 0-hop

wash trader). This simple wash-trading model fails to capture more

sophisticated scams in which wash traders are multiple hops away,

as frequently observed from our datasets.

In our work, by building the scam networks of scammer addresses

and scam-supporting addresses of serial scammers, we were able

to identify all wash-trader addresses, which were funded by the

scam networks and bought scam tokens to pump up their prices in

order to lure the real investors in (see Fig. 1 and Fig. 2). This allows

us to estimate more accurately the real profits of the scammers.

As an example, the creator of the Uniswap pool that pairs ETH

and a scam token called PUMPKIN added 1.8 ETH and removed 9.27

ETH, seemingly reaped a profit of more than 7 ETH (>$10,000) after

mere 37 minutes, creating the illusion of a highly successful scam.

However, as discussed in Section 6.2, it turns out that all major

investors were wash traders, and the real profit for the creator of
PUMPKIN, after deducting the wash-trading expense, is almost zero!

Our contributions are summarized below.

coordinatorscammer

scammer

wash trader

wash trader

Mixer CEXwash trader

wash trader

Figure 2: Typical transactions within a scam network. A coordinator
address often funds several scammer addresses and sometimes

wash-trader addresses. It also sometimes plays the role of a depositor
and transfers large amount of fund to CEX/mixer. Wash traders

can be funded by any node in the network. Sometimes they obtain

fund directly from a CEX/mixer, playing the role of a withdrawer.

• We constructed large 1-day Rug-Pull datasets on Unisw -

ap [32] and Pancakeswap [26] V2, consisting of nearly 200,000

scam pools and 163,000 scammer addresses behind them.

• We formally defined and identified numerous scam patterns
in our datasets, including the star-shaped, chain-shaped, and
majority-flow clusters. The longest scam chain and the largest

scam star consist of 274 and 585 scammer addresses, respec-

tively. These patterns revealed distinctive ways serial scam-

mers coordinated multiple scams on DEXs.

• We further grouped the scammer addresses that interact

with each other via a direct ETH/BNB transfer or via a scam

pool into scam clusters, and found that token contracts used

within each cluster are mostly similar, which indicates that

they could be clones from the same source (same scammer).

• Using a novel network explorer algorithm, we were able to

reconstruct the complete picture of how serial scammers

actually work. In particular, we propose a network-aware
profit formula that factors in the wash-trading expenses to

achieve a more accurate scam profit estimate.

2 BACKGROUND
2.1 Ethereum and BNB Smart Chain
Ethereum is the second-most popular blockchain after Bitcoin,

with a market capitalization of over US$300 billion at the time

of this study [12]. At the time of its launch in 2015, Ethereum

had drawn great attention to the blockchain community by in-

troducing Ethereum Virtual Machine (EVM) and a smart contract

concept, becoming a pioneer in contract-supporting blockchains.

Smart contracts are executable pieces of code holding business

logic. Many applications have been implemented using smart con-

tracts, boosting blockchain to rapidly develop and be widely applied

to different domains, such as supply chain, health care, and gov-

ernance [5, 17, 24]. One of the well-known smart-contract-based

applications is fungible tokens.

Fungible tokens are the financial applications used widely as

digital assets such as company shares, online game assets, or fiat

currencies. Fungible tokens (ERC-20 on Ethereum or BEP-20 on

BSC) must follow the common standard [2, 14] by implementing a

Serial Scammers and Attack of the Clones: How Scammers Coordinate Multiple Rug Pulls on Decentralized Exchanges WWW ’25, April 28 - May 05, 2024, Sydney, Australia

set of functions and events (see Table 5 in Appendix A). Accounts
are the basic unit in blockchain that is represented by a 20-byte

length unique address. Ethereum and BSC accounts are classified

into externally owned account (EOA) and contract account (CA).

The former is controlled by users via a private-public key pair

mapped to the address, while the latter is managed by a contract

that contains executable code. Transactions in blockchains are

messages between two accounts. Transactions record all activities

on blockchains, such as deploying a new smart contract or transfer-

ring a digital asset. A fee will be charged to a user when creating a

transaction to pay the miners. Transactions are classified based on

the type of the sender: a normal transaction is sent from an EOA,

while an internal transaction is sent from a CA.

BNB Smart Chain (BSC), a hard fork of Ethereum, was estab-

lished in 2020 with new features to boost the performance. One of

the important updates is the use of a different consensus, allow-

ing faster transaction processing times with lower fees. Similar to

Ethereum, BSC is also a smart-contract-supporting blockchain with

a very similar token standard (BEP-20).

2.2 Uniswap and Pancakeswap
Decentralised exchanges (DEXs) are financial platforms that operate

based on price determination mechanisms such as order books and

automated market makers (AMM), allowing users to exchange their

digital assets without the involvement of central authorities [36].

Uniswap [32] is one of the top popular DEXs, which debuted on

Ethereum in 2018. Uniswap is the first DEX that adopted the AMM

mechanism successfully with the concept of exchange pools and

liquidity providers. An exchange pool in Uniswap operates like

a money-exchange counter of two arbitrary currencies (fungible

tokens). Exchange liquidity in a pool is provided by one or multiple

users (liquidity providers). Anytime a provider adds liquidity (in

the form of two corresponding tokens) into a pool, the pool’s smart

contract will “mint” LP tokens and send them back to a provider

as liquidity shares. A provider can send LP tokens to the pool to

withdraw their funds anytime they need. When a pool receives LP

tokens from a provider, its smart contract will “burn" them and

send the fund back to a provider.

Although Uniswap has launched its fourth version, other ver-

sions are still operating as independent platforms. Among them,

Uniswap version 2 (UniswapV2) entirely outperforms other ver-

sions in terms of the number of listed tokens and pools [11]. Due to

the popularity of this version and its open-source smart contracts,

more than 650 DEXs across different blockchains are the forks of

UniswapV2 [13], and PancakeswapV2 [26] is the most successful

fork on BSC. As such, we choose to study UniswapV2 and Pan-

cakeswapV2, noting that our approach is also applicable to other

forks of UniswapV2 and other similar DEXs.

3 ONE-DAY RUG PULL DATASETS
We first define 1-day Rug Pull scam and then discuss how we con-

structed the datasets of scam pools, scam tokens, and scammer

addresses on Uniswap V2 (Ethereum) and Pancakeswap V2 (BSC).

3.1 One-Day Rug Pull
We follow the definition of 1-Day Rug Pull in Cernera et al. [6,
Sec. 7.1]. The definition of scammer addresses were first discussed

in Xia et al. [38, Sec. 5.3]. See Fig. 7 for an example of the transaction

history of a typical Rug-Pull scammer address.

Definition 3.1 (1-Day Rug Pull). A 1-day exchange pool is a pool
that pairs a higher-value (lower reserve) token and a lower-value

(higher reserve) token in which the first and last events happen

within a day. An exchange pool is called a 1-day simple Rug Pull if a)
it is 1-day, b) the lower-value token is paired in this pool only, and

c) it has one mint event and one burn event that burns at least 99%

of the minted LP tokens. The corresponding lower-value token of a

1-day simple Rug-Pull pool is also called a 1-day simple Rug-Pull

token. We also refer to them as scam pool and scam token for short.

Definition 3.2 (Scammer Addresses). Given a cam pool, we refer to

the addresses of the scam token creator, the scam pool creator, the

liquidity provider, and the liquidity remover as scammer addresses
behind/associated with the pool.

3.2 Data Collection
We collected data on Uniswap and Pancakeswap from the time they

were launched to the time of this study (July 2024).

Exchange Pools. Uniswap works based on three main contracts:

Factory, Pair, and Router. The Factory generates an exchange
pool (a Pair) for users from two given tokens. The Factory stores

the addresses of created Pairs while a Pair stores the addresses of
two listed tokens. We first used Web3.py [35] to query all created

pools by calling the allPairs function of the Factory. For each
collected pool, we then called two functions token0 and token1
from its contract to retrieve the pair of listed tokens. Finally, we used

Etherescan APIs [31] and BSCscan APIs [30] for retrieving related

information of collected pools and tokens, including their creator

address and their contract source codes. As a result, we collected

356,295 pools and 343,637 tokens on Uniswap, and 1,694,058 pools

and 1,510,774 tokens on Pancakeswap.

Pool Events. Pool events are the logs of a Pair written down

when the state of any property changes. In our study, we collected

four pool events, including Mint, Burn, Transfer, and Swap. The
first three events occur every time LP-token information is changed.

For example, an exchange pool emits a Mint event each time LP-

tokens are minted for a new liquidity adding. Similarly, a Burn
event is raised when a pool burns the LP tokens received from

a liquidity provider. A Transfer event is recorded any time an

LP token is transferred from one address to another (ownership

change). Unlike these three events, a Swap event is written each

time a user swaps tokens in an exchange pool. To collect these

events, we used the “getLogs" APIs from Etherscan and BSCscan.

To reduce time and computation cost, we only download the first

1000 events of each pool, as it also will not impact our goal of

collecting 1-day scam pools/tokens. The downloaded data was then

decoded to extract useful information using our event decoder. In

consequence, we gathered 2.2 million Mint events, 1.0 million Burn
events, 4.7 million Transfer events and 49.9 million Swap events
on Uniswap (resp. 17.3 million, 5.1 million, 38.0 million, and 154.9

million events on Pancakeswap).

Rug Pulls and Scammers. Next, with the pool events we gath-

ered in the previous steps, we identify Rug Pull scams on each DEX

by using the one-day Rug Pull definition. Notably, we collect all

pools that only fire one Mint and one Burn event and examine if

WWW ’25, April 28 - May 05, 2024, Sydney, Australia

99% of liquidity is burned within a day of it being added. Moreover,

we only focus on ETH pools on Uniswap and BNB pools on BSC.

This allows us to accurately assess the costs and benefits associ-

ated with these scams. According to our analysis, 96% number of

pools on Uniswap are ETH pools, and 88% number of pools on

Pancakeswap are BNB pools. Thus, the missing cases are not im-

portant for our study, but it is difficult to estimate the cost from

the token prices. Finally, we extract scammers from identified rug

pulls. It is worth noting that we exclude all public addresses (e.g.,

CEX, bots, bridges) and old addresses that have no transactions

within our data collection period. These old addresses appear in

our dataset because their tokens were created before the platforms

were launched. Ultimately, 161,339 (47%) scam pools and 145,654

unique scammers are determined on Uniswap, and 32,336 (2%) scam

pools and 18,346 unique scammers are found on Pancakeswap.

4 SERIAL SCAM PATTERNS: DETECTION AND
ANALYSIS

We explore in this section several distinctive funding patterns that re-
veal how scammer addresses, which potentially belong to the same

serial scammers, receive fund to carry out their Rug-Pull scams and

transfer the scammed money to another address in a highly coordi-
nated manner. For one of our funding patterns: simple scam chain,

we found the top 50 highest average transfer amounts per chain to

average 902 ETH for Uniswap and 138 BNB for Pancakeswap. This is

the first step in our investigation of serial scammers on DEXs where

we deviate from most existing approaches [6, 15, 21, 23, 38, 40],

which often treat different scams as unrelated ones.

We henceforth define the following concepts to facilitate our

discussion. Given an address A, an in-transaction is a transaction

from another address B to A, and B is called an in-neighbor of A.
Similarly, an out-transaction is a transaction from A to another

address C, which is referred to as an out-neighbor of A. We refer to

the buys and sells of a scam token as swap-ins (paying ETH/BNB
to the pool) and swap-outs (geting ETH/BNB from the pool).

4.1 Star-Shaped Scam Patterns
We start our scam pattern exploration by defining three types of

scam star, representing a commonly found pattern in which scam-

mer addresses are coordinated by a center address (coordinator).

Definition 4.1 (Scam Star). A scam star consists of a center address
𝑐 (coordinator) and 𝑛 ≥ 5 scammer addresses 𝑠1, . . . , 𝑠𝑛 (satellites)

that satisfy one of the following patterns.

• OUT-star (common funder): the satellites 𝑠1, . . . , 𝑠𝑛 re-

ceived at least 100% of the cost to create their first scam from

the center 𝑐 but sent no fund to the center. The correspond-

ing in-transaction from 𝑐 must be the largest in-transaction

each satellite received before conducting the first scam.

• IN-star (common beneficiary): the satellites 𝑠1, . . . , 𝑠𝑛 re-

ceived no fund from the center 𝑐 , but transferred at least 90%

of their last scam revenue to the center. The corresponding

out-transaction to 𝑐 must be the largest out-transaction from

each scammer after conducting their last scam.

• IN/OUT-star (common funder/beneficiary): the satel-

lites 𝑠1, . . . , 𝑠𝑛 received at least 100% of the cost to create

dc5b8a6c

4c25

c21f

8b3d

d674

b73e

5 ETH

5.4 ETH

5 ETH

5 ETH

10
ET

H

10
ET

H

10
ET

H

9.9
ET

H

15 ETH

15.3 ETH

15.2 ETH

15 ETH

Figure 3: Examples of an IN/OUT-star with dc5b as the cen-

ter/coordinator
3
. The six satellites are all scammer addresses.

their first scam from the center 𝑐 . The corresponding in-

transaction from 𝑐 must be the largest in-transaction each

satellite received before conducting the first scam. Moreover,

the satellites transferred at least 90% of their last scam’s rev-

enue to the center. The corresponding out-transaction to the

center must also be the largest out-transaction from each

scammer after conducting the last scam.

Examples of an IN-star and an IN/OUT-star are given in Fig. 3.

Note that while we require that the funding amount from the center

must cover 100% of the scam cost (in OUT-stars and an IN/OUT-

stars), the value of the OUT transaction only needs to cover at least

90% of the last scam’s revenue. This reflects our observation that a

scammer address may also operate as a wash trader, who spends

some small portion of the sum received from the funder and from

its scam pool to buy (i.e. wash trade) scam tokens from scam pools

created by other scammer addresses. More details on how to detect

stars are left to Appendix C. We ran our star detection algorithm

on the entire Uniswap/BSC datasets and report the statistics below.

Type #Stars Size Fund In Fund Out Period (days) #Scams

IN 1575 585, 19 1173, 6 925, 95 585, 19

OUT 61 66, 9 1310, 42 475, 56 66, 10

IN/OUT 73 159, 15 1247, 37 1263,36 475, 55 159, 16

Table 1: Statistics for scam stars found in our Uniswap scammer

dataset. Maximum and average values are rounded and reported,

e.g., the maximum and average size of an IN scam star is 589 (satel-

lites) and 19, respectively.

Type #Stars Size Fund In Fund Out Period (days) #Scams

IN 64 228, 20 24,4 758, 187 230, 22

OUT 0

IN/OUT 7 12, 8 1, 1 2, 1 17, 4 12, 8

Table 2: Statistics for scam stars found in our BSC scammer dataset.

Maximum and average values (in BNB) are rounded and reported.

4.2 Max-In-Max-Out Scam Chain
Definition 4.2 (Simple Scam Chain). A simple scam chain, also

referred to as a max-in-max-out scam chain, is a list of 𝑛 scammer
addresses 𝑠1, 𝑠2, . . . , 𝑠𝑛 (𝑛 ≥ 2) satisfying the following conditions.

• (C1) 𝑠𝑖 is the largest funder of 𝑠𝑖+1, and 𝑠𝑖+1 is the largest

beneficiary of 𝑠𝑖 , for every 𝑖 ∈ {1, . . . , 𝑛 − 1}.
3
The center’s full address is 0xbfc6cc4676aef7216e597d45d68463097520dc5b.

Serial Scammers and Attack of the Clones: How Scammers Coordinate Multiple Rug Pulls on Decentralized Exchanges WWW ’25, April 28 - May 05, 2024, Sydney, Australia

• (C2) The transfer(s) from 𝑠𝑖 to 𝑠𝑖+1 occurred after 𝑠𝑖 has com-

pleted its last scam and before 𝑠𝑖+1 started its first scam.

A max-in-max-out scam chain is called maximal if no other EOAs

can be added to the chain to obtain a longer chain. We only consider

maximal scam chains in this work. It is obvious that each scammer

belongs to at most one max-in-max-out chain.

bd56 01c2 25e2

Superman

10.25 ETH 10.3 ETH

AsakusaMonopolyBot

Figure 4: An example of three consecutive scammer (partial) ad-

dresses
4
as part of a (maximal) simple scam chain of length 47. Each

address performed one Rug Pull (token names are given), and then

transferred some fund to the next one.

DEX #Chains Length Ave. Transfer Period (days) #Scams

Uniswap 4494 274
5
, 4 642, 35 369, 3 339, 6

Pancakeswap 519 19, 2 817, 19 61,3 125, 5

Table 3: Statistics for scam chains found in our Uniswap and Pan-

cakeswap scammer datasets. Maximum and average values (in

ETH/BNB) are rounded and reported.

A simple algorithm can be designed to find all (maximal) max-

in-max-out scam chains among a given list of scammer addresses.

Our findings on both datasets are reported in Table 3. Except the

number of chains, the rest are measurements per chain.

4.3 Majority-Flow Cluster
While the max-in-max-out scam chains capture many cases where

each scammer address has a major funder and then sent most

scammed fund to another scammer address, they miss the case

where there are more than one major funders and/or beneficiaries.

For example, when two addresses funded the scammer with 50 and

51 ETH, only the one funding 51 ETH will be recorded by the chain.

We propose below the more sophisticated concept of majority-
flow cluster, which takes into consideration the funding amount

required to fund a scam (when providing liquidity) and its revenue

(when removing liquidity). Such a cluster consists of three kinds

of (scammer) addresses: input, internal, and output. Each internal
address received 100% funding from input addresses and/or other

internal addresses (called the major funders) to carry out its first

scams, then transferred at least 90% of its last scam’s revenue to

other internal and/or output addresses (called the major benefi-
ciaries). Note that a scammer address may also spend some of its

scam revenue on wash trading other scam pools (hence only 90%

is required instead of 100% to account for those small spendings).

Input addresses and output addresses behaved similarly, but the

funders of input addresses and beneficiaries of output addresses do

not belong to the cluster, respectively.

The majority-flow cluster concept reflects more accurately the

major flow of funding for scams between scammer addresses on

a DEX. An example of a partial majority-flow cluster is given in

4
The first scammer address is 0xC3E8290045952D520f4c2Eb7E8725CaBc4c8B5D6.

5
The first address is 0x79daa9236e6825f023ab3ebd2cecfe94b48789d1.

Fig. 8 (Appendix D). Note that the max-in-max-out chain can only

capture scammer addresses along the path -9ac2-29cc-d378-c80f-

2970- instead of the whole cluster.

Definition 4.3 (Majority-Flow Cluster). Given a set of scammer

addresses 𝑆 , a majority-flow cluster is subset 𝐶 of 𝑆 , |𝐶 | ≥ 2, where

every 𝑠 ∈ 𝐶 has a set of in-neighbors 𝐹 (𝑠) called the major funders
and/or a set of out-neighbors 𝐵(𝑠) called the major beneficiaries
satisfying the following properties.

• (P1) The set 𝐹 (𝑠) ⊂ 𝑆 consists of the minimum number of

in-neighbors with largest in-transaction values (top funders)

before the first scam of 𝑠 occurred that together provide

enough funding for 𝑠 to fund its first scam.

• (P2) The set 𝐵(𝑠) ⊂ 𝑆 consists of the minimum number

of out-neighbors with largest out-transaction values (top

beneficiaries) after the last scam of 𝑠 occurred that together

cover at least 90% of the revenue of the last scam of 𝑠 .

• (P3) For every 𝑠 ∈ 𝐶 , it holds that 𝐹 (𝑠) ⊆ 𝐶 or 𝐹 (𝑠) ∩𝐶 = ∅,
and 𝐵(𝑠) ⊆ 𝐶 or 𝐵(𝑠) ∩𝐶 = ∅. Moreover, either 𝐹 (𝑠) or 𝐵(𝑠)
or both must be a subset of 𝐶 .

• (P4) For every 𝑠, 𝑠′ ∈ 𝐶 , it holds true that 𝑠′ ∈ 𝐹 (𝑠) if and
only if 𝑠 ∈ 𝐵(𝑠′).
• (P5)𝐶 is connected in the sense that for every 𝑠, 𝑠′ ∈ 𝐶 , 𝑠 ≠ 𝑠′,
there is a path 𝑠 = 𝑣1, 𝑣2, . . . , 𝑣𝑘 = 𝑠′ where 𝑣𝑖+1 ∈ 𝐹 (𝑣𝑖) or
𝑣𝑖+1 ∈ 𝐵(𝑣𝑖), for every 𝑖 = 1, . . . , 𝑘 − 1.

Similar to the chains and stars, we only considermaximal majority-

flow clusters, i.e. no other EOAs can be added to obtain a larger one.

Each scammer belongs to at most one cluster (see Theorem D.1).

Although the majority-flow clusters require very strict proper-

ties, we were still able to find a good number of them on both chains

(see Table 4). Those with width two (see Appendix D) have a chain

shape (but not the same as the simple chains), whereas those with

width larger than two represent the more sophisticated clusters

with nodes having more than one major funder/beneficiary.

DEX No. Clusters Size Width Fund In Fund Out

Uniswap 5298 156, 4 7, 2 1644.8, 31.8 1797, 33

Pancakeswap 817 19, 2 3, 2 816.8, 14.5 816.8, 15

Table 4: Statistics for majority-flow clusters found in our Uniswap

and Pancakeswap scammer datasets. Maximum and average values

are rounded and recorded.

5 SCAM CLUSTERS ANALYSIS
We have seen in Section 4 how scammer addresses fund themselves

via scam clusters with special shapes. In this section, we investigate

more general scam clusters, each of which consists of scammer

addresses linked together via a direct ETH/BNB transaction or a

scam pool. Note that all scam patterns investigated in Section 4

make use of direct ETH/BNB transactions only.

To corroborate our view that all such scammer addresses in the

same cluster likely belong to the same serial scammer, we developed

AST-Jaccard score (see Appendix E), a new code similarity score

based on a careful integration of contract source code’s abstract
syntax tree (AST), hash function, and Jaccard similarity to overcome

typical code obfuscation techniques used in contract cloning. We

measured the similarity among a large number of scam contracts,

WWW ’25, April 28 - May 05, 2024, Sydney, Australia

and found that intra-cluster contracts are mostly similar (average

similarity score greater than 0.7) while inter-cluster contracts are
mostly dissimilar (average similarity score less than 0.3). This is

yet another strong indicator that scammer addresses within each
cluster are controlled by the same serial scammer, apart from the

fact that such addresses are already either behind the same scam

pools or tightly connected in the transaction network. With the

new concept of scam clusters and the affirmative contract similarity

analysis of them, we have further broadened our understanding of

how serial scammers created similar contracts to run a series of

Rug-Pull scams on popular DEXs.

5.1 Generating Scam Clusters
Definition 5.1 (Scam Cluster). Given a dataset 𝑆 of all scammer

addresses, a scam cluster is a connected component (see below)

𝐶 =
(
𝑉 (𝐶), 𝐸 (𝐶)

)
, where 𝑉 (𝐶) ⊆ 𝑆 is a set of scammer addresses

and 𝐸 (𝐶) ⊆ 𝑉 (𝐶) ×𝑉 (𝐶) is a set of edges among them, satisfying

the following conditions.

• (C1) An edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (𝐶) exists if and only if 𝑢 and

𝑣 had a direct ETH/BNB transaction on the blockchain, or

𝑢 and 𝑣 are different scammer addresses associated with a

common scam pool.

• (C2) 𝐶 is connected, that is, for every 𝑢, 𝑣 ∈ 𝑉 (𝐶), 𝑢 ≠ 𝑣 ,

there exists a path from 𝑢 to 𝑣 in 𝐶 .

Note that we only consider maximal scam clusters, i.e., no new

scammer address can be added to achieve a larger one.

Given a dataset 𝑆 of all scammer addresses, one can identify all

scam clusters by first forming an undirected graph𝐺 = (𝑉 , 𝐸) with
𝑉 = 𝑆 and 𝐸 is formed using (C1), replacing𝑉 (𝐶) and 𝐸 (𝐶) by𝑉 and

𝐸, respectively, and then find all of its connected components. The

scammer addresses belonging to each connected component form

a scam cluster. We ran this simple algorithm on both the Uniswap

and BSC datasets of scammer addresses and identified all (1-day
simple Rug Pull) scam clusters on these DEXs. The results show

that 109,471 groups on Uniswap and 14,561 groups on Pankaceswap

are formed from 145,654 scammers and 18,346 scammers, respec-

tively. The biggest Uniswap cluster contains 4,155 unique scammers,

while the biggest cluster on Pancakeswap is established by 571 dif-

ferent addresses. There are also many one-scammer groups on

both platforms that occupy nearly 92% Uniswap clusters and 88%

Pancakeswap clusters.

5.2 Scam Cluster Analysis
We collected available token contracts from all the scammers in

the scam clusters in Section 5, and obtained 111,300 token con-

tracts for 74,254 clusters on Uniswap and 14,147 token contracts

for 9,610 clusters on Pancakeswap. We first examined the similarity

among contracts that were used by individual scammer addresses

and found that nearly 68% of scammer addresses on Uniswap and

61% of scammer addresses on Pancakeswap deployed multiple con-

tracts with over 80% similarity. Moreover, 2,038 Uniswap scammer

addresses and 411 Pancakeswap scammer addresses reused the

same contract (100% similarity) repeatedly. Among them, e9376 on

6
0x2c1eb6ca34997f6601cffe791831ad6d5cb9e937

Uniswap and acd07 on Pancakeswap deployed the same contract

at most 150 times and 24 times, respectively.

Intra-cluster similarity. Fig 9 (Appendix E) shows the statistic
of intra-cluster similarity with different sizes of groups on Uniswap.

Specifically, 5,483 groups (33%) on Uniswap have a similarity of

over 95%. This proportion does not much change for the set of

large-size groups. The opposite phenomenon is observed for the

distribution of similarities on Pancakeswap. The proportion of over

95% similarity groups is higher than the proportion on Uniswap

with the value of 37% (see Fig 10, Appendix E). However, this num-

ber decreases by 12% in the large-size group. There are only a few

groups set larger than 50 so we do not do a statistic for these groups.

The average intra-cluster similarities among all groups are 74% and

79% for Uniswap and Pancakeswap, respectively.

Inter-cluster similarity. Due to high computational cost, in

our calculation, we randomly select up to 100 tokens in each group

to compare with those in other groups. We also select randomly

500 groups to pair with the chosen group. Then we repeat the

calculation 10 times and the final result is obtained by taking the

average. The results in Fig 11 and Fig 12 (Appendix E) indicate

that tokens in one group are dissimilar to tokens in other groups.

Regardless of group size, the similarity is always below 39% for

Uniswap clusters and 30% for Pancakeswap clusters. The average

similarity for any pair of clusters on Uniswap is 27%, while that on

Pancakeswap is 20%.

6 SCAM NETWORKS AND PROFIT ESTIMATES
We are now ready to present the most complete picture of how a

Rug-Pull scam network (belonging to a serial scammer/scam orga-

nization) operates on Uniswap and Pancakeswap. A scam network

contains not only scammer addresses but also other associated ad-

dresses that serve distinctive roles in the overall scam operation

including wash traders, transferrers, depositors, withdrawers, and co-
ordinators. A scam network contains the scam chains and scam stars

(Section 4), as well as scam clusters (Section 5) as its subgraphs.

Apart from helping us obtain a complete view of the entire oper-

ations of a serial scammer, a concrete benefit of having a complete

scam network reconstructed is that the knowledge of the wash

traders in the network allows a more accurate computation of the

true scam profits. Some of the existing research in DEX Rug Pull

were aware of the wash trading activities [6, 15, 29, 38] but leave

it as a future work. This is because without the reconstruction

of a scam network, it is impossible to calculate the wash-trading
component. Our work seeks to address this research gap.

6.1 Node Labelling
We first define the main roles performed by addresses in a scam

network, which are associated with three key operations of such

networks: scamming (Rug Pull), wash trading (for scam pools), and

(scam) money laundering. All addresses must be in the network.

• S: scammer address - associated with a 1-day scam Rug-Pull

pool (see Definition 3.2).

• C: coordinator address - was the largest funder of at least five
scammer addresses, and at least 50% of its EOA neighbors

must be scammer addresses. A largest funder of an address

7
0x7e784333fbf355fc57de77f9fbe97aa06225acd0

Serial Scammers and Attack of the Clones: How Scammers Coordinate Multiple Rug Pulls on Decentralized Exchanges WWW ’25, April 28 - May 05, 2024, Sydney, Australia

coordinatorscammer

Kucoin 72989aa6

GJI

fa6ad187

b7f1 884f

381c6b85

8f33
wash
trader

Figure 5: The wash traders of the scam token GJI on Uniswap

created by the scammer address (ending with) 9aa68 never received
fund directly from it. Several are multiple hops away and funded

by a CEX (Kucoin 10) or among themselves.

A is one of the in-neighbours that transferred the maximum

amount of high-value token (ETH/BNB) to A.

• WT: wash-trader address - bought at least one 1-day scam

token from a 1-day scam pool.

• D/W: depositor/withdrawer address - sent fund to/withdraw

from CEXs, mixers, or bridges.

• T: transfer address - received and forwarded fund only and

performed no other activities nor retained the fund received.

More specifically, the address must only interact with EOAs

and moreover, the total out transfers (including transaction

fees) must be at least 99% of the total in transfers (not includ-

ing transaction fees).

• B: boundary address - is not scammer or coordinator, has at

least ten token swap-ins and more than 50% of the swap-ins

were with non-scam pools.

6.2 Wash Trading and Accurate Profit Estimate
While the presence of wash traders in Rug Pulls on Uniswap was

observed as early as 2021 in Xia et al. [38] and also noted in sub-

sequent works [6, 15, 29], the actual cost to run wash traders for

scam pools, to the best of our knowledge, has never been studied

in depth. Thanks to the introduction of the scam network concept,

we can determine the wash-trading cost more accurately.

Note that Xia et al. [38] identified 1-hop wash traders that re-

ceived direct transaction of ETH from scammer addresses before

their swapping of scam tokens. A recently developed wash-trading

detection tool by SolidusLab [18, 19] can only detect 0-hop wash

traders (self wash trading). However, from our datasets, we can

see that wash traders could be multiple hops away and never in-

teracted directly with the scammer addresses, e.g. see Fig. 5. The

network of wash-trader addresses for GJI (Fig. 5) also provides

an interesting counterexample to the common misperception that

wash-trader addresses must receive fund from the scammer ad-

dress before performing wash trading. In the example of GJI, wash
traders received fund from a CEX (Kucoin) and among themselves,

and even transferred the left-over amounts to the scammer address

9aa6 eventually. This would be somewhat counterintuitive if not

for the knowledge of how a scam network operates.

We would also like to note that most research on wash trading

for NFTs in the literature (see, e.g. [9, 22, 34] and the references

therein) studied a different setting in which accounts trade NFTs

8
0x19b98792e98c54F58C705CDDf74316aEc0999AA6

ETH flow

c088

6d5f

25a1

cf40

b116

c6ae

fb0b

4b10

PUMPKIN

YEN

BURGERS

TEMPLEETHEREUM6900

FLAT

GIGA

FART

wash trade

LEGEND

0.
22

3.56

3.54

continued

Figure 6: Part of a complete scam network containing c6ae, the
creator of the scam token PUMPKIN. The figure shows how eight

scammer/wash trader addresses transferred ETH to each other

(thinner arrows) and at the same time wash traded their scam

tokens (thicker arrows). The pool of PUMPKIN was heavily wash

traded, thus inflating the perceived scam profit by more than 7 ETH.

directly among themselves or via a centralized marketplace like

OpenSea or LooksRare, not via an exchange pool. For example, in

Morgia et al. [22], a graph is built for each NFT with nodes being

the addresses directly interacting with the NFT and edges being

their direct trade of the NFT. Then, suspicious wash-trading groups
include addresses that perform self-trade or strongly connected

components that have a common funder or beneficiary, or maintain

a zero-risk position (zero balance after all the transactions, factoring

out the gas fees). The concept of zero-risk position is irrelevant to
the exchange pool setting of fungible ERC-20/BEP-20, in which

investors trade with the pool and not among themselves. Also, the

edges of the connected components in the wash-trading graph

in [22] represent NFT tradings, which doesn’t exist in our setting

as Uniswap/Pancakeswap investors do not trade ERC-20/BEP-20

tokens after buying them from the pool.

Definition 6.1. (Existing scam profit formula, e.g. [6, Sec. 7.1])

The profit for a scam pool 𝑝 is 𝛿 (𝑝) ≜ 𝑌 (𝑝) − 𝑋 (𝑝), where
• 𝑋 (𝑝) is the amount of high-value token (ETH/BNB) that the

scammer addresses gave to the pool (by adding liquidity or

swapping) plus transaction fees.

• 𝑌 (𝑝) is the amount of high-value token (ETH/BNB) that

the scammer addresses gained from the pool (by removing

liquidity or swapping) minus transaction fees.

For example, the creator
9
of the scam token PUMPKIN on Uniswap

added 1.8 ETH (0.014 fee), swapped in twice totaled 0.22 ETH (0.0006

fee) and removed 9.27 ETH (0.0011 fee) from the pool. Ignoring the

very small transaction fees, 𝑋 = 1.8 + 0.22 = 2.02, and 𝑌 = 9.27,

leading to a sizable profit of 𝑌 − 𝑋 = 9.27 − 2.02 = 7.25 (more than

US $11,000 back then) for Pumpkin’s creator in less than an hour.

We will see next that this estimation is far off from the real profit.

Definition 6.2 (Network-aware profit formula). The profit for a
scam pool 𝑝 within a scam network 𝑁 is 𝛿 (𝑝, 𝑁) ≜ 𝑌 (𝑝, 𝑁) −
𝑋 (𝑝, 𝑁), where

9
0x6C1e7FfAe984b5644C2ab95FC3aDF5794317C6aE

WWW ’25, April 28 - May 05, 2024, Sydney, Australia

• 𝑋 (𝑝, 𝑁) is the amount of high-value token (ETH/BNB) that

the addresses in the network 𝑁 paid to the pool, including
liquidity additions and swap-ins, plus transaction fees.

• 𝑌 (𝑝, 𝑁) is the amount of high-value token (ETH/BNB) that

the addresses in the network gained from the pool (by remov-

ing liquidity or swapping out), minus transaction fees.

Note that 𝑋 (𝑝, 𝑁) includes the term 𝑋 (𝑝) in Definition 6.1 and

the new wash-trading component 𝑍 (𝑝, 𝑁) - the total amount of

high-value token paid to the pool by the wash traders in 𝑁 .

After building the scam network containing Pumpkin’s creator
address using our ScamNetworkExplorer algorithm developed in

Section 6.3, it becomes clear that all big investors were wash traders

from that network. In particular, 4b10 and 25a1 swapped in (multi-

ple times) 3.56 and 3.54 ETH in total, respectively, while the creator

c6ae swapped in (twice) 0.22 ETH (see Fig. 6). Using our new for-

mula (Definition 6.2), we obtain that 𝑋 ≈ 9.1463 = 1.8177 + 7.3286,
𝑌 = 9.2661, and hence the real profit is merely 0.1198 ETH.

Finally, the total profit of a scam network 𝑁 is simply the sum of

profits of all scam pools in the network Δ(𝑁) ≜ ∑
𝑝∈𝑁

(
𝑌 (𝑝, 𝑁) −

𝑋 (𝑝, 𝑁)
)
−𝑇 (𝑁), where 𝑇 (𝑁) is the total fee spent on direct high-

value token (ETH/BNB) transactions among the addresses in 𝑁 .

6.3 Generating Scam Network
A natural choice to explore the scam network is to use a Breadth-

First Search (BFS) as it can capture essential chain activities in-

cluding fund transfer/deposit/withdraw and DEX-specific activities

such as token swap and transfer, token/pool creation, liquidity

providing and removal. Although theoretically straightforward, im-

plementing BFS to identify scam networks on Ethereum and BSC

chains is remarkably difficult. There are four main challenges (see

Appendix F for a more detailed discussion), but the major one is

to avoid network explosion and to prevent the BFS from including

public or benign addresses. We will use accounts, addresses, and

nodes interchangeably.

Existing approaches. To circumvent the network explosion

problem (Challenge 4) when building the transaction subgraph

(starting from one or more seed nodes), one must identify/define a

boundary, or terminal nodes, at which the BFS stops expanding fur-

ther. The simplest way is to set the boundary nodes to be just 1-hop
neighbors of the scammer nodes (equivalently, from the scam pools).

For example, Morgia et al. [22] investigated weakly connected com-

ponents of the subgraph generated by the 1-hop neighbours of the

NFT scams to identify wash-trading groups. The issue with this

approach is that it treats each scam as an isolated one and fails to

recognize the connection among multiple scams (the main topic of

our work). Another simple way is to explicitly set the maximum
number of hops the BFS can reach, e.g. ten hops as in Yan et al. [39,
Algo. 1]. However, this artificial threshold (ten hops) would lead

to an inaccurate picture of a true scam clusters. For instance, we

discovered in our work a number of very long scam chains with

lengths up to a few hundreds (see Section 4.2). Limiting the BFS to a

fixed, small number of hops would also lead to inaccurate statistics

on scam clusters and their true profits.

Our modified BFS (see Appendix F) receives as input the scam-

mer list 𝑆 , the scam pool list 𝑃 , and scam token list 𝑇 identified in

the data collection phase. It then iterates over 𝑆 , starts from each

unvisited address as a seed, retrieves the transaction history of the

current address in consideration, and identifies and places its valid
neighbors into BFS’s queue for future processing. Valid neighbors

of the current address 𝑣 include unvisited/unqueued EOAs that had

a non-zero-value transaction (in ETH/BNB) with 𝑣 or were scammer

addresses behind the same scam pool as 𝑣 (if 𝑣 is a scammer), were

scammer associated with a scam pool that 𝑣 traded with, or traded

with the scam pool associated with 𝑣 given that 𝑣 is a scammer.

To address network explosion (Challenge 4), instead of setting

the maximum number of hops like in [22, 39], we allow BFS to

expand arbitrarily far, but identifying terminal nodes at which BFS

stops expanding. The set of terminate nodes is described as follows.

Public terminal nodes are publicly label nodes such as mixers, CEXs,

bridges, MEVs, contract deployers, and DEX routers. Similar to

most work in the literature, a list of such addresses can be collected

from well-known sites such as Etherscan’s WordCloud and Dune,

and also manually added on the fly. Normal trading (boundary)
nodes are non-scammer/coordinator addresses that had at least 10

swap-ins and at least 50% of them were with non-scam exchange

pool. If such an address is reached, BFS won’t add its neighbors to

the queue. Big nodes are defined according to two limits ℓ = 500

and 𝐿 = 1000. Addresses that have more than 𝐿 transaction will

be ignored. Addresses with more than ℓ but at most 𝐿 transactions

will be ignored except for scammers and coordinators. We also

implemented an address-poisoning-attack detector (see Appendix F)
to prevent the BFS to branch out to benign victim addresses.

A case study. Starting from a scam cluster found in Section 5,

referred to as Cluster 126, our algorithm outputs an entire network

𝑁 of 240 nodes (available at [1]), including 201 scammers, 234 wash

traders, three transferrers, two depositors, and two withdrawers.

The total pool profits (across all pools) is 3.2, and after deducting

the total transfer fee 𝑇 = 0.1, the net profit is Δ(𝑁) = 3.1 ETH.

7 CONCLUSION
In this work, we aim to explore and understand how Rug-Pull

scammers really worked behind devastating scams on Uniswap

and Pancakeswap. We detected many scam patterns, and examined

the Rug-Pull scam operations on DEX as a large-scale coordinated

network rather than as isolated incidents. We found that building

an entire scam network is a challenging but highly rewarding goal.

With the knowledge of such a network, several interesting facts

were revealed, including a) serial scammers do exist and tend to

clone their scam token contracts to organize a series of scams using

a large number of addresses, b) the wash traders may not have

a direct contact with scammer addresses, and c) the scam profit

could have been inaccurately reported due to the neglection of the

significant wash-trading amounts. The introduction of scam net-

works allows us to unite and explain in depth several observations

in the literature on how Rug-Pull scammers on DEX work. There

are plenty of rooms for future research, and one of the major ones is

to develop efficient and accurate network construction and address

labelling algorithms that can deal with medium- and large-scale

scam networks.

All important output data used in the paper is available at [1].

The Github repo of this project will be made publicly available if

the paper gets accepted.

Serial Scammers and Attack of the Clones: How Scammers Coordinate Multiple Rug Pulls on Decentralized Exchanges WWW ’25, April 28 - May 05, 2024, Sydney, Australia

REFERENCES
[1] Output research data (2024), https://www.dropbox.com/scl/fo/

tiyxjefeli60wrkqm0du3/AMbWVVeCz-VS1tyDY9aa-Yk?rlkey=

mikitsogx18zs56pxmymk6t2i&dl=0

[2] Binance: BEP-20 token standard, https://academy.binance.com/en/glossary/bep-

20

[3] Binance: Binance CEO discusses $20 million scam attempt (2023), https://www.

binance.com/en-IN/square/post/910258

[4] Brill, E., Moore, R.C.: An improved error model for noisy channel spelling correc-

tion. In: Proceedings of the 38th annual meeting of the association for computa-

tional linguistics. pp. 286–293 (2000)

[5] Casado-Vara, R., Prieto, J., De la Prieta, F., Corchado, J.M.: How blockchain im-

proves the supply chain: Case study alimentary supply chain. Procedia computer

science 134, 393–398 (2018)
[6] Cernera, F., Morgia, M.L., Mei, A., Sassi, F.: Token spammers, rug pulls, and sniper

bots: An analysis of the ecosystem of tokens in Ethereum and in the Binance

Smart Chain (BNB). In: 32nd USENIX Security Symposium (USENIX Security 23).

pp. 3349–3366 (2023)

[7] Chainalysis: Chainalysis’s crypto crime report 2022 (2022), https://go.chainalysis.

com/rs/503-FAP-074/images/Crypto-Crime-Report-2022.pdf

[8] Chainalysis: Chainalysis’s crypto crime report 2024 (2024), https://go.chainalysis.

com/crypto-crime-2024.html

[9] Chen, S., Chen, J., Yu, J., Luo, X., Wang, Y.: The dark side of NFTs: A large-

scale empirical study of wash trading. In: Proceedings of the 15th Asia-Pacific

Symposium on Internetware. p. 447–456. Internetware ’24 (2024)

[10] Chen, Z., Hu, Y., He, B., Luo, D., Wu, L., Zhou, Y.: Dissecting payload-based

transaction phishing on Ethereum. In: Usenix Network and Distributed System

Security Symposium (NDSS) - to appear (2025)

[11] Coingecko: Decentralized exchanges (2024), https://www.coingecko.com/en/

exchanges/decentralized?chain=ethereum

[12] Coinmarketcap: Ethereum martket capitalisation (2024), https://coinmarketcap.

com/currencies/ethereum/

[13] Defillama: UniswapV2 Folks (2024), https://defillama.com/forks

[14] Ehereum: ERC-20 Token Standard, https://ethereum.org/en/developers/docs/

standards/tokens/erc-20/

[15] Huynh, P.D., Silva, T.D., Dau, S.H., Li, X., Gondal, I., Viterbo, E.: From program-

ming bugs to multimillion-dollar scams: An analysis of trapdoor tokens on

decentralized exchanges (2023), https://arxiv.org/abs/2309.04700

[16] Immunefi: Immunefi crypto losses report, https://immunefi.com/research/

[17] Jaiman, V., Urovi, V.: A consent model for blockchain-based health data sharing

platforms. IEEE access 8, 143734–143745 (2020)
[18] Labs, S.: A-A wash trading detection on Uniswap V2: A new tool for investors

& investigators (2023), https://dune.com/blog/a-a-wash-trading-detection-on-

uniswap-v2-a-new-tool-for-investors-investigators

[19] Labs, S.: A-A wash trading detector (uniswap v2) (2023), https://dune.com/trenlo/

a-a-wash-trading-detector

[20] Levenshtein, V.I., et al.: Binary codes capable of correcting deletions, insertions,

and reversals. In: Soviet physics doklady. vol. 10, pp. 707–710. Soviet Union (1966)

[21] Mazorra, B., Adan, V., Daza, V.: Do not rug on me: Leveraging machine learning

techniques for automated scam detection. Mathematics 10(6) (2022)
[22] Morgia, M.L., Mei, A., Mongardini, A.M., Nemmi, E.N.: A game of NFTs: Char-

acterizing NFT wash trading in the Ethereum blockchain. In: 2023 IEEE 43rd

International Conference on Distributed Computing Systems (ICDCS). pp. 13–24

(2023)

[23] Nguyen, M.H., Huynh, P.D., Dau, S.H., Li, X.: Rug-pull malicious token detection

on blockchain using supervised learning with feature engineering. In: Proceed-

ings of the 2023 Australasian Computer Science Week. pp. 72—-81. ACSW ’23

(2023)

[24] Novo, O.: Blockchain meets IoT: An architecture for scalable access management

in IoT. IEEE internet of things journal 5(2), 1184–1195 (2018)
[25] OpenZeppelin: Smart Contracts Library (2024), https://www.openzeppelin.com/

solidity-contracts

[26] Pancakeswap: https://pancakeswap.finance/

[27] Paterson, M., Dančík, V.: Longest common subsequences. In: International sym-

posium on mathematical foundations of computer science. pp. 127–142. Springer

(1994)

[28] Pennec, G.L., Fiedler, I., Ante, L.: Wash trading at cryptocurrency exchanges.

Finance Research Letters 43, 101982 (2021)
[29] Sharma, T., Agarwal, R., Shukla, S.K.: Understanding rug pulls: An in-depth

behavioral analysis of fraudulent NFT creators. ACM Trans. Web 18(1) (oct 2023)
[30] Etherscan team, T.: BSCscan API (2015), https://bscscan.com/apis

[31] Etherscan team, T.: Etherscan API (2015), https://etherscan.io/apis

[32] Uniswap: https://uniswap.org/

[33] Victor, F., Weintraud, A.M.: Detecting and quantifying wash trading on decen-

tralized cryptocurrency exchanges. In: Proceedings of the Web Conference 2021.

pp. 23—-32. WWW ’21 (2021)

Figure 7: The transaction history of a typical 1-day Rug-Pull scam-

mer address on Etherscan
10
, with one “Add Liquidity” and one

“Remove Liquidity” events within a day. The scammer address end-

ing with b763 received 5.5 ETH from the public exchange OKX,

created a pool on Uniswap V2, added 5 ETH and 250M LIGHT

(scam token) as liquidity, then removed liquidity (5.19 ETH and

241M LIGHT)) in the same day and transferred to another address.

[34] von Wachter, V., Jensen, J.R., Regner, F., Ross, O.: NFT wash trading: Quantifying

suspicious behaviour in NFT markets. In: Financial Cryptography and Data

Security. FC 2022 International Workshops: CoDecFin, DeFi, Voting, WTSC,

Grenada, May 6, 2022, Revised Selected Papers. p. 299–311 (2023)

[35] Web3.py: Python library for interacting with ethereum (2024), https://web3py.

readthedocs.io/en/stable/

[36] Werner, S., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt, W.:

Sok: Decentralized finance (defi). In: Proceedings of the 4th ACM Conference on

Advances in Financial Technologies. pp. 30–46 (2022)

[37] Wikipedia: Jaccard index (2024), https://en.wikipedia.org/wiki/Jaccard_index

[38] Xia, P., Wang, H., Gao, B., Su, W., Yu, Z., Luo, X., Zhang, C., Xiao, X., Xu, G.: Trade

or trick? Detecting and characterizing scam tokens on Uniswap decentralized

exchange. Proc. ACM Meas. Anal. Comput. Syst. 5(3) (2021)
[39] Yan, C., Zhang, C., Shen, M., Li, N., Liu, J., Qi, Y., Lu, Z., Liu, Y.: Aparecium:

Understanding and detecting scam behaviors on Ethereum via biased random

walk. Cybersecurity 6 (10 2023)

[40] Zhou, Y., Sun, J., Ma, F., Chen, Y., Yan, Z., Jiang, Y.: Stop pulling my rug: Exposing

rug pull risks in crypto token to investors. In: Proceedings of the 46th Interna-

tional Conference on Software Engineering: Software Engineering in Practice.

pp. 228—-239. ICSE-SEIP ’24 (2024)

A FUNCTIONS AND EVENTS OF ERC/BEP-20
B ONE-DAY RUG PULL DETECTION

Procedure 1 is_one_day_rug_pull(pool_address)
1: lv_token← get_low_value_token(pool_address)
2: hv_token← get_high_value_token(pool_address)
3: num_pairs← count_pairs(lv_token)
4: if hv_token ∉ [ETH,BNB] or num_pairs ≠ 1 then
5: return false
6: mints, burns← get_events(pool_address)
7: if mints.length ≠ 1 or burns.length ≠ 1 then
8: return false
9: trading_time← burns[0].timestamp −mints[0].timestamp
10: if trading_time > ONE_DAY then
11: return false
12: burn_amt← burns[0].amount
13: mint_amt← mints[0].amount
14: burn_rate← burn_amt/mint_amt
15: if burn_rate > 0.99 then
16: return true
17: return false

10
https://etherscan.io/address/0x2ec6bf65bf9cf83bdd9295425b5b145daa3cb763

https://www.dropbox.com/scl/fo/tiyxjefeli60wrkqm0du3/AMbWVVeCz-VS1tyDY9aa-Yk?rlkey=mikitsogx18zs56pxmymk6t2i&dl=0
https://www.dropbox.com/scl/fo/tiyxjefeli60wrkqm0du3/AMbWVVeCz-VS1tyDY9aa-Yk?rlkey=mikitsogx18zs56pxmymk6t2i&dl=0
https://www.dropbox.com/scl/fo/tiyxjefeli60wrkqm0du3/AMbWVVeCz-VS1tyDY9aa-Yk?rlkey=mikitsogx18zs56pxmymk6t2i&dl=0
https://academy.binance.com/en/glossary/bep-20
https://academy.binance.com/en/glossary/bep-20
https://www.binance.com/en-IN/square/post/910258
https://www.binance.com/en-IN/square/post/910258
https://go.chainalysis.com/rs/503-FAP-074/images/Crypto-Crime-Report-2022.pdf
https://go.chainalysis.com/rs/503-FAP-074/images/Crypto-Crime-Report-2022.pdf
https://go.chainalysis.com/crypto-crime-2024.html
https://go.chainalysis.com/crypto-crime-2024.html
https://www.coingecko.com/en/exchanges/decentralized?chain=ethereum
https://www.coingecko.com/en/exchanges/decentralized?chain=ethereum
https://coinmarketcap.com/currencies/ethereum/
https://coinmarketcap.com/currencies/ethereum/
https://defillama.com/forks
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://arxiv.org/abs/2309.04700
https://immunefi.com/research/
https://dune.com/blog/a-a-wash-trading-detection-on-uniswap-v2-a-new-tool-for-investors-investigators
https://dune.com/blog/a-a-wash-trading-detection-on-uniswap-v2-a-new-tool-for-investors-investigators
https://dune.com/trenlo/a-a-wash-trading-detector
https://dune.com/trenlo/a-a-wash-trading-detector
https://www.openzeppelin.com/solidity-contracts
https://www.openzeppelin.com/solidity-contracts
https://pancakeswap.finance/
https://bscscan.com/apis
https://etherscan.io/apis
https://uniswap.org/
https://web3py.readthedocs.io/en/stable/
https://web3py.readthedocs.io/en/stable/
https://en.wikipedia.org/wiki/Jaccard_index
https://etherscan.io/address/0x2ec6bf65bf9cf83bdd9295425b5b145daa3cb763

WWW ’25, April 28 - May 05, 2024, Sydney, Australia

Table 5: Functions and events of the ERC-20 (Ethereum) and BEP-20 (BNB Smart Chain) standard. Among required functions,
transfer() and transferFrom() are two basic functions for digital assets transferring.

Type Signature Description

Method

name() Getting name of the token (e.g., Dogecoin)

symbol() Get symbol of the token (e.g., DOGE)

decimals() Get the number of decimals the token uses

totalSupply() Get the total amount of the token in circulation

balanceOf() Get the amount of token owned by given address

transfer() Transfer amount of tokens to given address from message caller

transferFrom() Transfer amount of tokens between two given accounts

approve() Allow a spender spend token on behalf of owner
allowance() Get amount that the spender will be allowed to spend

Event

Transfer() Trigger when tokens are transferred, including zero value transfers.

Approval() Trigger on any successful call to approve()

C DETECTING SCAM STARS
Given a list of scammer addresses, we developed StarDetector,
an algorithm that detects all scam stars containing such addresses.

First, for each scammer address 𝑠 , StarDetector identifies itsmajor
funder as the in-neighbour 𝑓 that satisfies the following conditions:

F1) 𝑓 funded at least 100% of the cost of the first scam carried out

by 𝑠 with a single in-transaction before the first scam, and F2) 𝑓

must be the (strictly) largest funder of 𝑠 . Similarly, StarDetector
identifies the major beneficiary of 𝑠 as the out-neighbour 𝑏 that

satisfies the following conditions: B1) 𝑠 transferred at least 90% of

its last scam’s revenue to 𝑏 in a single out-transaction after the

last scam, and B2) the corresponding out-transaction must be the

largest out-transaction after the last scam is conducted.

Next, StarDetector identifies the star type(s) that 𝑠 potentially

belongs to as follows: if 𝑓 ≡ 𝑏 then 𝑠 may belong to a single IN/OUT-

star with center 𝑓 ; otherwise, if 𝑓 never received any fund from

𝑠 then 𝑠 may belong to an OUT-star with center 𝑓 , and if 𝑏 never

funded 𝑠 then 𝑠 may belong to an IN-star with center 𝑏. Note that

it is possible that 𝑠 belongs to both an IN-star and an OUT-star

(with different centers). For each star type and the corresponding

potential center 𝑐 = 𝑓 or 𝑐 = 𝑏 or 𝑐 = 𝑓 ≡ 𝑏, the algorithm then

examines each of 𝑐’s neighbors and checks whether 𝑐 is also their

potential star center of the corresponding type. If there are 𝑛 ≥ 5

neighbors of 𝑐 (including the original scammer address 𝑠), then

StarDetector returns the corresponding star, and then repeats

with other addresses. The algorithm also keeps track of the star

type each address already belongs to for avoiding redundant work.

D DETECTING MAJORITY-FLOW CLUSTERS
Finding all (maximal) majority-flow clusters among a given list 𝑆 of

scammer addresses is a nontrivial task due to the strong properties

required by the clusters. In particular, (P3) required that for every

scammer address 𝑠 ∈ 𝐶 , its major funders either all lie inside𝐶 or all

lie outside 𝐶 . Similar requirement applies to its major beneficiaries.

Especially, (P4) requires that for every two scammer addresses 𝑠

and 𝑠′ in 𝐶 , 𝑠 is a major funder of 𝑠′ if and only if 𝑠′ is a major

beneficiary of 𝑠 , which is a very strong condition, linking the funder-

beneficiary addresses in both directions. We leave the details of the

detection algorithm and its proof to Appendix D.

11
The full address is 0x0bab16dff48add3db977d279f672916ddae09ac2.

63.84

9ac2

707d

29cc

0514

5a86

f9f8

d378 c80f

Add: 100
Rem: 104

51

10

21

21

69.38

Add: 63
Rem: 68

Add: 50
Rem: 54

Add: 69
Rem: 77

297022.4

Add: 100
Rem: 101

78.3

77.37

Add: 77
Rem: 78

Add: 20
Rem: 20.8

fa3b23.27

ce3011.57

Add: 20
Rem: 22.29

Add: 31
Rem: 31.12

Add: 9
Rem: 10.59

Add: 10
Rem: 11.71

Figure 8: Part of a real majority-flow cluster. The address

9ac2
11
added 100BNB into a scam pool and removed 104 BNB. It

then transferred 51 BNB and 63.84 BNB to its two major benefi-
ciaries, 707d and 29cc, respectively. These two internal addresses
performed one scam each and continued transferring fund to other

internal addresses. Note that 2970 had two major funders, namely

c80f and f9f8. Importantly, each internal node was fully funded by

its major funders and also transferred at least 90% of its scam rev-

enue (what it removed from the last pool) to its major beneficiaries.

Theorem D.1 (Majority-FlowClusters). Given a set 𝑆 of scam-
mer addresses, each address belongs to at most one majority-flow
cluster, and moreover, FundingClusterDetectorcorrectly returns
all maximal majority-flow clusters within 𝑆 (as in Definition 4.3) in
time 𝑂

(
|𝑆 | + |𝑇 (𝑆) |

)
, where 𝑇 (𝑆) denotes the set of all transactions

among scammer addresses within 𝑆 .

Proof of Theorem D.1. The proof is included in our supple-

mentary materials [1]. □

We proposed FundingClusterDetector, an efficient algorithm

that identifies all (maximal) majority-flow clusters among all scam-

mers in 𝑆 in polynomial time in |𝑆 |. We describe below its main

steps. The key idea is to first identify all minimal majority-flow

clusters, i.e., those that satisfy (P1)-(P4), which contain no proper

majority-flow sub-clusters. These minimal clusters will be the build-

ing blocks of the desired maximal clusters. This is done in Step 3,

Serial Scammers and Attack of the Clones: How Scammers Coordinate Multiple Rug Pulls on Decentralized Exchanges WWW ’25, April 28 - May 05, 2024, Sydney, Australia

which groups together funder-to-beneficiary transactions within

𝑆 that must belong to the same majority-flow clusters. Step 4 con-

structs the maximal clusters by connecting the transaction groups

(and hence the corresponding scammer addresses) that have at least

one scammer address in common. This can be done by applying a

breadth-first search algorithm to the transaction-clustering graph
introduced in Step 4.

Step 1. The algorithm first constructs the sets of major funders

𝐹 (𝑠) andmajor beneficiaries 𝐵(𝑠) (if any) for every scammer address

𝑠 ∈ 𝑆 . Remove all 𝑠 from 𝑆 where both 𝐹 (𝑠) and 𝐵(𝑠) do not exist.

Step 2. From the sets 𝐹 (𝑠) and 𝐵(𝑠) obtained in Step 1, the algo-

rithm builds a set of majority-flow transactions 𝒯 = ∪𝑠∈𝑆
(
𝑇𝐹 (𝑠) ∪

𝑇𝐵 (𝑠)
)
, where 𝑇𝐹 (𝑠) and 𝑇𝐵 (𝑠) are the set of transactions from the

major funders of 𝑠 to 𝑠 and from 𝑠 to its major beneficiaries (if any).

Step 3. The algorithm partitions the set of transactions 𝒯 into

non-overlapping groups𝑇1,𝑇2, . . . ,𝑇𝑚 satisfying the following prop-

erty: if 𝑇𝑖 , 𝑖 = 1, 2, . . . ,𝑚, contains a transaction 𝑡 = (𝑢, 𝑣) (with
𝑢 and 𝑣 being the sender and the receiver, respectively), then it

must also contain all transactions 𝑡 ′ ∈ 𝑇𝐹 (𝑢) ∪ 𝑇𝐵 (𝑣). Moreover,

let 𝐴𝑖 ≜ ∪𝑡=(𝑢,𝑣) ∈𝑇𝑖 {𝑢, 𝑣} be the set of all the scammer addresses

being the sender or receiver in a transaction in 𝑇𝑖 . This step can be

implemented efficiently using a FIFO queue.

Step 4.The algorithm first builds the so-called transaction-partiti-
oning graph 𝐺 = (𝑉 , 𝐸), with its vertex set 𝑉 ≜ {𝑇1,𝑇2, . . . ,𝑇𝑚}
consists of all the transaction groups, and its edge set defined as

𝐸 ≜ {(𝑇𝑖 ,𝑇𝑗) : 𝑖 ≠ 𝑗, 𝐴𝑖 ∩ 𝐴 𝑗 ≠ ∅}. The algorithm then finds all

connected components of 𝐺 (e.g. by using the breadth-first search)

and returns them as maximal majority-flow clusters in 𝑆 .

E CONTRACT SIMILARITY
We discuss in this appendix the preprocessing step and the con-

struction of our newly developed AST-Jaccard similiarity score that

can bypass a number of obfuscation techniques when comparing

scam contracts.

Popular string metrics used for measuring the source code simi-

larity between two contracts include Levenshtein (edit) distance [20],

longest common subsequences [27], and Damerau-Levenshtein dis-

tance [4]. However, such metrics are not only expensive to compute

over a large number of contract pairs but also susceptible to simple

code obfuscation techniques. For example, to reduce the similarity

score between two contract clones, scammers can employ tech-

niques like (M1) comments and spaces insertion/deletion, (M2)

identifier/variable names modification, or (M3) code reordering to

increase the edit distance arbitrarily. To tackle these, we propose a

token-based similarity score call AST-Jaccard score, which lever-

ages source code’s AST, a collision-resistant hash function, and

Jaccard similarity to compare scam contracts.

More specifically, as AST keeps the syntax and sematic informa-

tion of the source code while ignoring non-essential information

such as spaces, comments, specific function and variable names,

using AST instead of the source code itself tackles (M1) and (M2). To

bypass (M3) code reordering, e.g. swapping functions or variables

around, the new score uses the Keccak-256 hashing algorithm to

hash all tokens/components in the AST of each source code and

group them into a set. As the order of elements is not important

for a set, even when the variables and function were rearranged,

the Jaccard similarity on sets still pick up the right overlapping

ratio between the two sets corresponding to two contract codes.

To further improve the accuracy, we also applied a preprocessing

steps to remove all common libraries and interfaces in every source

code, which account for 40%-50% of the code itself and would inter-

fere with the score. More details about the preprocessing and the

AST-Jaccard score can be found in Appendix E.

Common Libraries and Interfaces Removal. Fungible tokens
are implemented by following the common standard (e.g ERC-20

or BEP-20 interface) so these tokens often contains the common

codes from the interface, inflating their similarity. The similarity

continues to increase if they used the same common libraries such

as SafeMath, Address, or Ownable. Hence, to avoid this inflation,

we remove all common libraries and interfaces from tokens before

measuring their similarities. To that end, we first collect all common

libraries on OpenZeppelin [25], an open-source framework for

writing secure and scalable smart contracts. Then we remove all

these libraries and interfaces from token’s contracts before doing

tokenisations.

Code Tokenisation. Our approach first parses the source code

of a contract to an AST, which keeps the syntax and semantic

information of a contract only. Subsequently, we extract a token

from a type of each node in the AST (e.g., Mapping, IfStatement,
BinaryOperation, Assignment). In this manner, some inessential

information such as spaces, comments, function names, variable

names and their values will be eliminated. Thus, we can solve M1

and M2. We run an extraction for each component in a contract,

such as state variables, functions, events, and modifiers. Notably,
code lines in a component will be parsed to an array of tokens.

For example, we can get correspondingly an array of IfStatement,
BlockIdentifier, IndexAccess, BinaryOperation, and Literal tokens
from the if condition “if(sender[i] == ‘0x0d83a1’)”. In other

words, each array of tokens marks the semantic information of each

component in a contract.

Integration of AST, hash function, and Jaccard similarity
Score. Next, we try to overcome M3 at a contract level, i.e. to

identify a clone of a contract even if the scammer has reordered

different components in the contract. Our approach does not focus

on a component level because we are unsure whether different

code line arrangements in a component will give out the same

working logic or not (e.g., a code line is inside or outside a condition

block) while our main goal is to build a ground truth dataset for a

Trapdoor detection problem. Therefore, two contracts are totally

the same if they contain the same list of components. To improve

our algorithm’s performance, we concatenate all tokens in the

token array of a component as a string and apply a Keccak-256

hash algorithm. As a result, each component in the contract will be

represented as a unique hash (256 bits). Next, we employ the classic

Jaccard index [37] for two corresponding sets of hashes as in (1),

where 𝐽 (𝐴, 𝐵) is the similarity between two contracts, 𝐴 is a list of

hashes of the first contract and 𝐵 is a list of hashes of the second

contract.

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 ||𝐴 ∪ 𝐵 | =
|𝐴 ∩ 𝐵 |

|𝐴| + |𝐵 | − |𝐴 ∩ 𝐵 | . (1)

The overall algorithm is presented below.

WWW ’25, April 28 - May 05, 2024, Sydney, Australia

Procedure 2 tokenization(token)

1: ast← parseAST(token.contract)
2: components←removeCommon(ast.contract.nodes)
3: hashes← []
4: for j← 0 to components.length do
5: syntactic_tonkens← extractTokens(components[i])
6: token_str← concat(syn_tonkens)
7: hashes[i]← keccak256(token_str)
8: return hashes

Procedure 3 similarity(tokenA, tokenB)
1: hashesA←tokenization(tokenA)
2: hashesB←tokenization(tokenB)
3: intersection← hashesA & hashesB
4: union← hashesA | hashesB
5: jaccard_index← intersection.length / union.length
6: return jaccard_index

Figure 9: Intra-cluster similarities on Uniswap.

Figure 10: Intra-cluster similarities on Pancakeswap.

F SCAM NETWORK CONSTRUCTION
There are many challenges when constructing a scam network

using BFS.

Challenge 1. The background graph is non-homogeneous. Indeed,
nodes in the transaction graph include externally owned accounts

(EOAs) and contract accounts. Contract accounts could be a mixer,

a centralized exchange, a bridge, a router, a bot (MEV, trading

bots), a token deployer, each type behaves differently and requires

a different treatment.

Figure 11: Inter-cluster similarities distribution on Uniswap.

Figure 12: Inter-cluster similarities on Pancakeswap

Challenge 2. Identifying an edge between two accounts is chal-
lenging and requires domain knowledge. For example, an edge exists

between two EOAs A and B not only when A transferred fund

to B directly, but also when A buys a scam token created by B or

invested in a scam pool rugged by B. On the other hand, if A sends

a 0-value transaction to B (a message-carrying transaction), that

shouldn’t be counted as an edge
12
.

Challenge 3. The background graph is huge and unavailable. By
contrast to the standard setting in the traditional graph theory, due

to its sheer size, the complete underlying transaction graph among

all accounts on Ethereum or BSC (or any other established chain)

is not available and impossible to build
13
.

Challenge 4. Network explosion. Starting from a (seed) scammer

node, the standard BFS can quickly expand to include an unman-

ageable number of nodes in its queue, especially when the node in

consideration starts transacting with public accounts (CEXs, mixers,

bridges), or trading from non-scam pools. Thus, we must be able

to recognize the boundary nodes associated with non-scam activi-

ties, to prevent BFS from including normal nodes unrelated to the

scammers, which may have been active for years with thousands

to hundreds of thousands of transactions and would fairly quickly

overwhelm BFS’s memory and pollute the real scam cluster.

Apart from the above, irrelevant transactions generated by phish-
ing attacks (e.g. address-poisoning attacks) can also confuse the

BFS, making it jump out of the scam network by mistake.

12
Our algorithm initially hit a non-scam account that sent a transaction to a known

scam account. It turns out that the transaction only carries a sneering message.

13
For example, the Ethereum chain generates more than a million new transactions

everyday (see https://ycharts.com/indicators/ethereum_transactions_per_day).

https://ycharts.com/indicators/ethereum_transactions_per_day

Serial Scammers and Attack of the Clones: How Scammers Coordinate Multiple Rug Pulls on Decentralized Exchanges WWW ’25, April 28 - May 05, 2024, Sydney, Australia

Procedure 7 get_labels(address, normal_txs, internal_txs)
1: labels← []
2: token_buys← count_swap_in(normal_txs)
3: scam_token_buys← count_scam_swap_in(normal_txs)
4: scam_buy_rate← token_buys/scam_token_buys
5: valid_EOA← get_valid_neighbours(address, normal_txs)
6: funded_scammers← get_funded_scammers(valid_EOA)
7: scammer_rate← funded_scammers/valid_EOA
8: fo_rate← get_fund_out_rate(normal_txs)
9: if address ∈ scammers then
10: labels.append(S)
11: if funded_scammers.length > 5 and scammer_rate > 0.5

then
12: labels.append(C)
13: if exist_tx_to_exchange(normal_txs) then
14: labels.append(D)
15: if exist_tx_from_exchange(normal_txs) then
16: labels.append(W)
17: if scam_token_buys.length > 0 then
18: labels.append(WT)
19: if S ∉ labels and C ∉ labels and token_buys.length > 10 and

scam_buy_rate < 0.5 then
20: labels.append(B)
21: if !exist_contract(normal_txs) and fo_rate ≥ 0.99 then
22: labels.append(T)
23: if normal_txs.length >= 1000 then
24: labels.append(LIMIT_1)
25: else if S ∉ labels and C ∉ labels and normal_txs.length >=

500 then
26: labels.append(LIMIT_2)
27: return labels

Procedure 8 create_node(address)
1: valid_EOAs← []
2: normal_txs, internal_txs← get_transactions(address)
3: labels← get_labels(address, normal_txs, internal_txs)
4: if B ∉ labels and LIMIT_1 ∉ labels and LIMIT_2 ∉ labels

then
5: valid_EOAs← get_valid_neighbours(address, normal_txs)
6: node← Node(address, valid_EOAs, labels)
7: return node

Procedure 9 explore_network(cluster)
1: pioneer← cluster[0]
2: node← create_node(pioneer)
3: node.valid_EOAs.extend(cluster[1:])
4: queue←Queue
5: network← Network
6: traversed← set()
7: queue.enqueue(node)
8: network.add_node(node)
9: while queue.length > 0 do
10: root← queue.dequeue()
11: if root.address ∈ traversed then
12: continue
13: traversed.add(root.address)
14: for i← 0 to root.valid_EOAs.length do
15: eoa← root.valid_EOAs[i]
16: if eoa ∉ traversed and eoa ∉ queue and eoa ∉ network

then
17: nbnode← create_node(eoa)
18: labels← nbnode.labels
19: if !is_phishing(root, nbnode) and B ∉ labels and

LIMIT_1 ∉ labels and LIMIT_2 ∉ labels then
20: queue.enqueue(nbnode)
21: network.add_node(nbnode)
22: return cluster

Figure 13: The phishing address has the same (lower-cased) first

and last four digits as an out-neighbor of the victim address. It

transferred a tiny amount to the address 230d, hoping that one day
the address owner will mistakenly transfer fund to it instead.

Address-poisoning attacks can break BFS. Phishing attackers
target everyone, including addresses in Rug-Pull scam networks.

Dusting attack or dust value transfer (see, e.g. [3, 10]) is a common

type of address poisoning attack in which an address that looks

very similar to the victim’s out-neighbor (see Fig. 13) transferred a

tiny amount to the victim address. A naive BFS may expand from a

node in the scam network that was the target of a dusting attack to

visit the attacker address, then to its coordinator address (the one

who coordinates all the phishing attacks) and then unknowingly to

all of its (benign) victim addresses in the network. We implemented

a simple phishing detector that excludes a phishing address from

the set of valid neighbors for each address in BFS, which detected

dozens to hundreds of such addresses for every network we tried.

Procedure 4 is_contract(address)
1: bytecode← web3.eth.get_code(address)
2: if bytecode.length > 0 then
3: return true
4: return false

Procedure 5 is_public(address)
1: CEX,DEX,MEV,MIXER← load_public_addresses()
2: end_nodes← CEX ∪ DEX ∪MEV ∪MIXER
3: if address ∈ end_nodes then
4: return true
5: return false

WWW ’25, April 28 - May 05, 2024, Sydney, Australia

Procedure 6 get_valid_neighbours(address, normal_txs)
1: valid_EOAs← []
2: for i← 0 to normal_txs.length do
3: s← normal_txs[i].from
4: r← normal_txs[i].to
5: v← normal_txs[i].value
6: cf← normal_txs[i].functionName
7: if r = address and v > 0 and !is_public(s) then
8: valid_EOAs.append(s)
9: else if !is_contract(r) and v > 0 and !is_public(r) then
10: valid_EOAs.append(r)
11: else if cf ≠ NULL then
12: scammers← get_scammers_if_swap(ip)
13: valid_EOAs.extend(scammers)
14: return valid_EOAs

	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum and BNB Smart Chain
	2.2 Uniswap and Pancakeswap

	3 One-Day Rug Pull Datasets
	3.1 One-Day Rug Pull
	3.2 Data Collection

	4 Serial Scam Patterns: Detection and Analysis
	4.1 Star-Shaped Scam Patterns
	4.2 Max-In-Max-Out Scam Chain
	4.3 Majority-Flow Cluster

	5 Scam Clusters Analysis
	5.1 Generating Scam Clusters
	5.2 Scam Cluster Analysis

	6 Scam Networks and Profit Estimates
	6.1 Node Labelling
	6.2 Wash Trading and Accurate Profit Estimate
	6.3 Generating Scam Network

	7 Conclusion
	References
	A Functions and Events of ERC/BEP-20
	B One-Day Rug Pull Detection
	C Detecting Scam Stars
	D Detecting Majority-Flow Clusters
	E Contract Similarity
	F Scam Network Construction

