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Abstract

Despite the impressive performance on001
information-seeking tasks, large language mod-002
els (LLMs) still struggle with hallucinations.003
Attributed LLMs, which augment generated004
text with in-line citations, demonstrate poten-005
tial in mitigating hallucinations and improving006
verifiability. Nonetheless, current attributed007
LLMs suffer from suboptimal citation quality008
due to their reliance on in-context learning or009
post-hoc retrieval, lacking a built-in attribution010
mechanism. Moreover, the practice of merely011
citing document identifiers falls short in aiding012
users to pinpoint specific supporting evidence.013
To bridge these gaps, this work introduces014
FRONT, a training framework that advances015
the verification process in attributed LLMs016
through Fine-gRained grOuNded ciTations.017
It equips LLMs with the ability to first an-018
chor in fine-grained supporting quotes, which019
then guide the generation of attributed answers.020
Grounded quotes not only elevate LLM attribu-021
tion quality but also serve as a mechanism for022
fine-grained verification, significantly enhanc-023
ing information traceability. Experiments on024
the ALCE benchmark demonstrate the efficacy025
of FRONT in generating superior grounded re-026
sponses and highly supportive citations. With027
LLaMA-2-7B, the framework significantly out-028
performs all the baselines, even surpassing029
ChatGPT, by achieving an average outperfor-030
mance of 14.21% across all datasets. Notably,031
FRONT implements an automated procedure032
and exhibits generalization across models and033
data scales, enabling continuous performance034
improvements 1.035

1 Introduction036

The recent advent of large language models (LLMs)037

(Brown et al., 2020; Hoffmann et al., 2022; Chowd-038

hery et al., 2023; Touvron et al., 2023; OpenAI,039

2023, inter alia) have taken the world by storm,040

fueling a paradigm shift in information acquisition041

1All the data and code will be available soon

Why is it bad to eat cookie dough for risk of salmonella but things
like Cookie Dough Bites are ok?

Salmonella is most commonly caused by eating undercooked
or raw foods like eggs or meat. (...) You know how your mom

always warned you not to eat raw cookie dough? This is why.

Food safety recommendations encourage people to cook eggs until
the white and yolk are firm in order to kill any bacteria. (...) However,
anyone making cookies can do things to reduce this risk by
using pasteurized egg products.
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Raw cookie dough can carry the risk of salmonella contamination, which can
lead to foodborne illness if the dough is eaten raw    . However, products
like Cookie Dough Bites are generally safe because they are made with
pasteurized eggs        .

                        salmonella is most commonly caused by eating
undercooked or raw foods like eggs or meat    Anyone making cookies
can do things to reduce this risk by using pasteurized egg products.
                Eating raw cookie dough can be risky due to salmonella,

commonly found in raw eggs   . However, this concern is mitigated in

products like Cookie Dough Bites, as the products use pasteurized egg

products, which are safe to eat raw   .
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Difficult to verify and subject to
hallucinations and citation errors
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Figure 1: Compared with the current attributed systems,
the core idea behind FRONT is to first ground the sup-
porting quotes for retrieved documents and then serve
as a guide for attributed question answering, ensuring a
faithful answer and accurate citation.

(Zhu et al., 2023). Despite their compelling perfor- 042

mance, LLMs still struggle with hallucinations (Ji 043

et al., 2023; Zhang et al., 2023; Huang et al., 2023), 044

a tendency to fabricate non-existent facts or gener- 045

ate unfaithful content. This issue further poses a 046

risk of dissemination of misinformation (Chen and 047

Shu, 2023), directly impacting the reliability and 048

trustworthiness of LLMs. 049

Such prevalence of hallucinations in LLM out- 050

puts has motivated the development of attributed 051

systems (Nakano et al., 2021; Thoppilan et al., 052

2022; Menick et al., 2022), such as New Bing2 and 053

Perplexity3, where LLMs are allowed to generate 054

responses with in-line citations. Not only does it 055

2https://www.bing.com/new
3https://www.perplexity.ai
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improve factuality and alleviate hallucinations, but056

it also simplifies user verification of model outputs,057

further enhancing the verifiability of LLMs.058

Despite recent advancements, current attributed059

LLMs still expose significant limitations. Firstly,060

recent efforts in attributed LLMs predominantly061

rely on either in-context learning (Gao et al., 2023b)062

or post-hoc retrieval (Gao et al., 2023a), lacking063

an inherent capability for attributable generation,064

thereby resulting in compromised citation quality065

(Liu et al., 2023b). Secondly, current attributed066

systems typically cite either document identifiers067

(Nakano et al., 2021) or URLs (Thoppilan et al.,068

2022), which complicates the process for users to069

pinpoint the exact supporting quotes, particularly070

in lengthy documents.071

To this end, we explore how to empower LLMs072

to learn a built-in attribution mechanism while pro-073

viding fine-grained verification. Recognizing the074

inherent of verification lies in grounding, we uti-075

lize it as the bridge between verification and at-076

tribution. By anchoring generated content to fine-077

grained grounded quotes, attribution is seamlessly078

integrated. Consequently, we propose a unified079

framework FRONT, designed to advance coarse080

verification via Fine-gRained grOuNded ciTations,081

concurrently enhancing attributability. Specifically,082

FRONT starts with a pipeline tailored for the au-083

tomated generation of high-quality, attributed data,084

serving as the supervised signals for effectively085

injecting attributability. Given a user query, the086

pipeline automates data construction through doc-087

ument retrieval, reranking, attributed answer gen-088

eration, and data filtering to ensure the informa-089

tiveness and attributability of the answers. Further-090

more, to unlock LLMs’ ability for attributable gen-091

eration while providing fine-grained verification,092

we propose a two-stage training recipe, Ground-093

ing Guided Generation (G3) and Weak-to-Strong094

Contrastive Alignment (CA) (§4.2). G3 equips the095

model with the ability to first anchor in fine-grained096

supporting quotes, which then guide the generation097

of attributed answers. While CA further improves098

the consistency of grounded quotes and attributed099

answers by automatically constructing contrastive100

signals from weak and strong LLMs.101

We conduct extensive experiments to evaluate102

our framework on the ALCE Benchmark (Gao103

et al., 2023b). Findings are: (1) Training on high-104

quality synthetic data markedly boosts citation105

quality. With LLaMA-2-7B, FRONT significantly106

surpasses ChatGPT, achieving an average outper-107

formance of 14.21%. (2) FRONT demonstrates 108

remarkable generalization across models and data 109

scales. (3) Abalation studies confirm the signifi- 110

cance of each component and underscore the po- 111

tential of FRONT for continuous performance im- 112

provements. 113

2 Related Work 114

Retrieval Augmented Generation. Recently, 115

Retrieval Augmented Generation (RAG) has shown 116

promise in knowledge-intensive tasks by incorpo- 117

rating retrieved documents into LLM input, equip- 118

ping models with pertinent knowledge to reduce 119

hallucinations (Karpukhin et al., 2020; Lewis et al., 120

2020; Feng et al., 2023; Gao et al., 2023c). Despite 121

these advancements, recent studies have identified 122

challenges in handling irrelevant or contradictory 123

documents (Shi et al., 2023; Yoran et al., 2023; Xu 124

et al., 2023) and effectively utilizing input context 125

(Liu et al., 2023a), underscoring the necessity for 126

more factual and verifiable systems. 127

Attributed Large Language Models. The per- 128

sistent challenge of hallucinations within LLMs 129

has spurred the development of attributed LLMs 130

(Bohnet et al., 2022; Li et al., 2023a; Worledge 131

et al., 2023), which seek to enhance information 132

verifiability by generating responses with in-line 133

citations. The way of providing attributions varies 134

across studies. For example, Gao et al. (2023b) en- 135

ables LLMs to generate text with in-line citations 136

via in-context learning. Gao et al. (2023a) explores 137

post-hoc attribution, where LLMs first generate 138

an initial response and then retrieve relevant evi- 139

dence to achieve attribution. Furthermore, Li et al. 140

(2023b); Asai et al. (2023); Sun et al. (2023) ex- 141

plores adaptive retrieval for attribution, where a 142

verifier provides feedback for flexible retrievals. 143

3 Preliminaries: Task Formulation 144

Following (Liu et al., 2023b; Gao et al., 2023b), 145

the task is formalized as follows: Given a user 146

query q and a corpus of retrieved documents D as 147

input, the LLM is required to produce a response 148

S, which consists of statements with embedded 149

in-line citations. We assume the response S com- 150

prising with n statements S = {s1, s2, . . . , sn} 151

and each statement si ∈ S, cites a list of passage 152

Ci = {ci1, ci2, . . .}, where cij ∈ D. Specifically, 153

citations are presented in the form of [1][2]. 154
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4 Methodology155

This section outlines FRONT, which comprises156

two components, as illustrated in Figure 2: an au-157

tomatic data generation pipeline(§4.1) and a two-158

stage training recipe (§4.2).159

4.1 Automatic Data Generation Pipeline160

Equipping LLMs with built-in attribution capabil-161

ities requires training data consisting of elaborate162

responses paired with accurate citations, which typ-163

ically requires a labor-intensive and costly manual164

process. To address this, we propose a pipeline de-165

signed for the automatic generation of high-quality166

attributed data, encompassing data collection, at-167

tributed answer generation, and data filtering.168

Data Collection. To simulate the real-world en-169

vironment for information-seeking, we source170

questions from the Natural Question (NQ)171

(Kwiatkowski et al., 2019) dataset, which consists172

of real user queries from the Google search engine.173

The dataset spans a range of diverse question types,174

demanding answers of varying lengths, from con-175

cise to detailed. To mimic the way a search engine176

might synthesize documents of high relevance in177

response to a user query, we employ Sphere (Piktus178

et al., 2021), a pre-processed and cleaned version of179

the Common Crawl corpus, serving as a proxy web180

search index. In particular, for a given user query181

sampled from the NQ dataset, we initially retrieve182

the top-100 relevant documents from the Sphere183

corpus using sparse retrieval. These documents are184

subsequently re-ranked by RankVicuna (Pradeep185

et al., 2023) considering the superior performance186

in listwise re-ranking, resulting in the top-5 most187

relevant documents for each query.188

Attributed Answer Generation. Given the re-189

markable performance of ChatGPT in attributed190

question answering, we employ ChatGPT to gener-191

ate answers with corresponding citations for given192

queries and the top-5 retrieved documents. We pro-193

vide precise instructions and in-context demonstra-194

tions to ensure that ChatGPT produces informative195

responses and cites the sources accordingly.196

Data Filtering. To guarantee the high quality of197

our synthetic training data, we employ a data fil-198

tering process guided by two key criteria derived199

from Kamalloo et al. (2023): (1) informativeness:200

assessing if the answer provides sufficient infor-201

mation to the question, and (2) attributability: de-202

termining if the answer is attributed to the cited203

documents. To mitigate the impact of nonsensi- 204

cal queries and irrelevant document retrieval that 205

may lead to non-informative answers, we utilize 206

ChatGPT for preliminary informativeness annota- 207

tions. Responses categorized as non-informative 208

are directly excluded. Furthermore, to ensure that 209

answers are accompanied by highly supportive ci- 210

tations, we train a discriminator on human-labeled 211

data from the comprehensive evaluation by Liu 212

et al. (2023b), where attributability is categorized 213

into three levels: full support, partial support, or no 214

support. We quantitatively map the discriminator’s 215

outputs to an attributability score and ultimately 216

derive an average score for each attributed answer. 217

Answers falling below a defined threshold are sys- 218

tematically excluded to ensure the synthetic data’s 219

reliability, which results in nearly 8,000 entries. 220

For more details, please refer to Appendix A.1. 221

4.2 Two-Stage Training Recipe 222

To equip LLMs with built-in attribution capabilities 223

while ensuring fine-grained verification, we intro- 224

duce a two-stage training recipe, which consists 225

of two steps: 1) Grounding Guided Generation 226

(G3), designed for unlocking the ability to generate 227

grounded quotes then guide attributed answer gen- 228

eration; 2) Weak-to-Strong Contrastive Alignment 229

(CA), aimed at enhancing the consistency between 230

grounding and attributed answers while facilitat- 231

ing precise and supportive citations by contrastive 232

disparities from weak and strong LLMs. 233

4.2.1 Grounding Guided Generation 234

To empower LLMs with attribution capabilities 235

while ensuring fine-grained verification, we pro- 236

pose Grounding Guided Generation (G3), which 237

employs grounding as a crucial bridge between ver- 238

ification and attribution. The cornerstone of G3 239

lies in enabling LLMs to extract supporting quotes 240

from the source documents, each associated with 241

its document identifier, which in turn guides the 242

generation of attributed answers. Such a grounding 243

format offers two primary benefits: Firstly, the di- 244

rect extraction of quotes from sources significantly 245

reduces the impact of the incorporation of irrelevant 246

information and the risk of hallucinations in sub- 247

sequent attributed answers. Secondly, the process 248

naturally facilitates accurate attribution, with each 249

document identifier serving as a clear supervised 250

signal that delineates the origin of the extractive 251

quotes, thus improving the citation quality. 252

However, the absence of specific grounding con- 253
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Step 1: Automatic Data Generation Pipeline

          Data Collection

Question: Why do bagels have holes in the middle？

The bakers (...) the hole in the centre of the

bagel ensures that it bakes evenly.

Retrieve

Rerank

1

Prior to (...) the hole was originally put in

place to allow for easier handing prior.

The ring shape allows heat to circulate

around (...) makes bagels to cook faster 

2

3

          Answer Generation

          Data Filtering

Top-100 retrieval documents

Step 2: Two-Stage Training Recipe
          Grounding Guided Generation

Bagel holes ensures even baking by
allowing heat to circulate around a
greater surface area       .Another
suggests that they were used for
easier handling and transport    .

1 3

2

The bakers (...) the hole in the centre of the

bagel {ensures that it bakes evenly}.

Prior to (...) the hole was originally put in

place to {allow for easier handing prior}.

The ring shape {allows heat to circulate
around} (...) makes bagels to cook faster 

1

2

3

Large Language
Model

Q: Why do bagels have

holes in the middle？

       Weak-to-Strong Contrastive Alignment

Grounding

Question

Documents

Demonstrations

Instruction: Generate an answer and cite the

source for the question and provided documents

Question: Why do bagels have holes in the middle？

Prior to (...) the hole was originally put in place

to allow for easier handing prior.

(...)

       Answer Generation

Supervised Fine-tuning

Bagel holes ensures even baking by allowing
heat to circulate around a greater surface
area         . Another suggests that they were
used for easier handling and transport    .

1 3
2

Attributed?

Informative?

Bagel holes ensures even baking (...) a area 
       . Another suggests (...) and transport    .1 3 2

Break into
statements

Bagel holes ensures even baking by
allowing heat to circulate around a
greater surface area        . 1 3

Another suggests that they were used
for easier handling and transport    .2

Statement 1

Statement 2

Documents

Large Language
Model

             Bagel holes (...) great surface area
Another (...) handling and transport    .
ANSWER 1 3

2

1                   ensures that it bakes evenly. 

   allows heat to circulate around.   allow

for easier handing prior.

GROUNDING
23

Direct Preference Optimization (DPO)

Question: Why do bagels

have holes in the middle？

Prior to (...) place to allow

for easier handing prior.

(...)
GROUNDING                   ensures that it

bakes evenly.    allows heat

to circulate around.    allow
for easier handing prior.

1
3

2

Consistent AnswerGold Grounding

Inconsistent AnswerGold Grounding

             Bagel holes (...) great
surface area       Another (...)
handling and transport    .

ANSWER
1 3

2

              Bagel holes (...) for
aesthetics and unique texture 
 (...) handling and transport    .

ANSWER

3
1

Consistency

Contrastive

Support

Figure 2: Overview of FRONT: The Data Generation module facilitates the automatic generation of diverse and
high-quality attributed answers. The two-stage training recipe then enables LLMs to first generate precise grounding
and subsequently guide the generation of attributed answers, thereby enhancing fine-grained verification capabilities.

tent for statements within our synthetic attributed254

answers poses additional challenges. To tackle this,255

we employ ChatGPT to meticulously extract seg-256

ments from cited documents that support the cor-257

responding statement. Hence, when given a query258

q and top-5 retrieved documents D as input, the259

LLM is fine-tuned to generate a response S which260

consists of two components: the extractive ground-261

ing G and the attributed answer A. Specifically, the262

extractive grounding G is delineated as follows:263

G = {[GROUNDING], (i1, e1), . . . , (in, en)}, (1)264

where [GROUNDING] denotes a special token indi-265

cating the start of grounding content. Each tu-266

ple within G, comprising a document identifier i267

and the corresponding extractive segment e, collec-268

tively forming an extractive grounding quote.269

Similarly, the formulation of the attributed an-270

swer A is concisely presented as:271

A = {[ANSWER], s1, s2 . . . , sm}, (2)272

where [ANSWER] is a special token that signals the273

beginning of the attributed answer. Each statement274

si cites a list of passages Ci = {ci1, ci2, . . .}, where 275

cij ⊆ {i1, i2, . . . , in}, as defined in Equation 2. 276

Thus, the training loss is formulated as: 277

L = −
N∑
i=1

logP (yi|qi,Di; θ) (3) 278

where yi represents the combined output of ground- 279

ing G and answer A for each given query qi and set 280

of retrieved documents Di. 281

4.2.2 Weak-to-Strong Contrastive Alignment 282

While G3 unlocks the ability to extract supporting 283

quotes followed by generating attributed answers, 284

it occasionally leads to inconsistencies between 285

grounding quotes and attributed answers. Such dis- 286

crepancies challenge the attempt to employ these 287

grounding quotes as fine-grained verification. In re- 288

sponse, we propose a contrastive-based alignment 289

stage specifically aimed at enhancing the consis- 290

tency between grounding and answer generation. 291

The cornerstone of our approach involves con- 292

trasting a consistent answer with an inconsistent 293

one under the guidance of the same oracle ground- 294

ing quotes, which aligns with the concept of 295
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Reinforcement Learning from Human Feedback296

(RLHF) (Ouyang et al., 2022; Bai et al., 2022),297

where LLMs are further fine-tuned to distinguish298

between desirable and undesirable responses under299

preference feedback. However, such contrastive300

preference feedback typically comes from human301

annotation. Inspired by the weak-to-strong general-302

ization (Burns et al., 2023; Zhao et al., 2024) where303

a weaker LLM is utilized to guide the training of304

more powerful LLMs, we introduce weak-to-strong305

contrastive alignment (CA) that employs smaller306

LLMs (e.g., 7B) to provide contrastive supervision307

signals. In this setting, the process not only encour-308

ages the LLM to generate attributed answers more309

consistent with the grounding quotes but also facil-310

itates the identification and correction of nuanced311

errors present in smaller models.312

Specifically, we adopt Direct Preference Opti-313

mization (Rafailov et al., 2023), a variant of RLHF314

known for its stability, for our contrastive align-315

ment. Formally, for each instance, given the oracle316

grounding g(i) along with a consistent oracle an-317

swer y(i)w as well as an attributed answer y(i)l gener-318

ated by a weaker LLM via in-context learning, we319

can simply construct a preference dataset:320

D =
{
x(i), τ (i)w , τ

(i)
l

}N

i=1
, (4)321

where τ (i)w = g(i)◦y(i)w denotes the concatenation of322

the oracle grounding with the consistent, attributed323

answer, τ (i)l = g(i) ◦ y(i)l denotes the concatenation324

with the inconsistent attributed answer. Here, ◦325

signifies the operation of string concatenation.326

Finally, we can optimize the policy model πθ on327

the dataset D by minimizing the following loss:328

LDPO(πθ;πref ;D)

=− E(x,τw,τl)∼D

[
log σ

(
β log

πθ(τw|x)
πref(τw|x)

− β log
πθ(τl|x)
πref(τl|x)

)]
,

(5)329

where πref represents the reference model, initial-330

ized from G3. The hyper-parameter β modulates331

the divergence between the distribution from the332

policy model and the reference model. τw is the333

consistent answer, while τl is the inconsistent one.334

5 Experimental Settings335

5.1 Datasets336

We conduct experiments on the ALCE benchmark337

(Gao et al., 2023b), offering a collection of diverse338

datasets spanning various question types and a com- 339

prehensive suite for automatic evaluation of LLM 340

attribution which exhibits a strong correlation with 341

human judgments. The benchmark includes: 342

ASQA (Stelmakh et al., 2022) is a long-form 343

factoid QA dataset characterized by questions that 344

are inherently ambiguous, necessitating multiple 345

short answers to encapsulate different viewpoints. 346

ELI5 (Fan et al., 2019) is a long-form QA dataset 347

that features open-ended questions requiring ex- 348

planatory multi-sentence answers. 349

QAMPARI (Amouyal et al., 2022) is a factoid 350

QA dataset derived from Wikipedia, where answers 351

are structured as a compilation of entities. 352

5.2 Evaluation Metrics 353

Following the ALCE benchmark (Gao et al., 354

2023b), our evaluation primarily focuses on two 355

key dimensions. A more comprehensive evaluation 356

is presented in the Appendix E. 357

Citation Quality. Citation quality is critical for 358

evaluating LLM attribution, assessed along two 359

dimensions: (1) Citation Recall, determining if 360

the output is entirely supported by the cited doc- 361

uments, and (2) Citation Precision, assessing if 362

each citation supports its corresponding statement. 363

Evaluation is conducted by TRUE (Honovich et al., 364

2022), a T5-11B model fine-tuned on a collection 365

of NLI datasets to automatically examine the entail- 366

ment of cited documents and the model generation. 367

Additionally, to capture a holistic measure of ci- 368

tation quality, we also report the Citation F1, the 369

harmonic mean of citation precision and recall: 370

F1 = 2 · citation precision · citation recall
citation precision + citation recall

, (6) 371

Correctness. Correctness is determined by com- 372

paring the accuracy of responses to ground truth 373

answers. For ASQA, correctness is quantified us- 374

ing EM recall to capture the recall of correct short 375

answers. Regarding ELI5, correctness is measured 376

by the entailment between ground truth sub-claims 377

and the model’s response. For QAMPARI, the 378

model’s generation correctness is assessed through 379

both top-5 EM recall and EM precision. 380

5.3 Baselines 381

We compare our method with three types of base- 382

lines: prompting-based, post-hoc retrieval, and 383

training-based approach. 384
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Model Type Model Size
ASQA ELI5 QAMPARI

Correctness Citation Correctness Citation Correctness Citation

EM Rec. Rec. Prec. F1. Claim Rec. Prec. F1 Rec.-5 Prec. Rec. Prec. F1

Prompting-based

ChatGPT - 40.37 72.81 69.69 71.22 12.47 49.44 47.05 48.22 20.28 19.84 19.06 22.03 20.44

LLaMA-2
7B 24.32 17.24 17.87 17.55 4.53 3.92 5.38 4.54 12.56 11.32 6.03 6.35 6.19
13B 27.99 16.45 19.04 17.65 7.77 8.49 8.43 8.46 18.00 12.39 5.45 5.74 5.59
70B 31.53 44.18 44.79 44.48 10.43 23.75 22.43 23.07 18.50 14.79 10.10 10.50 10.30

LLaMA-2-Chat
7B 29.93 55.99 51.66 53.74 12.47 19.90 15.48 17.41 17.96 19.74 9.58 9.68 9.63
13B 34.39 37.15 38.17 37.65 13.83 16.50 16.09 16.29 21.34 18.86 8.94 9.06 9.00
70B 41.24 60.19 61.16 60.67 13.30 36.63 36.63 36.63 22.62 18.04 13.49 13.98 13.73

Vicuna-v1.5 7B 38.34 48.37 44.63 46.42 12.30 29.81 22.45 25.61 14.22 14.74 11.26 11.64 11.45
13B 35.20 51.92 53.40 52.65 14.33 31.15 28.99 30.03 22.06 19.60 13.04 13.74 13.38

Mistral 7B 29.46 23.12 25.45 24.23 8.47 16.04 16.32 16.18 16.96 15.98 7.50 7.76 7.63
8 × 7B 36.30 32.72 34.49 33.58 10.43 26.11 25.09 25.59 18.18 15.63 9.72 10.20 9.95

Mistral-Instruct 7B 38.57 64.90 59.67 62.18 11.07 49.25 42.69 45.74 17.52 21.29 17.56 18.53 18.03
8 × 7B 44.11 61.80 63.27 62.53 13.93 49.28 48.34 48.81 20.12 19.64 19.27 20.38 19.81

Post-hoc Retrieval-based

ChatGPT - 37.68 27.11 27.05 27.08 18.77 14.55 14.55 14.55 25.14 22.85 12.29 12.29 12.29

LLaMA-2-Chat 70B 29.68 24.51 24.51 24.51 16.03 12.93 12.93 12.93 17.90 14.45 9.05 9.05 9.05

Mistral-Instruct 8 × 7B 33.90 24.57 24.48 24.52 17.37 15.68 15.68 15.68 24.16 18.28 9.78 9.78 9.78

Training-based

Self-RAG (LLaMA-2) 7B 29.96 66.97 67.82 67.39 - - - - - - - - -
13B 31.53 58.32 68.35 62.94 - - - - - - - - -

VANILLA-SFT (LLaMA-2) 7B 40.32 67.67 63.67 65.61 9.63 42.30 40.06 41.15 12.86 21.09 21.35 21.36 21.35
13B 40.85 71.49 66.21 68.75 10.27 46.75 44.47 45.58 12.68 22.80 23.64 23.71 23.67

FRONT (LLaMA-2) 7B 40.84 77.70 69.89 73.59 10.18 58.60 55.33 56.92 11.50 21.38 24.74 24.84 24.79
13B 41.51 78.44 73.66 75.97 10.32 60.31 59.21 59.75 11.94 22.61 24.86 25.39 25.12

Table 1: Main results on the ALCE benchmark. Bold numbers indicate the best performance, while _ indicates the
second-best performance. - indicates numbers that are not applicable.

5.3.1 Prompting-based Methods.385

Our experiments span a spectrum of LLMs, rang-386

ing from foundational models to supervised fine-387

tuning (SFT) LLMs. For foundational LLMs,388

we select GPT-3.5-Turbo4 as the representative389

closed-source model for its notable performance.390

Among the open-source foundational LLMs, we391

focus on the LLaMA-2 series including LLaMA2-392

7B, LLaMA2-13B, and LLaMA2-70B, as well393

as the Mistral series, which spans from Mistral-394

7B to Mistral-8x7B-MoE. Regarding SFT LLMs,395

we select the SFT counterparts of the open-source396

foundational LLMs we used. Detailed prompting397

settings can be found in Appendix B.398

5.3.2 Post-hoc Retrieval-based Methods.399

Following Gao et al. (2023b), we apply the previ-400

ously mentioned models to perform post-hoc re-401

trieval. Initially, LLMs are prompted to generate402

answers in a closed-book setting. Subsequently,403

for each generated statement, we utilize GTR to404

identify and cite the most relevant document from405

the top-100 retrieved documents.406

5.3.3 Training-based Methods.407

Self-RAG (Asai et al., 2023) trains the LLM to408

learn to adaptively retrieve passages on-demand409

4Specifically, we utilize gpt-3.5-turbo-1106 version

and enable it to reflect on its generation to further 410

improve generation quality and attributions. 411

VANILLA-SFT trains the LLM directly on syn- 412

thetic training data, where, given a query and re- 413

trieved documents, the LLM are learnt to directly 414

generates attributed answers. 415

5.4 Implement Details 416

We conduct FRONT with different foundational 417

models to evaluate its effectiveness: LLaMA-2-7B 418

and LLaMA-2-13B. The comprehensive training 419

details are presented in Appendix C.2 420

6 Results and Analysis 421

6.1 Overall Results 422

Training LLMs to equip built-in attribution abil- 423

ity boosts citation quality. As shown in Table 424

1, equipping LLMs with the capability for attri- 425

bution through training markedly boosts citation 426

quality, showing significant advancements over 427

both prompt-based and post-hoc baselines across 428

all datasets. Specifically, simply supervised fine- 429

tuning (VANILLA-SFT) on our synthetic data with 430

the LLaMA-2-7B model led to substantial gains in 431

citation F1 scores over prompting: ASQA (17.55 432

→ 65.61), ELI5 (4.54 → 41.15), and QAMPARI 433
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Model
ASQA ELI5 QAMPARI

Correctness Citation Correctness Citation Correctness Citation

EM Rec. Rec. Prec. F1. Claim Rec. Prec. F1 Rec.-5 Prec. Rec. Prec. F1

FRONT-7B 40.84 77.70 69.89 73.59 10.18 58.60 55.33 56.92 11.50 21.38 24.74 24.84 24.79
SELF-GUIDE (w/o Contrastive) 38.99 70.69 64.48 67.44 10.04 47.63 44.80 46.17 12.18 20.03 22.50 22.58 22.54
VANILLA-SFT (w/o Ground) 40.32 67.67 63.67 65.61 9.63 42.30 40.06 41.15 12.86 21.09 21.35 21.36 21.35

FRONT-13B 41.51 78.44 73.66 75.97 10.32 60.31 59.21 59.75 11.94 22.61 24.86 25.39 25.12
SELF-GUIDE (w/o Contrastive) 40.99 73.08 68.13 70.52 10.06 50.68 49.78 50.23 13.94 22.38 23.73 23.99 23.85
VANILLA-SFT (w/o Ground) 40.85 71.49 66.21 68.75 10.27 46.75 44.47 45.58 12.68 22.80 23.64 23.71 23.67

Table 2: Ablation study on the impact of different training stages within the ALCE benchmark.

(6.19 → 21.35), which also highlight the efficacy of434

the synthetic data generation procedure in FRONT.435

FRONT achieves significant performance gains436

and surpasses ChatGPT. While VANILLA-SFT437

achieves strong performance, notable disparities438

still exist compared to leading open-source LLMs,439

such as Mixtral-8×7B-Instruct (e.g., 41.15 vs.440

45.74) and ChatGPT (e.g., 41.15 vs. 48.22) on441

the ELI5 dataset. FRONT not only narrows442

these gaps but also establishes significant leads443

across all datasets. Specifically, with LLaMA-2-444

7B, FRONT achieves comprehensive outperfor-445

mance over ChatGPT, registering outperformance446

of 3.32%, 18.04%, and 21.28% on the ASQA,447

ELI5, and QAMPARI datasets respectively, which448

underscores the effectiveness of FRONT in en-449

hancing attribution capabilities.450

FRONT exhibits scalability with model size.451

As illustrated at the bottom of Table 1, the perfor-452

mance of FRONT shows significant enhancements453

when transitioning from 7B to 13B, with improve-454

ments of 3.23%, 4.97%, and 1.33% on the ASQA,455

ELI5, and QAMPARI, respectively. This upward456

trend underscores the scalability of FRONT with457

model size, demonstrating the potential of FRONT458

in leveraging the increased capabilities of larger459

LLMs for further performance gains.460

FRONT demonstrates remarkable generaliza-461

tion and improves correctness. Compared to462

the varied queries and answer types present in463

the ALCE, our synthetic training data, derived464

exclusively from the NQ dataset, exhibits out-465

of-domain characteristics. Nonetheless, FRONT466

demonstrates superior citation quality, affirming467

its exceptional ability to generalize across queries.468

Furthermore, although FRONT was not explicitly469

designed to optimize for correctness, it showcases470

notable improvements over VANILLA-SFT, partic-471

ularly achieving significant performance advance-472

ments on the ASQA and QAMPARI datasets, and473

ASQA ELI5 QAMPARI

20
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40
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60
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C
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n

F1
(%
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Figure 3: Ablation Study on Data Filtering.

even outperforming ChatGPT. However, FRONT 474

encounters lower citation recall on the QAMPARI 475

dataset, likely due to its answers, which are com- 476

posed of concatenated entities, significantly diverg- 477

ing from our training data’s distribution. 478

6.2 Ablation Study 479

We conduct ablation studies to verify the effective- 480

ness of different components proposed in FRONT. 481

Effects of Data Generation Pipeline. As illus- 482

trated in §6.1, simply SFT achieves strong per- 483

formance, underscoring the high quality of our 484

synthetic data. Furthermore, data filtering, a cru- 485

cial component of our data generation pipeline, 486

plays a pivotal role in ensuring the quality of the 487

generated data by filtering out queries that yield 488

non-informative answers or fail to meet attribution 489

criteria. To validate the effectiveness of our data 490

filtering strategies, we conducted experiments com- 491

paring models fine-tuned on both pre-filtered and 492

post-filtered data. The results, depicted in Figure 493

3, confirm that models trained on filtered data ex- 494

hibit a notable improvement in citation quality over 495

those trained on unfiltered data, achieving superior 496

attribution performance with reduced data volume. 497

Effects of Grounding Guided Generation. To 498

validate the effectiveness of Grounding Guided 499

Generation (G3) in improving attribution, we com- 500

pared the model, SELF-GUIDE, trained solely 501

through the G3 stage (w/o Contrastive) against 502

VANILLA-SFT (w/o Ground), which is trained with 503

the same synthetic data but allowed to generate 504
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Figure 5: The relationship between citation F1 and hal-
lucination: Models positioned closer to the top-right
corner exhibit higher citation quality and a lower degree
of hallucination.

attributed answers directly, bypassing the ground-505

ing step. The ablation study, detailed in Table 2,506

reveals that models incorporating grounding guid-507

ance markedly surpass their VANILLA-SFT coun-508

terparts, which lack such grounding mechanisms.509

This underscores the pivotal role of grounding in510

bolstering attribution.511

Moreover, we explore an alternative variant of512

grounding guidance, PROMPT-GUIDE, trained to513

leverage grounding guidance within the prompt514

along with the query and retrieved documents for515

generating attributed answers. During inference,516

PROMPT-GUIDE employs oracle grounding con-517

tent, extracted by ChatGPT, to incorporate ground-518

ing guidance. Conducting experiments on the ELI5519

dataset using the LLaMA-2-7B model, the results520

depicted in Figure 3 reveal that SELF-GUIDE out-521

performs PROMPT-GUIDE. This finding under-522

scores that training models to generate grounding523

before attributed answers yields more effective re-524

sults than merely using grounding as prompt guid-525

ance, highlighting the superiority of FRONT.526

Effects of Weak-to-Strong Alignment (CA).527

The goal of CA is to enhance the consistency528

between grounded quotes and attributed answers,529

thereby alleviating hallucinations and achieving530

more precise attribution. To this end, we compared531

models that underwent only the G3 stage (SELF- 532

GUIDE) with the one further enhanced through 533

the CA stage (FRONT). As illustrated in Table2, 534

FRONT significantly improves citation quality 535

over SELF-GUIDE, demonstrating the effectiveness 536

of the CA stage in enhancing attribution. 537

Moreover, to assess the impact of CA on re- 538

ducing hallucinations, we employed QAFactEval, 539

a QA-based factual consistency metric measuring 540

the consistency between model responses and given 541

documents. Specifically, we analyzed the perfor- 542

mance of leading open-source models and two vari- 543

ants of FRONT and SELF-GUIDE on the ELI5 544

dataset. As shown in Figure5, FRONT produces 545

more faithful outputs than SELF-GUIDE, signifi- 546

cantly reducing hallucinations. 547

Effects of Training Data Scale. We analyze the 548

impact of the data scale on model performance 549

across two training stages. In particular, we ran- 550

domly sampled 2k, 4k, 6k, and 8k instances from 551

our full training data across two distinct training 552

stages. These subsets were then utilized to fine- 553

tune various 7B model variants, enabling a compar- 554

ative analysis of performance based on data scale. 555

Results are shown in Figure 6, which indicates 556

that increasing data size shows significant enhance- 557

ments in citation quality, indicating a positive cor- 558

relation between data size and model performance. 559

As FRONT implements an automated procedure 560

capable of generating high-quality attributed data 561

and constructing contrastive supervision from weak 562

and strong LLMs, it holds the potential for contin- 563

uous performance improvements. 564

7 Conclusion 565

In this work, we introduce FRONT, a training 566

framework designed to enpower LLMs with the 567

capability for built-in attribution while facilitating 568

fine-grained verification. FRONT encompasses an 569

automated data generation pipeline, crafting high- 570

quality synthetic data that trains an LLM to first 571

generate grounded quotes and then subsequently 572

guide the generation of attributed answers. Notably, 573

by enhancing the consistency between the ground- 574

ing and attributed answers, FRONT takes a signifi- 575

cant leap forward, harnessing grounding as a mech- 576

anism for fine-grained verification. Through com- 577

prehensive experiments, FRONT has been shown 578

to produce superior grounded responses and highly 579

supportive citations, significantly outperforming 580

existing methods, even surpassing ChatGPT. 581
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8 Limitation582

Our study presents several limitations worth not-583

ing. Firstly, the validation of our framework is584

predominantly conducted on models of sizes 7B585

and 13B, leaving the exploration of larger models,586

such as LLaMA2-70B due to computational con-587

straints. Secondly, our framework relies on a prior588

retrieval process, wherein relevant documents are589

retrieved at one time. The incorporation of adap-590

tive retrieval, enabling more dynamic interactions591

with LLMs, could potentially enhance performance.592

We leave it for future research. Lastly, evaluating593

the correctness of long-form question answering594

presents inherent challenges, leading our frame-595

work to primarily enhance citation quality, with596

modest advancements in correctness. Therefore,597

we advocate for the development of more robust598

metrics capable of accurately assessing the correct-599

ness of long-form QA responses, paving the way600

for future work.601
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A Details of Data Generation 981

A.1 Data Statistic 982

# Questions 8,098

➥ # Long Answer 5667
➥ # Short Answer 2431
Avg. Words per Answer 50.48

➥ Avg. Words per Long Answer 69.15
➥ Avg. Words per Short Answer 6.94

Avg. Citation per Answer 4.40

➥ Avg. Citation per Long Answer 4.68
➥ Avg. Citation per Short Answer 3.77

Table 3: The statistics of the data generated by our
automatic data generation pipeline.

Table 3 presents the statistics of the data automat- 983

ically generated by our data generation pipeline. In 984

total, we collected 8,098 questions from the Natural 985

Questions (NQ) dataset, of which 5,667 questions 986

were gathered from those with long-form answers, 987

and 2,431 questions were collected from those with 988

short-form factoid answers. 989

For questions requiring long-form answers, we 990

initialized our query source with the AQUAMUSE 991

dataset (Kulkarni et al., 2020), which consists of 992

high-quality queries specifically designed for long- 993

form responses within the NQ dataset, recognized 994

as “good” by the majority of NQ evaluators. In this 995

way, utilizing a refined and superior quality query 996

set laid a robust groundwork for our training data 997

generation, streamlining the data filtering process. 998

For factoid queries that necessitate short-form an- 999

swers, we directly sampled from the original NQ 1000

dataset, leveraging its abundance and inherently 1001

high quality. 1002

During the data generation process, our initial 1003

query set comprised 7,725 queries requiring long- 1004

form answers and 4,000 queries necessitating short- 1005

form answers. After a two-stage data filtering 1006

process, we retained 5,667 and 2,431 queries, re- 1007

spectively. Additionally, we calculated the average 1008

length of answers and the average number of cita- 1009

tions generated for various types of queries within 1010

our dataset, as shown in Table 3. 1011
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B Prompts1012

B.1 Prompts for Prompting-Based Methods1013

Following Gao et al. (2023b), we adopt the vanilla1014

prompting strategy for its simplicity and effective-1015

ness. Specifically, the prompts vary according to1016

the type of data within the ALCE benchmark. For1017

long-form QA datasets such as ASQA and ELI5,1018

the prompt format is detailed in Table 4. For the1019

short-form QA dataset QAMPARI, the format is1020

outlined in Table 5.1021

B.2 Instructions for FRONT1022

During the training process, we follow the instruc-1023

tion format of Alpaca5. Specifically, we employ1024

varied instructions for different question types, as1025

delineated in Table 6 for long-form questions and1026

Table 7 for short-form questions.1027

C Experimental Details1028

C.1 More Details of Attributed Discriminator1029

We trained our Attributed Discriminator using the1030

manually annotated data provided by Liu et al.1031

(2023b), which is sampled from real generative1032

search engines. Each statement and its cited docu-1033

ment have been meticulously annotated for attribu-1034

tion, categorized into three types: complete support,1035

partial support, and no support. For training, we uti-1036

lized a dataset of 8,834 instances, comprising 6,4151037

instances of complete support, 1,552 of partial sup-1038

port, and 867 of no support. The discriminator1039

initialized with LLaMA-2-7B, was trained with a1040

maximum sequence length of 512. We trained it for1041

3 epochs, with a total batch size of 128, and a peak1042

learning rate of 2e-5, incorporating 3% warmup1043

steps, followed by a linear decay.1044

During the data filtering stage, we first break1045

down the automatically generated attributed an-1046

swers into statement form and use the trained dis-1047

criminator to annotate the attribution between each1048

statement and its cited documents. Specifically,1049

we assign different attribution scores to each state-1050

ment s based on its attribution relationship with1051

cited documents d, as shown in Equation 7. Con-1052

sequently, for each attributed answer, we can cal-1053

culate its average attribution score. Attributed an-1054

swers with an average attribution score below 0.81055

are filtered out. The threshold of 0.8 was deter-1056

mined through preliminary testing on the develop-1057

5https://github.com/tatsu-lab/stanford_alpaca/
tree/main

ment set, for which we manually annotated 100 1058

samples to ensure the effectiveness of our filtering 1059

criteria. 1060

r(s)=


1, Dis(s, d) = complete support

0.5, Dis(s, d) = partial support

0, Dis(s, d) = no support
(7) 1061

C.2 More Details of Training in FRONT 1062

The training of all models is executed on 4 Nvidia 1063

A100 GPUs, each with 80GB of memory, leverag- 1064

ing the Deepspeed (Rasley et al., 2020) and Hug- 1065

gingFace Accelerate libraries (Gugger et al., 2022) 1066

to conduct multi-GPU distributed training. Given 1067

the long nature of the inputs, the maximum token 1068

length is set to 2,048 tokens. 1069

During the grounding guide generation stage, 1070

models are trained for 5 epochs with a total batch 1071

size of 128, a peak learning rate of 2e-5 with 3% 1072

warmup steps followed by a linear decay. During 1073

the contrastive alignment stage, we set the β to 0.1 1074

and continued training for two additional epochs. 1075

Specifically, During inference, we use the vllm 1076

framework (Kwon et al., 2023) for efficient infer- 1077

ence. The hyperparameters are set as illustrated in 1078

Table 8. 1079

D More detail about Ablation Study 1080

D.1 The Effect of Training Data Scale. 1081

We examine how model performance varies with 1082

changes in data scale, as depicted in Figure6. The 1083

upper part of the figure illustrates the impact of the 1084

training data scale on citation quality during the 1085

Grounding Guided Generation training stage, with 1086

datasets ASQA, ELI5, and QAMPARI represented 1087

from left to right. Similarly, the lower part of the 1088

figure describes the influence during the Weak-to- 1089

Strong Alignment training stage. 1090

D.2 The Generalization Across Model 1091

Architectures. 1092

FRONT demonstrates exceptional generalization 1093

capabilities across various foundational model ar- 1094

chitectures. Specifically, transitioning the founda- 1095

tional model from LLaMA-2-7B to the stronger 1096

foundational model, Mistral-7B, results in even 1097

greater performance enhancements as shown in 1098

Figure 7. This further underscores the broad appli- 1099

cability and generalizability of FRONT. 1100
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Instruction: Write an accurate, engaging, and concise answer for the given question using only
the provided search results (some of which might be irrelevant) and cite them properly. Use an
unbiased and journalistic tone. Always cite for any factual claim. When citing several search
results, use [1][2][3]. Cite at least one document and at most three documents in each sentence.
If multiple documents support the sentence, only cite a minimum sufficient subset of the
documents.

Table 4: Prompt for Long-form QA.

Instruction: Provide a list of accurate answers for the given question using only the provided
search results (some of which might be irrelevant) and cite them properly. Always cite one and
only one document for each answer. Separate answers by commas. For questions that have more than
5 answers, write at least 5 answers.

Table 5: Prompt for Short-form QA.
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Figure 6: Ablation study on synthetic training data size: The upper part of the figure corresponds to the Grounding
Guided Generation training stage, while the bottom part represents the Weak-to-Strong Contrastive Alignment
training stage. From left to right, the results are presented for ASQA, ELI5, and QAMPARI, respectively. REC.
indicates Citation Recall and PREC. denotes Citation Precision. The x-axis represents the quantity of automatically
generated data. It is observed that as the volume of automatically generated data increases, there is a consistent
improvement in both citation recall and precision across the two training stages.

D.3 The effect of β in Weak-to-Strong1101

Contrastive Alignment Training Stage1102

In the Weak-to-Strong Contrastive Alignment1103

Training Stage, the β parameter in Direct Prefer-1104

ence Optimization (DPO) controls the strength of1105

the Kullback-Leibler penalty, typically set within1106

the range of 0.1 to 0.5. A higher β value indi-1107

cates a preference for the policy model’s training1108

process to remain closer to the initially referenced1109

model. In extreme cases, as β → 0, we ignore the1110

constraints imposed by the reference model. This1111

setting aims to balance the model’s ability to adapt1112

to new training signals while maintaining the sta-1113

bility of the learned behaviors from the reference1114

model.1115

Subsequently, we trained five variants by ad-1116

justing β from 0.1 to 0.5 on the model previously1117

trained with G3 to explore the impact of the hyper- 1118

parameter β on attribution quality. We evaluated 1119

these variants on the ASQA and ELI5 datasets, and 1120

the experimental results are shown in Figure 8. 1121

The experimental results indicate that as β in- 1122

creases, the model’s performance on attribution 1123

gradually decreases. This observation suggests that 1124

the first stage of G3 might introduce a noticeable 1125

inconsistency between grounding and attribution. 1126

With higher β values, the model struggles to escape 1127

the constraints of inconsistent attributed answers, 1128

leading to a reduction in attribution quality as β 1129

increases. 1130

E Full Results 1131

We present the comprehensive results of our exper- 1132

iments in Tables 9, 10, and 11. Beyond the evalua- 1133

tion metrics related to Correctness and Citation, we 1134
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Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.

### Instruction:
Extract the relevant content from the provided documents and then use the extracted content to
guide answer generation and cite the sources properly.
### Input:Question: {Question} Documents: {Documents}
### Response:

Table 6: Instruction Format for FRONT on Long-form QA.

Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.

### Instruction:
Extract the relevant content from the provided documents and then use the extracted content to
provide a list of accurate answers for the given question. Always cite one and only one document
for each answer. Separate answers by commas.
### Input:Question: {Question} Documents: {Documents}
### Response:

Table 7: Instruction Format for FRONT on Short-form QA.

Hyper-parameters Value

Top-p 0.95
Temperature 1.0
Max-length 2048

Table 8: Hyper-parameter settings in inference.
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Figure 7: Ablation study on model architecture: We sub-
stituted the foundation model in FRONT with Mistral-
7B and compared the experimental results of models un-
der the same foundation model using in-context learning
and those directly supervised fine-tuned on our automat-
ically generated data. The experiments demonstrate that
by replacing different foundation models, our frame-
work still maintains its generalizability.

adhere to the evaluation framework established in1135

(Gao et al., 2023b). For long-form QA datasets like1136

ASQA and ELI5, we also report metrics related to1137

Fluency, ROUGE-L, and average response length.1138

Specifically, we use MAUVE (Pillutla et al., 2021)1139

to evaluate the fluency of the model response. For1140

datasets like QAMPARI, where answers are com-1141
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Figure 8: Ablation on hyperparameter β in Weak-to-
Strong Contrastive Alignment stage on ASQA and ELI5

posed of concatenated entities, we calculate the 1142

average number of predicted entities. 1143
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Model Type Model Size
Fluency Correct. Citation

(MAUVE) (EM Rec.) Rec. Prec. F1 ROUGE-L Length

Prompting-based

ChatGPT - 73.41 40.37 72.81 69.69 71.22 37.92 39.24

LLaMA-2
7B 79.90 24.32 17.24 17.87 17.55 29.38 42.29
13B 87.08 27.99 16.45 19.04 17.65 31.41 39.25
70B 69.28 31.53 44.18 44.79 44.48 31.53 26.86

LLaMA-2-Chat
7B 66.78 29.93 55.99 51.66 53.74 32.93 26.18
13B 66.14 34.39 37.15 38.17 37.65 35.13 33.68
70B 86.60 41.24 60.19 61.16 60.67 37.01 47.09

Vicuna-v1.5 7B 86.92 38.34 48.37 44.63 46.42 35.95 63.90
13B 66.11 35.20 51.92 53.40 52.65 35.74 38.57

Mistral 7B 82.37 29.46 23.12 25.45 24.23 31.67 37.17
8 × 7B 83.30 36.30 32.72 34.49 33.58 35.05 38.47

Mistral-Instruct 7B 82.86 38.57 64.90 59.67 62.18 36.21 45.26
8 × 7B 94.77 44.11 61.80 63.27 62.53 38.54 58.83

Post-hoc Retrieval-based

ChatGPT - 49.78 37.68 27.11 27.05 27.08 36.64 52.61

LLaMA-2
7B 75.56 16.55 13.88 13.86 13.87 26.81 37.50
13B 77.91 20.51 20.95 20.94 20.94 29.53 31.37
70B 75.23 27.58 28.43 28.43 28.43 30.33 29.88

LLaMA-2-Chat
7B 22.50 14.17 11.33 11.33 11.33 21.17 110.04
13B 64.52 24.43 21.43 21.43 21.43 33.91 41.12
70B 70.63 29.68 24.51 24.51 24.51 34.17 45.74

Vicuna-v1.5
7B 63.87 19.58 16.24 16.24 16.24 33.22 41.80
13B 73.83 24.79 24.11 24.11 24.11 34.42 43.54

Mistral
7B 86.54 21.17 16.78 16.77 16.77 30.90 42.43
8 × 7B 80.99 36.30 38.37 35.27 36.75 35.05 38.47

Mistral-Instruct
7B 67.97 26.26 17.87 17.85 17.86 33.71 51.56
8 × 7B 65.51 33.90 24.57 24.48 24.52 36.20 53.83

Training-based

Self-RAG 7B 74.33 29.96 66.97 67.82 67.39 35.70 29.83
13B 71.59 31.66 70.35 71.26 70.80 36.01 27.03

VANILLA-SFT 7B 76.66 40.32 67.67 63.67 65.61 38.32 62.00
13B 84.36 40.85 71.49 66.21 68.75 38.22 58.82

FRONT 7B 81.88 40.84 77.70 69.89 73.59 36.95 53.93
13B 76.11 41.51 78.44 73.66 75.95 38.63 57.56

Table 9: ASQA full results.
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Model Type Model Size
Fluency Correct. Citation

(MAUVE) (Claim) Rec. Prec. F1 ROUGE-L Length

Prompting-based

ChatGPT - 44.65 12.47 49.44 47.05 48.22 20.64 90.2

LLaMA-2
7B 63.72 4.53 3.92 5.38 4.54 18.27 103.36
13B 62.19 7.77 8.49 8.43 8.46 19.95 88.23
70B 53.39 10.43 23.75 22.43 23.07 20.43 93.84

LLaMA-2-Chat
7B 32.80 12.47 19.90 15.48 17.41 20.88 96.42
13B 29.08 13.83 16.50 16.09 16.29 21.04 94.32
70B 33.69 13.30 36.63 36.63 36.63 21.29 117.84

Vicuna-v1.5 7B 31.45 12.30 29.81 22.45 25.61 21.36 105.68
13B 37.41 14.33 31.15 28.99 30.03 21.74 98.23

Mistral 7B 56.62 8.47 16.04 16.32 16.18 20.46 93.80
8 × 7B 61.83 10.43 26.11 25.09 25.59 20.66 93.59

Mistral-Instruct 7B 32.74 11.07 49.25 42.69 45.74 20.75 98.28
8 × 7B 38.51 13.93 49.28 48.34 48.81 21.34 113.71

Post-hoc Retrieval-based

ChatGPT - 22.79 18.77 14.55 14.55 14.55 22.28 106.83

LLaMA-2
7B 72.80 7.23 6.84 6.84 6.84 19.14 88.19
13B 53.21 10.33 9.61 9.61 9.61 20.63 90.44
70B 58.97 11.10 10.27 10.26 10.26 20.41 77.85

LLaMA-2-Chat
7B 22.50 14.17 11.33 11.33 11.33 21.17 110.04
13B 30.36 14.93 12.10 12.10 12.10 21.82 109.79
70B 37.87 16.03 12.93 12.93 12.93 21.57 99.94

Vicuna-v1.5 7B 30.88 11.83 10.91 10.91 10.91 21.66 99.03
13B 32.59 15.20 14.06 14.06 14.05 14.05 108.16

Mistral 7B 52.45 10.47 8.64 8.64 8.64 20.48 90.17
8 × 7B 48.39 13.57 11.62 11.62 11.62 21.43 91.97

Mistral-Instruct 7B 27.41 17.07 13.20 13.20 13.20 21.52 106.93
8 × 7B 27.60 17.37 15.68 15.68 15.68 21.66 95.21

Training-based

Self-RAG 7B 39.14 8.20 8.49 11.80 9.88 17.83 41.70
13B 37.97 9.20 5.90 8.20 6.86 17.82 43.70

VANILLA-SFT 7B 44.12 9.63 42.30 40.06 41.15 20.58 80.43
13B 46.33 10.27 46.75 44.47 45.58 20.56 84.01

FRONT 7B 36.90 10.18 58.60 55.33 56.92 19.09 74.06
13B 34.37 10.32 60.31 59.21 59.75 19.66 75.14

Table 10: ELI5 full results.
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Model Type Model Size
Correctness Citation

Rec.-5 Prec. Rec. Prec. F1 Num Pred.

Prompting-based

ChatGPT - 20.28 19.84 19.06 22.03 20.44 4.71

LLaMA-2
7B 12.56 11.32 6.03 6.35 6.19 7.02
13B 18.00 12.39 5.45 5.74 5.59 11.31
70B 18.50 14.79 10.10 10.50 10.30 8.31

LLaMA-2-Chat
7B 17.96 19.74 9.58 9.68 9.63 4.73
13B 21.34 18.86 8.94 9.06 9.00 6.51
70B 22.62 18.04 13.49 13.98 13.73 7.44

Vicuna-v1.5 7B 14.22 14.74 11.26 11.64 11.45 5.87
13B 22.06 19.60 13.04 13.74 13.38 7.62

Mistral 7B 16.96 15.98 7.50 7.76 7.63 6.29
8 × 7B 18.18 15.63 9.72 10.20 9.95 6.63

Mistral-Instruct 7B 17.52 21.29 17.56 18.53 18.03 4.54
8 × 7B 20.12 19.64 19.27 20.38 19.81 5.32

Post-hoc Retrieval-based

ChatGPT - 25.14 22.85 12.29 12.29 12.29 5.46

LLaMA-2
7B 6.48 5.11 5.05 5.05 5.05 6.55
13B 9.88 7.17 5.20 5.20 5.20 6.98
70B 14.44 12.44 7.49 7.49 7.49 7.41

LLaMA-2-Chat
7B 12.94 10.89 7.76 7.76 7.76 5.99
13B 15.72 12.23 7.87 7.87 7.87 6.32
70B 17.90 14.45 9.05 9.05 9.05 6.05

Vicuna-v1.5 7B 12.04 9.71 6.69 6.69 6.69 7.10
13B 14.78 11.47 8.50 8.50 8.50 6.67

Mistral 7B 9.94 7.90 6.00 6.00 6.00 7.38
8 × 7B 13.92 12.08 6.70 6.70 6.70 6.58

Mistral-Instruct 7B 15.80 12.15 8.34 8.34 8.34 7.01
8 × 7B 24.16 18.28 9.78 9.78 9.78 7.37

Training-based

VANILLA-SFT 7B 12.86 21.09 21.35 21.36 21.35 7.49
13B 12.68 22.80 23.64 23.71 23.67 3.14

FRONT 7B 11.50 21.38 24.74 24.84 24.79 3.08
13B 11.94 22.61 24.86 25.39 25.12 3.17

Table 11: QAMPARI full results.
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