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Abstract—Modeling and manipulating the physical world from
visual input requires tracking entities and inferring their struc-
ture under uncertainty. We introduce GenParticles, a probabilis-
tic, particle-based generative model that that supports Bayesian
inference of persistent object-level structure from observed po-
sitions and motion cues over time. The model defines latent
particles representing spatially localized matter via 3D Gaussians
and imposes hierarchical motion constraints by clustering parti-
cles into groups with coherent dynamics. Approximate inference
is performed via parallelized block Gibbs sampling, facilitating
tracking and refinement of latent structure across naturalistic
video sequences with dense per-frame observations. GenParticles
maintains temporally consistent inference by updating particle
structure, allowing it to track both rigid and deformable motion
without requiring explicit point correspondences. Beyond video
analysis, this method offers an online framework for identifying
and mapping moving objects within a scene, with potential
relevance for downstream applications in robotic manipulation.

I. INTRODUCTION

Perception of object motion is central to structured world
modeling, especially in robotic manipulation where agents
interact with complex, disturbed and dynamic scenes [1, 2,
3, 4, 5]. Human perception studies suggest that motion-based
grouping and rigidity cues enable us to infer object structure
even without clear boundaries or texture [6]. Coherent motion
reveals how deformable parts relate over time, while shared
transformations help delineate rigid structures, offering a pow-
erful signal for generalizing to novel objects beyond learned
categories. Translating these insights to robotics motivates
models that aim to capture persistent identity and flexible
shape. While 3D models and dense tracking may struggle with
deformation or require heavy supervision, end-to-end learning
approaches often lack the compositional structure needed for
planning and control.

We introduce GenParticles, a structured probabilistic gen-
erative model with a massively parallel approximate inference
algorithm that jointly tracks 3D Gaussians (“particles”) over
time and infers the latent structures they belong to. Inspired by
particle systems in computer graphics, the model represents
scenes as collections of spatially localized 3D Gaussians,
each corresponding to a region of visual matter undergoing
approximately local translational motion. Particles are grouped
into latent clusters that impose shared rigid transformations,
enabling coherent motion modeling across parts. Cluster pa-
rameters are re-inferred at each frame, allowing the model to
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Fig. 1. Tracking deformable matter with GenParticles. A dropped block
of Jello is tracked across time using a color variant of our model, described
in Appendix B. The color of each pixel in each frame is given by (a) the
color in the raw video data (b) the inferred color of its assigned particle (c)
a false color randomly chosen for its assigned particle, for visual clarity (d):
a false color randomly chosen for its assigned cluster.

flexibly adapt to changing object geometry and motion. As
qualitatively illustrated in Figure 1, this enables the recovery
of coherent entities even under significant deformation.

We evaluate GenParticles on naturalistic RGB videos
from a subset of the DAVIS dataset [7] with single-object
segmentation masks. GenParticles produces dense, tempo-
rally consistent particle representations that track flexibly
moving objects such as humans and animals. When clusters
are initialized with object identity in the first frame, the model
maintains accurate object coverage over time and outperforms
state-of-the-art particle video baselines. The findings suggest
that under the tested conditions, approximate inference in our
model recovers object representations that reflect motion and
structural persistence.

II. RELATED WORKS

a) Structured Generative Models of Scenes: Structured
generative models have long offered a powerful framework for
interpreting visual scenes via latent object representations and
physically grounded dynamics. Early works like Attend-Infer-
Repeat (AIR) [8] and its sequential extensions (SQAIR [9],
SCALOR [10], SILOT [11]) pioneered unsupervised object
discovery and tracking using variational inference in dy-
namic scenes. Slot Attention [12] and its video extension
SAVi++[13] improved object-centric representation learning
with iterative attention and spatial inductive biases. Genera-
tive structured models like C-SWM[14], G-SWM [15], and



STOVE [16] incorporated explicit object-level dynamics and
physics-informed priors, enabling generalization and long-
horizon prediction; capabilities that directly motivate the struc-
tured particle dynamics in GenParticles.

b) Structured World Models for Robotic Manipulation:
Structured world models support object-centric representations
that improve planning and control in robotics. Visual Fore-
sight [17] used video prediction for model predictive control,
while Transporter Networks [18] introduced spatial inductive
biases for data-efficient manipulation. Recent methods like
SWIM [19] transfer structured video models from human
demonstrations to robots, showing the benefits of decompos-
able and structured representations for downstream control.

c) Particle-Based Tracking: The idea of persistently
tracking semi-dense point sets was introduced by Particle
Video [20] and later refined by Particle Video Revisited [21]
with occlusion reasoning and trajectory consistency. Re-
cent models like CoTracker3 [22], TAPIR [23], and Spa-
Tracker [24] improve tracking using learned motion fields,
temporal models, and rigidity constraints. DynOMo [25] per-
forms online 3D tracking from monocular video with 3D
Gaussian splatting, while PhysTwin [26] reconstructs and
simulates deformable objects using physics-informed models.
These methods track points but do not model hierarchical
structure with global shared motion and locally approximate
motion, which is important for interpretable, generalizable
representations of both rigid and deformable motion.

III. GENERATIVE PARTICLE MODEL

We introduce the Generative Particle Model
(GenParticles), a two-level hierarchical generative model
for structured motion in deformable scenes (Algorithm 1).
Clusters represent rigid groups, each parameterized
by a Gaussian over space and a per-frame rigid-body
transformation. Particles are local Gaussians drawn from
clusters and encode spatially localized variability. Data points
are sampled from a mixture over particles. This hierarchy
decouples global motion from local structure, allowing rigid
objects of arbitrary shape to be represented as spatial mixtures
of localized components. GenParticles is implemented in
the GenJAX probabilistic programming framework [27, 28]

A. Cluster Model

Each cluster k ∈ {1, . . . ,K} defines a spatial prior
over its assigned particles via a 3D Gaussian with mean
µH

k ∼ N (µH, σ2
µHI) and covariance ΣH

k ∼ W−1(ΨH, νH).
Its rigid motion into the next frame is parameterized by a
discrete translation tk ∼ DiscreteNormal(0, s2I) and rotation
Rk ∼ DiscreteVMF(κvmf, θmax), representing small frame-to-
frame transformations.

B. Particle Model

Each particle ℓ ∈ {1, . . . , L} is assigned to a cluster via a
categorical latent zHℓ ∼ Cat(πH), with cluster weights drawn
from πH ∼ Dir(α). Given cluster k = zHℓ , the particle’s

Algorithm 1 Generative Particle Model
1: Input:
2: K,L,N ▷ Number of clusters, particles, and observed data

points
3: Priors: α, β, (µH, σ2

µH ,ΨH, νH), (ΨB, νB), σ2
V , (ΨV , νV)

4: Sample cluster weights: πH ∼ Dir(α)
5: Sample particle weights: πB ∼ Dir(β)
6: for k = 1 to K do
7: Sample cluster covariance: ΣH

k ∼ W−1(ΨH, νH)
8: Sample cluster mean: µH

k ∼ N (µH, σ2
µHI)

9: Sample cluster translation: tk ∼ DiscreteNormal(0, s2I)
10: Sample cluster rotation: Rk ∼ DiscreteVMF(κvmf, θmax)
11: end for
12: for ℓ = 1 to L do
13: Sample cluster assignment: zHℓ ∼ Cat(πH)
14: Let k = zHℓ
15: Sample particle covariance: ΣB

ℓ ∼ W−1(ΨB, νB)
16: Sample particle mean: µB

ℓ ∼ N (µH
k ,ΣH

k )
17: Compute cluster-induced velocity: v̄ℓ = tk+(Rk−I)(µB

ℓ −
µH

k )
18: Sample particle velocity mean: vℓ ∼ N (v̄ℓ, σ

2
V I)

19: Sample particle velocity covariance: ΣV
ℓ ∼ W−1(ΨV , νV)

20: end for
21: for n = 1 to N do
22: Sample particle assignment: zBn ∼ Cat(πB)
23: Let ℓ = zBn
24: Sample data point position: xn ∼ N (µB

ℓ ,Σ
B
ℓ )

25: Sample data point velocity: vn ∼ N (vℓ,Σ
V
ℓ )

26: end for

position is drawn from a Gaussian centered at the cluster mean:
µB

ℓ ∼ N (µH
k ,ΣH

k ), with covariance ΣB
ℓ ∼ W−1(ΨB, νB).

Particles inherit velocity from their parent cluster’s rigid
transformation, with expected velocity:

v̄ℓ = tk + (Rk − I)(µB
ℓ − µH

k ),

where (Rk − I) approximates first-order rotation about
the cluster center. The actual velocity is sampled as
vℓ ∼ N (v̄ℓ, σ

2
V I), with velocity noise covariance ΣV

ℓ ∼
W−1(ΨV , νV).

C. Observation Model

Each data point n ∈ {1, . . . , N} is drawn from a latent
particle indexed by zBn ∼ Cat(πB), where πB ∼ Dir(β).
Given assignment ℓ = zBn , the spatial position and velocity
are independently drawn as:

xn ∼ N (µB
ℓ ,Σ

B
ℓ ), vn ∼ N (vℓ,Σ

V
ℓ ).

IV. APPROXIMATE INFERENCE

We implement a blocked Gibbs sampler over the model’s
hierarchical latent variables—datapoints, particles, and clus-
ters—using conjugate updates where available (e.g., Normal-
Normal, Normal-Inverse-Wishart) [29, 30]. All computations
are parallelized using vmap in JAX [31], with vectorized likeli-
hoods and batched parameter updates across components. As-
signment steps evaluate all datapoints against all components
simultaneously, while cluster and particle updates are fused
and executed in parallel. For non-conjugate terms like SE(3)
transforms, we use exhaustive enumeration over discretized



candidates, restricting computations to each variable’s Markov
blanket [32, Ch. 4]. This setup enables inference on a single
NVIDIA L4 GPU (24GB).

a) Latent Assignments: Each data point is assigned to
a particle via a categorical posterior proportional to the prior
mixture weight and the joint likelihood of observed position
and velocity:

p(zBn = ℓ | · · · ) ∝ πB
ℓ · N (xn | µB

ℓ ,Σ
B
ℓ ) · N (vn | vℓ,Σ

V
ℓ ).

Particles are in turn assigned to clusters using a similar
expression, incorporating rigid motion prediction:

p(zHℓ = k | · · · ) ∝ πH
k ·N (µB

ℓ | µH
k ,ΣH

k ) ·N (vℓ | v̄ℓ,k, σ
2
V I),

where v̄ℓ,k is the velocity predicted by cluster k’s rigid
transformation. Mixture weights πB,πH are resampled via
conjugate Dirichlet updates.

b) Particle Parameter Updates: Each particle’s spatial
and velocity covariances (ΣB

ℓ ,Σ
V
ℓ ) are sampled from Inverse-

Wishart posteriors via Normal-Inverse-Wishart conjugacy. The
velocity mean vℓ is updated via a Gaussian posterior that
combines a prior from the cluster’s rigid motion with observed
data point velocities. The spatial mean µB

ℓ is sampled from
a Gaussian posterior that integrates three sources: a prior
from the cluster, a likelihood from the assigned data point
positions, and a velocity-based constraint modeled as an affine
likelihood. See Appendix A for details.

c) Cluster Parameter Updates: Cluster transformations
(Rk, tk) are sampled by enumerating over discretized can-
didates, preferring transforms that align better with the as-
signed point motions. Spatial covariances ΣH

k are updated via
Inverse-Wishart posteriors, based on the scatter of assigned
particle means. The cluster mean µH

k is sampled from a Gaus-
sian posterior combining the global prior, particle positions,
and velocity residuals corrected by the current transform. See
Appendix A for a full description.

d) Extending to Video: Although the generative model
is defined over two frames, it naturally extends to sequential
inference by propagating particle means forward using their
inferred velocities: µ̃B,t+1

ℓ = µB,t
ℓ + vt

ℓ. All other latent
variables are re-inferred at each frame via block Gibbs updates,
conditioned on this propagated particle state. This yields a
sequential MCMC filtering procedure that supports temporally
consistent object tracking without requiring pointwise corre-
spondences. This scheme is detailed in Appendix A-C.

V. EXPERIMENT: OBJECT PERSISTENCE IN VIDEO

We evaluate whether GenParticles can maintain persistent
particle representations of a moving object over time when
given object information in the first frame of a video. The
task is inspired by semi-supervised video object segmentation
but differs in that we use ground truth segmentation only as a
proxy to evaluate the quality of particle-based tracking.

As shown in Figure 2, GenParticles takes as input an RGB
video and uses Video Depth Anything [33] and RAFT [34]
to estimate monocular depth and optical flow, respectively.

RGB Video

3D Inference Engine

Monocular Depth/Optical Flow Estimates
Preprocessing Pipeline

Final Inferred Persistent 
World State

Per-pixel particle 
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Fig. 2. Overview of the RGB video inference pipeline. The system
takes an RGB video as input and initializes latent particles and
clusters using monocular depth and optical flow estimates from frame
0. The GenParticles 3D inference engine takes the initial scene
fit and runs Bayesian filtering to propagate the latent representation
of the scene forward using inferred particle velocities obtained via
block Gibbs sampling. The result is a temporally consistent particle-
based representation of the scene, with per-pixel particle and cluster
assignments across all frames.

particles are initialized in the first frame by performing k-
means clustering. The ground truth segmentation mask from
the initial frame is then used to group all object particles into
a single cluster. We do not resample clusters assignments after
the first frame, anchoring the model to the object throughout
the sequence. This is followed by blocked Gibbs sampling to
assign initialize to all latent variables.

During tracking, inference is performed via blocked Gibbs
sweeps with a structured order to ensure stable convergence.
Each sweep begins by propagating particles forward using
inferred velocities. Observed datapoints are then assigned to
particles based on spatial proximity, providing a reliable initial
alignment before incorporating velocity or rigid transform
constraints. Conditioned on these assignments, we update
particle level variables: positions, velocities, and covariances.
Cluster level parameters, including rigid transforms and spatial
statistics, are then inferred. This bottom-up ordering grounds
higher level structure in current frame evidence. After this ini-
tialization pass, additional Gibbs sweeps refine the estimates,
with inferred clusters serving as priors that encourage particles
to stay within object consistent regions. To stabilize inference,
we fix particle covariances, preserving the spatial extent of
deformable visual matter.

We compare against two recent state-of-the-art particle
video baselines, both initialized with a grid of points to
produce a structured particle grid: CoTracker3 [22] and Spa-
Tracker [24]. When masked by the ground truth segmentation
in the first frame, CoTracker3 and SpaTracker’s tracked points
implicitly define an empirical, particle-based representation
of the object. Each point is assigned an object identity, and
the collective trajectory of the points forms a distributed
approximation to the object as it moves.

Experiments are conducted on a 33-video subset of
DAVIS [7], each with a single object segmentation mask. We
resample all videos to resolution (520, 960) and evaluate per-
formance using object particle persistence (%): the percentage



TABLE I
OBJECT PARTICLE PERSISTENCE (%) PER VIDEO. WE REPORT THE MEAN PERCENTAGE OF PARTICLES THAT REMAIN WITHIN THE GROUND TRUTH

SEGMENTATION MASK AT EACH FRAME OVER TIME, RELATIVE TO THOSE INITIALIZED INSIDE IT IN THE FIRST FRAME. PARTICLES ARE LABELED BY THE
INITIAL FRAME MASK, TRACKED OVER TIME, AND ASSIGNED ACCURACY BASED ON EACH FRAME’S MASK. GenParticles REPORTS MEAN AND

STANDARD DEVIATION OVER 5 RANDOM SEEDS. BEST PER VIDEO IS BOLDED AND ITALICIZED VIDEOS CONTAIN HEAVY OCCLUSION.

DAVIS Video GenParticles (Ours) CoTracker3 [22] SpaTracker [24] DAVIS Video GenParticles (Ours) CoTracker3 [22] SpaTracker [24]

boat 100.00 ± 0.00 90.69 92.14 bus 93.33 ± 0.52 82.16 82.79
car-turn 100.00 ± 0.00 97.15 99.89 dance-jump 93.09 ± 1.80 88.46 85.21
drift-chicane 100.00 ± 0.00 74.84 51.28 dog 92.78 ± 2.45 96.34 97.09
car-roundabout 99.79 ± 0.25 96.50 97.78 dance-twirl 92.64 ± 1.12 83.87 90.83
flamingo 99.53 ± 0.42 80.83 90.98 mallard-water 92.56 ± 1.00 97.51 94.28
breakdance-flare 99.51 ± 0.25 82.19 98.74 goat 92.26 ± 2.82 88.73 88.61
camel 99.40 ± 0.53 93.45 96.34 koala 91.46 ± 1.03 63.95 57.65
cows 99.28 ± 0.89 94.25 93.02 lucia 87.73 ± 2.18 93.77 97.72
rallye 98.96 ± 0.66 100.00 80.00 dog-agility 84.78 ± 1.50 78.65 74.20
rollerblade 97.96 ± 1.92 95.78 94.64 libby 83.35 ± 3.19 77.78 79.23
rhino 97.50 ± 0.39 88.19 87.87 parkour 78.57 ± 1.72 84.96 76.00
blackswan 96.89 ± 0.69 99.91 100.00 mallard-fly 69.23 ± 3.03 71.01 85.27
bear 96.72 ± 1.29 95.87 94.28 drift-turn 64.75 ± 2.76 96.46 91.47
elephant 96.71 ± 1.11 89.82 90.14 drift-straight 63.75 ± 12.47 94.17 74.00
breakdance 96.31 ± 1.21 69.06 94.83 varanus-cage 51.93 ± 9.78 67.19 64.93
hike 94.36 ± 2.56 92.67 94.46 soccerball 11.85 ± 0.22 88.94 87.22
car-shadow 94.11 ± 0.63 96.08 97.28 Median Accuracy 94.11 89.82 90.98

of particles that remain inside the segmentation mask over
time, relative to those initialized within it in the first frame.
This metric is averaged across frames to measure the stability
of object association. It is well suited to our unsupervised gen-
erative setting, where no ground truth trajectories or identity
labels are available. Particle persistence captures how well any
method maintains consistent object association over time based
solely on its internal representations. To remove unreliable
particles, we discard those with fewer than 100 assigned
points after initialization, an order of magnitude less than the
average 1000 assigned points per particle. As GenParticles
is probabilistic, each video is run with 5 random seeds. For
fair comparison, all baselines operate in offline mode with
full video access and are constrained to a 25×25 particle grid,
the largest DAVIS sequence supported by a 24GB GPU. As
shown in Table I, GenParticles outperforms SpaTracker and
CoTracker3 on 20 of 33 sequences.

While GenParticles performs well overall, it underper-
forms on sequences such as soccerball, varanus-cage, drift-
straight, and drift-turn, due to challenges in maintaining
object continuity during extended occlusion and out-of-frame
motion. In these cases, the posterior over particle trajectories
can collapse without sustained visual input, as the model
lacks a dynamics prior to carry motion forward when the
object is no longer observed. In contrast, CoTracker3 and
SpaTracker incorporate components specifically designed to
handle occlusions, giving them an advantage in such scenarios.

VI. POTENTIAL APPLICATIONS TO ROBOTIC
MANIPULATION

The structured particle-based representation provided by
GenParticles, along with potential extensions, may offer
advantages for robotic manipulation tasks:

a) Adaptive Resolution: GenParticles supports
variable-resolution by adjusting the particle count, balancing
accuracy and computational cost. Finer models suit complex
deformable objects, while coarser ones suffice for simpler

rigid cases. Although the current implementation sets this
manually, future work could infer resolution adaptively from
data [35, 36].

b) Persistent Object Representation: By organizing par-
ticles into coherent clusters, GenParticles provides stable
representations even as objects deform. This is valuable in
manipulation tasks where robot actions induce shape changes,
allowing identity and structure to temporally persist.

c) Interpretable Structure: GenParticles ’s explicit par-
ticle representation yields interpretable states for planning and
control. Cluster transforms capture object dynamics, while
particle grouping infers shape and segmentation from motion
alone, without relying on texture, labels, or correspondences,
supporting robust manipulation of novel objects.

d) Inferring Internal Properties of Non-Rigid Objects:
A future extension could infer physical properties such as
stiffness or elasticity from observed deformations [37], en-
abling more physically grounded representations. For instance,
modeling the stiffness of non-homogeneous ropes.

e) Uncertainty-Aware Inference: GenParticles main-
tains uncertainty over structure and motion, enabling risk-
aware planning, improved robustness in unstructured settings,
and safer behavior by deferring or adapting actions when
confidence is low.

f) Physical Dynamics Priors: A potential future ex-
tension of GenParticles is to incorporate explicit physical
dynamics priors, such as simulated motion models. This could
improve coherence under occlusion and enable more robust
tracking when direct observations are missing.

GenParticles has the potential to serve as a general pur-
pose probabilistic tool for robotic manipulation by capturing
object structure and motion in an interpretable form that
supports downstream tasks from perception to planning
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APPENDIX A
BLOCKED GIBBS SAMPLING

We describe the Gibbs sampling approach in greater detail
than in the main text. We first independently describe each
blocked Gibbs step in Appendix A-A. Then, we describe
the procedure of these steps used for initialization in Ap-
pendix A-B and tracking in Appendix A-C.

A. Gibbs Update Steps

There are twelve variables of interest, separated at different
hierarchical levels as shown:

1) Cluster-level variables: {µH
k , ΣH

k , Rk, tk, π
H
k }Kk=1

2) Particle-level variables: {µB
ℓ , Σ

B
ℓ , vℓ, Σ

V
ℓ , z

H
ℓ , πB

ℓ }Lℓ=1

3) Datapoint-level variables: {zBn}Nn=1

For each of these variables, we independently describe each
of the Gibbs updates.

1) Datapoint-to-Particle Assignments (zB1:N ): We update
each datapoint’s particle assignment zBn for n = 1, . . . , N ,
using the conditional:

p(zBn = ℓ | xn,vn, rest) ∝ πB(ℓ)·
N (xn | µB

ℓ ,Σ
B
ℓ ) · N (vn | vℓ,Σ

V
ℓ )

The prior is given by categorical weights πB; the likelihood
is a product of two Gaussians over position xn and velocity
vn. We compute unnormalized log-probabilities p̃n,ℓ for each
particle:

p̃n,ℓ = log πB(ℓ)+logN (xn | µB
ℓ ,Σ

B
ℓ )+logN (vn | vℓ,Σ

V
ℓ )

and normalize to obtain the categorical:

p(zBn = ℓ) =
exp(p̃n,ℓ)∑L

ℓ′=1 exp(p̃n,ℓ′)

from which we sample:

zBn ∼ Categorical(p(zBn = 1), . . . , p(zBn = L))

All datapoints are jointly reassigned in a blocked manner,
each selecting the particle that best explains its position and
motion, weighted by the prior over particles.

2) Particle Mixture Weights πB: We update the parti-
cle mixture weights πB conditioned on datapoint-to-particle
assignments {zBn}. By Dirichlet–Categorical conjugacy, the
conditional distribution becomes:

πB | {zBn} ∼ Dir(β1 +M1, . . . , βL +ML)

where Mℓ = #{n : zBn = ℓ} counts how many datapoints
are currently assigned to each particle ℓ. This step reweights
the prior particle proportions according to updated datapoint
assignments.

3) Particle Spatial Means µB
ℓ : We update each particle

center µB
ℓ from its Gaussian conditional, combining: (1) a

spatial prior from its assigned cluster, (2) position likelihoods
from assigned datapoints, and (3) a velocity constraint derived
from rigid motion.

Let Aℓ = RzH
ℓ
− I and bℓ = tzH

ℓ
−Aℓµ

H
zH
ℓ

. Then:

vℓ ∼ N (Aℓµ
B
ℓ + bℓ, σ

2
V I)

The conditional distribution is a Gaussian-Gaussian conju-
gate of the form:

µB
ℓ | µH

zH
ℓ
,ΣH

zH
ℓ
,vℓ, tzH

ℓ
,RzH

ℓ
, σ2

V , {xn : zBn = ℓ},ΣB
ℓ

∼ N (P−1
ℓ mℓ,P

−1
ℓ )

with precision and mean:

Pℓ = (ΣH
zH
ℓ
)−1 +Nℓ(Σ

B
ℓ )

−1 +
1

σ2
V

A⊤
ℓ Aℓ

mℓ = (ΣH
zH
ℓ
)−1µH

zH
ℓ
+ (ΣB

ℓ )
−1Sℓ +

1

σ2
V

A⊤
ℓ (vℓ − bℓ)

where Nℓ is the number of datapoints assigned to particle ℓ,
and Sℓ =

∑
n:zB

n=ℓ xn is the sum of their positions.
4) Particle Spatial Covariances ΣB

ℓ : We update each par-
ticle’s spatial covariance matrix ΣB

ℓ using Normal–Inverse-
Wishart conjugacy. Let Nℓ = #{n : zBn = ℓ} be the number of
datapoints assigned to particle ℓ, and define the scatter matrix:

Sℓ =
∑

n:zB
n=ℓ

(xn − µB
ℓ )(xn − µB

ℓ )
⊤

Given an Inverse-Wishart prior W−1(ΨB, νB), the condi-
tional distribution is:

ΣB
ℓ | µB

ℓ , {xn : zBn = ℓ} ∼ W−1(Ψ′
ℓ = ΨB + Sℓ, ν

B +Nℓ)

This update adjusts each particle’s spatial uncertainty based
on the observed spread of its assigned datapoints.

5) Particle Velocity Means vℓ: We update each particle
velocity anchor vℓ via a Gaussian conditional distribution
combining: (1) a rigid motion prior from its assigned cluster,
and (2) velocity observations from assigned datapoints. Let
v̄ℓ = tzH

ℓ
+ (RzH

ℓ
− I)(µB

ℓ − µH
zH
ℓ
) be the prior mean.

Given the set {vn : zBn = ℓ} and count Nℓ = #{n : zBn =
ℓ}, the conditional is a Gaussian-Gaussian conjugate update:

vℓ | v̄ℓ, σ
2
V ,Σ

V
ℓ , {vn : zBn = ℓ} ∼ N (µv

ℓ ,Σ
v
ℓ )

with:

(Σv
ℓ )

−1 =
1

σ2
V

I+Nℓ(Σ
V
ℓ )

−1

µv
ℓ = Σv

ℓ

 1

σ2
V

v̄ℓ + (ΣV
ℓ )

−1
∑

n:zB
n=ℓ

vn


This update accounts for the velocity prediction from the

cluster’s rigid transform along with the empirical datapoint
velocities, with each contribution weighted by its respective
uncertainty.



6) Particle Velocity Covariances ΣV
ℓ : Each particle’s veloc-

ity covariance ΣV
ℓ is inferred using Normal–Inverse-Wishart

conjugacy. Let Nℓ = #{n : zBn = ℓ} be the number
of datapoints assigned to particle ℓ, and define the velocity
scatter:

Tℓ =
∑

n:zB
n=ℓ

(vn − vℓ)(vn − vℓ)
⊤

Given a prior W−1(ΨV , νV), the conditional distribution is:

ΣV
ℓ | vℓ, {vn : zBn = ℓ} ∼ W−1(Ψ′

ℓ = ΨV +Tℓ, ν
V +Nℓ)

This update reflects the velocity noise structure within each
particle, accounting for spread in assigned datapoint velocities.

7) Particle-to-Cluster Assignments (zH1:L): We update each
particle’s cluster assignment zHℓ for ℓ = 1, . . . , L, using the
conditional:

p(zHℓ = k | µB
ℓ ,vℓ, rest) ∝ πH(k) · N (µB

ℓ | µH
k ,ΣH

k )

· N
(
vℓ | tk +Rk(µ

B
ℓ − µH

k ), σ2
V I

)
The prior is given by categorical weights πH; the likelihood

combines a spatial Gaussian over the particle’s position µB
ℓ

and a velocity Gaussian that accounts for rigid-body motion
induced by the cluster’s rotation Rk and translation tk. We
compute unnormalized log-probabilities p̃ℓ,k for each cluster:

p̃ℓ,k = log πH(k) + logN (µB
ℓ | µH

k ,ΣH
k )

+ logN (vℓ | tk + (Rk − I)(µB
ℓ − µH

k ), σ2
V I)

and normalize to obtain the categorical:

p(zHℓ = k) =
exp(p̃ℓ,k)∑K

k′=1 exp(p̃ℓ,k′)

from which we sample:

zHℓ ∼ Categorical(p(zHℓ = 1), . . . , p(zHℓ = K))

This constitutes a blocked Gibbs step, where all particle-to-
cluster assignments are jointly updated. Each particle selects
the cluster whose spatial and rigid motion parameters best
explain its position and velocity.

8) Cluster Mixture Weights πH: We update the cluster mix-
ture weights πH given particle-to-cluster assignments {zHℓ }.
Using Dirichlet–Categorical conjugacy, the conditional is:

πH | {zHℓ } ∼ Dir(α1 +N1, . . . , αK +NK)

where Nk = #{ℓ : zHℓ = k} is the number of particles
assigned to cluster k. This step updates the prior cluster
proportions based on current assignment counts.

9) Cluster Spatial Means µH
k : We update each cluster

center µH
k via a Gaussian conditional that integrates: (1) a

Gaussian prior centered at µH, (2) assigned particle centers
µB

ℓ , and (3) observed particle velocities corrected by the
cluster’s affine transform.

Let Ak = I−Rk and bℓ = tk −Akµ
B
ℓ . Then the velocity

residual is:
rℓ = vℓ − bℓ

Given the sum of assigned particle means Sk =∑
ℓ:zH

ℓ =k µ
B
ℓ , the velocity residual sum Rk =

∑
ℓ:zH

ℓ =k rℓ,
and the count Nk = #{ℓ : zHℓ = k} of particles assigned to
cluster k, the conditional is:

µH
k | µH, σ2

H , ΣH
k , tk, Rk, σ2

V , {µB
ℓ , vℓ : z

H
ℓ = k}

∼ N (P−1
k mk, P−1

k )

with:

Pk =
1

σ2
H

I+Nk

(
ΣH−1

k +
1

σ2
V

A⊤
k Ak

)
mk =

1

σ2
H

µH +ΣH−1
k Sk +

1

σ2
V

A⊤
k Rk

This update integrates global priors, spatial evidence from
assigned particles, and velocity-based constraints under rigid
motion. We parallelize this step by batching cluster-level
quantities over K and particle-level inputs over L, with per-
cluster residual aggregation. The final blocked multivariate
normal update samples new cluster means in parallel from
their respective posteriors.

10) Cluster Spatial Covariances ΣH
k : We infer each clus-

ter’s spatial covariance ΣH
k using a Normal–Inverse-Wishart

update conditioned on its assigned particles. Let Lk = #{ℓ :
zHℓ = k} be the number of particles assigned to cluster k, and
define the cluster-centered scatter:

Sk =
∑

ℓ:zH
ℓ =k

(µB
ℓ − µH

k )(µB
ℓ − µH

k )⊤

Given the Inverse-Wishart prior W−1(ΨH, νH), the condi-
tional becomes:

ΣH
k | µH

k , {µB
ℓ : zHℓ = k} ∼ W−1(Ψ′

k = ΨH+Sk, ν
H+Lk)

This posterior captures the spatial extent of each cluster
based on the spread of its assigned particle centers.

11) Cluster Rotation Rk: We update each cluster’s ro-
tation matrix Rk by evaluating a discrete set of candidate
rotations {R(j)}Mr

j=1 drawn from a spherical cap (e.g., von
Mises–Fisher). For each candidate, we compute a probability
based on how well the induced rigid motion explains observed
particle velocities. Let v̄(j)

ℓ = tk + (R(j) − I)(µB
ℓ − µH

k ) be
the expected velocity for particle ℓ under candidate j. Then:

log q̃j =
∑

ℓ:zH
ℓ =k

logN (vℓ | v̄(j)
ℓ , σ2

V I)

Adding the prior log-probabilities log p(R(j)), we normalize
the log-scores to obtain:

qj =
exp(log q̃j + log p(R(j)))∑Mr

j′=1 exp(log q̃j′ + log p(R(j′)))

from which we sample:

Rk ∼ Categorical({qj}Mr
j=1)

This update selects the rotation that best aligns relative
particle positions with their observed velocities, conditioned
on the current cluster translation tk, velocity noise σ2

V ,cluster
means (µH

k ) and assigned particle means ({µB
ℓ : zHℓ = k}).



12) Cluster Translation Velocities tk: We update each
cluster’s translation velocity tk by evaluating a discrete set of
candidate translations {t(m)}Mt

m=1 sampled from an isotropic
Gaussian prior N (0, s2I). Each candidate is scored based on
how well it explains the observed particle velocities under the
current rotation Rk. Let v̄(m)

ℓ = t(m)+(Rk−I)(µB
ℓ −µH

k ) be
the expected velocity for particle ℓ under candidate m. Then:

log p̃m =
∑

ℓ:zH
ℓ =k

logN (vℓ | v̄(m)
ℓ , σ2

V I)

We add prior log-probabilities and normalize to form a cate-
gorical:

pm =
exp(log p̃m + log p(t(m)))∑Mt

m′=1 exp(log p̃m′ + log p(t(m′)))

from which we sample:

tk ∼ Categorical({pm}Mt
m=1)

This update selects the translation that best explains the
observed particle velocities, conditioned on current cluster ro-
tation Rk, velocity noise σ2

V , cluster center µH
k , and assigned

particle means {µB
ℓ : zHℓ = k}.

B. Initialization Procedure

It is well known that MCMC chains are sensitive to the
initialization and should be initialized at a high density region
[38]. Hence, we use K-Means clustering and a data-driven
approach to initialize the MCMC chain for the initial frame
(T = 0). This is denoted by the Initial Scene Clustering
components of Figure 2.

1) K-Means and Data-driven Initialization at T = 0:
Given the number of particles (L), we use K-means via a
K-Means++ [39] initialization to initialize the particle spatial
positions (µB

ℓ ). Note that for the RGB video experiment on
the DAVIS subset in section V, we assign ⌈γ ·L⌉ particles to
the pixels corresponding to the segmentation mask provided
at T = 0, where γ = |M|

|I| denotes the fraction of pixels
within the segmentation mask M relative to the total image
I. We then use an additional K-means step to initialize
the cluster spatial positions (µH

k ) by treating the particle
spatial positions as datapoints to cluster. Note that because
we have the segmentation mask of the object-of-interest in
the experiment from section V, we assign all those particles
to be the same cluster.

This K-means initialization provides initial values for as-
signments at both layers (zBn , zHℓ ). We then use these assign-
ments to initialize the mixture weights at both layers (πB,
πH) by computing the empirical frequencies of each cluster
and normalizing: πB

ℓ = Mℓ

N and πH
k = Nk

L , where Mℓ is the
number of datapoints assigned to particle ℓ and Nk is the
number of particles assigned to cluster k. We initialize the
velocity mean of each particle vℓ by averaging the observed
velocities of the datapoints assigned to it:

vℓ =
1

Mℓ

∑
n:zB

n=ℓ

vn.

To initialize the covariance matrices, we compute the sample
covariance of the relevant residuals for each component:

1) Particle Spatial Covariance:

ΣB
ℓ =

1

Mℓ − 1

∑
n:zB

n=ℓ

(xn − µB
ℓ )(xn − µB

ℓ )
⊤.

2) Particle Velocity Covariance:

ΣV
ℓ =

1

Mℓ − 1

∑
n:zB

n=ℓ

(vn − vℓ)(vn − vℓ)
⊤.

3) Cluster Spatial Covariance:

ΣH
k =

1

Nk − 1

∑
ℓ:zH

ℓ =k

(µB
ℓ − µH

k )(µB
ℓ − µH

k )⊤.

To initialize each cluster’s rigid transform (Rk, tk), we
apply the Kabsch algorithm [40] to align assigned particle po-
sitions with their next-frame displacements. For cluster k, we
collect all datapoints xn assigned to particles ℓ with zHℓ = k
and define their estimated displacements x′

n = xn + vn. Let
Xk = {xn} and X ′

k = {x′
n} be the source and target sets.

We compute centroids x̄k = 1
|Xk|

∑
xn, x̄′

k = 1
|X ′

k|
∑

x′
n,

and form centered sets x̃n = xn − x̄k, x̃′
n = x′

n − x̄′
k. The

cross-covariance matrix is:

Hk =
∑
n

x̃nx̃
′⊤
n

We compute the singular value decomposition Hk =
UkΣkV

⊤
k , and define the optimal rotation as:

Rk = VkDkU
⊤
k

where

Dk =

1 0 0
0 1 0
0 0 det(VkU

⊤
k )


The corresponding translation is:

tk = x̄′
k −Rkx̄k

This provides an initialization of cluster motion consistent
with the observed displacements of assigned particles. The
update is applied independently for each cluster k = 1, . . . ,K.

2) Data-Dependent Hyperparameters: We initialize model
hyperparameters directly from empirical statistics computed
on the initial frame (T = 0). The global cluster location prior
µH is set to the median datapoint position, while the prior
spatial scale ΨB,ΨH,ΨV are initialized using the median
initialized particle and cluster covariances length scales.

The degrees of freedom νB, νH, νV are initialized propor-
tionally to the number of datapoints assigned, weighted by
particle or cluster weights:

νB =
⌊
median(wB

ℓ ·N)
⌋
, νH =

⌊
median(wH

k ·N)
⌋
,

νV =
⌊
median(wB

ℓ ·N)
⌋

where wB
ℓ and wH

k are the normalized empirical weights of
each particle and cluster.



Translation and rotation priors are defined using discretized
supports. We set κvmf = 100, θmax = 25◦, s = 0.2. All
hyperparameters are kept constant across all videos in each
experiment.

3) Initialization Gibbs: To infer the initial representation
at the first frame, we perform an initial set of block Gibbs
sweeps. We run 15 sweeps over datapoint and particle-level
variables (including particle spatial covariance) only, keeping
cluster-level variables fixed. This choice reflects the fact that
cluster assignments are anchored by the object mask in the first
frame, and early sweeps are more effectively used to resolve
fine-grained datapoint-to-particle assignments.

C. Tracking Gibbs Procedure

To perform inference over video sequences, we extend our
generative particle model into the sequential filtering regime
using a structured Markov Chain Monte Carlo (MCMC) pro-
cedure. Specifically, we implement a blocked Gibbs sampler
that leverages the causal ordering of the variables from the
previous frame to initialize each frame and performs bottom-
up inference to refine all datapoint-, particle-, and cluster-
level variables. Our approach maintains a tractable posterior
approximation at each timestep by propagating forward a
subset of latent variables and resampling the remaining ones
conditioned on new observations. This sequential per-frame
MCMC design supports inference in dynamic scenes where
data associations must be re-inferred at every timestep.

At each timestep t, we target the posterior over latent
structure given the observed datapoint positions xt

1:N and
velocities vt

1:N :

p(µt
H, Σt

H, Rt
H, ttH, µt

B, v
t
B, Σ

t
V ,

zt1:N , zt1:L, π
t
B, π

t
H | xt

1:N , vt
1:N )

where ΣB (particle spatial covariances) are held fixed
throughout tracking to preserve the spatial extent of the
deformable visual matter represented by each particle, and
particle-to-cluster assignments zt1:L are held fixed to keep
consistency with the initial object segmentation mask.

a) Particle Propagation and Initialization: Each frame
begins by propagating the inferred particle means using their
previously inferred velocity vectors:

µ̃B,t
ℓ = µB,t−1

ℓ + vt−1
ℓ

This serves as an initialization for the particle positions in
the next frame.

b) First Assignment: Spatial Anchoring: Datapoints are
first assigned to particles based on spatial likelihoods alone:

p(zB,t
n = ℓ | xt

n) ∝ πB
ℓ · N (xt

n | µ̃B,t
ℓ ,ΣB

ℓ )

This step is crucial because, in the absence of known corre-
spondences across frames, we cannot assume that datapoint
n at time t−1 is the same as datapoint n at time t, that is,
xt−1
n ̸= xt

n in general. Instead, we reinterpret each new frame
as an unordered set of observations and rely on spatial prox-
imity to propagated particle means to re-establish associations.

By using position alone and excluding any top-down beliefs
from velocity or cluster structure, this step provides a stable
initialization for the rest of the Gibbs updates. Note that this
is a partial version of the full assignment step described in
Appendix A-A1, used here to anchor the initial framewise
alignment. After assignments, we update the mixture weights
πB by sampling from their conjugate Dirichlet distribution
(Appendix A-A2).

c) Particle Mean Update: After datapoints have been
assigned to particles based on spatial proximity, we update
each particle’s spatial mean to better reflect this assignment.
Specifically, we sample the particle mean from its posterior
conditioned on the assigned datapoints and the expected
motion induced by its cluster assignment, as detailed in Ap-
pendix A-A3. Since the assignments in the previous Gibbs step
compensate for the absence of pointwise correspondences, this
update typically results in small adjustments to the propagated
means, ensuring that particles remain anchored to observed
data while maintaining temporal coherence with the previous
frame.

d) Second Assignment and Particle Refinement: A sec-
ond datapoint-to-particle assignment uses both spatial and
velocity likelihoods as described in Appendix A-A1:

p(zB,t
n = ℓ | xt

n,v
t
n) ∝ πB

ℓ ·N (xt
n | µB

ℓ ,Σ
B
ℓ ) ·N (vt

n | vℓ,Σ
V
ℓ )

This step helps resolve ambiguous associations by combin-
ing spatial proximity with motion information. The mixture
weights πB are updated again based on the refined assign-
ments (Appendix A-A2).

Each particle’s velocity mean vℓ is updated from its poste-
rior as described in Appendix A-A5, and the velocity covari-
ance ΣV

ℓ is resampled as shown in Appendix A-A6. These
updates reflect the motion structure inferred from grouped
datapoint velocities.

e) Cluster-level Updates: Each particle is assigned to a
cluster using a joint spatial and velocity likelihood as described
in Appendix A-A7, and the cluster mixture weights πH are
resampled using the equation in Appendix A-A8. Conditioned
on these assignments, the cluster mean µH

k and spatial co-
variance ΣH

k are updated from their conditional distributions
(Appendix A-A9 and A-A10), and the rigid transform (Rk, tk)
is inferred by categorical sampling over candidate rotations
and translations (Appendix A-A11 and A-A12).

Particle-to-cluster assignments zt1:L are held fixed through-
out tracking to preserve consistency with the initial segmenta-
tion mask, which provides a reliable prior over object structure.
However, cluster parameters including spatial statistics and
rigid transforms are still inferred at each frame to update
the spatial localization of the structure given in the original
segmentation.

f) Sweep Schedule and Rationale: Cluster assignments
are held fixed to preserve consistency with the initial seg-
mentation, though cluster parameters are still inferred. In both
cases, particle covariances remain fixed to preserve the spatial
extent of deformable matter.



This bottom-up structure ensures that higher-level cluster
inference remains grounded in updated particle and data-
point evidence. In the absence of pointwise correspondences
between frames, low-level observations such as datapoint
positions and motions serve as the most reliable source of
information about current scene structure. By first resampling
datapoint-to-particle assignments and then updating particle
parameters, we allow the particle layer to accurately reflect
the current frame’s geometry and motion.

Only after particles are aligned to the new observations do
we infer the cluster structure that explains their collective mo-
tion. The cluster layer thus becomes a statistic that reflects co-
herent groupings of particles based on their updated positions
and velocities. Grounding cluster inference in current-frame
particle evidence stabilizes inference by ensuring that clusters
remain spatially localized and relevant to the current scene
geometry. Once inferred, clusters act as structure-preserving
priors that regularize their constituent particles.

APPENDIX B
COLOR-AUGMENTED VARIANT

A. Model Modification and Initialization

In the color-augmented variant of our model, used in the
visualization shown in Figure 1, we assume that each particle
is associated with a fixed RGB color, cℓ = (crℓ , c

g
ℓ , c

b
ℓ). The

sampling process of the datapoint color cn = (crn, c
g
n, c

b
n) from

the particle color is defined as a Gaussian with variance σ2
C :

cn ∼ N (cℓ, σ
2
CI)

Although this fixed-color assumption does not strictly hold
in settings with dynamic lighting or changing object appear-
ance, it remains a reasonable approximation for the controlled
conditions in the demo of Figure 1. The goal of this demon-
stration is to highlight that the color-augmented version of our
model can successfully track and maintain visual consistency
of highly deformable structures, like Jello, over time.

We only fit our per-particle color parameter during initial-
ization. We perform the steps described in Appendix A-B1,
followed by computing the initial color of each particle cℓ as
the average color of its assigned datapoints:

crℓ =
1

Mℓ

∑
n:zB

n=ℓ

crn, cgℓ =
1

Mℓ

∑
n:zB

n=ℓ

cgn,

cbℓ =
1

Mℓ

∑
n:zB

n=ℓ

cbn

where Mℓ = #{n : zBn = ℓ} is the number of datapoints
assigned to particle ℓ. This RGB mean serves as the represen-
tative color for each particle throughout inference.

B. Datapoint-to-Particle Assignments (zB1:N ) with Color Like-
lihood

The main modification to the Gibbs sampler involves the
datapoint-to-particle assignment step, which now also incor-
porates color similarity. We update each datapoint’s particle

assignment zBn for n = 1, . . . , N , using the conditional
distribution:

p(zBn = ℓ | xn,vn, cn, rest) ∝ πB(ℓ) · N (xn | µB
ℓ ,Σ

B
ℓ )

· N (vn | vℓ,Σ
V
ℓ )

· N (cn | cℓ, σ2
CI)

The prior is given by categorical weights πB, and the
likelihood now consists of three independent Gaussian terms:
one for position xn, one for velocity vn, and one for color cn.
The color likelihood uses a fixed spherical covariance σ2

CI.
We compute unnormalized log-probabilities p̃n,ℓ for each

particle:

p̃n,ℓ = log πB(ℓ) + logN (xn | µB
ℓ ,Σ

B
ℓ )

+ logN (vn | vℓ,Σ
V
ℓ )

+ logN (cn | cℓ, σ2
CI)

and normalize to obtain the categorical conditional distribu-
tion:

p(zBn = ℓ) =
exp(p̃n,ℓ)∑L

ℓ′=1 exp(p̃n,ℓ′)

from which we sample:

zBn ∼ Categorical(p(zBn = 1), . . . , p(zBn = L))

This update is also a blocked update, executed in a compu-
tational manner similar to Appendix A-A1.
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