Under review as a conference paper at ICLR 2026

QRONOS: CORRECTING THE PAST BY SHAPING THE
FUTURE... IN POST-TRAINING QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Qronos—a new post-training quantization algorithm that not only
explicitly corrects errors due to both weight and activation quantization, but also
corrects errors accumulated from previously quantized layers. Our iterative al-
gorithm is based on an interpretable and disciplined optimization framework that
surpasses existing data-driven approaches. At each step, Qronos alternates be-
tween error correction and diffusion via optimal update rules. Importantly, we
prove that Qronos admits an equivalent formulation that significantly improves
algorithmic efficiency; we use our discovery to reduce peak memory usage by
18% on Llama3 8B, and our scaling analysis shows a speedup of up to 13.8x
for a single-layer microbenchmark. We demonstrate compatibility with existing
transformation techniques such as Hadamard-based incoherence processing and
weight-activation scaling equalization, among others. We evaluate Qronos using
recent language models in the Llama3 and Qwen3 families; Qronos consistently
outperforms previous state-of-the-art adaptive rounding methods when quantizing
the weights, activations, and/or KV caches to 4 bits or fewer.

1 INTRODUCTION

Recent advances in post-training quantization (PTQ) have enabled the practical use of few-bit
weights and activations for large language model (LLM) inference, typically by focusing on one
or both aspects of the quantization pipeline, visualized in Figure[I] The first aspect involves mod-
ifying the weights and activations of a model to make them more amenable to quantization, often
through transformations that exploit invariances within the compute graph. The second aspect more
directly concerns the design of the quantization mapping itself. It involves using data to minimize
quantization error by either calibrating the quantization grid, which is defined by a bit width, scaling
factor, and zero point, or adaptively rounding the (potentially transformed) weights.

The latest innovations in PTQ, including |Ashkboos et al.| (2024)); [Liu et al.| (2025), among many
others, are skewed towards proposing and improving transformations that address the quantization
challenges exacerbated in LLMs. These studies often only consider round-to-nearest (RTN) and
OPTQ (Frantar et al. |2023), also known as GPTQ. Meanwhile, our work explicitly focuses on
improving the rounding method while remaining compatible with these transformations.

Contributions. We introduce Qronos as a new scalable algorithm that not only explicitly corrects
quantization error in both the weights and activations, but also residual quantization error coming
from previously quantized layers. In contrast, OPTQ can only correct weight quantization error. We
derive Qronos in a well-disciplined and mathematically interpretable form, then rigorously derive an
equivalent efficient implementation (see Theorem [3.1)) that significantly improves algorithm scaling
(see Remark [3.3]and Section[4.3). As a non-trivial by-product, we address a theoretical blind spot
of OPTQ by deriving a novel interpretation (Corollary [3.4), which shows that its seemingly local
greedy update rules in fact correct the weight quantization error accumulated over all previous iter-
ations. Our novel interpretation also offers clear geometric insights: at each step, OPTQ performs
an optimal grid selection followed by an orthogonal projection onto a lower dimensional hyperplane
spanned by future columns of the data matrix. This is one of the first results on the geometry of
LLM quantization, among a few concurrent works (Birnickl 2025} (Chen et al., 2025)).

We evaluate Qronos on the Llama3 (Grattafiori et al.,|2024) and Qwen3 (Yang et al., 2025 model
families, and compare against RTN, OPTQ, GPFQ (Lybrand and Saab,2021) and GPTAQ (Li et al.,

Under review as a conference paper at ICLR 2026

pre-trained _ transformed quantized
weights and activations weights and activations weights and output activations
Wo(rli)g,X(()?ig% Stage 1: Transform >—>Wv(l)7 X(’)% Stage 2: Round >_> Q(l)7 X0+
FO

(potentially quantized) input
activations from quantized model

Figure 1: The modern quantization pipeline is typically a two-stage process consisting of (1) trans-
formations that make weights and/or activations more amenable to quantization, followed by (2)
rounding functions that map weights and/or activations onto a quantization grid.

2025)) while demonstrating compatibility with notable transformations for both weight-only quan-
tization and weight-activation quantization. To our knowledge, this is the first work to isolate the
impact of the rounding algorithm through a carefully designed experimental setup that fixes the
quantization grid for each transformation method (or lack thereof). Our experiments show that
Qronos consistently yields marked improvement over existing methods, as highlighted in Table/[T]

Table 1: Weight-only quantization of Llama3 foundation models. We jointly apply Hadamard-
based incoherence processing (Ashkboos et al.,2024) and MagR (Zhang et al.,[2024])) as quantization
transforms (stage 1 in Figurem) and compare different rounding methods (stage 2).

WikiText2 (]) 0-shot (1)
IB 3B 8B | IB 3B 8B
BFl6 - 89 7. 59 | 594 675 744

RTN 3e3 5e3 3e3 | 324 322 33.0
OPTQ 246 132 104|393 473 552
2-bit GPFQ 258 144 113 | 38,6 469 51.8
GPTAQ 220 122 9.6 | 398 492 548
Qronos 178 114 9.3 | 42.6 50.7 558

RTN 5e5 4ded 9ed4 | 323 329 322
OPTQ 2¢2 52.0 433 | 327 325 349
1.58-bit GPFQ le2 513 358 | 324 326 334
GPTAQ 99.0 41.8 353 | 333 33.7 347
Qronos 39.3 228 18.0 | 348 365 37.8

2 BACKGROUND AND RELATED WORK

We first provide a short review of prior works that focus on the two key aspects of quantization we
have mentioned: transformation techniques and rounding schemes. Figure [I]illustrates how these
two aspects interact within the quantization pipeline.

Methods based on transformations. Many recent works propose transformations of weights and/or
activations to facilitate quantization. One line of work, initially proposed for MobileNets (Nagel
et al, 2019), exploits scaling invariance in neural network compute graphs to equalize the range or
precision of weights and activations before quantization. Recent variants leverage scale invariance
to redistribute quantization difficulty between weights and activations, with various proposals for
learning scales or ranges based on custom objective functions (Xiao et al.,|2023; [Shao et al.| 2024;
Lin et al., 2024). Another line of work uses rotations within a compute graph to normalize weight
and activation distributions, initially leveraging random orthogonal rotations to promote weight in-
coherence (Chee et al., 2023). Recent variants employ efficient Hadamard rotations (Tseng et al.,
2024; |Ashkboos et al.|, [2024), Stiefel manifold optimizations (Liu et al., 2025} |Hu et al., 2025), and
rotation expansion techniques (Adepu et al., 2024} Franco et al.,|2025a)). Finally, distinct from these
invariance-based approaches, MagR (Zhang et al.,[2024) directly minimizes the /., norm of weights
via proximal gradient descent to reduce dynamic range before quantization. While we do not intro-
duce novel transformations of this type in this work, we demonstrate that existing transformations
can be combined with our proposed method.

Under review as a conference paper at ICLR 2026

Methods based on rounding. The earliest line of work on rounding relies on continuous optimiza-
tion strategies based on gradient descent (Nagel et al., 2020). Although more recent methods exist
(Hubara et al., 2021} |Li et al., [2021)), they had not been commonly evaluated on LLMs due to their
computational cost until (Cheng et al.|(2024). Thus, early work on LLMs focused on grid scaling
or shifting to reduce weight quantization error; for example, LLM.int8() (Dettmers et al.,[2022) and
ZeroQuant (Yao et al., [2022) directly round to nearest after heuristically selecting the quantization
grid (i.e., bit width, scaling factors, and zero points). The most relevant line of work to ours adopts
principled discrete optimization using greedy, gradient-free rounding strategies to select quantized
weights to minimize the layer-wise reconstruction error, and includes OBQ (Frantar and Alistarh}
2022), OPTQ (Frantar et al.||2023)), GPFQ (Lybrand and Saab|2021};|Zhang et al.,|2023)) and GPTAQ
(L1 et al., [2025)). Qronos falls within this category.

Notation. Throughout the paper, the weight matrix of a layer is denoted by W € RN*N ", where
each of the N’ columns represents a N-dimensional channel. A denotes the discrete quantiza-
tion grid (or alphabet) used for weight quantization, and Q denotes the corresponding RTN op-
erator associated with A, given by Q(W) := s - (clip ([| + z;min A, max A) — z) . Here,
clip(%; Gmin, Omax) = min{max{z, dmin }, Gmax }» While the quantization step size (or scaling fac-
tor) is denoted by s and the quantization grid is shifted by an offset denoted by z, often referred
to as a zero point. We specify our selection of s,z € R " for the various settings in Section
When quantizing W, we use X € R™* to denote the input calibration dataset of m samples (e.g.,
tokens) for the layer, resulting from the original pre-trained model, and X € R™*" to denote the
input calibration dataset coming from the partially quantized model. Given a vector v € R", we use
v; for its i-th entry, v>; for the subvector (vj, ..., v,) ", and we define v<; analogously. ||v|| is the
Euclidean norm of v. Given a matrix A € R™*", we use A; to denote its -th column. We use A ;
to denote the submatrix (A;,..., A,). Similarly, A>o o denotes the submatrix of A obtained by
removing the first row and the first column. We use col(A) to denote the column space of A. Py
is the orthogonal projection onto col(A), and P41 the projection onto its orthogonal complement.
Throughout this paper, all indices start from 1, following the standard mathematical convention.

Layer-wise reconstruction and error correction. Data-driven weight quantization methods typi-
cally aim to approximately minimizeﬂ the layer-wise reconstruction error given by

min [XW - XQlf} (1)
QGANXN

At an arbitrary layer, the goal is to compute a quantized weight matrix Q € AV*N " that preserves
the output activations X W under quantization. In practice, however, quantizing weights in earlier

layers affects the input to subsequent layers. Let X € R™*N denote the activation matrix produced
by a partially quantized model, where earlier layers have already been quantized. To account for the
propagation of quantization error, we use a modified formulation, instead of Equation |1} that targets

the mismatch between the original output X W and X (@ by approximately solving

min [|XW - XQ||%. 2)
QEANXN

The type of mismatch in this formulation is typically not addressed in the literature but arises natu-
rally in both weight-only and weight-activation quantization settings. For instance, in weight-only
quantization, X arises as the output of previously quantized layers, while in weight-activation quan-
tization, one may encounter Q()N() rather than X if activations are quantized. Throughout this paper,
we use the notation (X, X) to refer generically to mismatched input pairs.

3 QRONOS

We begin by describing the iterations associated with Qronos in Section[3.1] The iterations follow a
disciplined and mathematically interpretable framework that alternates between error correction and
diffusion using optimal update rules. We then prove that the explicit solutions to these minimization
problems admit an efficient implementation. In Section [3.2] we provide deeper intuition behind

'Equation is an instance of integer least-squares problems, which are known to be NP-hard (Hassibi and
Vikalo, 2002). Thus, the best that one can hope for are approximate solutions.

Under review as a conference paper at ICLR 2026

Qronos in the context of previous state-of-the-art rounding algorithms, namely GPFQ and OPTQ.
We also derive a novel interpretation of OPTQ (Corollary [3.4), which shows that it corrects the
cumulative weight quantization error incurred over all the previous iterations. The proofs for all
results in Section 3] are provided in the appendix.

3.1 ALGORITHM AND EFFICIENT IMPLEMENTATION

Let us first note that Qronos can process each column w € RY of W € RVXN ' independently and in
parallel to produce each column g € AV of Q € AN*N " Ideally, the goal is to find ¢ that minimizes

1| Xw — Xgq||?. Since this problem is NP-hard, we propose an efficient sequential algorithm to
approximate its solution. At each iteration, Qronos first selects the quantized weight that optimally
corrects the current approximation error, holding the remaining weights fixed; see Equation [3|below.
It then updates the unquantized weights to optimally compensate for the rounding error, a process
we refer to as error diffusion; see Equation

Let w, without superscripts or subscripts, denote the original unquantized weights. After deter-
(t=1)
t

represent the updated unquantized weights corresponding to indices ¢
t—1) _

mining q;_1, let w

through N. The full state of the algorithm after step ¢ — 1 is thus given by the vector w(
(g<t—1, wg; 1)), with the initialization w(®) = w. At step ¢, the algorithm alternates between se-
lecting g; through error correction and updating the remaining weights through error diffusion. The

update rules are given by

t—1 N
1 > = 1)
g = argmin o[Xw = > q;X; —pXi = 3w VX, 3)
pEA j=1 j=t+1
1 t B N N
wl), = argmin 5\\Xw—ijxj— ST X% 4)
(’Ut+17...7'UN)€RN_f‘ j:l j:t—‘rl

These optimization problems admit the following closed-form solutions (see Proposition [E.T)):

t—1 N 1)
<Xw - Zj:l X5 — Zj:t—H wj()va Xt>
X2

@ =9 ; &)

w(zt2+1 :)}th-u (waf(ﬁqgo . (6)

While these expressions follow directly from the optimization problems, computing ¢; and wgz 41

in this form is not computationally efficient and scales poorly, as we will show in Section @3] To
address this, we present Theorem @ which shows that for all £ > 2, ¢, can be computed via
RTN, enabling a simpler implementation. In Lemma we further show that the update for wgz 11
also admits an efficient implementation using Cholesky decomposition to solve the associated least-

squares problem. Together, these results yield a practical and scalable implementation of Qronos.

Theorem 3.1. Let (g, w(jt_ 1)) be the iterates generated by Equation |3| and Equation with ini-

g]l) = w. Define an alternative sequence ({i,w

tialization w (tt_ 1))

wg)l) = w, by setting

using the same initialization

N

. 1 o v
G1 = argmin || Xw — pX; — ijXjH27 ™)
peA 2 j=2
1 - L o
’lf)(>12) = argmin §HX’LU — (lel — Z’Uij”Q’ (®)
- (’Ug,‘..,’UN)GRNfl Jj=2

Under review as a conference paper at ICLR 2026

and, fort = 2,..., N, define

g = Q"™ Y), ©
1 N
N . . L (=1 (1)) 5
w(>t2+1 = arg min 5”(% — i TX, + Z (vj — U’j(‘f N X2 (10)
B (Vt41,- 0N) ERN 2 =11
Then fort =1,..., N, the two procedures yield identical iterates: (g, wg;l)) = (Gs, ﬁ;gt_l))_

Starting from the second iteration, Theorem[3.1]shows that the updates in Equation[3|and Equation[d]
can be equivalently reformulated as Equation [9 and Equation [I0] respectively. This reformulation
allows ¢; to be obtained via RTN for ¢ > 2, followed by an adjustment of the remaining weights us-
ing only the (potentially quantized) activation matrix X to compensate for the one-step quantization

error (q; — wt(t_l)))?t.

To further accelerate this adjustment step, we now present Lemma [3.2] which establishes the equiv-
alence of the update in Equation 10| (for ¢ > 2) with a Cholesky-based least-squares solutiorﬂ For
notational simplicity, we slightly abuse the indexing by treating ¢ = 2 as a ‘restart.’

Lemma 3.2 (Equivalence of Least-Squares Formulation and Cholesky Formulation). Assume that

H = XX is invertible, and let H=1 = LLT denote its Cholesky decomposition, with L lower
triangular. Then, starting from w'®) = w, the update rules

g = Quf'™Y), (11)
1 N
¢ . t—1 t—1
w(zzﬂ = arg min §H(qt — wt())Xt + Z (v; — w]())Xj||2 (12)
(ve41,...,vn)ERN - j=t+1

are equivalent to the Cholesky-based iterations

g = Q(w!"™Y), (13)
wgﬂ = wg;rll) + AW, (14)

where

A® — (@t _ qt)thH,t c RNt
Ltt

Remark 3.3 (Memory Efficiency). At the first iteration, both q, and w(zlz) depend on X , X €

R™*N requiring O(mN) peak memory, often where m > N. For example, Llama3.1-8B requires

over 30 GB just to store 128 samples of 2048-token sequences at £1oat32. We optimize this first
iteration to use only square matrices such that

Gi>1w — H1,>2w(0)
m=Q< | (15)
11
w§§ = (H>2,52) ' (Gs251w — H>21q1), (16)

where G = XTX € RV*N gnd H = XTX € RVXN; see Proposition for a justification.
Note that calculating G and H does not require storing X, X, as one can sequentially accumulate
the outer products of each of the m samples. Thus, this square matrix formulation reduces peak
memory requirements of Qronos from O(mN) to O(N?), yielding an 18 x reduction in the case of
Llama3.1-8B. We note that\Colbert et al.|(2024) similarly identify a memory optimization for GPFQ,
but use singular value decompositions that may not scale well with N.

This completes our reduction of the original updates (Equations[3]and[d) to the equivalent implemen-
tation given by Equations[I3] [I4] [I3] and[T6] The pseudocode for this efficient version is provided
in Appendix [A] We further present a runtime analysis comparing this efficient version with the base
version (i.e., a direct evaluation of the closed-form solution) in Section @

2We do not claim that Lemmais novel, though we were unable to find it stated explicitly in the literature.

Under review as a conference paper at ICLR 2026

3.2 THEORETICAL INTERPRETATION AND INTUITION

Theorem and Lemma [3.2| connect the initial disciplined optimization formulation of Qronos to
our efficient implementation. These results guarantee that Qronos is both interpretable and scalable,

explicitly correcting error from the mismatched input pairs X and X. Here, we provide deeper
intuition in the context of previous state-of-the-art rounding algorithms, namely GPFQ and OPTQ.

When quantizing w, GPFQ (Lybrand and Saabl [2021; |Zhang et al.| [2023; |[Zhang and Saab) 2023)
interprets Xw as the endpoint of the path Z;Zl w;X; fort = 1,..., N, and handles mismatched

inputs by aiming to match 22:1 w; X; and 22:1 qu(4 for all . More precisely, g; is selected as
t—1

arg minpe 4 || 22:1 w; Xj — Z]‘:1 4 Xj — pXe.

Although path following handles the case when X = X well, additional considerations are re-
quired when X # X since, in such a case, the tails of the two paths generally do not align when
vazt 41 wi(X; — X;) # 0. Qronos handles this drawback by adopting a natural remedy to replace

the unquantized weights w; by auxiliary weights wl@, fori >t + 1, so that

t N N
Z%Xi + Z wgt))?i ~ szzwiXi'
i=1 i=t+1 i—1

OPTQ (Frantar et al., [2023) explores a similar weight update idea, but only in the case where
X = X, by modifying the remaining unquantized weights after g, is selected. The Cholesky refor-
mulation used in Lemma [3.2|also resembles the key mechanism in OPTQ. In this way, the runtime
of Qronos scales similarly to OPTQ while also explicitly addressing the mismatch between X and
X; see Section for details. This unexpected connection of Qronos to OPTQ also allows us to
derive a novel interpretation of OPTQ, which we now present.

Corollary 3.4. The OPTQ iterations, when applied to a single layer input X, are equivalent to

t—1 N
1 _
q :argmlniHXw—quXj —pX; — Z wj(-t 1)Xj||2, (17)
pEA j=1 j=t+1
1 ¢ N
wg+1 = arg min §||Xw — quXj - Z v; X%, (18)
(vig1,..,0n) ERN L J=1 j=t+1

with w(zol) = w.

In other words, the updated weights and quantized weights at every iteration ¢ that are produced by
OPTQ are identical to those produced by Equations [[7 and [I8] In particular, Equation [I8] shows

that, at each step the updated weights wg 41 indeed optimally correct for the errors produced by

the hitherto quantized sequence ¢i, ..., ¢; via orthogonal projection onto col(X>;11), as further
discussed in Appendix [H]

Noticeably, OPTQ suffers from a systematic bias when the activation mismatch is non-negligible
as, unlike Qronos, it does not explicitly minimize the true discrepancy min ¢ v || Xw — Xq/l2.
Consequently, as discussed in Appendix [D] Qronos consistently reduces the relative error (measured
in £ norm) of block outputs compared to OPTQ, as illustrated in Figure 3]

4 EXPERIMENTS

The core contribution of this work is Qronos—our principled data-driven rounding algorithm that al-
ternates between (1) explicitly correcting quantization error due to both the weights and activations,
and (2) diffusing excess error into future weights yet to be quantized. Thus, our primary comparison
metric is preserving model quality in challenging quantization scenarios. We design our experiments
to isolate the impact of the rounding function (stage 2 in Figure[T)), while varying the quantization
transforms (stage 1 in Figure[I)), as further discussed in Sections[4.1]and

Under review as a conference paper at ICLR 2026

Table 2: 2-bit weight-only quantization of Qwen3 instruction fine-tuned models. We apply HIP
(stage 1 in Figurem) and compare different rounding methods (stage 2).

WikiText2 (1) 0-shot (1)
06B 17B 4B 8B 14B 32B |06B 17B 4B 8B 14B 32B

BF16 186 152 122 86 7.6 68 | 51.1 614 689 724 754 772

RTN 7e5 8e6 4e5 ded 3e5 1le5 | 32.1 319 324 318 329 328
OPTQ le2 60.0 228 147 149 128 | 32.0 328 374 414 425 470
GPFQ le2 453 254 17.1 156 134 | 33.0 324 359 394 404 460
GPTAQ 745 370 21.0 136 144 129 | 323 340 387 425 433 473
Qronos 46.0 235 17.8 129 134 12.0 | 350 36.7 415 447 452 48.0

Table 3: Weight-only quantization of Llama3 foundation models. We individually apply various
quantization transforms (stage 1 in Figure [I) to isolate the impact of different rounding functions
(stage 2) when quantizing to 3 and 4 bits, respectively denoted W3 and W4.

w3 w4

WikiText2 (|) 0-shot (1) WikiText2 (|) 0-shot (1)
Stage | Stage2 | 1B 3B 8B | 1B 3B 8B | IB 3B 8B | IB 3B 8B
BF16 - | 89 7.1 59 | 594 675 744] 89 71 59]594 675 744

RTN 2e4 le4 3e4 | 323 324 326 | 180 101 84 | 49.1 608 674
OPTQ | 425 138 114|375 481 538|104 78 65| 543 634 710
None GPFQ 353 134 11.1 | 357 499 535|104 7.8 65560 652 712
GPTAQ | 284 126 103|393 496 571|103 78 65 |563 633 71.0
Qronos | 22.8 11.3 93 | 395 531 567|101 7.6 64 | 562 645 72.0

RTN 6e3 9e3 Sed4 | 327 329 314|152 96 81514 615 675
OPTQ 29.6 13.6 12.6 | 37.0 469 473 | 104 79 6.6 | 562 653 702
GPFQ 30.1 147 129 | 365 448 454|108 79 6.7 |539 644 699
GPTAQ | 25.0 129 114|379 468 49.1 | 104 79 6.6 | 552 63.1 712
Qronos | 19.1 11.6 10.3 | 40.7 50.6 50.5| 103 7.8 6.5 | 56.7 648 70.2

RTN 2e3 23 5e4 | 33.8 335 351|138 103 72531 581 69.7
OPTQ 20.1 129 81 | 442 456 59.7 | 103 80 65564 600 690
MagR GPFQ 21.0 140 83 | 439 484 617 | 104 8.0 65554 61.1 703
GPTAQ | 180 124 80 | 468 512 607 | 103 8.0 64 | 562 60.0 70.3
Qronos | 169 11.8 7.8 | 46.6 512 600 | 10.1 80 6.4 | 562 61.1 704

RTN T7e2 3e2 le2 | 342 333 363|138 88 72520 628 700
OPTQ 161 103 86 | 441 566 588 | 99 76 63568 661 72.1
HIP GPFQ 166 104 8.6 | 449 548 589 | 99 76 63565 657 720
GPTAQ | 147 99 83 | 465 569 593 | 98 7.5 63| 578 660 724
Qronos | 129 93 78 | 481 596 622 | 96 75 62 |571 659 71.0

Smooth
Quant

Models & Datasets. We conduct experiments on Llama3 (Grattafiori et al.,[2024) and Qwen3 (Yang
et al., 2025) models using WikiText2 (Merity et al.,|2016) for evaluation. We use, without modifica-
tion, the implementations made publicly available via Huggingface (Wolf et al., 2020). We provide
additional results in Appendix [B] We use LightEval (Fourrier et al,[2023) to evaluate generalization
via 5 zero-shot reasoning tasks: ARC (challenge and easy) (Clark et al., 2018)), HellaSwag (Zellers
et al., 2019), PIQA (Bisk et al., [2020), and Winogrande (Sakaguchi et al., |2021), and report the
normalized average accuracy.

Setup. We implement Qronos in PyTorch (Paszke et al., 2019) using the Brevitas quantization li-
brary (Franco et al.,[2025b)), and quantize all models using a single AMD MI210 GPU with 64 GB
of memory. Unless otherwise specified, we construct our calibration dataset using 128 random se-
quences of 2048 tokens sampled from the WikiText2 dataset for all data-driven PTQ algorithms. We
compare Qronos against RTN and the unmodified Brevitas implementations of OPTQ and GPFQ,
also leveraging the unmodified Brevitas implementations of the various quantization transforms. We
provide quantization transform hyperparameter details in Appendix [C} as well as ablation studies.

Under review as a conference paper at ICLR 2026

Table 4: Weight-activation quantization of Llama3 foundation models. We individually apply
various transformations (stage 1) to isolate the impact of different rounding functions (stage 2).

W4A4KV16 W4A4KV4
WikiText2 () 0-shot (1) WikiText2 () 0-shot (1)
Stage 1 Stage2 | 1B 3B 8B | 1B 3B 8B | 1B 3B 8B | 1B 3B 8B
BF16 - | 89 7.1 59 | 594 675 744 | 89 71 59 | 594 675 744

RTN 220 126 9.6 | 454 550 626|418 220 159|415 498 574
OPTQ 143 98 80 | 504 599 667|198 143 103 | 458 562 64.1
QuaRot GPFQ 136 93 7.6 | 509 609 676|220 147 114|433 539 598
GPTAQ | 134 92 74 |512 614 681 | 180 122 93 | 466 573 648
Qronos | 13.2 91 74 | 509 615 689 | 178 11.6 93 | 478 573 648

RTN 224 122 11.1 | 429 548 62.6 | 393 195 343|404 494 506
OPTQ 136 95 79 |51.0 603 685 | 18.6 129 16.1 | 459 559 59.1
SmoothRot GPFQ 129 88 74 |504 620 677|208 143 122|444 549 590
GPTAQ | 126 89 73 | 511 614 688|166 11.6 108 | 48.6 57.8 63.7
Qronos | 12.6 88 7.2 | 508 609 694 | 169 11.6 9.5 | 47.1 578 652

RTN 205 126 93 | 477 575 642|335 202 134|431 522 6038
OPTQ 134 92 77 | 520 61.1 670|179 150 89 | 479 585 655
SpinQuant GPFQ 135 92 75 | 512 612 67.0|21.1 143 109 | 453 536 609
GPTAQ | 129 9.0 74 |51.8 61.1 683 | 171 NaN 8.7 | 4994 NaN 653
Qronos | 12.3 87 7.2 | 528 621 684 | 164 111 8.7 | 482 582 658

Baselines. Our baselines are RTN, OPTQ, GPFQ and GPTAQ. For OPTQ, we use the standard

dampened covariance matrix H = H + AI, where A is 1% of the average diagonal of H. We

similarly use a dampened covariance matrix for Qronos, but choose A to be based on the maximum

singular value of H such that A\ = «- 07, which limits the condition number of H tobe less than o~ L.

We select v = 1e~% for weight-only quantization and o = 1e~2 for weight-activation quantization.
Additionally, we apply GPFQ, GPTAQ, and Qronos block-by-block; this corresponds to resetting

X = X at the beginning of each block. Finally, we quantize weights in descending order of the
diagonals of H, as is now common practice (IST-DASLabl 2022} Franco et al.| |2025b)).

4.1 WEIGHT-ONLY QUANTIZATION

We first present state-of-the-art 2-bit and 1.58-bit results for weight-only PTQ on Llama3 foundation
models, controlling for the quantization transform and grid selection while varying the rounding
function. We quantize weights using the standard asymmetric weight quantizer (Frantar et al.,|2023),
where scaling factor s and zero point z are defined per-channel on a scaled min-max grid such that
s = (- (max(w) — min(w))/(2* — 1) and z = - min(w)/s. Following the analysis of Zhang
et al.| (2024)), we choose 8 = 0.8 when quantizing to 2 bits or fewer. We combine Hadamard-based
incoherence processing (HIP) (Tseng et al., [2024; |Ashkboos et al.| 2024) with weight magnitude
reduction (MagR) (Zhang et al., [2024)) to jointly act as our quantization transform, as they are both
known to be effective at few-bit weight quantization (Chee et al., [2023} |Adepu et al., [2024). We
present our results in Table[T] as well as the BF16 baselines, and highlight that Qronos consistently
outperforms existing rounding methods. For example, when compared to OPTQ, Qronos provides
a 1.4x reduction in WikiText2 perplexity and 43.3% increase in average zero-shot accuracy for
Llama3.2-1B at 2 bits, and a massive improvement in perplexity (4.9x) at 1.58 bits. We provide
additional 2-bit and 1.58-bit results with 8 = 1 in Appendix

Next, we present state-of-the-art 2-bit weight-only PTQ results on Qwen3 instruction fine-tuned
models. Here, we use HIP as our quantization transform then tune the grid to minimize the mean
squared error loss between the transformed weights and their RTN-quantized counterparts via a
linear search over s and z. Table 2] provides the results from Qwen3 0.6B to 32B. Qronos again
yields clear and consistent improvements for all models in this family.

Finally, we present 3-bit and 4-bit weight-only PTQ results (denoted W3 and W4, respectively) on
Llama3 foundation models while independently demonstrating compatibility with 3 notable quan-
tization transforms: SmoothQuant (Xiao et al.| [2023), MagR, and HIP. Table E] shows the results
across three models in the Llama3 family. For both W3 and W4, we use § = 1. Qronos consis-

Under review as a conference paper at ICLR 2026

u
o

800
2 — GPFQ °
= OPTQ £ 401
2 600 4 — Qronos (Base Ver.) §
c —— Qronos (Efficient Ver.) o« 304
= E
T 400 A [
o >
o
g © 201
2 200 1 5
ki 5 104
7} 3
3

100 250 400 550 700 850 1000 100 250 400 550 700 850 1000
Input Features (N) Input Features (N)
(a) Runtime of Rounding Algorithm (b) Runtime of Quantization Pipeline

Figure 2: We compare the runtime of (a) the rounding algorithm and (b) the overall quantization
pipeline as we scale the input features NV, as measured on an AMD MI210. We average all measure-
ments over 3 seeds and normalize to the runtime of OPTQ where N = 32.

tently provides higher quality quantized models than RTN, OPTQ, GPFQ and GPTAQ, as measured
in both WikiText2 perplexity and average zero-shot accuracy. Consistent with emerging work on
rotation-based quantization transforms (Chee et al) |2023; |Tseng et al., 2024)), incoherence pro-
cessing outperforms other transforms, with HIP + Qronos providing the best overall results. Note
that HIP + OPTQ is similar in spirit to QuIP by Theorem 6 in (Chee et al., 2023), which equates
LDLQ to OPTQ, with a notable difference that QuIP proposed random orthogonal matrices instead
of Hadamard matrices.

4.2 WEIGHT-ACTIVATION QUANTIZATION

We present 4-bit weight-activation quantization results with and without 4-bit KV cache quantiza-
tion (denoted W4A4KV16 and W4A4KV4, respectively) while demonstrating compatibility with
QuaRot (Ashkboos et al., [2024), SmoothRot (Czako et al., 2025)), and SpinQuant (Liu et al., [2025)).
We quantize weights using the standard symmetric weight quantizer with per-channel scaling factors
optimized via linear search over the mean square error loss between the full-precision and quantized
weights. We quantize activations using the standard asymmetric activation quantizer with dynamic
per-token scaling factors and zero points defined on the min-max grid, as is common practice (Liu
et al.| 2025). When quantizing KV caches, we similarly use per-token scaling and zero points.

Table[]shows the results across three foundation models in the Llama3 family. Qronos again consis-
tently outperforms RTN, OPTQ, GPFQ and GPTA(f| as measured in both WikiText2 perplexity and
average zero-shot accuracy. Consistent with emerging work on learned rotations (Liu et al.}|2025;|Hu
et al., [2025; Franco et al.,|2025a), SpinQuant outperforms QuaRot and SmoothRot, with SpinQuant
+ Qronos providing the best overall results with and without KV cache quantization. We remark that
our experiments use per-token quantization for both the activations and KV caches, while|Ashkboos
et al.[(2024) and [Liu et al.| (2025) both use per-group scaling for KV cache quantization.

Our experimental analysis reveals an important pattern: Qronos provides larger improvements as
quantization tasks become more challenging. Specifically, Qronos demonstrates larger relative im-
provements over existing methods when transitioning from weight-only to weight-activation quan-
tization (i.e., W4 versus W4A4), and even more substantial gains when incorporating KV cache
quantization (i.e., W4A4 versus W4A4KV4). We further validate this pattern with additional W3A3
results in Appendix [B](Table 8], which show larger improvements than both W4A4 and W3 weight-
only quantization. These findings suggest that Qronos is particularly effective in scenarios where
multiple sources of quantization error interact, making it especially valuable for aggressive quanti-
zation settings where traditional methods struggle to maintain model quality.

3We observed instability with GPTAQ), as reflected by the NaN entries in Table El and similar issues have
been reported by others attempting to reproduce results from|L1 et al.| (2025)) with their official repository.

Under review as a conference paper at ICLR 2026

Table 5: Calibration Runtime Analysis. We report the end-to-end calibration time of OPTQ and
Qronos for the Qwen3 model family, normalized to Qwen3-0.6B, as measured on an AMD MI325X.

0.6B 1.7B 4B 8B 14B 32B

OPTQ 1.0 1.4 2.8 3.7 5.6 10.6
Qronos 1.2 1.6 3.1 4.0 6.1 11.5

Overhead 19.7% 162% 11.1% 9.0% 8.7% 8.7%

4.3 HARDWARE EFFICIENCY AND RUNTIME ANALYSIS

The hardware efficiency benefits of quantization (i.e., improved throughput, memory, power, and
area) are well-established (Jacob et al., 2018}, |Colbert et al.l [2024). Since Qronos and other round-
ing algorithms leave the compute graph unaltered, they capture these benefits without introducing
inference overhead beyond the quantization transform. Prior works have already profiled inference
speedups and overheads; for example, Ashkboos et al.|(2024])) report up to 2.16x speedup for W4A4
Llama?2 7B over FP16, with Hadamard transforms adding at most 7% overhead. Therefore, we focus
our runtime analysis on the quantization pipeline itself.

Microbenchmark. We perform our initial runtime analysis using a single linear layer. We use a
calibration set of m =10,000 random data sampled from a K-dimensional Gaussian distribution.
The linear layer has K € [32,1024] inputs with K/4 outputs. Figure [2| shows how the runtime
of OPTQ, GPFQ, and Qronos scale with K, where (a) isolates the algorithm runtime (i.e., without
the added inference cost of calculating H and G) and (b) aggregates the end-to-end runtime of
calibration. To highlight the benefits of our equivalent formulation, we implement a base version of

Qronos that uses the iterates for ¢; and wg 1 from Equations and@ Note that via Theorem q
and Lemma[3.2] we significantly improve the runtime scaling of Qronos over the base version, wit
a 13.8x reduction in algorithm runtime and a 3.6 x reduction in overall runtime when K = 1024.

Calibration Runtime;Compared with OPTQ, which only needs to collect X, GPFQ and Qronos re-

quire collecting both X and X at each layer, which requires two forward passes (with and without
quantization) and increases the overall quantization pipeline runtime. To evaluate the overhead of
two forward passes in practice, we compare the calibration runtime of OPTQ and Qronos when
quantizing the Qwen3 model family. Table [5] provides the runtimes for each model from 0.6B to
32B, normalized to the calibration runtime when using OPTQ to quantize Qwen3-0.6B on an AMD
MI325X. We observe the overhead of Qronos decreases from 19.7% to 8.7% as model size increases
from 0.6B to 32B, indicating that algorithmic cost dominates the cost of executing inference twice
and underscoring the importance of Theorem 3.1}

5 CONCLUSIONS

We introduce Qronos—a new backpropagation-free rounding algorithm that alternates between cor-
recting quantization error in both the weights and activations of previous layers and diffusing error
into future weights within the current layer. Qronos is based on an interpretable and disciplined
optimization framework, and it demonstrably surpasses existing data-driven approaches. Our im-
plementation exploits several optimizations that together yield orders of magnitude improvements
in memory and compute efficiency. Our experiments isolate the impact of the rounding function in
the quantization pipeline while varying transformations on a scaled min-max grid. Our results show
that Qronos consistently offers improvements over previous state-of-the-art methods when quantiz-
ing weights, activations, and/or KV caches to 4 bits or fewer. That said, our results are intentionally
limited to the scaled min-max quantization grid to focus our experiments on transformations and
rounding; we believe our results could be further improved by leveraging weight and activation dis-
tributions to design quantization grids that are more effective than the scaled min-max grid used in
this work, possibly with non-uniform grids via vector quantization.

10

Under review as a conference paper at ICLR 2026

REFERENCES

H. Adepu, Z. Zeng, L. Zhang, and V. Singh. FrameQuant: flexible low-bit quantization for trans-
formers. In Proceedings of the 41st International Conference on Machine Learning, pages 203—
227, 2024.

S. Ashkboos, A. Mohtashami, M. L. Croci, B. Li, P. Cameron, M. Jaggi, D. Alistarh, T. Hoefler, and
J. Hensman. QuaRot: Outlier-free 4-bit inference in rotated LLMs. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=dfgsw38v1X.

F. Barbero, A. Arroyo, X. Gu, C. Perivolaropoulos, M. Bronstein, P. Velickovi¢, and R. Pascanu.
Why do llms attend to the first token? arXiv preprint arXiv:2504.02732, 2025.

J. Birnick. The lattice geometry of neural network quantization—a short equivalence proof of gptq
and babai’s algorithm. arXiv preprint arXiv:2508.01077, 2025.

Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. PIQA: Reasoning about physical commonsense in natural
language. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
7432-7439, 2020.

J. Chee, Y. Cai, V. Kuleshov, and C. M. De Sa. QulP: 2-bit quantization of large language models
with guarantees. Advances in Neural Information Processing Systems, 36:4396-4429, 2023.

J. Chen, T. Hoefler, and D. Alistarh. The geometry of llm quantization: Gptq as babai’s nearest
plane algorithm. arXiv preprint arXiv:2507.18553, 2025.

W. Cheng, W. Zhang, H. Shen, Y. Cai, X. He, L. Kaokao, and Y. Liu. Optimize weight round-
ing via signed gradient descent for the quantization of llms. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pages 11332—-11350, 2024.

P. Clark, 1. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
you have solved question answering? Try ARC, the AI2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

I. Colbert, F. Grob, G. Franco, J. Zhang, and R. Saab. Accumulator-aware post-training quantization.
arXiv preprint arXiv:2409.17092, 2024.

P. Czaké, G. Kertész, and S. Sz€ndsi. SmoothRot: Combining channel-wise scaling and rotation for
quantization-friendly llms. arXiv preprint arXiv:2506.05413, 2025.

T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer. GPT3. int8 (): 8-bit matrix multiplication
for transformers at scale. Advances in neural information processing systems, 35:30318-30332,
2022.

C. Fourrier, N. Habib, T. Wolf, and L. Tunstall. LightEval: A lightweight framework for llm evalu-
ation, 2023. URL https://github.com/huggingface/lightevall

G. Franco, P. Monteagudo-Lago, I. Colbert, N. Fraser, and M. Blott. Improving quantization with
post-training model expansion. arXiv preprint arXiv:2503.17513, 2025a.

G. Franco, A. Pappalardo, and N. J. Fraser. Xilinx/brevitas, 2025b. URL https://doi.org/
10.5281/zenodo.3333552.

E. Frantar and D. Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475-4488,
2022.

E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. OPTQ: Accurate quantization for generative
pre-trained transformers. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024.

11

https://openreview.net/forum?id=dfqsW38v1X
https://openreview.net/forum?id=dfqsW38v1X
https://github.com/huggingface/lighteval
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://openreview.net/forum?id=tcbBPnfwxS

Under review as a conference paper at ICLR 2026

B. Hassibi and H. Vikalo. On the expected complexity of integer least-squares problems. In 2002
IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 2, pages
11-1497. IEEE, 2002.

R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.

X. Hu, Y. Cheng, D. Yang, Z. Chen, Z. Xu, JiangyongYu, XUCHEN, Z. Yuan, Z. jiang, and S. Zhou.
OSTQuant: Refining large language model quantization with orthogonal and scaling transfor-
mations for better distribution fitting. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=rAcgDBdKnP.

I. Hubara, Y. Nahshan, Y. Hanani, R. Banner, and D. Soudry. Accurate post training quantization
with small calibration sets. In M. Meila and T. Zhang, editors, Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 4466—4475. PMLR, 18-24 Jul 2021. URL https://proceedings.mlr.
press/v139/hubara2la.html.

IST-DASLab. gptq. https://github.com/ist-daslab/gptqg, 2022.

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko.
Quantization and training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

Y. Li, R. Gong, X. Tan, Y. Yang, P. Hu, Q. Zhang, F. Yu, W. Wang, and S. Gu. BRECQ: Push-
ing the limit of post-training quantization by block reconstruction. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
POWvohDd9XH.

Y. Li, R. Yin, D. Lee, S. Xiao, and P. Panda. GPTAQ: Efficient finetuning-free quantization for
asymmetric calibration. arXiv preprint arXiv:2504.02692, 2025.

J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang, C. Gan, and S. Han.
Awq: Activation-aware weight quantization for on-device 1lm compression and acceleration. Pro-
ceedings of Machine Learning and Systems, 6:87-100, 2024.

Z. Liu, C. Zhao, 1. Fedorov, B. Soran, D. Choudhary, R. Krishnamoorthi, V. Chandra, Y. Tian,
and T. Blankevoort. SpinQuant: LLM quantization with learned rotations. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=0gO6DGEGFZ.

E. Lybrand and R. Saab. A greedy algorithm for quantizing neural networks. Journal of Machine
Learning Research, 22(156):1-38, 2021.

S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

M. Nagel, M. v. Baalen, T. Blankevoort, and M. Welling. Data-free quantization through weight
equalization and bias correction. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 1325-1334, 2019.

M. Nagel, R. A. Amjad, M. Van Baalen, C. Louizos, and T. Blankevoort. Up or down? adaptive
rounding for post-training quantization. In International conference on machine learning, pages
7197-7206. PMLR, 2020.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. PyTorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems, 32, 2019.

K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

12

https://openreview.net/forum?id=rAcgDBdKnP
https://proceedings.mlr.press/v139/hubara21a.html
https://proceedings.mlr.press/v139/hubara21a.html
https://github.com/ist-daslab/gptq
https://openreview.net/forum?id=POWv6hDd9XH
https://openreview.net/forum?id=POWv6hDd9XH
https://openreview.net/forum?id=ogO6DGE6FZ
https://openreview.net/forum?id=ogO6DGE6FZ

Under review as a conference paper at ICLR 2026

W. Shao, M. Chen, Z. Zhang, P. Xu, L. Zhao, Z. Li, K. Zhang, P. Gao, Y. Qiao, and P. Luo. Om-
niQuant: Omni-directionally calibrated quantization for large language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=8WuvhhOLYW.

A. Tseng, J. Chee, Q. Sun, V. Kuleshov, and C. De Sa. QuIP#: Even better llm quantization with
hadamard incoherence and lattice codebooks. arXiv preprint arXiv:2402.04396, 2024.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
towicz, et al. Transformers: State-of-the-art natural language processing. In Proceedings of the

2020 conference on empirical methods in natural language processing: system demonstrations,
pages 38-45, 2020.

G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han. SmoothQuant: Accurate and efficient
post-training quantization for large language models. In International Conference on Machine
Learning, pages 38087-38099. PMLR, 2023.

A. Yang, A. Li, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Gao, C. Huang, C. Lv, et al. Qwen3
technical report. arXiv preprint arXiv:2505.09388, 2025.

Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He. Zeroquant: Effi-
cient and affordable post-training quantization for large-scale transformers. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural
Information Processing Systems, volume 35, pages 27168-27183. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/adf7fa39d65e2983d724ff7da57f00ac-Paper—Conference.pdf.

R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. HellaSwag: Can a machine really finish
your sentence? arXiv preprint arXiv:1905.07830, 2019.

A. Zhang, N. Wang, Y. Deng, X. Li, Z. Yang, and P. Yin. Magr: Weight magnitude re-
duction for enhancing post-training quantization. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural In-
formation Processing Systems, volume 37, pages 85109-85130. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/9a987c98a7f36cc83f9065df3cadf9e0-Paper—Conference.pdfl

J. Zhang and R. Saab. SPFQ: A stochastic algorithm and its error analysis for neural network
quantization. arXiv preprint arXiv:2309.10975, 2023.

J. Zhang, Y. Zhou, and R. Saab. Post-training quantization for neural networks with provable guar-
antees. SIAM Journal on Mathematics of Data Science, 5(2):373-399, 2023.

13

https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=8Wuvhh0LYW
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9a987c98a7f36cc83f9065df3ca4f9e0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9a987c98a7f36cc83f9065df3ca4f9e0-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

A PSEUDOCODE OF QRONOS

We provide the pseudocode for our efficient version of Qronos derived in Section[3.1]

Algorithm 1 Qronos (Efficient Version)
H=X"X,G=X"X

H ! = ()Z‘T)Z')*l = LLT > Cholesky Decomposition
for every w in W (in parallel) do
q=0"%

w® « copy(w)

Groyw — Hy 0w
=012 Hnlzz 22 > By Proposition
wgg) = L2201y 55 (Go51w — H>2141) > By Lemma

fort =2to N do > By Theorem[3.1]and Lemma[3.2]
a = Quy"")

t t—1
w(Zl)t+1 = w(zt+1> +A®

A(t) _ _(wt(t—l) —q)Lzlf;:.tl,t
end for
end for
return ()

B RESULTS ON ADDITIONAL MODELS

Our main results evaluate Llama3 foundation models and Qwen3 instruction fine-tuned models.
Here, we demonstrate that Qronos maintains the quality of Llama3 instruction fine-tuned models and
Qwen3 foundation models as well. We again compare against RTN, OPTQ, GPFQ, and GPTAQ.

We present weight-only PTQ results with Llama3 instruction fine-tuned models at 3 and 4 bits in
Table [6] As in Section fi.I] we asymmetrically quantize weights to the scaled min-max grid with
B =1 for both W3 and W4. We focus our instruction fine-tuned results on evaluating each round-
ing algorithm with and without Hadamard-based incoherence processing (HIP) as the quantization
transform. As in Section f.I] we find that HIP + Qronos consistently provides the highest qual-
ity quantized models relative to BF16 counterparts, as measured in both WikiText2 perplexity and
zero-shot accuracy.

We then present weight-only PTQ results with Qwen3 foundation models in Table[7] We asymmet-
rically quantize weights to the scaled min-max grid with 5 = 0.9 for W3. We focus these results
with and without Hadamard-based incoherence processing (HIP). Again, we find HIP + Qronos
consistently yields the highest quality quantized models relative to the BF16 counterparts.

C EXPERIMENT DETAILS FOR QUANTIZATION TRANSFORMS

All experiments use WikiText2 as the calibration set, aside from SpinQuant, which uses C4. To pre-
process our calibration dataset, we ensure that the <bos> token always appears as the first token
in an input sequence as the recent study by Barbero et al.| (2025) suggests removing <bos> during
inference may greatly reduce performance if models were trained with <bos> always appearing
at the first token; their analysis suggests the Llama3 family of models fits this category. Thus,
to quantize our models, we first load the pre-trained checkpoint, then pre-process the dataset(s),
then apply the quantization pipeline visualized in Figure[I] For Sectiond.I] we intentionally select
SmoothQuant (Xiao et al., 2023), Hadamard-based incoherence processing (HIP) (Ashkboos et al.,
2024; Tseng et al.| [2024), and MagR (Zhang et al., |2024) as they perform fundamentally different
transformations. For Section@ we study QuaRot, SmoothRot, and SpinQuant. Here, we describe
hyperparameters for the data-driven transforms—SmoothQuant, MagR, SpinQuant, and SmoothRot.

14

Under review as a conference paper at ICLR 2026

Table 6: Weight-only quantization of instruction fine-tuned Llama3 models. We apply
Hadamard-based incoherence processing (HIP) as our quantization transform (stage 1 in Figure[I))
to isolate the impact of different rounding functions (stage 2) when quantizing to 3 and 4 bits, re-
spectively denoted W3 and W4. We also evaluate no quantization transform (i.e., “None”).

w3 w4
WikiText2 (]) 0-shot (1) WikiText2 (|) 0-shot (1)
Stage 1 Stage 2 | 1B 3B 8B | 1B 3B 8B | 1B 3B 8B | 1B 3B 8B
BF16 - | 120 9.2 6.7 | 59.5 664 74.1 | 120 92 6.7 | 59.5 664 74.1

RTN 2e4 4e3 3ed4 | 326 33.0 322|214 126 9.1 | 51.0 623 67.6
OPTQ 60.0 16.1 122|374 499 582|143 99 173|545 636 718

Nome Gorg | 2¢2 166 129 | 338 508 553 | 154 99 73| 533 644 715
GPTAQ | 52.0 149 114|374 498 575|138 99 73 |555 631 712
Qronos | 43.8 143 10.6 | 37.5 521 60.6 | 13.8 98 7.2 | 555 64.8 72.2
RTN le3 3e2 le2 | 334 350 369|166 108 80| 546 636 708
mp OPTQ | 191 128 93 | 480 582 590|132 96 71566 645 721

GPFQ 204 128 9.6 | 476 571 611|132 98 172|570 653 719
GPTAQ | 180 122 9.1 | 492 574 632|129 98 7.1 | 569 639 727
Qronos | 16.6 11.6 88 | 499 584 o64.1 | 128 9.6 7.1 |57.6 648 72.1

Table 7: Weight-only quantization of Qwen3 foundation models to 3 bits with 3 = 0.9. We apply
Hadamard-based incoherence processing (HIP) as our quantization transform (stage 1 in Figure [1)
to isolate the impact of different rounding functions (stage 2) when quantizing to 3 bits.

WikiText2 (]) 0-shot (1)
Stage 1 Stage2 1.7B 4B 8B | 1.7B 4B 8B
BF16 - 86 73 65 | 639 701 73.6

RTN 3e5 820 3e3 | 329 453 371
OPTQ 375 104 88 | 357 572 61.7
None GPFQ le2 108 93 | 330 563 589
GPTAQ 338 101 85 | 361 63.7 585
Qronos 330 9.5 83 | 360 599 615

RTN le3 263 30.1 | 351 508 503
OPTQ 108 88 7.6 | 544 644 676
HIP GPFQ 114 9.1 79 | 527 61.6 622
GPTAQ 106 86 75 | 549 63.6 66.0
Qronos 10.1 84 74 | 572 635 68.0

SmoothQuant. When applying SmoothQuant, we do so before quantizing weights or activations.
In practice, SmoothQuant requires the selection of a hyperparameter to control the scaling optimiza-
tion criteria. We refer to the SmoothQuant hyperparameter as so as to not clash with our use of «
in Section note that v € [0, 1]. In Table @], we provide the results of a uniform grid search over vy
when quantizing Llama3.2-1B-Instruct to 4 bits using round-to-nearest (RTN). These results moti-
vate our decision to use v = 0.3 in all our weight-only PTQ experiments that apply SmoothQuant.

MagR. When applying MagR, we also do so before quantizing weights and activations. When
coupled with HIP, we do so after inserting rotations into the compute graph. In practice, MagR
requires tuning the /., penalty; we refer to this hyperparameter as 6, again so as to not clash with
our use of « in Section Zhang et al.| (2024) tune 6 to Llama2 models, settling on § = 0.001
for their experiments. In Table we provide new results for Llama3.2-1B-Instruct. These results
motivate our decision to use § = 0.01 in all our weight-only PTQ experiments that apply MagR.

SpinQuant. When applying SpinQuant, Liu et al.| (2025) do so after activation (and KV cache)
quantization but before weight quantization using an 800-sample calibration dataset; their ablation

15

Under review as a conference paper at ICLR 2026

Table 8: 3-bit weight-activation (W3A3) quantization of Llama3 foundation models. We apply
QuaRot as quantization transformation (stage 1) and compare different rounding functions (stage 2).

WikiText2 (]) 0-shot (1)
1B 3B 8B | IB 3B 8B

RTN 2¢3 9e2 1e3 | 33.0 323 328
OPTQ 9¢2 22 1e2 | 323 332 359
GPFQ 60.0 30.1 279|356 392 403
GPTAQ 22 405 460 | 350 369 419
Qronos 468 22.0 204 | 37.0 434 474

Table 9: Impact of SmoothQuant’s v on Llama3.2-1B-Instruct. We evaluate the impact of the
smoothing parameter v on both WikiText2 perplexity and normalized average zero-shot accuracy
when quantizing Llama3.2-1B-Instruct to 4 bits using round-to-nearest (RTN).

vy 02 03 04 05 06 07 08

WikiText2 (|) 24.6 18.6 189 214 87.0 4e2 3e4
0-shot (1) 50.8 533 528 525 428 36.6 323

study demonstrates negligible degradation when using 128 samples. Thus, we employ Cayley SGD
on a network where only activations are quantized to optimize the learnable rotations for 100 itera-
tions using a calibration dataset constructed of 128 random samples from the C4 dataset.

SmoothRot. When applying SmoothRot [Czako et al.| (2025), we do so before quantizing weights
or activations. Similar to SmoothQuant, SmoothRot requires the selection of a hyperparameter
(i.e., migration strength) to control the scaling optimization criteria. In our experiments, we use a
migration strength of 0.6 as it empirically performed well for Llama3 1B.

C.1 GRID SCALING ABLATION STUDY FOR 2 BITS AND FEWER

In Section[d.1] we have presented weight-only PTQ results when quantizing to 2 bits or fewer on the
scaled min-max grid with 5 = 0.8. Here, in Table[I1] we provide additional results that demonstrate
Qronos outperforms other rounding algorithms on another choice 5 = 1. Recall that we jointly
apply Hadamard-based incoherence processing (HIP) and weight magnitude reduction (MagR) as
quantization transforms before each rounding algorithm. Our results highlight that 5 = 0.8 (see
Table[T)) is an overall better choice for scaling the min-max grid in this setting, which is consistent
with|Zhang et al.| (2024), and that Qronos provides the best results on both grids at all bit widths and
model sizes. Our results with S = 1 also show that Qronos is more robust than GPTAQ when S is
not carefully selected.

D MORE ON WHY QRONOS OUTPERFORMS OPTQ

Let W be the full-precision weights of a layer, and @ their quantized counterparts. Let X be the

input to the layer and let its (possibly quantized) counterpart be X; importantly, X reflects both
activation quantization and the residual error propagated from previously quantized layers (possibly
from previous blocks). Let Y, Y denote the respective outputs resulting from inputs X, X.

For any single layer, OPTQ only attempts to minimize | X (W — Q)| , which ignores the mismatch

between X and X. In contrast, Qronos attempts to minimize || XW — X Q|| p, which is the actual
discrepancy between the full-precision outputs and their quantized counterparts.

A simple triangle inequality intuitively explains the distinction between OPTQ and Qronos:
1Y =Y|r=[[XW = XQllr < (X = X)W|r+ [X(W = Q)llr-

While OPTQ only corrects the second term, Qronos corrects both terms. Thus, OPTQ only corrects
quantization error in the weights at a given layer while Qronos corrects not only quantization error

16

Under review as a conference paper at ICLR 2026

Table 10: Impact of MagR’s 6 on Llama3.2-1B-Instruct. We evaluate the impact of the penalty
parameter 6 on both WikiText2 perplexity and normalized average zero-shot accuracy when quan-
tizing Llama3.2-1B-Instruct to 4 bits using round-to-nearest (RTN).

0 0.1 0.01 0.001 0.0001

WikiText2 (]) 745 254 105.0 216.0
0-shot (1) 442 53.0 447 42.6

Table 11: Weight-only quantization of Llama3 models to 2 bits or fewer with 5 = 1. We
jointly apply HIP and MagR as quantization transforms (stage 1 in Figure[I)) and compare different
rounding functions (stage 2) on the scaled min-max grid (see Section [d). Note that these results
complement Table which presents results with 5 = 0.8.

WikiText2 (/) 0-shot (1)
IB 3B 8 | IB 3B 8B
BFI6 - 89 71 59 | 594 675 744

RTN le4 led 2e4 | 324 324 329
OPTQ 453 208 189 | 352 393 412
2-bit GPFQ 475 224 178 | 339 384 392
GPTAQ 33.8 18.0 164 | 363 40.7 413
Qronos 24.6 149 124 | 384 434 45.6

RTN 2e5 3e5 6e5 | 320 326 32.1
OPTQ 5e3 4e2 3e2 | 325 324 322
1.58-bit GPFQ 6e2 7e2 S5e2 | 31.2 325 327
GPTAQ 2e3 3e2 22 | 322 325 332
Qronos 79.5 483 34.8 | 329 328 343

in both the weights and activations at a given layer, but also residual quantization error coming from
previous layers, possibly from previous blocks.

Furthermore, tuning the quantization grid (i.e., scaling factors and zeros points) cannot effectively
minimize our objective in Equation As before, decomposing XW — XQ = [(X — X)W] +
[)? (W — Q)] isolates two error sources. Tuning quantization grids of the current layer only adjusts
@, and thus can affect only the second term, while the first term is untouched by any choice of
quantization grids. Hence, it cannot close the performance gap between OPTQ and Qronos.

To illustrate this, we empirically compare quantization error accumulation by measuring the relative
{5 error, given by ||Y — Y||/||Y]|, after each transformer block in Llama3.2 1B when quantizing
weights to 3 bits, as in Section Here, in Figure [3] we report the relative /5 error averaged over
each token in our calibration dataset (i.e., 128 samples of 2048 tokens from WikiText2). Qronos
yields the lowest average relative calibration error for each block, with 16% and 13% improvement
over OPTQ and GPFQ, respectively, at the output of the final block.

E PRELIMINARY PROPOSITIONS

Proposition E.1. The update rule given by

t—1 N
o1 =~ > t—1) &
q :argmlngHXw—quXj —pX¢ — Z w]()Xj||2a
peA =1 j=t+1
1 d =
t . Y X
wiiy = argmin S Xw—d X - 30X
(V415 0N)ERN—E j=1 j=t+1

17

Under review as a conference paper at ICLR 2026

1.4 —®— RTN

OPTQ
| —&— GPFQ
—4— Qronos

=
[N]

=
=}
s

Average Relative Error
o o
o <]
L s

o
IS
L

o©
N
N

T T T T T T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Transformer Block Index

Figure 3: We visualize the evolution of the average relative error over transformer blocks when
quantizing the Llama3 1B foundation model to 3 bits, further discussed in Appendix @

has closed-form expressions

> 1
7 Q<<Xw_zj 1QJX Z] =41 W (t)XjaXt>>
=
1 X2
and
O =Xt (Xw-X
Wxipr = Axppr (AW~ A<ed<e) -

Proof. For g, the corresponding optimization objective function is a one-dimensional quadratic
function of p. Since minimizing a quadratic function over a discrete set A reduces to rounding its
real-valued minimizer, we compute the real-valued minimizer

~)
<Xw—2 1q]X E; t+1w()XjaXt>
112
Thus, we obtain the closed-form expression of ¢,
~ i1 ~
. _Q<<XW—Z] 10X = vy X Xt>>
t —)
ok

where Q is the round-to-nearest operator.

For wgz 1» the corresponding optimization problem is an unconstrained least-square problem in the

form of min,cpv-+ ||A 2 with A =)?Zt+1 and b = Xw —)?Stqgt. Thus, the minimizer is
given by Afb, which gives the desired closed-form expression. O

Proposition E.2. The update rule given by
(XF(XW - X>2w(>02>)>
q1 = = = ’
X112

w(>12) ng (Xw - Xﬂh)

Grz1w — Hy ow)
=9 =

is equivalent to

Hyy
w(212) = (H>2,52) " (Gsa,51w — Hs21q1) ,

where G = XTX ¢ RV*N gnd H = XTX € RVxN,

18

Under review as a conference paper at ICLR 2026

PVOOf: For q1, W€ have X?X = ()?TX)I,ZI = Gl,Zl' AISO, X;—)?ZQ = (‘SZT)?)LZQ = HLZQ.
Thus, X[(Xw — X5ow') = Gy 51w — Hy 50w, Further, | X2 = (X7 X)y; = Hyy. This
gives the equivalence for updating ¢; . B

For ’U}(le), XZQ is given by (2;2)222)_1)’5;2 = (H22722)_1X;2. Then

5(:;2 (XU} —)?1(]1) = (Hzgyzg)_ljzgz (Xw — qul>
= (H>2,52)"" ((XTX)zz,zlw - ()N(Tff)zz,ﬂh)

= (Hz2,22) 7" (Gz251w — Hz21q1) -

This gives the equivalence for updating w(212) O

F PROOF OF THEOREM[3.1]

Proof. We use induction to prove the theorem. Since at ¢t = 1 equations Equation [3] Equation[dand
equations Equation[7} Equation [8]are identical, the base case is trivially true. Now we proceed with

the induction, assuming ﬁ)g“ = w(>t2+1 and ¢; = ¢;.

Using definition Equation [3]and Proposition [E-I] we can obtain the closed-form expression,

t o N R
i1 = Q <<X“’ ~ 2 6K 2 w; vaXt+1>>
[Xt]2
where Q is the RTN operator. Next we note that , which is used to compute wgz 41> implies that
Xw — Z;Zl X5 — Z;’V:t+1 wf))@ is orthogonal to the column space of X4 ;. This in turn

implies that (Xw — 22:1 ¢ X; — ij:t_H wj(-t))?j, X;4+1) = 0. Then we can compute,

t v N Ny
- ((Xw =21 GG~ D jian wg(')Xj’Xt+1>>
t+1 —

([Xeqa]]?
- N - - ~
_0 ((Xw - 2321 4 X; — Zj:tJrl wg('t)Xj + wt(i)le’ Xt+1>>
[X2

0 <<wt(21)~(t+17)zt+1>>
[X412
=Q (wﬁi)l) =0 (@91) = Gt+1,

where in the last two inequalities, we used the induction hypothesis w(;z 1= w(;z 1 and the update
rule (9). - -
(t+1) _ (t+1)

Next, we prove w5 = wx, 5. We first compute

t+1 N
1 ~ ~
t+1 .
w(2t+2) = argm1n§||Xw - quXj — Z Uij||2
vzet2 j=1 j=t+2
1 t N N
. > t) & t o t o
:argmln§||Xw—quXj - Z wg)X]—F(w,Eﬁl —qt+1)Xt+1 + Z (wg) —’Uj)XjH2.
Vztt2 j=1 j=t+1 j=t+2

19

Under review as a conference paper at ICLR 2026

Due to the update rule , Xw — 23:1 qj X = Zj\f: 1 w§t) X ; 1s orthogonal to the column span
of)?Zt.i'_l, hence to (wt(i)1 — 1) Xig1 + Z;\/:t+2(w(t) — yj))N(j. Then, we have

u&ﬂgfa@mmfmmu }j%X'f §jqwﬂxg+ qngg4+,§: (W —v)) X,
V22 j=t+1 j=t+2
N
t+1
—a@mmewwl—%Hx&H+-§: O o) X2 = oy,
U>t42 j=t+2

where we used the Pythagorean theorem, the induction hypothesis wgz 41 = wSQ +1» and the fact
Gt+1 = Gi+1- This completes the induction. O

G PROOF OF LEMMA 3.2

Throughout this section, we denote Hs;>; = XJ, X5, € RWTIHUX(N=t41) and gl =

(X1, X507t € RWV—tHD)X(N=t+1) * We will begin with a few preliminary lemmas before we
prove Lemma @ While some of these lemmas may already be known, we are not aware of any
rigorous proofs in the literature. Thus, we provide our proofs here for completeness.

Lemma G.1. Denote by [H>t 11 the first entry ofH>1t > and by [H>t silz21 € RN the first
column of HS zt,zt albeit with the first entry removed. Then

_ HZ s)20
(X—zrtJrlXZtJrl) 1X;t+1Xt = T
[H_t,>t]11
Proof. We denote r := [HS; ,Zt]ll and b = [H >t{>t]>2 1. Then () is just the first column of

HZ!_,, so we have H>; >, <) e1. Letus write H = {‘I’ ””””””””””” . By
>t,>t =tz XZt—',—lXt X>f+1X>t+1

comparing the two sides of H (E) = e we can observe rX>t+1Xt + X>t+1X>t+1b = 0, which
implies

(X;t+1XZt+1)71X;—t+1Xt Dl
and finishes the proof. O

The next lemma establishes how one can efficiently compute HS 1,541 from H Shap
Lemma G.2. H>t1+1 >i41 can be efficiently computed from HZ!., via
1
- -1
H>t+1 >t+1 (Hzt,zt - [H—l

>t Zt]ll

2}

We note that this is a simple rank-1 update followed by a submatrix slicing.

Proof. We first recall a more general inverse formula for 2 x 2 block matrix using the Schur com-
plement. Consider the 2 x 2 block matrix

A B
M_QjD)
When A is invertible, the inverse of M is given by

_ A '+ A71BS~ICA! —A-1BS!
1 _
M (_S- ICA 1 Sfl)a (19)

20

Under review as a conference paper at ICLR 2026

where S = D — CA~1 B is the Schur complement of A in M.

When A is a scalar ¢ and M is symmetric, i.e.
a b’
=0)

M-l (al +a?bTS57 —alesl>

this formula becomes

—a~15-1p S—1
where S =D —a b,
By the Sherman—Morrison formula (Horn and Johnson, |2012), we have
“1_g1_ S—ippTS1
a+bTS5-1p
1 a~25"1ppT 51
a1 4+a2pTS5- 1

. . -1 __ —1 1 _ —
Returning to our setting where M ™" = H,; -, and D™ H>t+1 >¢4+1> We have

1 —1 —1
HSp i = [HSpsil>2,52 — [[HZ) 2)>21[HS,)2

1
H>t >t] 11
s (b
[HS} 54]>2,>2 S [Hy sod>11[HSy 51,21 -
1
_<H>t1,2t [Hfl] [H2t1>t]>11[H>tl>t]1>1>
>t,>¢l11 >2,>2

O

Using the above lemma and Cholesky decomposition (Horn and Johnson, 2012), we can further
simplify the right hand side in Lemma|G.1] via the following lemma.

Lemma G.3. Let H™! = (X" X) Y and H=' = LL" be its Cholesky decomposition where L is
a lower triangular matrix, then

holds for allt € [N — 1].

Proof. We ﬁrst prove that given the Cholesky decomposmon H'=LLT, the Cholesky decompo-
sition of H>t >t 18 H>t >t = (Lzt3t)(Lst,>¢) " forallt € [N], where H>t o= (XL, X))
ROV—t+1)x(N=t+1)_

Let us proceed by induction. The base-case when ¢ = 1 holds by assumption, and we now
assume the result holds for t. By Lemma . the updated inverse Hessian H< >t $1,>t41
HZy sy — et HS, s 10 [HS 5 iz - Thus,
S LS ITRt - >2,>2
1

((th,zt)(th,zt)T — —((L>t,>t)11 - [Lot.>t]>1.1) (D>, >¢)11 - [L>t,>t]>1,1)T>

2 Zt,Z =z Z 2,2t 2
L3, >2,>2

I
—
—
h
V
M
i
~+~
SN~—
~
%
S
Y
|
=
vV
S
%
=
\%
A
-

th,zt];,l)» >2
=((Lztz0)2222)(Lzr21)22.22) |

=(Lzt41,5t41) (Lt41,5e41)

21

Under review as a conference paper at ICLR 2026

This finishes the induction and we have Cholesky decomposition H gtl,zt = (Lst.>¢)(L>g>¢) " for

all t € [N]. To finish the proof, let M = RR" be the Cholesky decomposition of any positive
definite matrix M. By a direct computation, the first column of M is R[R"]>11 = Ri1 - [R]>1.1

and the first entry M;; = R?,. Then we have 1\/11\21111 _ [Rl]ii ! which implies that >z 1 _ [RI];MQJ
In our case, we have H>t7>t = (L>t,>¢)(L>¢,>¢)" in the place of M = RRT. Thus,
[Hztlzt]>2 1 [L>t,>t]>21 L>ig14
[HZ, 5, [L>t,>t]11 Ly
O

With the above preliminary lemmas, now we are ready to prove Lemma

Proof of Lemma 3.2l Since we initialize with w(®) = w, ¢; = Q(w1) always holds. Thus the two

iterations produce the same ¢; and w()

w(Zt b resulting from the update rules Equation and Equation |[12{ match those following update
ruleuation and Equation[T4] In order to complete the induction, it suffices to show that
(14

and

. We proceed by induction. Assume at step ¢ that ¢, and

14) produce the same wgz 1> Which naturally results in the same g1 = Q(wgi)l)

To that end, we note that the optimization problem defined by Equation[I2]has a unique least-square
solution as X'>;1 has full column rank. The minimizer is given by

t t—1 t—1
w(>2+1 w(2t+1) + (wt() Qt)XtT+1:Xt
=wsrpr + (Wi = g) (XL Xoe) XD, X
By Lemma|G.I] we have

(XL X)X X = —

Lastly, Lemma|[G.3| gives us

[Hztl,Zt]ZQJ _ Lsiy1y
[HZ, . Lis

c RN —t
This matches A, in Equation [I4]and completes our induction. O

H PROOF OF COROLLARY [3.4]

Algorithm 2 OPTQ: Quantize a layer W given inverse Hessian H ! = (X T X)~!

1: for every w in W in parallel do

22 qg=0V > Initialize quantized neuron
33 H'=LLT > Perform Cholesky decomposition
4: fort=1to N do > Iterate over rows
5. g = Qwy)

6 Wt ¢ Wt — Ly g - (W — qi)/ L > Update remaining weights
7: end for

8: end for

9: return @)

For our final result of this paper, we observe that updates of wg 2 41 Vvia Equationcan be interpreted

by observing that the term (g; — w,gt_l))Xt represents the error introduced by quantizing w,gt_l).

The optimization problem Equation [I2]seeks to mitigate this error by adjusting future weights so as
to minimize the resulting distortion, measured in the ¢>-norm. Notably, this step does not explicitly

22

Under review as a conference paper at ICLR 2026

attempt to correct errors introduced by earlier quantization steps 1, ...,¢ — 1. However, by combin-
ing the proof of Theoremin the case when X = X with Lemma we arrive at Corollary
which provides a novel interpretation of OPTQ. It shows—perhaps unexpectedly—that Algorithm 2]
optimally corrects the camulative weight quantization error incurred over the first ¢ entries of w.

Proof. The proof is based on induction on both arguments of the trajectory. Let {(w;; R G Y

denote the trajectory generated by update rules Equation Equatlonl And let {(w>t Lq) WY

be the trajectory generated by Algorithm [2| Our goal is to prove (w(>t 2 Gt) = (wgt b, qt) for

t=1,...,N.

By Lemma the trajectory {(w(ztt_ 2 q¢) }I¥., generated using Cholesky decomposition in Algo-
rithm[2]can be equivalently regarded as generated from Equation[T1] Equation[T2] Thus, we will use
Equation , Equation as the update rule of w(ztt_ Y and g in the rest of our proof. In the base

case, wg) 1) = wg) 1) are both initialized with w and

N
41 = argmmeXw pX1 — Zw X2 = argmme(wl p)X1|? = Q(wy) = q1.
j=2
Thus (w(zl),ql) = (121(21),(}1) Assume (@ (>;),(jt) = (wgt 1),qt) holds true. Now we proceed to
prove (w(>tz)s+1» Gr+1) = (w(>2+1, Gt+1)-

Step 1: We first prove wg 1= wSQ 1- By construction,

N
0}y = argmin 2 Xw - Sox - Y il
U>t+1€RN +2 j=1 j=t+1
For an arbitrary v>;41 € RN-
t N
Xw—ZQij — Z Uij =
=1 j=t+1
t—1 N
. L (t—1 L (t—1 (t-1
(Xw—quXj—Zw]()Xj)—i— (wt())Xt + Z)—vj)X
j=1 j=t j=t+1

(03} (In)
Since w(>tt _:1) is a minimizer of Equation |18} the first term (I) € X< > and clearly the second term

(D) € span{ X, , X~ }. Thus, we have
2

t N
. 2 2
= 4% — Y vwX;| = I+ ||

j=1 j=t+1
Notice that (I) does not depend on v>;,1. Furthermore, wgg +11) and ¢; in (IT) can be replaced by

wgt +1) and g; respectively using our induction hypothesis. Thus,

N
W), = argmin ,”Xw ZqJX DI
- V341 ERN =2 j=1 j=t+1
. 1
= argmin__||(a] b)X, + Z —v)X;]?
U2t+1€RN7t j=t+1

= argmin_ (™) —)X, + Z 70— 0 X2

v>¢p1 ERN - 2 j=t+1

(1)
W>iqq-

23

Under review as a conference paper at ICLR 2026

Step 2: Now we prove §:11 = gi4+1. We just constructed
© 1 t N
Wyyy = argmijg_tiHXw - E 4 X; — E , Uij”Q-
v>¢41€ER j=1 j=t+1
This implies

N

t t
A~ ~(t ~
Xw-Y ¢X— > al'x; = Pyi, (Xw— ST @X5) € X
j=1

j=1 j=t+1

By construction, we have

t N
. 1 . N
qt+1 = argmm§||Xw - Z%‘Xj — X1 — Z w](‘t)Xj”2
geA j=1 j=t+2
t A N ~(t
_0 (Xig1, Xw — Zj:l 4 X; — Zj:t+2 wj()Xj>
([Xt
Then we can use Equation [20]to deduce
t A N . (t
(X1, Xw =300 1 GX5 — D500 wg(‘)Xj>
([Xe4a]?
t 4 N A (NG
_ (Xipg1, Xw — Zj:l 4 X5 — Zj:t-i—l w]()Xj + Xt+1wt(+)1>
[X2
t . N A (t .
X Xw =5 X - S X)) (X, X))
[X1 [|? [X1]|?

 (Xepn, X))
[Xeqa]?

A (t

= w§+)1
¢

= wt(+)1

(1) (®) ()

The last step w; /; = w;/; follows from what we just proved in Step 1 that wy;, | = wi;, .

we know
N ~(t t
G = Q")) = Q(wl?))) = o

This completes our induction.

24

(20)

Thus

	Introduction
	Background and Related Work
	Qronos
	Algorithm and Efficient Implementation
	Theoretical Interpretation and Intuition

	Experiments
	Weight-Only Quantization
	Weight-Activation Quantization
	Hardware Efficiency and Runtime Analysis

	Conclusions
	Pseudocode of Qronos
	Results on Additional Models
	Experiment Details for Quantization Transforms
	Grid scaling ablation study for 2 bits and fewer

	More on Why Qronos Outperforms OPTQ
	Preliminary Propositions
	Proof of Theorem 3.1
	Proof of Lemma 3.2
	Proof of Corollary 3.4

