
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QRONOS: CORRECTING THE PAST BY SHAPING THE
FUTURE... IN POST-TRAINING QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT
We introduce Qronos—a new post-training quantization algorithm that not only
explicitly corrects errors due to both weight and activation quantization, but also
corrects errors accumulated from previously quantized layers. Our iterative al-
gorithm is based on an interpretable and disciplined optimization framework that
surpasses existing data-driven approaches. At each step, Qronos alternates be-
tween error correction and diffusion via optimal update rules. Importantly, we
prove that Qronos admits an equivalent formulation that significantly improves
algorithmic efficiency; we use our discovery to reduce peak memory usage by
18× on Llama3 8B, and our scaling analysis shows a speedup of up to 13.8×
for a single-layer microbenchmark. We demonstrate compatibility with existing
transformation techniques such as Hadamard-based incoherence processing and
weight-activation scaling equalization, among others. We evaluate Qronos using
recent language models in the Llama3 and Qwen3 families; Qronos consistently
outperforms previous state-of-the-art adaptive rounding methods when quantizing
the weights, activations, and/or KV caches to 4 bits or fewer.

1 INTRODUCTION

Recent advances in post-training quantization (PTQ) have enabled the practical use of few-bit
weights and activations for large language model (LLM) inference, typically by focusing on one
or both aspects of the quantization pipeline, visualized in Figure 1. The first aspect involves mod-
ifying the weights and activations of a model to make them more amenable to quantization, often
through transformations that exploit invariances within the compute graph. The second aspect more
directly concerns the design of the quantization mapping itself; it involves using data to minimize
quantization error by either calibrating the quantization grid—defined by a bit width, scaling factor,
and zero point—or adaptively rounding the (potentially transformed) weights.

The latest innovations in PTQ, including Ashkboos et al. (2024); Liu et al. (2025), among many
others, are skewed towards proposing and improving transformations that address the quantization
challenges exacerbated in LLMs. These studies often only consider round-to-nearest (RTN) and
OPTQ (Frantar et al., 2023), also known as GPTQ. Meanwhile, our work explicitly focuses on
improving the rounding method while remaining compatible with these transformations to ultimately
yield quantized models that more closely resemble their high-precision counterparts.

Contributions. We introduce Qronos—a new post-training quantization algorithm that not only
explicitly corrects errors due to both weight and activation quantization, but also corrects errors
accumulated from previously quantized layers. We first present Qronos in a well-disciplined and
mathematically interpretable form, then rigorously derive an equivalent implementation. We show
our reductions significantly improve algorithm scaling, yielding an 18× reduction in peak memory
usage for Llama3 8B and up to a 13.8× improvement in algorithm runtime for a single-layer mi-
crobenchmark. As a non-trivial by-product, we address a theoretical blind spot of OPTQ by deriving
a novel interpretation (Corollary 3.3), which shows that its local greedy update rules in fact correct
the weight quantization error accumulated over all previous iterations. Our novel interpretation also
offers clear geometric insights: at each step, OPTQ performs an optimal grid selection followed by
an orthogonal projection onto a lower dimensional hyperplane spanned by future columns of the data
matrix. This is one of the first results on the geometry of LLM quantization, among a few concurrent
works (Birnick, 2025; Chen et al., 2025). As further discussed in Section 3, Qronos improves over
OPTQ by accounting for not only the input data, but also how it drifts as layers are quantized.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Stage 1: Transform Stage 2: Round

pre-trained
weights and activations

transformed
weights and activations

quantized
weights and output activations

(potentially quantized) input
activations from quantized model

Figure 1: The modern quantization pipeline is typically a two-stage process consisting of (1) trans-
formations that make weights and/or activations more amenable to quantization, followed by (2)
rounding functions that map weights and/or activations onto a quantization grid.

We empirically evaluate Qronos using the Llama3 model family (Grattafiori et al., 2024) and com-
pare against RTN, OPTQ, GPFQ (Lybrand and Saab, 2021) and GPTAQ (Li et al., 2025) while
demonstrating compatibility with notable transformations for both weight-only quantization and
weight-activation quantization. We provide additional results with Qwen3 models (Yang et al.,
2025) in Appendix A. To the best of our knowledge, this is the first work to isolate the impact of the
rounding algorithm through a carefully designed experimental setup that fixes the quantization grid
for each transformation method (or lack thereof). Our experiments show that Qronos consistently
yields marked improvement over existing rounding methods, as shown below in Table 1.

Table 1: Weight-only quantization of Llama3 models. We jointly apply Hadamard-based inco-
herence processing (Ashkboos et al., 2024) and weight magnitude reduction (Zhang et al., 2024) as
quantization transforms (stage 1 in Figure 1) and compare different rounding functions (stage 2).

WikiText2 (↓) 0-shot (↑)
1B 3B 8B 1B 3B 8B

BF16 - 8.9 7.1 5.9 59.4 67.5 74.4

2-bit

RTN 3e3 5e3 3e3 32.4 32.2 33.0
OPTQ 24.6 13.2 10.4 39.3 47.3 55.2
GPFQ 25.8 14.4 11.3 38.6 46.9 51.8
GPTAQ 22.0 12.2 9.6 39.8 49.2 54.8
Qronos 17.8 11.4 9.3 42.6 50.7 55.8

1.58-bit

RTN 5e5 4e4 9e4 32.3 32.9 32.2
OPTQ 2e2 52.0 43.3 32.7 32.5 34.9
GPFQ 1e2 51.3 35.8 32.4 32.6 33.4
GPTAQ 99.0 41.8 35.3 33.3 33.7 34.7
Qronos 39.3 22.8 18.0 34.8 36.5 37.8

2 BACKGROUND AND RELATED WORK

We first provide a short review of prior works that focus on the two key aspects of quantization we
have mentioned: transformation techniques and rounding schemes. Figure 1 illustrates how these
two aspects interact within the quantization pipeline.

Methods based on transformations. Many recent works propose transformations of weights and/or
activations to facilitate quantization. One line of work, initially proposed for MobileNets (Nagel
et al., 2019), exploits scaling invariance in neural network compute graphs to equalize the range or
precision of weights and activations before quantization. Recent variants leverage scale invariance
to redistribute quantization difficulty between weights and activations, with various proposals for
learning scales or ranges based on custom objective functions (Xiao et al., 2023; Shao et al., 2024;
Lin et al., 2024). Another line of work uses rotations within a compute graph to normalize weight
and activation distributions, initially leveraging random orthogonal rotations to promote weight in-
coherence (Chee et al., 2023). Recent variants employ efficient Hadamard rotations (Tseng et al.,
2024; Ashkboos et al., 2024), Stiefel manifold optimizations (Liu et al., 2025; Hu et al., 2025), and
rotation expansion techniques (Adepu et al., 2024; Franco et al., 2025a). Finally, distinct from these
invariance-based approaches, MagR (Zhang et al., 2024) directly minimizes the ℓ∞ norm of weights
via proximal gradient descent to reduce dynamic range before quantization. While we do not intro-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

duce novel transformations of this type in this work, we demonstrate that existing transformations
can be combined with our proposed method.

Methods based on rounding. The earliest line of work on rounding relies on continuous optimiza-
tion strategies based on gradient descent (Nagel et al., 2020). Although more recent methods exist
(Hubara et al., 2021; Li et al., 2021), they had not been commonly evaluated on LLMs due to their
computational cost until Cheng et al. (2024). Thus, early work on LLMs focused on grid scaling
or shifting to reduce weight quantization error; for example, LLM.int8() (Dettmers et al., 2022) and
ZeroQuant (Yao et al., 2022) directly round to nearest after heuristically selecting the quantization
grid (i.e., bit width, scaling factors, and zero points). The most relevant line of work to ours adopts
principled discrete optimization using greedy, gradient-free rounding strategies to select quantized
weights to minimize the layer-wise reconstruction error, and includes OBQ (Frantar and Alistarh,
2022), OPTQ (Frantar et al., 2023), GPFQ (Lybrand and Saab, 2021; Zhang et al., 2023) and GPTAQ
(Li et al., 2025). Qronos falls within this category.

Notation. Throughout the paper, the weight matrix of a layer is denoted by W ∈ RN×N ′
, where

each of the N ′ columns represents a N -dimensional channel. A denotes the discrete quantiza-
tion grid (or alphabet) used for weight quantization, and Q denotes the corresponding RTN op-
erator associated with A, given by Q(W) := s ·

(
clip

(⌈
W
s

⌋
+ z; minA,maxA

)
− z
)
. Here,

clip(x; amin, amax) = min{max{x, amin}, amax}, while the quantization step size (or scaling fac-
tor) is denoted by s and the quantization grid is shifted by an offset denoted by z, often referred
to as a zero point. We specify our selection of s, z ∈ RN ′

for the various settings in Section 4.
When quantizing W , we use X ∈ Rm×N to denote the input calibration dataset of m samples (e.g.,
tokens) for the layer, resulting from the original pre-trained model, and X̃ ∈ Rm×N to denote the
input calibration dataset coming from the partially quantized model. Given a vector v ∈ Rn, we use
vi for its i-th entry, v≥j for the subvector (vj , . . . , vn)⊤, and we define v≤j analogously. ∥v∥ is the
Euclidean norm of v. Given a matrix A ∈ Rm×n, we use Ai to denote its i-th column. We use A≥j

to denote the submatrix (Aj , . . . , An). Similarly, A≥2,≥2 denotes the submatrix of A obtained by
removing the first row and the first column. We use col(A) to denote the column space of A. PA

is the orthogonal projection onto col(A), and PA⊥ the projection onto its orthogonal complement.
Throughout this paper, all indices start from 1, following the standard mathematical convention.

Layer-wise reconstruction and error correction. Data-driven weight quantization methods typi-
cally aim to approximately minimize1 the layer-wise reconstruction error given by

min
Q∈AN×N′

∥XW −XQ∥2F . (1)

At an arbitrary layer, the goal is to compute a quantized weight matrix Q ∈ AN×N ′
that preserves

the output activations XW under quantization. In practice, however, quantizing weights in earlier
layers affects the input to subsequent layers. Let X̃ ∈ Rm×N denote the activation matrix produced
by a partially quantized model, where earlier layers have already been quantized. To account for the
propagation of quantization error, we use a modified formulation, instead of Equation 1, that targets
the mismatch between the original output XW and X̃Q by approximately solving

min
Q∈AN×N′

∥XW − X̃Q∥2F . (2)

The type of mismatch in this formulation is typically not addressed in the literature but arises natu-
rally in both weight-only and weight-activation quantization settings. For instance, in weight-only
quantization, X̃ arises as the output of previously quantized layers, while in weight-activation quan-
tization, one may encounterQ(X̃) rather than X̃ if activations are quantized. Throughout this paper,
we use the notation (X, X̃) to refer generically to mismatched input pairs.

3 QRONOS

We begin by describing the iterations associated with Qronos in Section 3.1. The iterations follow a
disciplined and mathematically interpretable framework that alternates between error correction and

1Equation 1 is an instance of integer least-squares problems, which are known to be NP-hard (Hassibi and
Vikalo, 2002). Thus, the best that one can hope for are approximate solutions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

diffusion using optimal update rules. We then prove that the explicit solutions to these minimization
problems admit an efficient implementation. In Section 3.2, we provide deeper intuition behind
Qronos in the context of previous state-of-the-art rounding algorithms, namely GPFQ and OPTQ.
We also derive a novel interpretation of OPTQ (Corollary 3.3), which shows that it corrects the
cumulative weight quantization error incurred over all the previous iterations. The proofs for all
results in Section 3 are provided in the appendix.

3.1 ALGORITHM AND EFFICIENT IMPLEMENTATION

Let us first note that Qronos can process each column w ∈ RN of W ∈ RN×N ′
independently and in

parallel to produce each column q ∈ AN of Q ∈ AN×N ′
. Ideally, the goal is to find q that minimizes

1
2∥Xw − X̃q∥2. Since this problem is NP-hard, we propose an efficient sequential algorithm to
approximate its solution. At each iteration, Qronos first selects the quantized weight that optimally
corrects the current approximation error, holding the remaining weights fixed; see Equation 3 below.
It then updates the unquantized weights to optimally compensate for the rounding error, a process
we refer to as error diffusion; see Equation 4.

Let w, without superscripts or subscripts, denote the original unquantized weights. After deter-
mining qt−1, let w

(t−1)
≥t represent the updated unquantized weights corresponding to indices t

through N . The full state of the algorithm after step t − 1 is thus given by the vector w(t−1) =

(q≤t−1, w
(t−1)
≥t), with the initialization w(0) = w. At step t, the algorithm alternates between se-

lecting qt through error correction and updating the remaining weights through error diffusion. The
update rules are given by

qt = argmin
p∈A

1

2
∥Xw −

t−1∑
j=1

qjX̃j − pX̃t −
N∑

j=t+1

w
(t−1)
j X̃j∥2, (3)

w
(t)
≥t+1 = argmin

(vt+1,...,vN)∈RN−t

1

2
∥Xw −

t∑
j=1

qjX̃j −
N∑

j=t+1

vjX̃j∥2. (4)

These optimization problems admit the following closed-form solutions (see Proposition E.1):

qt = Q


〈
Xw −

∑t−1
j=1 qjX̃j −

∑N
j=t+1 w

(t−1)
j X̃j , X̃t

〉
∥X̃t∥2

 , (5)

w
(t)
≥t+1 = X̃†

≥t+1

(
Xw − X̃≤tq≤t

)
. (6)

While these expressions follow directly from the optimization problems, computing qt and w
(t)
≥t+1

in this form is not computationally efficient and scales poorly, as we will show in Section 4.3. To
address this, we present Theorem 3.1, which shows that for all t ≥ 2, qt can be computed via
RTN, enabling a simpler implementation. In Lemma 3.2, we further show that the update for w(t)

≥t+1

also admits an efficient implementation using Cholesky decomposition to solve the associated least-
squares problem. Together, these results yield a practical and scalable implementation of Qronos.

Theorem 3.1. Let (qt, w
(t−1)
≥t) be the iterates generated by Equation 3 and Equation 4, with ini-

tialization w
(0)
≥1 = w. Define an alternative sequence (q̂t, ŵ

(t−1)
≥t) using the same initialization

ŵ
(0)
≥1 = w, by setting

q̂1 = argmin
p∈A

1

2
∥Xw − pX̃1 −

N∑
j=2

wjX̃j∥2, (7)

ŵ
(1)
≥2 = argmin

(v2,...,vN)∈RN−1

1

2
∥Xw − q̂1X̃1 −

N∑
j=2

vjX̃j∥2, (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and, for t = 2, . . . , N , define

q̂t = Q(ŵ(t−1)
t), (9)

ŵ
(t)
≥t+1 = argmin

(vt+1,...,vN)∈RN−t

1

2
∥(q̂t − ŵ

(t−1)
t)X̃t +

N∑
j=t+1

(vj − ŵ
(t−1)
j)X̃j∥2. (10)

Then for t = 1, . . . , N , the two procedures yield identical iterates: (qt, w
(t−1)
≥t) = (q̂t, ŵ

(t−1)
≥t).

Starting from the second iteration, Theorem 3.1 shows that the updates in Equation 3 and Equation 4
can be equivalently reformulated as Equation 9 and Equation 10, respectively. This reformulation
allows qt to be obtained via RTN for t ≥ 2, followed by an adjustment of the remaining weights us-
ing only the (potentially quantized) activation matrix X̃ to compensate for the one-step quantization
error (qt − w

(t−1)
t)X̃t.

To further accelerate this adjustment step, we now present Lemma 3.2, which establishes the equiv-
alence of the update in Equation 10 (for t ≥ 2) with a Cholesky-based least-squares solution2. For
notational simplicity, we slightly abuse the indexing by treating t = 2 as a ‘restart.’

Lemma 3.2 (Equivalence of Least-Squares Formulation and Cholesky Formulation). Assume that
H = X⊤X is invertible, and let H−1 = LL⊤ denote its Cholesky decomposition, with L lower
triangular. Then, starting from w(0) = w, the update rules

qt = Q(w(t−1)
t), (11)

w
(t)
≥t+1 = argmin

(vt+1,...,vN)∈RN−t

1

2
∥(qt − w

(t−1)
t)Xt +

N∑
j=t+1

(vj − w
(t−1)
j)Xj∥2 (12)

are equivalent to the Cholesky-based iterations

qt = Q(w(t−1)
t), (13)

w
(t)
≥t+1 = w

(t−1)
≥t+1 +∆(t), (14)

where

∆(t) = −(w(t−1)
t − qt)

L≥t+1, t

Ltt
∈ RN−t.

At the first iteration, both q1 and w
(1)
≥2 depend on X̃,X ∈ Rm×N , yielding memory requirements

of O(mN), often where m ≫ N ; for example, Llama3.1-8B requires over 30 GB just to store 128
samples of 2048-token sequences at float32, not including weight storage. We optimize this first
iteration to use only square matrices as below, where G = X̃TX ∈ RN×N and H = X̃T X̃ ∈
RN×N ; see Proposition E.2 for a justification.

q1 = Q

(
G1,≥1w −H1,≥2w

(0)
≥2

H11

)
(15)

w
(1)
≥2 = (H≥2,≥2)

−1 (G≥2,≥1w −H≥2,1q1) (16)

Note that calculating G and H does not require storing X̃,X , as one can sequentially accumulate
the outer products of each of the m samples. Thus, this square matrix formulation reduces peak
memory requirements of Qronos from O(mN) to O(N2), yielding an 18× reduction in the case
of Llama3.1-8B. We note that Colbert et al. (2024) similarly identify a memory optimization for
GPFQ, but use singular value decompositions that may not scale well with N .

This completes our reduction of the original updates (Equations 3 and 4) to the equivalent imple-
mentation given by Equations 13, 14, 15, and 16. We present a runtime analysis comparing this
efficient version with a direct evaluation of the closed-form solutionsin Section 4.3.

2We do not claim that Lemma 3.2 is novel, though we were unable to find it stated explicitly in the literature.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 THEORETICAL INTERPRETATION AND INTUITION

Theorem 3.1 and Lemma 3.2 connect the initial disciplined optimization formulation of Qronos to
our efficient implementation. These results guarantee that Qronos is both interpretable and scalable,
explicitly correcting error from the mismatched input pairs X and X̃ . Here, we provide deeper
intuition in the context of previous state-of-the-art rounding algorithms, namely GPFQ and OPTQ.

When quantizing w, GPFQ (Lybrand and Saab, 2021; Zhang et al., 2023; Zhang and Saab, 2023)
interprets Xw as the endpoint of the path

∑t
j=1 wjXj for t = 1, ..., N , and handles mismatched

inputs by aiming to match
∑t

j=1 wjXj and
∑t

j=1 qjX̃j for all t. More precisely, qt is selected as

argminp∈A ∥
∑t

j=1 wjXj −
∑t−1

j=1 qjX̃j − pX̃t∥2.

Although path following handles the case when X = X̃ well, additional considerations are re-
quired when X ̸= X̃ since, in such a case, the tails of the two paths generally do not align when∑N

i=t+1 wi(Xi − X̃i) ̸= 0. Qronos handles this drawback by adopting a natural remedy to replace

the unquantized weights wi by auxiliary weights w(t)
i , for i ≥ t+ 1, so that

t∑
i=1

qiX̃i +

N∑
i=t+1

w
(t)
i X̃i ≈ Xw =

N∑
i=1

wiXi.

OPTQ (Frantar et al., 2023) explores a similar weight update idea, but only in the case where
X = X̃ , by modifying the remaining unquantized weights after qt is selected. The Cholesky refor-
mulation used in Lemma 3.2 also resembles the key mechanism in OPTQ. In this way, the runtime
of Qronos scales similarly to OPTQ while also explicitly addressing the mismatch between X and
X̃; see Section 4.3 for details. This unexpected connection of Qronos to OPTQ also allows us to
derive a novel interpretation of OPTQ, which we now present.
Corollary 3.3. The OPTQ iterations, when applied to a single layer input X , are equivalent to

qt = argmin
p∈A

1

2
∥Xw −

t−1∑
j=1

qjXj − pXt −
N∑

j=t+1

w
(t−1)
j Xj∥2, (17)

w
(t)
≥t+1 = argmin

(vt+1,...,vN)∈RN−t

1

2
∥Xw −

t∑
j=1

qjXj −
N∑

j=t+1

vjXj∥2, (18)

with w
(0)
≥1 = w.

In other words, the updated weights and quantized weights at every iteration t that are produced by
OPTQ are identical to those produced by Equations 17 and 18. In particular, Equation 18 shows
that, at each step the updated weights w

(t)
≥t+1 indeed optimally correct for the errors produced by

the hitherto quantized sequence q1, ..., qt via orthogonal projection onto col(X≥t+1), as further
discussed in Appendix H.

Noticeably, OPTQ suffers from a systematic bias when the activation mismatch is non-negligible
as, unlike Qronos, it does not explicitly minimize the true discrepancy minq∈AN ∥Xw − X̃q∥2.
Consequently, as discussed in Appendix D, Qronos consistently reduces the relative error (measured
in ℓ2 norm) of block outputs compared to OPTQ, as illustrated in Figure 3.

4 EXPERIMENTS

The core contribution of this work is Qronos—our principled data-driven rounding algorithm that al-
ternates between (1) explicitly correcting quantization error due to both the weights and activations,
and (2) diffusing excess error into future weights yet to be quantized. Thus, our primary comparison
metric is preserving model quality in challenging quantization scenarios. We design our experiments
to isolate the impact of the rounding function (stage 2 in Figure 1), while varying the quantization
transforms (stage 1 in Figure 1), as further discussed in Sections 4.1 and 4.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Weight-only quantization of Llama3 foundation models. We individually apply various
quantization transforms (stage 1 in Figure 1) to isolate the impact of different rounding functions
(stage 2) when quantizing to 3 and 4 bits, respectively denoted W3 and W4

.
W3 W4

WikiText2 (↓) 0-shot (↑) WikiText2 (↓) 0-shot (↑)
Stage 1 Stage 2 1B 3B 8B 1B 3B 8B 1B 3B 8B 1B 3B 8B

BF16 - 8.9 7.1 5.9 59.4 67.5 74.4 8.9 7.1 5.9 59.4 67.5 74.4

None

RTN 2e4 1e4 3e4 32.3 32.4 32.6 18.0 10.1 8.4 49.1 60.8 67.4
OPTQ 42.5 13.8 11.4 37.5 48.1 53.8 10.4 7.8 6.5 54.3 63.4 71.0
GPFQ 35.3 13.4 11.1 35.7 49.9 53.5 10.4 7.8 6.5 56.0 65.2 71.2
GPTAQ 28.4 12.6 10.3 39.3 49.6 57.1 10.3 7.8 6.5 56.3 63.3 71.0
Qronos 22.8 11.3 9.3 39.5 53.1 56.7 10.1 7.6 6.4 56.2 64.5 72.0

Smooth
Quant

RTN 6e3 9e3 5e4 32.7 32.9 31.4 15.2 9.6 8.1 51.4 61.5 67.5
OPTQ 29.6 13.6 12.6 37.0 46.9 47.3 10.4 7.9 6.6 56.2 65.3 70.2
GPFQ 30.1 14.7 12.9 36.5 44.8 45.4 10.8 7.9 6.7 53.9 64.4 69.9
GPTAQ 25.0 12.9 11.4 37.9 46.8 49.1 10.4 7.9 6.6 55.2 63.1 71.2
Qronos 19.1 11.6 10.3 40.7 50.6 50.5 10.3 7.8 6.5 56.7 64.8 70.2

MagR

RTN 2e3 2e3 5e4 33.8 33.5 35.1 13.8 10.3 7.2 53.1 58.1 69.7
OPTQ 20.1 12.9 8.1 44.2 45.6 59.7 10.3 8.0 6.5 56.4 60.0 69.0
GPFQ 21.0 14.0 8.3 43.9 48.4 61.7 10.4 8.0 6.5 55.4 61.1 70.3
GPTAQ 18.0 12.4 8.0 46.8 51.2 60.7 10.3 8.0 6.4 56.2 60.0 70.3
Qronos 16.9 11.8 7.8 46.6 51.2 60.0 10.1 8.0 6.4 56.2 61.1 70.4

HIP

RTN 7e2 3e2 1e2 34.2 33.3 36.3 13.8 8.8 7.2 52.0 62.8 70.0
OPTQ 16.1 10.3 8.6 44.1 56.6 58.8 9.9 7.6 6.3 56.8 66.1 72.1
GPFQ 16.6 10.4 8.6 44.9 54.8 58.9 9.9 7.6 6.3 56.5 65.7 72.0
GPTAQ 14.7 9.9 8.3 46.5 56.9 59.3 9.8 7.5 6.3 57.8 66.0 72.4
Qronos 12.9 9.3 7.8 48.1 59.6 62.2 9.6 7.5 6.2 57.1 65.9 71.0

Table 3: Weight-activation quantization of Llama3 foundation models. We individually apply
various transformations (stage 1) to isolate the impact of different rounding functions (stage 2).

W4A4KV16 W4A4KV4
WikiText2 (↓) 0-shot (↑) WikiText2 (↓) 0-shot (↑)

Stage 1 Stage 2 1B 3B 8B 1B 3B 8B 1B 3B 8B 1B 3B 8B

BF16 - 8.9 7.1 5.9 59.4 67.5 74.4 8.9 7.1 5.9 59.4 67.5 74.4

QuaRot

RTN 22.0 12.6 9.6 45.4 55.0 62.6 41.8 22.0 15.9 41.5 49.8 57.4
OPTQ 14.3 9.8 8.0 50.4 59.9 66.7 19.8 14.3 10.3 45.8 56.2 64.1
GPFQ 13.6 9.3 7.6 50.9 60.9 67.6 22.0 14.7 11.4 43.3 53.9 59.8
GPTAQ 13.4 9.2 7.4 51.2 61.4 68.1 18.0 12.2 9.3 46.6 57.3 64.8
Qronos 13.2 9.1 7.4 50.9 61.5 68.9 17.8 11.6 9.3 47.8 57.3 64.8

SpinQuant

RTN 20.5 12.6 9.3 47.7 57.5 64.2 33.5 20.2 13.4 43.1 52.2 60.8
OPTQ 13.4 9.2 7.7 52.0 61.1 67.0 17.9 15.0 8.9 47.9 58.5 65.5
GPFQ 13.5 9.2 7.5 51.2 61.2 67.0 21.1 14.3 10.9 45.3 53.6 60.9
GPTAQ 12.9 9.0 7.4 51.8 61.1 68.3 17.1 NaN 8.7 49.4 NaN 65.3
Qronos 12.3 8.7 7.2 52.8 62.1 68.4 16.4 11.1 8.7 48.2 58.2 65.8

Models & Datasets. We conduct experiments on Llama3 (Grattafiori et al., 2024) models using
WikiText2 (Merity et al., 2016) for evaluation. We leverage the unmodified implementations made
publicly available via Huggingface (Wolf et al., 2020). We use the foundation model checkpoints for
our main results and provide some results with instruction fine-tuned checkpoints in Appendix A.
We provide additional results with Qwen3 foundation models (Yang et al., 2025) in Appendix A.
We use LightEval (Fourrier et al., 2023) to evaluate generalization via 5 zero-shot reasoning tasks:
ARC (challenge and easy) (Clark et al., 2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al.,
2020), and Winogrande (Sakaguchi et al., 2021), and report the normalized average accuracy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Setup. We implement Qronos in PyTorch (Paszke et al., 2019) using the Brevitas quantization li-
brary (Franco et al., 2025b), and quantize all models using a single AMD MI210 GPU with 64 GB
of memory. Unless otherwise specified, we construct our calibration dataset using 128 random se-
quences of 2048 tokens sampled from the WikiText2 dataset for all data-driven PTQ algorithms. We
compare Qronos against RTN and the unmodified Brevitas implementations of OPTQ and GPFQ,
also leveraging the unmodified Brevitas implementations of the various quantization transforms. We
provide quantization transform hyperparameter details in Appendix B, as well as ablation studies.

Baselines. Our baselines are RTN, OPTQ, GPFQ and GPTAQ. For OPTQ, we use the standard
dampened covariance matrix H̃ = H + λI , where λ is 1% of the average diagonal of H . We
similarly use a dampened covariance matrix for Qronos, but choose λ to be based on the maximum
singular value of H such that λ = α·σ1, which limits the condition number of H̃ to be less than α−1.
We select α = 1e−6 for weight-only quantization and α = 1e−3 for weight-activation quantization.
Additionally, we apply GPFQ, GPTAQ, and Qronos block-by-block; this corresponds to resetting
X̃ = X at the beginning of each block. Finally, we quantize weights in descending order of the
diagonals of H , as is now common practice (IST-DASLab, 2022; Franco et al., 2025b).

4.1 WEIGHT-ONLY QUANTIZATION

We first present state-of-the-art 2-bit and 1.58-bit results for weight-only PTQ on Llama3, control-
ling for the quantization transform and grid selection while varying the rounding function. We
quantize weights using the standard asymmetric weight quantizer (Frantar et al., 2023), where
scaling factor s and zero point z are defined per-channel on a scaled min-max grid such that
s = β · (max(w) − min(w))/(2b − 1) and z = β · min(w)/s. Following the analysis of Zhang
et al. (2024), we choose β = 0.8 when quantizing to 2 bits or fewer. We combine Hadamard-based
incoherence processing (HIP) (Tseng et al., 2024; Ashkboos et al., 2024) with weight magnitude
reduction (MagR) (Zhang et al., 2024) to jointly act as our quantization transform, as they are both
known to be effective at few-bit weight quantization (Chee et al., 2023; Adepu et al., 2024). We
present our results in Table 1, as well as the BF16 baselines, and highlight that Qronos consistently
outperforms existing rounding methods. For example, when compared to OPTQ, Qronos provides
a 1.4× reduction in WikiText2 perplexity and +3.3% increase in average zero-shot accuracy for
Llama3.2-1B at 2 bits, and a massive improvement in perplexity (4.9×) at 1.58 bits. We provide
additional 2-bit and 1.58-bit results with β = 1 in Appendix B.1.

Next, we present state-of-the-art 3-bit and 4-bit weight-only PTQ results (denoted W3 and W4,
respectively) while independently demonstrating compatibility with 3 notable quantization trans-
forms: SmoothQuant (Xiao et al., 2023), MagR, and HIP. Table 2 shows the results across three
models in the Llama3 family. For both W3 and W4, we use β = 1. Qronos consistently provides
higher quality quantized models than RTN, OPTQ, GPFQ and GPTAQ, as measured in both Wiki-
Text2 perplexity and average zero-shot accuracy. Consistent with emerging work on rotation-based
quantization transforms (Chee et al., 2023; Tseng et al., 2024), incoherence processing outperforms
other transforms, with HIP + Qronos providing the best overall results. Note that HIP + OPTQ is
similar in spirit to QuIP by Theorem 6 in (Chee et al., 2023), which equates LDLQ to OPTQ, with a
notable difference that QuIP proposed random orthogonal matrices instead of Hadamard matrices.

4.2 WEIGHT-ACTIVATION QUANTIZATION

We present 4-bit weight-activation quantization results with and without 4-bit KV cache quantiza-
tion (denoted W4A4KV16 and W4A4KV4, respectively) while demonstrating compatibility with
QuaRot (Ashkboos et al., 2024) and SpinQuant (Liu et al., 2025). Here, we quantize weights us-
ing the standard symmetric weight quantizer with per-channel scaling factors optimized via linear
search over the mean square error loss between the full-precision and quantized weights. We quan-
tize activations using the standard asymmetric activation quantizer with dynamic per-token scaling
factors and zero points defined on the min-max grid, as is common practice (Liu et al., 2025). When
quantizing KV caches, we similarly do so with per-token scaling and zero points.

Table 3 shows the results across three models in the Llama3 family. Qronos again consistently out-
performs RTN, OPTQ, GPFQ and GPTAQ3 as measured in both WikiText2 perplexity and average

3GPTAQ has been observed to be unstable in other reproductions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

100 250 400 550 700 850 1000
Input Features (N)

200

400

600

800

Re
la

tiv
e

Al
go

rit
hm

 R
un

tim
e GPFQ

OPTQ
Qronos (Base Ver.)
Qronos (Efficient Ver.)

(a) Runtime of Rounding Algorithm

100 250 400 550 700 850 1000
Input Features (N)

10

20

30

40

50

Re
la

tiv
e

Ov
er

al
l R

un
tim

e

(b) Runtime of Quantization Pipeline

Figure 2: We compare the runtime of (a) the rounding algorithm and (b) the overall quantization
pipeline as we scale the input features N , as measured on an AMD MI210. We average all measure-
ments over 3 seeds and normalize to the runtime of OPTQ where N = 32.

zero-shot accuracy. Consistent with emerging work on learned rotations (Liu et al., 2025; Hu et al.,
2025; Franco et al., 2025a), SpinQuant outperforms QuaRot, with SpinQuant + Qronos providing
the best overall results with and without KV cache quantization. We remark that our experiments
use per-token quantization for both the activations and KV caches, while Ashkboos et al. (2024) and
Liu et al. (2025) both use per-group scaling for KV cache quantization.

4.3 HARDWARE EFFICIENCY AND RUNTIME ANALYSIS

The hardware efficiency benefits of quantization (i.e., improved throughput, memory, power, and
area) are well-established (Jacob et al., 2018; Colbert et al., 2024). Since Qronos and other round-
ing algorithms leave the compute graph unaltered, they capture these benefits without introducing
inference overhead beyond the quantization transform. Prior works have already profiled inference
speedups and overheads; for example, Ashkboos et al. (2024) report up to 2.16× speedup for W4A4
Llama2 7B over FP16, with Hadamard transforms adding at most 7% overhead. Therefore, we focus
our runtime analysis on the quantization pipeline itself.

We perform our runtime analysis using a single linear layer as our microbenchmark. The linear layer
has K ∈ [32, 1024] inputs with K/4 outputs. Figure 2 shows how the runtime of OPTQ, GPFQ,
and Qronos scale with K. To highlight the benefits of our equivalent formulation, we implement a
base version of Qronos that uses the iterates for qt and w

(t)
≥t+1 from Equations 5 and 6. Note that via

Theorem 3.1 and Lemma 3.2, we significantly improve the runtime scaling of Qronos over the base
version to match that of OPTQ, with a 13.8× reduction in algorithm runtime and a 3.6× reduction
in overall runtime when K = 1024. Full details are included in Appendix C.

5 CONCLUSIONS

We introduce Qronos—a new backpropagation-free rounding algorithm that alternates between cor-
recting quantization error in both the weights and activations of previous layers and diffusing error
into future weights within the current layer. Qronos is based on an interpretable and disciplined
optimization framework, and it demonstrably surpasses existing data-driven approaches. Our im-
plementation exploits several optimizations that together yield orders of magnitude improvements
in memory and compute efficiency. Our experiments isolate the impact of the rounding function in
the quantization pipeline while varying transformations on a scaled min-max grid. Our results show
that Qronos consistently offers improvements over previous state-of-the-art methods when quantiz-
ing weights, activations, and/or KV caches to 4 bits or fewer. That said, our results are intentionally
limited to the scaled min-max quantization grid to focus our experiments on transformations and
rounding; we believe our results could be further improved by leveraging weight and activation dis-
tributions to design quantization grids that are more effective than the scaled min-max grid used in
this work, possibly with non-uniform grids via vector quantization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

H. Adepu, Z. Zeng, L. Zhang, and V. Singh. FrameQuant: flexible low-bit quantization for trans-
formers. In Proceedings of the 41st International Conference on Machine Learning, pages 203–
227, 2024.

S. Ashkboos, A. Mohtashami, M. L. Croci, B. Li, P. Cameron, M. Jaggi, D. Alistarh, T. Hoefler, and
J. Hensman. QuaRot: Outlier-free 4-bit inference in rotated LLMs. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=dfqsW38v1X.

F. Barbero, A. Arroyo, X. Gu, C. Perivolaropoulos, M. Bronstein, P. Veličković, and R. Pascanu.
Why do llms attend to the first token? arXiv preprint arXiv:2504.02732, 2025.

J. Birnick. The lattice geometry of neural network quantization–a short equivalence proof of gptq
and babai’s algorithm. arXiv preprint arXiv:2508.01077, 2025.

Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. PIQA: Reasoning about physical commonsense in natural
language. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
7432–7439, 2020.

J. Chee, Y. Cai, V. Kuleshov, and C. M. De Sa. QuIP: 2-bit quantization of large language models
with guarantees. Advances in Neural Information Processing Systems, 36:4396–4429, 2023.

J. Chen, T. Hoefler, and D. Alistarh. The geometry of llm quantization: Gptq as babai’s nearest
plane algorithm. arXiv preprint arXiv:2507.18553, 2025.

W. Cheng, W. Zhang, H. Shen, Y. Cai, X. He, L. Kaokao, and Y. Liu. Optimize weight round-
ing via signed gradient descent for the quantization of llms. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pages 11332–11350, 2024.

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
you have solved question answering? Try ARC, the AI2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

I. Colbert, F. Grob, G. Franco, J. Zhang, and R. Saab. Accumulator-aware post-training quantization.
arXiv preprint arXiv:2409.17092, 2024.

T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer. GPT3. int8 (): 8-bit matrix multiplication
for transformers at scale. Advances in neural information processing systems, 35:30318–30332,
2022.

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. QLoRA: Efficient finetuning of quan-
tized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

C. Fourrier, N. Habib, T. Wolf, and L. Tunstall. LightEval: A lightweight framework for llm evalu-
ation, 2023. URL https://github.com/huggingface/lighteval.

G. Franco, P. Monteagudo-Lago, I. Colbert, N. Fraser, and M. Blott. Improving quantization with
post-training model expansion. arXiv preprint arXiv:2503.17513, 2025a.

G. Franco, A. Pappalardo, and N. J. Fraser. Xilinx/brevitas, 2025b. URL https://doi.org/
10.5281/zenodo.3333552.

E. Frantar and D. Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. OPTQ: Accurate quantization for generative
pre-trained transformers. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024.

10

https://openreview.net/forum?id=dfqsW38v1X
https://openreview.net/forum?id=dfqsW38v1X
https://github.com/huggingface/lighteval
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://openreview.net/forum?id=tcbBPnfwxS

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

B. Hassibi and H. Vikalo. On the expected complexity of integer least-squares problems. In 2002
IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 2, pages
II–1497. IEEE, 2002.

R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.

X. Hu, Y. Cheng, D. Yang, Z. Chen, Z. Xu, JiangyongYu, XUCHEN, Z. Yuan, Z. jiang, and S. Zhou.
OSTQuant: Refining large language model quantization with orthogonal and scaling transfor-
mations for better distribution fitting. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=rAcgDBdKnP.

I. Hubara, Y. Nahshan, Y. Hanani, R. Banner, and D. Soudry. Accurate post training quantization
with small calibration sets. In M. Meila and T. Zhang, editors, Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 4466–4475. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/hubara21a.html.

IST-DASLab. gptq. https://github.com/ist-daslab/gptq, 2022.

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko.
Quantization and training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

Y. Li, R. Gong, X. Tan, Y. Yang, P. Hu, Q. Zhang, F. Yu, W. Wang, and S. Gu. BRECQ: Push-
ing the limit of post-training quantization by block reconstruction. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
POWv6hDd9XH.

Y. Li, R. Yin, D. Lee, S. Xiao, and P. Panda. GPTAQ: Efficient finetuning-free quantization for
asymmetric calibration. arXiv preprint arXiv:2504.02692, 2025.

J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang, C. Gan, and S. Han.
Awq: Activation-aware weight quantization for on-device llm compression and acceleration. Pro-
ceedings of Machine Learning and Systems, 6:87–100, 2024.

Z. Liu, C. Zhao, I. Fedorov, B. Soran, D. Choudhary, R. Krishnamoorthi, V. Chandra, Y. Tian,
and T. Blankevoort. SpinQuant: LLM quantization with learned rotations. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=ogO6DGE6FZ.

E. Lybrand and R. Saab. A greedy algorithm for quantizing neural networks. Journal of Machine
Learning Research, 22(156):1–38, 2021.

S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Meta. Llama 3.2 1b. https://huggingface.co/meta-llama/Llama-3.2-1B, 2024.
Accessed: 2025-05-12.

M. Nagel, M. v. Baalen, T. Blankevoort, and M. Welling. Data-free quantization through weight
equalization and bias correction. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 1325–1334, 2019.

M. Nagel, R. A. Amjad, M. Van Baalen, C. Louizos, and T. Blankevoort. Up or down? adaptive
rounding for post-training quantization. In International conference on machine learning, pages
7197–7206. PMLR, 2020.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. PyTorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems, 32, 2019.

K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

11

https://openreview.net/forum?id=rAcgDBdKnP
https://proceedings.mlr.press/v139/hubara21a.html
https://proceedings.mlr.press/v139/hubara21a.html
https://github.com/ist-daslab/gptq
https://openreview.net/forum?id=POWv6hDd9XH
https://openreview.net/forum?id=POWv6hDd9XH
https://openreview.net/forum?id=ogO6DGE6FZ
https://openreview.net/forum?id=ogO6DGE6FZ
https://huggingface.co/meta-llama/Llama-3.2-1B

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

W. Shao, M. Chen, Z. Zhang, P. Xu, L. Zhao, Z. Li, K. Zhang, P. Gao, Y. Qiao, and P. Luo. Om-
niQuant: Omni-directionally calibrated quantization for large language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=8Wuvhh0LYW.

A. Tseng, J. Chee, Q. Sun, V. Kuleshov, and C. De Sa. QuIP#: Even better llm quantization with
hadamard incoherence and lattice codebooks. arXiv preprint arXiv:2402.04396, 2024.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
towicz, et al. Transformers: State-of-the-art natural language processing. In Proceedings of the
2020 conference on empirical methods in natural language processing: system demonstrations,
pages 38–45, 2020.

G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han. SmoothQuant: Accurate and efficient
post-training quantization for large language models. In International Conference on Machine
Learning, pages 38087–38099. PMLR, 2023.

A. Yang, A. Li, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Gao, C. Huang, C. Lv, et al. Qwen3
technical report. arXiv preprint arXiv:2505.09388, 2025.

Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He. Zeroquant: Effi-
cient and affordable post-training quantization for large-scale transformers. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural
Information Processing Systems, volume 35, pages 27168–27183. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf.

R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. HellaSwag: Can a machine really finish
your sentence? arXiv preprint arXiv:1905.07830, 2019.

A. Zhang, N. Wang, Y. Deng, X. Li, Z. Yang, and P. Yin. Magr: Weight magnitude re-
duction for enhancing post-training quantization. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural In-
formation Processing Systems, volume 37, pages 85109–85130. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/9a987c98a7f36cc83f9065df3ca4f9e0-Paper-Conference.pdf.

J. Zhang and R. Saab. SPFQ: A stochastic algorithm and its error analysis for neural network
quantization. arXiv preprint arXiv:2309.10975, 2023.

J. Zhang, Y. Zhou, and R. Saab. Post-training quantization for neural networks with provable guar-
antees. SIAM Journal on Mathematics of Data Science, 5(2):373–399, 2023.

12

https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=8Wuvhh0LYW
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9a987c98a7f36cc83f9065df3ca4f9e0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9a987c98a7f36cc83f9065df3ca4f9e0-Paper-Conference.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RESULTS ON ADDITIONAL MODELS

Our main results evaluate Llama3 foundation models. Here, we demonstrate that Qronos also main-
tains the quality of Qwen3 foundation models as well as instruction fine-tuned Llama3 models. We
again compare against RTN, OPTQ, GPFQ, and GPTAQ.

We present weight-only PTQ results with instruction fine-tuned Llama3 results at 3 and 4 bits in
Table 4. As in Section 4.1, we asymmetrically quantize weights to the scaled min-max grid with
β = 1 for both W3 and W4. We focus our instruction fine-tuned results on evaluating each round-
ing algorithm with and without Hadamard-based incoherence processing (HIP) as the quantization
transform. As in Section 4.1, we find that HIP + Qronos consistently provides the highest quality
quantized models relative to BF16 counterparts, as measured in both WikiText2 perplexity and zero-
shot accuracy. We then present weight-only PTQ results with Qwen3 foundation models in Table 5.
As in Section 4.1, we asymmetrically quantize weights to the scaled min-max grid with β = 0.9
for W3. We focus these results with and without Hadamard-based incoherence processing (HIP).
Again, we find HIP + Qronos consistently yields the highest quality quantized models relative to the
BF16 counterparts.

Table 4: Weight-only quantization of instruction fine-tuned Llama3 models. We apply
Hadamard-based incoherence processing (HIP) as our quantization transform (stage 1 in Figure 1)
to isolate the impact of different rounding functions (stage 2) when quantizing to 3 and 4 bits, re-
spectively denoted W3 and W4. We also evaluate no quantization transform (i.e., “None”).

W3 W4
WikiText2 (↓) 0-shot (↑) WikiText2 (↓) 0-shot (↑)

Stage 1 Stage 2 1B 3B 8B 1B 3B 8B 1B 3B 8B 1B 3B 8B

BF16 - 12.0 9.2 6.7 59.5 66.4 74.1 12.0 9.2 6.7 59.5 66.4 74.1

None

RTN 2e4 4e3 3e4 32.6 33.0 32.2 21.4 12.6 9.1 51.0 62.3 67.6
OPTQ 60.0 16.1 12.2 37.4 49.9 58.2 14.3 9.9 7.3 54.5 63.6 71.8
GPFQ 2e2 16.6 12.9 33.8 50.8 55.3 15.4 9.9 7.3 53.3 64.4 71.5
GPTAQ 52.0 14.9 11.4 37.4 49.8 57.5 13.8 9.9 7.3 55.5 63.1 71.2
Qronos 43.8 14.3 10.6 37.5 52.1 60.6 13.8 9.8 7.2 55.5 64.8 72.2

HIP

RTN 1e3 3e2 1e2 33.4 35.0 36.9 16.6 10.8 8.0 54.6 63.6 70.8
OPTQ 19.1 12.8 9.3 48.0 58.2 59.0 13.2 9.6 7.1 56.6 64.5 72.1
GPFQ 20.4 12.8 9.6 47.6 57.1 61.1 13.2 9.8 7.2 57.0 65.3 71.9
GPTAQ 18.0 12.2 9.1 49.2 57.4 63.2 12.9 9.8 7.1 56.9 63.9 72.7
Qronos 16.6 11.6 8.8 49.9 58.4 64.1 12.8 9.6 7.1 57.6 64.8 72.1

Table 5: Weight-only quantization of Qwen3 models to 3 bits with β = 0.9. We apply Hadamard-
based incoherence processing (HIP) as our quantization transform (stage 1 in Figure 1) to isolate the
impact of different rounding functions (stage 2) when quantizing to 3 bits.

WikiText2 (↓) 0-shot (↑)
Stage 1 Stage 2 1.7B 4B 8B 1.7B 4B 8B

BF16 - 8.6 7.3 6.5 63.9 70.1 73.6

None

RTN 3e5 82.0 3e3 32.9 45.3 37.1
OPTQ 37.5 10.4 8.8 35.7 57.2 61.7
GPFQ 1e2 10.8 9.3 33.0 56.3 58.9
GPTAQ 33.8 10.1 8.5 36.1 63.7 58.5
Qronos 33.0 9.5 8.3 36.0 59.9 61.5

HIP

RTN 1e3 26.3 30.1 35.1 50.8 50.3
OPTQ 10.8 8.8 7.6 54.4 64.4 67.6
GPFQ 11.4 9.1 7.9 52.7 61.6 62.2
GPTAQ 10.6 8.6 7.5 54.9 63.6 66.0
Qronos 10.1 8.4 7.4 57.2 63.5 68.0

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B EXPERIMENT DETAILS FOR QUANTIZATION TRANSFORMS

All experiments use WikiText2 as the calibration set, aside from SpinQuant, which uses C4. To pre-
process our calibration dataset, we ensure that the <bos> token always appears as the first token
in an input sequence as the recent study by Barbero et al. (2025) suggests removing <bos> during
inference may greatly reduce performance if models were trained with <bos> always appearing
at the first token; their analysis suggests the Llama3 family of models fits this category. Thus,
to quantize our models, we first load the pre-trained checkpoint, then pre-process the dataset(s),
then apply the quantization pipeline visualized in Figure 1. For Section 4.1, we intentionally select
SmoothQuant (Xiao et al., 2023), Hadamard-based incoherence processing (HIP) (Ashkboos et al.,
2024; Tseng et al., 2024), and MagR (Zhang et al., 2024) as they perform fundamentally different
transformations. For Section 4.2, we study QuaRot and SpinQuant due to their prevalence. Here, we
describe hyperparameters for the data-driven transforms—SmoothQuant, MagR, and SpinQuant.

SmoothQuant. When applying SmoothQuant, we do so before quantizing weights or activations.
In practice, SmoothQuant requires the selection of a hyperparameter to control the scaling optimiza-
tion criteria. We refer to the SmoothQuant hyperparameter as γ so as to not clash with our use of α
in Section 4; note that γ ∈ [0, 1]. In Table 6, we provide the results of a uniform grid search over γ
when quantizing Llama3.2-1B-Instruct to 4 bits using round-to-nearest (RTN). These results moti-
vate our decision to use γ = 0.3 in all our weight-only PTQ experiments that apply SmoothQuant.

Table 6: Impact of SmoothQuant’s γ on Llama3.2-1B-Instruct. We evaluate the impact of the
smoothing parameter γ on both WikiText2 perplexity and normalized average zero-shot accuracy
when quantizing Llama3.2-1B-Instruct to 4 bits using round-to-nearest (RTN).

γ 0.2 0.3 0.4 0.5 0.6 0.7 0.8

WikiText2 (↓) 24.6 18.6 18.9 21.4 87.0 4e2 3e4
0-shot (↑) 50.8 53.3 52.8 52.5 42.8 36.6 32.3

MagR. When applying MagR, we also do so before quantizing weights and activations. When
coupled with HIP, we do so after inserting rotations into the compute graph. In practice, MagR
requires tuning the ℓ∞ penalty; we refer to this hyperparameter as θ, again so as to not clash with
our use of α in Section 4. Zhang et al. (2024) tune θ to Llama2 models, settling on θ = 0.001
for their experiments. In Table 7, we provide new results for Llama3.2-1B-Instruct. These results
motivate our decision to use θ = 0.01 in all our weight-only PTQ experiments that apply MagR.

Table 7: Impact of MagR’s θ on Llama3.2-1B-Instruct. We evaluate the impact of the penalty
parameter θ on both WikiText2 perplexity and normalized average zero-shot accuracy when quan-
tizing Llama3.2-1B-Instruct to 4 bits using round-to-nearest (RTN).

θ 0.1 0.01 0.001 0.0001

WikiText2 (↓) 74.5 25.4 105.0 216.0
0-shot (↑) 44.2 53.0 44.7 42.6

SpinQuant. When applying SpinQuant, Liu et al. (2025) do so after activation (and KV cache)
quantization but before weight quantization using an 800-sample calibration dataset; their ablation
study demonstrates negligible degradation when using 128 samples. Thus, we employ Cayley SGD
on a network where only activations are quantized to optimize the learnable rotations for 100 itera-
tions using a calibration dataset constructed of 128 random samples from the C4 dataset.

B.1 GRID SCALING ABLATION STUDY FOR 2 BITS AND FEWER

In Section 4.1, we present weight-only PTQ results when quantizing to 2 bits or fewer on the scaled
min-max grid. Here, in Table 8, we provide additional results that demonstrate Qronos outperforms
other rounding algorithms on another choice of β. Recall that we jointly apply Hadamard-based
incoherence processing (HIP) and weight magnitude reduction (MagR) as quantization transforms

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

before each rounding algorithm. Our results highlight that β = 0.8 (see Table 1) is an overall better
choice for scaling the min-max grid in this setting, which is consistent with Zhang et al. (2024), and
that Qronos provides the best results on both grids at all bit widths and model sizes. Our results with
β = 1 also highlight that Qronos is more robust than GPTAQ when β is not carefully selected.

Table 8: Weight-only quantization of Llama3 models to 2 bits or fewer with β = 1. We jointly
apply HIP and MagR as quantization transforms (stage 1 in Figure 1) and compare different rounding
functions (stage 2) on the scaled min-max grid (see Section 4). Note that these results complement
Table 1, which presents results with β = 0.8.

WikiText2 (↓) 0-shot (↑)
1B 3B 8B 1B 3B 8B

BF16 - 8.9 7.1 5.9 59.4 67.5 74.4

2-bit

RTN 1e4 1e4 2e4 32.4 32.4 32.9
OPTQ 45.3 20.8 18.9 35.2 39.3 41.2
GPFQ 47.5 22.4 17.8 33.9 38.4 39.2
GPTAQ 33.8 18.0 16.4 36.3 40.7 41.3
Qronos 24.6 14.9 12.4 38.4 43.4 45.6

1.58-bit

RTN 2e5 3e5 6e5 32.0 32.6 32.1
OPTQ 5e3 4e2 3e2 32.5 32.4 32.2
GPFQ 6e2 7e2 5e2 31.2 32.5 32.7
GPTAQ 2e3 3e2 2e2 32.2 32.5 33.2
Qronos 79.5 48.3 34.8 32.9 32.8 34.3

C QRONOS RUNTIME ANALYSIS

We perform our runtime analysis using a single linear layer as our microbenchmark. We use a cali-
bration set of m =10,000 random data sampled from a normal K-dimensional Gaussian distribution.
The linear layer has K ∈ [32, 1024] inputs with K/4 outputs. Figure 2 shows how the runtime of
OPTQ, GPFQ, and Qronos scale with K, where (a) isolates the algorithm runtime and (b) aggre-
gates the quantization pipeline runtime. To highlight the benefits of our equivalent formulation, we
implement a base version of Qronos that uses the iterates for qt and w

(t)
≥t+1 from equations 5 and 6.

Note that via Theorem 3.1 and Lemma 3.2, we significantly improve the runtime scaling of Qronos
over the base version to match that of OPTQ, with a 13.8× reduction in algorithm runtime and a
3.6× reduction in overall runtime when K = 1024. Compared with OPTQ, which only needs to
collect X , GPFQ and Qronos require collecting both X̃ and X at each layer, which requires two for-
ward passes (with and without quantization) and increases the overall quantization pipeline runtime.
In practice, we observe that Qronos takes 2× longer to quantize Llama3.2-1B when compared to
OPTQ; however, from Meta (2024), quantization-aware training via QLoRA (Dettmers et al., 2023)
took 1,300 GPU hours for Llama3.2-1B, while Qronos took 45 minutes on average.

D MORE ON WHY QRONOS OUTPERFORMS OPTQ

Let W be the full-precision weights of a layer, and Q their quantized counterparts. Let X be the
input to the layer and let its (possibly quantized) counterpart be X̃; importantly, X̃ reflects both
activation quantization and the residual error propagated from previously quantized layers (possibly
from previous blocks). Let Y, Ỹ denote the respective outputs resulting from inputs X, X̃ .

For any single layer, OPTQ only attempts to minimize ∥X̃(W −Q)∥F , which ignores the mismatch
between X and X̃ . In contrast, Qronos attempts to minimize ∥XW − X̃Q∥F , which is the actual
discrepancy between the full-precision outputs and their quantized counterparts.

A simple triangle inequality intuitively explains the distinction between OPTQ and Qronos:

∥Y − Ỹ ∥F = ∥XW − X̃Q∥F ≤ ∥(X − X̃)W∥F + ∥X̃(W −Q)∥F .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Transformer Block Index

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e

Re
la

tiv
e

Er
ro

r

RTN
OPTQ
GPFQ
Qronos

Figure 3: We visualize the evolution of the average relative error over transformer blocks when
quantizing the Llama3 1B foundation model to 3 bits, further discussed in Appendix D.

While OPTQ only corrects the second term, Qronos corrects both terms. Thus, OPTQ only corrects
quantization error in the weights at a given layer while Qronos corrects not only quantization error
in both the weights and activations at a given layer, but also residual quantization error coming from
previous layers, possibly from previous blocks.

Furthermore, tuning the quantization grid (i.e., scaling factors and zeros points) cannot effectively
minimize our objective in Equation 2. As before, decomposing XW − X̃Q = [(X − X̃)W] +

[X̃(W −Q)] isolates two error sources. Tuning quantization grids of the current layer only adjusts
Q, and thus can affect only the second term, while the first term is untouched by any choice of
quantization grids. Hence, it cannot close the performance gap between OPTQ and Qronos.

To illustrate this, we empirically compare quantization error accumulation by measuring the relative
ℓ2 error, given by ∥Y − Ỹ ∥/∥Y ∥, after each transformer block in Llama3.2 1B when quantizing
weights to 3 bits, as in Section 4.1. Here, in Figure 3, we report the relative ℓ2 error averaged over
each token in our calibration dataset (i.e., 128 samples of 2048 tokens from WikiText2). Qronos
yields the lowest average relative calibration error for each block, with 16% and 13% improvement
over OPTQ and GPFQ, respectively, at the output of the final block.

E PRELIMINARY PROPOSITIONS

Proposition E.1. The update rule given by

qt = argmin
p∈A

1

2
∥Xw −

t−1∑
j=1

qjX̃j − pX̃t −
N∑

j=t+1

w
(t−1)
j X̃j∥2,

w
(t)
≥t+1 = argmin

(vt+1,...,vN)∈RN−t

1

2
∥Xw −

t∑
j=1

qjX̃j −
N∑

j=t+1

vjX̃j∥2.

has closed-form expressions

qt = Q

(
⟨Xw −

∑t−1
j=1 qjX̃j −

∑N
j=t+1 w

(t−1)
j X̃j , X̃t⟩

∥X̃t∥2

)
and

w
(t)
≥t+1 = X̃†

≥t+1

(
Xw − X̃≤tq≤t

)
.

Proof. For qt, the corresponding optimization objective function is a one-dimensional quadratic
function of p. Since minimizing a quadratic function over a discrete set A reduces to rounding its

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

real-valued minimizer, we compute the real-valued minimizer

⟨Xw −
∑t−1

j=1 qjX̃j −
∑N

j=t+1 w
(t−1)
j X̃j , X̃t⟩

∥X̃t∥2
.

Thus, we obtain the closed-form expression of qt,

qt = Q

(
⟨Xw −

∑t−1
j=1 qjX̃j −

∑N
j=t+1 w

(t−1)
j X̃j , X̃t⟩

∥X̃t∥2

)
,

where Q is the round-to-nearest operator.

For w(t)
≥t+1, the corresponding optimization problem is an unconstrained least-square problem in the

form of minv∈RN−t ∥Ax − b∥2, with A = X̃≥t+1 and b = Xw − X̃≤tq≤t. Thus, the minimizer is
given by A†b, which gives the desired closed-form expression.

Proposition E.2. The update rule given by

q1 = Q

(
X̃⊤

1 (Xw − X̃≥2w
(0)
≥2)

∥X̃1∥2

)
,

w
(1)
≥2 = X̃†

≥2

(
Xw − X̃1q1

)
is equivalent to

q1 = Q

(
G1,≥1w −H1,≥2w

(0)
≥2

H11

)
w

(1)
≥2 = (H≥2,≥2)

−1 (G≥2,≥1w −H≥2,1q1) ,

where G = X̃TX ∈ RN×N and H = X̃T X̃ ∈ RN×N .

Proof. For q1, we have X̃⊤
1 X = (X̃⊤X)1,≥1 = G1,≥1. Also, X̃⊤

1 X̃≥2 = (X̃⊤X̃)1,≥2 = H1,≥2.
Thus, X̃⊤

1 (Xw − X̃≥2w
(0)
≥2) = G1,≥1w −H1,≥2w

(0)
≥2 . Further, ∥X̃1∥2 = (X̃⊤X̃)11 = H11. This

gives the equivalence for updating q1.

For w(1)
≥2 , X̃≥2 is given by (X̃⊤

≥2X̃≥2)
−1X̃⊤

≥2 = (H≥2,≥2)
−1X̃⊤

≥2. Then

X̃†
≥2

(
Xw − X̃1q1

)
= (H≥2,≥2)

−1X̃⊤
≥2

(
Xw − X̃1q1

)
= (H≥2,≥2)

−1
(
(X̃⊤X)≥2,≥1w − (X̃⊤X̃)≥2,1q1

)
= (H≥2,≥2)

−1 (G≥2,≥1w −H≥2,1q1) .

This gives the equivalence for updating w
(1)
≥2.

F PROOF OF THEOREM 3.1

Proof. We use induction to prove the theorem. Since at t = 1 equations Equation 3, Equation 4 and
equations Equation 7, Equation 8 are identical, the base case is trivially true. Now we proceed with
the induction, assuming ŵ

(t)
≥t+1 = w

(t)
≥t+1 and q̂t = qt.

Using definition Equation 3 and Proposition E.1, we can obtain the closed-form expression,

qt+1 = Q

(
⟨Xw −

∑t
j=1 qjX̃j −

∑N
j=t+2 w

(t)
j X̃j , X̃t+1⟩

∥X̃t+1∥2

)
,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where Q is the RTN operator. Next we note that (4), which is used to compute w
(t)
≥t+1, implies that

Xw −
∑t

j=1 qjX̃j −
∑N

j=t+1 w
(t)
j X̃j is orthogonal to the column space of X̃≥t+1. This in turn

implies that ⟨Xw −
∑t

j=1 qjX̃j −
∑N

j=t+1 w
(t)
j X̃j , X̃t+1⟩ = 0. Then we can compute,

qt+1 = Q

(
⟨Xw −

∑t
j=1 qjX̃j −

∑N
j=t+2 w

(t)
j X̃j , X̃t+1⟩

∥X̃t+1∥2

)

= Q

(
⟨Xw −

∑t
j=1 qjX̃j −

∑N
j=t+1 w

(t)
j X̃j + w

(t)
t+1X̃t+1, X̃t+1⟩

∥X̃t+1∥2

)

= Q

(
⟨w(t)

t+1X̃t+1, X̃t+1⟩
∥X̃t+1∥2

)
= Q

(
w

(t)
t+1

)
= Q

(
ŵ

(t)
t+1

)
= q̂t+1,

where in the last two inequalities, we used the induction hypothesis ŵ(t)
≥t+1 = w

(t)
≥t+1 and the update

rule (9).

Next, we prove ŵ
(t+1)
≥t+2 = w

(t+1)
≥t+2. We first compute

w
(t+1)
≥t+2 = argmin

v≥t+2

1

2
∥Xw −

t+1∑
j=1

qjX̃j −
N∑

j=t+2

vjX̃j∥2

= argmin
v≥t+2

1

2
∥Xw −

t∑
j=1

qjX̃j −
N∑

j=t+1

w
(t)
j X̃j + (w

(t)
t+1 − qt+1)X̃t+1 +

N∑
j=t+2

(w
(t)
j − vj)X̃j∥2.

Due to the update rule (4), Xw −
∑t

j=1 qjX̃j −
∑N

j=t+1 w
(t)
j X̃j is orthogonal to the column span

of X̃≥t+1, hence to (w
(t)
t+1 − qt+1)X̃t+1 +

∑N
j=t+2(w

(t)
j − vj)X̃j . Then, we have

w
(t+1)
≥t+2 = argmin

v≥t+2

1

2
∥Xw −

t∑
j=1

qjX̃j −
N∑

j=t+1

w
(t)
j X̃j + (w

(t)
t+1 − qt+1)X̃t+1 +

N∑
j=t+2

(w
(t)
j − vj)X̃j∥2

= argmin
v≥t+2

1

2
∥(ŵ(t)

t+1 − q̂t+1)X̃t+1 +

N∑
j=t+2

(ŵ
(t)
j − vj)X̃j∥2 = ŵ

(t+1)
≥t+2,

where we used the Pythagorean theorem, the induction hypothesis ŵ
(t)
≥t+1 = w

(t)
≥t+1, and the fact

qt+1 = q̂t+1. This completes the induction.

G PROOF OF LEMMA 3.2

Throughout this section, we denote H≥t,≥t = X⊤
≥tX≥t ∈ R(N−t+1)×(N−t+1) and H−1

≥t,≥t =

(X⊤
≥tX≥t)

−1 ∈ R(N−t+1)×(N−t+1). We will begin with a few preliminary lemmas before we
prove Lemma 3.2. While some of these lemmas may already be known, we are not aware of any
rigorous proofs in the literature. Thus, we provide our proofs here for completeness.
Lemma G.1. Denote by [H−1

≥t,≥t]11 the first entry of H−1
≥t,≥t and by [H−1

≥t,≥t]≥2,1 ∈ RN−t the first
column of H−1

≥t,≥t albeit with the first entry removed. Then

(X⊤
≥t+1X≥t+1)

−1X⊤
≥t+1Xt = −

[H−1
≥t,≥t]≥2,1

[H−1
≥t,≥t]11

.

Proof. We denote r := [H−1
≥t,≥t]11 and b = [H−1

≥t,≥t]≥2,1. Then
(
r
b

)
is just the first column of

H−1
≥t,≥t, so we have H≥t,≥t

(
r
b

)
= e1. Let us write H =

[
X⊤

t Xt X⊤
t X≥t+1

X⊤
≥t+1Xt X⊤

≥t+1X≥t+1

]
. By

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

comparing the two sides of H
(
r
b

)
= e1 we can observe rX⊤

≥t+1Xt+X⊤
≥t+1X≥t+1b = 0, which

implies

(X⊤
≥t+1X≥t+1)

−1X⊤
≥t+1Xt = −

b

r
and finishes the proof.

The next lemma establishes how one can efficiently compute H−1
≥t+1,≥t+1 from H−1

≥t,≥t.

Lemma G.2. H−1
≥t+1,≥t+1 can be efficiently computed from H−1

≥t,≥t via

H−1
≥t+1,≥t+1 =

(
H−1

≥t,≥t −
1

[H−1
≥t,≥t]11

[H−1
≥t,≥t]≥1,1[H

−1
≥t,≥t]1,≥1

)
≥2,≥2

.

We note that this is a simple rank-1 update followed by a submatrix slicing.

Proof. We first recall a more general inverse formula for 2 × 2 block matrix using the Schur com-
plement. Consider the 2× 2 block matrix

M =

(
A B
C D

)
.

When A is invertible, the inverse of M is given by

M−1 =

(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
, (19)

where S = D − CA−1B is the Schur complement of A in M .

When A is a scalar a and M is symmetric, i.e.

M =

(
a b⊤

b D

)
,

this formula becomes

M−1 =

(
a−1 + a−2b⊤S−1b −a−1b⊤S−1

−a−1S−1b S−1

)
,

where S = D − a−1bb⊤.

By the Sherman–Morrison formula (Horn and Johnson, 2012), we have

D−1 = S−1 − S−1bb⊤S−1

a+ b⊤S−1b

= S−1 − a−2S−1bb⊤S−1

a−1 + a−2b⊤S−1b
.

Returning to our setting where M−1 = H−1
≥t,≥t and D−1 = H−1

≥t+1,≥t+1, we have

H−1
≥t+1,≥t+1 = [H−1

≥t,≥t]≥2,≥2 −
1

[H−1
≥t,≥t]11

[H−1
≥t,≥t]≥2,1[H

−1
≥t,≥t]1,≥2

= [H−1
≥t,≥t]≥2,≥2 −

1

[H−1
≥t,≥t]11

(
[H−1

≥t,≥t]≥1,1[H
−1
≥t,≥t]1,≥1

)
≥2,≥2

=

(
H−1

≥t,≥t −
1

[H−1
≥t,≥t]11

[H−1
≥t,≥t]≥1,1[H

−1
≥t,≥t]1,≥1

)
≥2,≥2

.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Using the above lemma and Cholesky decomposition (Horn and Johnson, 2012), we can further
simplify the right hand side in Lemma G.1 via the following lemma.

Lemma G.3. Let H−1 = (X⊤X)−1 and H−1 = LL⊤ be its Cholesky decomposition where L is
a lower triangular matrix, then

[H−1
≥t,≥t]≥2,1

[H−1
≥t,≥t]11

=
L≥t+1,t

Ltt
∈ RN−t

holds for all t ∈ [N − 1].

Proof. We first prove that given the Cholesky decomposition H−1 = LL⊤, the Cholesky decompo-
sition of H−1

≥t,≥t is H−1
≥t,≥t = (L≥t,≥t)(L≥t,≥t)

⊤ for all t ∈ [N], where H−1
≥t,≥t = (X⊤

≥tX≥t)
−1 ∈

R(N−t+1)×(N−t+1).

Let us proceed by induction. The base-case when t = 1 holds by assumption, and we now
assume the result holds for t. By Lemma G.2, the updated inverse Hessian H−1

≥t+1,≥t+1 =(
H−1

≥t,≥t −
1

[H−1
≥t,≥t

]11
[H−1

≥t,≥t]≥1,1[H
−1
≥t,≥t]1,≥1

)
≥2,≥2

. Thus,

(
(L≥t,≥t)(L≥t,≥t)

⊤ − 1

L2
tt

((L≥t,≥t)11 · [L≥t,≥t]≥1,1)((L≥t,≥t)11 · [L≥t,≥t]≥1,1)
⊤
)
≥2,≥2

=
(
(L≥t,≥t)(L≥t,≥t)

⊤ − [L≥t,≥t]≥1,1[L≥t,≥t]
⊤
≥1,1

)
≥2,≥2

=((L≥t,≥t)≥2,≥2)((L≥t,≥t)≥2,≥2)
⊤

=(L≥t+1,≥t+1)(L≥t+1,≥t+1)
⊤

This finishes the induction and we have Cholesky decomposition H−1
≥t,≥t = (L≥t,≥t)(L≥t,≥t)

⊤ for
all t ∈ [N]. To finish the proof, let M = RR⊤ be the Cholesky decomposition of any positive
definite matrix M . By a direct computation, the first column of M is R[R⊤]≥1,1 = R11 · [R]≥1,1

and the first entry M11 = R2
11. Then we have M≥1,1

M11
=

[R]≥1,1

R11
which implies that M≥2,1

M11
=

[R]≥2,1

R11
.

In our case, we have H−1
≥t,≥t = (L≥t,≥t)(L≥t,≥t)

⊤ in the place of M = RR⊤. Thus,

[H−1
≥t,≥t]≥2,1

[H−1
≥t,≥t]11

=
[L≥t,≥t]≥2,1

[L≥t,≥t]11
=

L≥t+1,t

Ltt
.

With the above preliminary lemmas, now we are ready to prove Lemma 3.2

Proof of Lemma 3.2. Since we initialize with w(0) = w, q1 = Q(w1) always holds. Thus the two
iterations produce the same q1 and w

(0)
≥1 . We proceed by induction. Assume at step t that qt and

w
(t−1)
≥t resulting from the update rules Equation 11 and Equation 12 match those following update

rules Equation 13 and Equation 14. In order to complete the induction, it suffices to show that (12)
and (14) produce the same w

(t)
≥t+1, which naturally results in the same qt+1 = Q(w(t)

t+1).

To that end, we note that the optimization problem defined by Equation 12 has a unique least-square
solution as X≥t+1 has full column rank. The minimizer is given by

w
(t)
≥t+1 = w

(t−1)
≥t+1 + (w

(t−1)
t − qt)X

†
t+1:Xt

= w≥t+1 + (w
(t−1)
t − qt)(X

⊤
≥t+1X≥t+1)

−1X⊤
≥t+1Xt

By Lemma G.1, we have

(X⊤
≥t+1X≥t+1)

−1X⊤
≥t+1Xt = −

[H−1
≥t,≥t]≥2,1

[H−1
≥t,≥t]11

.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Lastly, Lemma G.3 gives us

[H−1
≥t,≥t]≥2,1

[H−1
≥t,≥t]11

=
L≥t+1,t

Ltt
∈ RN−t.

This matches ∆t+1 in Equation 14 and completes our induction.

H PROOF OF COROLLARY 3.3

Algorithm 1 OPTQ: Quantize a layer W given inverse Hessian H−1 = (X⊤X)−1.

1: for every w in W in parallel do
2: q = 0N ▷ Initialize quantized neuron
3: H−1 = LL⊤ ▷ Perform Cholesky decomposition
4: for t = 1 to N do ▷ Iterate over rows
5: qt = Q(wt)
6: w≥t ← w≥t − L≥t,t · (wt − qt)/Ltt ▷ Update remaining weights
7: end for
8: end for
9: return Q

For our final result of this paper, we observe that updates of w(t)
≥t+1 via Equation 12 can be interpreted

by observing that the term (qt − w
(t−1)
t)Xt represents the error introduced by quantizing w

(t−1)
t .

The optimization problem Equation 12 seeks to mitigate this error by adjusting future weights so as
to minimize the resulting distortion, measured in the ℓ2-norm. Notably, this step does not explicitly
attempt to correct errors introduced by earlier quantization steps 1, . . . , t− 1. However, by combin-
ing the proof of Theorem 3.1 in the case when X = X̃ with Lemma 3.2, we arrive at Corollary 3.3,
which provides a novel interpretation of OPTQ. It shows—perhaps unexpectedly—that Algorithm 1
optimally corrects the cumulative weight quantization error incurred over the first t entries of w.

Proof. The proof is based on induction on both arguments of the trajectory. Let {(ŵ(t−1)
≥t , q̂t)}Nt=1

denote the trajectory generated by update rules Equation 17, Equation 18. And let {(w(t−1)
≥t , qt)}Nt=1

be the trajectory generated by Algorithm 1. Our goal is to prove (ŵ
(t−1)
≥t , q̂t) = (w

(t−1)
≥t , qt) for

t = 1, . . . , N .

By Lemma 3.2, the trajectory {(w(t−1)
≥t , qt)}Nt=1 generated using Cholesky decomposition in Algo-

rithm 1 can be equivalently regarded as generated from Equation 11, Equation 12. Thus, we will use
Equation 11, Equation 12 as the update rule of w(t−1)

≥t and qt in the rest of our proof. In the base

case, ŵ(0)
≥1 = w

(0)
≥1 are both initialized with w and

q̂1 = argmin
p∈A

1

2
∥Xw − pX1 −

N∑
j=2

w
(0)
j Xj∥2 = argmin

p∈A

1

2
∥(w1 − p)X1∥2 = Q(w1) = q1.

Thus (w(0)
≥1, q1) = (ŵ

(0)
≥1, q̂1). Assume (ŵ

(t−1)
≥t , q̂t) = (w

(t−1)
≥t , qt) holds true. Now we proceed to

prove (ŵ
(t)
≥t+1, q̂t+1) = (w

(t)
≥t+1, qt+1).

Step 1: We first prove ŵ
(t)
≥t+1 = w

(t)
≥t+1. By construction,

ŵ
(t)
≥t+1 = argmin

v≥t+1∈RN−t

1

2
∥Xw −

t∑
j=1

q̂jXj −
N∑

j=t+1

vjXj∥2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

For an arbitrary v≥t+1 ∈ RN−t,

Xw −
t∑

j=1

q̂jXj −
N∑

j=t+1

vjXj =

(Xw −
t−1∑
j=1

q̂jXj −
N∑
j=t

ŵ
(t−1)
j Xj)︸ ︷︷ ︸

(I)

+

(ŵ
(t−1)
t − q̂t)Xt +

N∑
j=t+1

(ŵ
(t−1)
j − vj)Xj


︸ ︷︷ ︸

(II)

.

Since ŵ
(t−1)
≥t+1 is a minimizer of Equation 18, the first term (I) ∈ X⊥

≥t, and clearly the second term
(II) ∈ span{Xt,, XN}. Thus, we have∥∥∥∥∥∥Xw −

t∑
j=1

q̂jXj −
N∑

j=t+1

vjXj

∥∥∥∥∥∥
2

= ∥(I)∥2 + ∥(II)∥2 .

Notice that (I) does not depend on v≥t+1. Furthermore, ŵ(t−1)
≥t+1 and q̂t in (II) can be replaced by

w
(t−1)
≥t+1 and qt respectively using our induction hypothesis. Thus,

ŵ
(t)
≥t+1 = argmin

v≥t+1∈RN−t

1

2
∥Xw −

t∑
j=1

q̂jXj −
N∑

j=t+1

vjXj∥2

= argmin
v≥t+1∈RN−t

1

2
∥(ŵ(t−1)

t − q̂t)Xt +

N∑
j=t+1

(ŵ
(t−1)
j − vj)Xj∥2

= argmin
v≥t+1∈RN−t

1

2
∥(w(t−1)

t − qt)Xt +

N∑
j=t+1

(w
(t−1)
j − vj)Xj∥2

= w
(t)
≥t+1.

Step 2: Now we prove q̂t+1 = qt+1. We just constructed

ŵ
(t)
≥t+1 = argmin

v≥t+1∈RN−t

1

2
∥Xw −

t∑
j=1

q̂jXj −
N∑

j=t+1

vjXj∥2.

This implies

Xw −
t∑

j=1

q̂jXj −
N∑

j=t+1

ŵ
(t)
j Xj = PX⊥

≥t+1
(Xw −

t∑
j=1

q̂jXj) ∈ X⊥
≥t+1. (20)

By construction, we have

q̂t+1 = argmin
q∈A

1

2
∥Xw −

t∑
j=1

q̂jXj − qXt+1 −
N∑

j=t+2

ŵ
(t)
j Xj∥2

= Q

(
⟨Xt+1, Xw −

∑t
j=1 q̂jXj −

∑N
j=t+2 ŵ

(t)
j Xj⟩

∥Xt+1∥2

)
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Then we can use Equation 20 to deduce

⟨Xt+1, Xw −
∑t

j=1 q̂jXj −
∑N

j=t+2 ŵ
(t)
j Xj⟩

∥Xt+1∥2

=
⟨Xt+1, Xw −

∑t
j=1 q̂jXj −

∑N
j=t+1 ŵ

(t)
j Xj +Xt+1ŵ

(t)
t+1⟩

∥Xt+1∥2

=
⟨Xt+1, Xw −

∑t
j=1 q̂jXj −

∑N
j=t+1 ŵ

(t)
j Xj⟩

∥Xt+1∥2
+
⟨Xt+1, Xt+1ŵ

(t)
t+1⟩

∥Xt+1∥2

=
⟨Xt+1, Xt+1ŵ

(t)
t+1⟩

∥Xt+1∥2

= ŵ
(t)
t+1

= w
(t)
t+1.

The last step ŵ
(t)
t+1 = w

(t)
t+1 follows from what we just proved in Step 1 that ŵ(t)

≥t+1 = w
(t)
≥t+1. Thus

we know

q̂t+1 = Q(ŵ(t)
t+1) = Q(w

(t)
t+1) = qt+1.

This completes our induction.

23

	Introduction
	Background and Related Work
	Qronos
	Algorithm and Efficient Implementation
	Theoretical Interpretation and Intuition

	Experiments
	Weight-Only Quantization
	Weight-Activation Quantization
	Hardware Efficiency and Runtime Analysis

	Conclusions
	Results on Additional Models
	Experiment Details for Quantization Transforms
	Grid scaling ablation study for 2 bits and fewer

	Qronos Runtime Analysis
	More on Why Qronos Outperforms OPTQ
	Preliminary Propositions
	Proof of Theorem 3.1
	Proof of Lemma 3.2
	Proof of Corollary 3.3

