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ABSTRACT

We introduce Qronos—a new post-training quantization algorithm that not only
explicitly corrects errors due to both weight and activation quantization, but also
corrects errors accumulated from previously quantized layers. Our iterative al-
gorithm is based on an interpretable and disciplined optimization framework that
surpasses existing data-driven approaches. At each step, Qronos alternates be-
tween error correction and diffusion via optimal update rules. Importantly, we
prove that Qronos admits an equivalent formulation that significantly improves
algorithmic efficiency; we use our discovery to reduce peak memory usage by
18× on Llama3 8B, and our scaling analysis shows a speedup of up to 13.8×
for a single-layer microbenchmark. We demonstrate compatibility with existing
transformation techniques such as Hadamard-based incoherence processing and
weight-activation scaling equalization, among others. We evaluate Qronos using
recent language models in the Llama3 and Qwen3 families; Qronos consistently
outperforms previous state-of-the-art adaptive rounding methods when quantizing
the weights, activations, and/or KV caches to 4 bits or fewer.

1 INTRODUCTION

Recent advances in post-training quantization (PTQ) have enabled the practical use of few-bit
weights and activations for large language model (LLM) inference, typically by focusing on one
or both aspects of the quantization pipeline, visualized in Figure 1. The first aspect involves mod-
ifying the weights and activations of a model to make them more amenable to quantization, often
through transformations that exploit invariances within the compute graph. The second aspect more
directly concerns the design of the quantization mapping itself. It involves using data to minimize
quantization error by either calibrating the quantization grid, which is defined by a bit width, scaling
factor, and zero point, or adaptively rounding the (potentially transformed) weights.

The latest innovations in PTQ, including Ashkboos et al. (2024); Liu et al. (2025), among many
others, are skewed towards proposing and improving transformations that address the quantization
challenges exacerbated in LLMs. These studies often only consider round-to-nearest (RTN) and
OPTQ (Frantar et al., 2023), also known as GPTQ. Meanwhile, our work explicitly focuses on
improving the rounding method while remaining compatible with these transformations.

Contributions. We introduce Qronos as a new scalable algorithm that not only explicitly corrects
quantization error in both the weights and activations, but also residual quantization error coming
from previously quantized layers. In contrast, OPTQ can only correct weight quantization error. We
derive Qronos in a well-disciplined and mathematically interpretable form, then rigorously derive an
equivalent efficient implementation (see Theorem 3.1) that significantly improves algorithm scaling
(see Remark 3.3 and Section 4.3). As a non-trivial by-product, we address a theoretical blind spot
of OPTQ by deriving a novel interpretation (Corollary 3.4), which shows that its seemingly local
greedy update rules in fact correct the weight quantization error accumulated over all previous iter-
ations. Our novel interpretation also offers clear geometric insights: at each step, OPTQ performs
an optimal grid selection followed by an orthogonal projection onto a lower dimensional hyperplane
spanned by future columns of the data matrix. This is one of the first results on the geometry of
LLM quantization, among a few concurrent works (Birnick, 2025; Chen et al., 2025).

We evaluate Qronos on the Llama3 (Grattafiori et al., 2024) and Qwen3 (Yang et al., 2025) model
families, and compare against RTN, OPTQ, GPFQ (Lybrand and Saab, 2021) and GPTAQ (Li et al.,
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Stage 1: Transform Stage 2: Round

pre-trained
weights and activations

transformed
weights and activations

quantized
weights and output activations

(potentially quantized) input
activations from quantized model

Figure 1: The modern quantization pipeline is typically a two-stage process consisting of (1) trans-
formations that make weights and/or activations more amenable to quantization, followed by (2)
rounding functions that map weights and/or activations onto a quantization grid.

2025) while demonstrating compatibility with notable transformations for both weight-only quan-
tization and weight-activation quantization. To our knowledge, this is the first work to isolate the
impact of the rounding algorithm through a carefully designed experimental setup that fixes the
quantization grid for each transformation method (or lack thereof). Our experiments show that
Qronos consistently yields marked improvement over existing methods, as highlighted in Table 1.

Table 1: Weight-only quantization of Llama3 foundation models. We jointly apply Hadamard-
based incoherence processing (Ashkboos et al., 2024) and MagR (Zhang et al., 2024) as quantization
transforms (stage 1 in Figure 1) and compare different rounding methods (stage 2).

WikiText2 (↓) 0-shot (↑)
1B 3B 8B 1B 3B 8B

BF16 - 8.9 7.1 5.9 59.4 67.5 74.4

2-bit

RTN 3e3 5e3 3e3 32.4 32.2 33.0
OPTQ 24.6 13.2 10.4 39.3 47.3 55.2
GPFQ 25.8 14.4 11.3 38.6 46.9 51.8
GPTAQ 22.0 12.2 9.6 39.8 49.2 54.8
Qronos 17.8 11.4 9.3 42.6 50.7 55.8

1.58-bit

RTN 5e5 4e4 9e4 32.3 32.9 32.2
OPTQ 2e2 52.0 43.3 32.7 32.5 34.9
GPFQ 1e2 51.3 35.8 32.4 32.6 33.4
GPTAQ 99.0 41.8 35.3 33.3 33.7 34.7
Qronos 39.3 22.8 18.0 34.8 36.5 37.8

2 BACKGROUND AND RELATED WORK

We first provide a short review of prior works that focus on the two key aspects of quantization we
have mentioned: transformation techniques and rounding schemes. Figure 1 illustrates how these
two aspects interact within the quantization pipeline.

Methods based on transformations. Many recent works propose transformations of weights and/or
activations to facilitate quantization. One line of work, initially proposed for MobileNets (Nagel
et al., 2019), exploits scaling invariance in neural network compute graphs to equalize the range or
precision of weights and activations before quantization. Recent variants leverage scale invariance
to redistribute quantization difficulty between weights and activations, with various proposals for
learning scales or ranges based on custom objective functions (Xiao et al., 2023; Shao et al., 2024;
Lin et al., 2024). Another line of work uses rotations within a compute graph to normalize weight
and activation distributions, initially leveraging random orthogonal rotations to promote weight in-
coherence (Chee et al., 2023). Recent variants employ efficient Hadamard rotations (Tseng et al.,
2024; Ashkboos et al., 2024), Stiefel manifold optimizations (Liu et al., 2025; Hu et al., 2025), and
rotation expansion techniques (Adepu et al., 2024; Franco et al., 2025a). Finally, distinct from these
invariance-based approaches, MagR (Zhang et al., 2024) directly minimizes the ℓ∞ norm of weights
via proximal gradient descent to reduce dynamic range before quantization. While we do not intro-
duce novel transformations of this type in this work, we demonstrate that existing transformations
can be combined with our proposed method.
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Methods based on rounding. The earliest line of work on rounding relies on continuous optimiza-
tion strategies based on gradient descent (Nagel et al., 2020). Although more recent methods exist
(Hubara et al., 2021; Li et al., 2021), they had not been commonly evaluated on LLMs due to their
computational cost until Cheng et al. (2024). Thus, early work on LLMs focused on grid scaling
or shifting to reduce weight quantization error; for example, LLM.int8() (Dettmers et al., 2022) and
ZeroQuant (Yao et al., 2022) directly round to nearest after heuristically selecting the quantization
grid (i.e., bit width, scaling factors, and zero points). The most relevant line of work to ours adopts
principled discrete optimization using greedy, gradient-free rounding strategies to select quantized
weights to minimize the layer-wise reconstruction error, and includes OBQ (Frantar and Alistarh,
2022), OPTQ (Frantar et al., 2023), GPFQ (Lybrand and Saab, 2021; Zhang et al., 2023) and GPTAQ
(Li et al., 2025). Qronos falls within this category.

Notation. Throughout the paper, the weight matrix of a layer is denoted by W ∈ RN×N ′
, where

each of the N ′ columns represents a N -dimensional channel. A denotes the discrete quantiza-
tion grid (or alphabet) used for weight quantization, and Q denotes the corresponding RTN op-
erator associated with A, given by Q(W ) := s ·

(
clip

(⌈
W
s

⌋
+ z; minA,maxA

)
− z
)
. Here,

clip(x; amin, amax) = min{max{x, amin}, amax}, while the quantization step size (or scaling fac-
tor) is denoted by s and the quantization grid is shifted by an offset denoted by z, often referred
to as a zero point. We specify our selection of s, z ∈ RN ′

for the various settings in Section 4.
When quantizing W , we use X ∈ Rm×N to denote the input calibration dataset of m samples (e.g.,
tokens) for the layer, resulting from the original pre-trained model, and X̃ ∈ Rm×N to denote the
input calibration dataset coming from the partially quantized model. Given a vector v ∈ Rn, we use
vi for its i-th entry, v≥j for the subvector (vj , . . . , vn)⊤, and we define v≤j analogously. ∥v∥ is the
Euclidean norm of v. Given a matrix A ∈ Rm×n, we use Ai to denote its i-th column. We use A≥j

to denote the submatrix (Aj , . . . , An). Similarly, A≥2,≥2 denotes the submatrix of A obtained by
removing the first row and the first column. We use col(A) to denote the column space of A. PA

is the orthogonal projection onto col(A), and PA⊥ the projection onto its orthogonal complement.
Throughout this paper, all indices start from 1, following the standard mathematical convention.

Layer-wise reconstruction and error correction. Data-driven weight quantization methods typi-
cally aim to approximately minimize1 the layer-wise reconstruction error given by

min
Q∈AN×N′

∥XW −XQ∥2F . (1)

At an arbitrary layer, the goal is to compute a quantized weight matrix Q ∈ AN×N ′
that preserves

the output activations XW under quantization. In practice, however, quantizing weights in earlier
layers affects the input to subsequent layers. Let X̃ ∈ Rm×N denote the activation matrix produced
by a partially quantized model, where earlier layers have already been quantized. To account for the
propagation of quantization error, we use a modified formulation, instead of Equation 1, that targets
the mismatch between the original output XW and X̃Q by approximately solving

min
Q∈AN×N′

∥XW − X̃Q∥2F . (2)

The type of mismatch in this formulation is typically not addressed in the literature but arises natu-
rally in both weight-only and weight-activation quantization settings. For instance, in weight-only
quantization, X̃ arises as the output of previously quantized layers, while in weight-activation quan-
tization, one may encounterQ(X̃) rather than X̃ if activations are quantized. Throughout this paper,
we use the notation (X, X̃) to refer generically to mismatched input pairs.

3 QRONOS

We begin by describing the iterations associated with Qronos in Section 3.1. The iterations follow a
disciplined and mathematically interpretable framework that alternates between error correction and
diffusion using optimal update rules. We then prove that the explicit solutions to these minimization
problems admit an efficient implementation. In Section 3.2, we provide deeper intuition behind

1Equation 1 is an instance of integer least-squares problems, which are known to be NP-hard (Hassibi and
Vikalo, 2002). Thus, the best that one can hope for are approximate solutions.
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Qronos in the context of previous state-of-the-art rounding algorithms, namely GPFQ and OPTQ.
We also derive a novel interpretation of OPTQ (Corollary 3.4), which shows that it corrects the
cumulative weight quantization error incurred over all the previous iterations. The proofs for all
results in Section 3 are provided in the appendix.

3.1 ALGORITHM AND EFFICIENT IMPLEMENTATION

Let us first note that Qronos can process each column w ∈ RN of W ∈ RN×N ′
independently and in

parallel to produce each column q ∈ AN of Q ∈ AN×N ′
. Ideally, the goal is to find q that minimizes

1
2∥Xw − X̃q∥2. Since this problem is NP-hard, we propose an efficient sequential algorithm to
approximate its solution. At each iteration, Qronos first selects the quantized weight that optimally
corrects the current approximation error, holding the remaining weights fixed; see Equation 3 below.
It then updates the unquantized weights to optimally compensate for the rounding error, a process
we refer to as error diffusion; see Equation 4.

Let w, without superscripts or subscripts, denote the original unquantized weights. After deter-
mining qt−1, let w

(t−1)
≥t represent the updated unquantized weights corresponding to indices t

through N . The full state of the algorithm after step t − 1 is thus given by the vector w(t−1) =

(q≤t−1, w
(t−1)
≥t ), with the initialization w(0) = w. At step t, the algorithm alternates between se-

lecting qt through error correction and updating the remaining weights through error diffusion. The
update rules are given by

qt = argmin
p∈A

1

2
∥Xw −

t−1∑
j=1

qjX̃j − pX̃t −
N∑

j=t+1

w
(t−1)
j X̃j∥2, (3)

w
(t)
≥t+1 = argmin

(vt+1,...,vN )∈RN−t

1

2
∥Xw −

t∑
j=1

qjX̃j −
N∑

j=t+1

vjX̃j∥2. (4)

These optimization problems admit the following closed-form solutions (see Proposition E.1):

qt = Q


〈
Xw −

∑t−1
j=1 qjX̃j −

∑N
j=t+1 w

(t−1)
j X̃j , X̃t

〉
∥X̃t∥2

 , (5)

w
(t)
≥t+1 = X̃†

≥t+1

(
Xw − X̃≤tq≤t

)
. (6)

While these expressions follow directly from the optimization problems, computing qt and w
(t)
≥t+1

in this form is not computationally efficient and scales poorly, as we will show in Section 4.3. To
address this, we present Theorem 3.1, which shows that for all t ≥ 2, qt can be computed via
RTN, enabling a simpler implementation. In Lemma 3.2, we further show that the update for w(t)

≥t+1

also admits an efficient implementation using Cholesky decomposition to solve the associated least-
squares problem. Together, these results yield a practical and scalable implementation of Qronos.

Theorem 3.1. Let (qt, w
(t−1)
≥t ) be the iterates generated by Equation 3 and Equation 4, with ini-

tialization w
(0)
≥1 = w. Define an alternative sequence (q̂t, ŵ

(t−1)
≥t ) using the same initialization

ŵ
(0)
≥1 = w, by setting

q̂1 = argmin
p∈A

1

2
∥Xw − pX̃1 −

N∑
j=2

wjX̃j∥2, (7)

ŵ
(1)
≥2 = argmin

(v2,...,vN )∈RN−1

1

2
∥Xw − q̂1X̃1 −

N∑
j=2

vjX̃j∥2, (8)

4
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and, for t = 2, . . . , N , define

q̂t = Q(ŵ(t−1)
t ), (9)

ŵ
(t)
≥t+1 = argmin

(vt+1,...,vN )∈RN−t

1

2
∥(q̂t − ŵ

(t−1)
t )X̃t +

N∑
j=t+1

(vj − ŵ
(t−1)
j )X̃j∥2. (10)

Then for t = 1, . . . , N , the two procedures yield identical iterates: (qt, w
(t−1)
≥t ) = (q̂t, ŵ

(t−1)
≥t ).

Starting from the second iteration, Theorem 3.1 shows that the updates in Equation 3 and Equation 4
can be equivalently reformulated as Equation 9 and Equation 10, respectively. This reformulation
allows qt to be obtained via RTN for t ≥ 2, followed by an adjustment of the remaining weights us-
ing only the (potentially quantized) activation matrix X̃ to compensate for the one-step quantization
error (qt − w

(t−1)
t )X̃t.

To further accelerate this adjustment step, we now present Lemma 3.2, which establishes the equiv-
alence of the update in Equation 10 (for t ≥ 2) with a Cholesky-based least-squares solution2. For
notational simplicity, we slightly abuse the indexing by treating t = 2 as a ‘restart.’
Lemma 3.2 (Equivalence of Least-Squares Formulation and Cholesky Formulation). Assume that
H = X⊤X is invertible, and let H−1 = LL⊤ denote its Cholesky decomposition, with L lower
triangular. Then, starting from w(0) = w, the update rules

qt = Q(w(t−1)
t ), (11)

w
(t)
≥t+1 = argmin

(vt+1,...,vN )∈RN−t

1

2
∥(qt − w

(t−1)
t )Xt +

N∑
j=t+1

(vj − w
(t−1)
j )Xj∥2 (12)

are equivalent to the Cholesky-based iterations

qt = Q(w(t−1)
t ), (13)

w
(t)
≥t+1 = w

(t−1)
≥t+1 +∆(t), (14)

where

∆(t) = −(w(t−1)
t − qt)

L≥t+1, t

Ltt
∈ RN−t.

Remark 3.3 (Memory Efficiency). At the first iteration, both q1 and w
(1)
≥2 depend on X̃,X ∈

Rm×N , requiring O(mN) peak memory, often where m≫ N . For example, Llama3.1-8B requires
over 30 GB just to store 128 samples of 2048-token sequences at float32. We optimize this first
iteration to use only square matrices such that

q1 = Q

(
G1,≥1w −H1,≥2w

(0)
≥2

H11

)
, (15)

w
(1)
≥2 = (H≥2,≥2)

−1 (G≥2,≥1w −H≥2,1q1) , (16)

where G = X̃TX ∈ RN×N and H = X̃T X̃ ∈ RN×N ; see Proposition E.2 for a justification.
Note that calculating G and H does not require storing X̃,X , as one can sequentially accumulate
the outer products of each of the m samples. Thus, this square matrix formulation reduces peak
memory requirements of Qronos from O(mN) to O(N2), yielding an 18× reduction in the case of
Llama3.1-8B. We note that Colbert et al. (2024) similarly identify a memory optimization for GPFQ,
but use singular value decompositions that may not scale well with N .

This completes our reduction of the original updates (Equations 3 and 4) to the equivalent implemen-
tation given by Equations 13, 14, 15, and 16. The pseudocode for this efficient version is provided
in Appendix A. We further present a runtime analysis comparing this efficient version with the base
version (i.e., a direct evaluation of the closed-form solution) in Section 4.3.

2We do not claim that Lemma 3.2 is novel, though we were unable to find it stated explicitly in the literature.
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3.2 THEORETICAL INTERPRETATION AND INTUITION

Theorem 3.1 and Lemma 3.2 connect the initial disciplined optimization formulation of Qronos to
our efficient implementation. These results guarantee that Qronos is both interpretable and scalable,
explicitly correcting error from the mismatched input pairs X and X̃ . Here, we provide deeper
intuition in the context of previous state-of-the-art rounding algorithms, namely GPFQ and OPTQ.

When quantizing w, GPFQ (Lybrand and Saab, 2021; Zhang et al., 2023; Zhang and Saab, 2023)
interprets Xw as the endpoint of the path

∑t
j=1 wjXj for t = 1, ..., N , and handles mismatched

inputs by aiming to match
∑t

j=1 wjXj and
∑t

j=1 qjX̃j for all t. More precisely, qt is selected as

argminp∈A ∥
∑t

j=1 wjXj −
∑t−1

j=1 qjX̃j − pX̃t∥2.

Although path following handles the case when X = X̃ well, additional considerations are re-
quired when X ̸= X̃ since, in such a case, the tails of the two paths generally do not align when∑N

i=t+1 wi(Xi − X̃i) ̸= 0. Qronos handles this drawback by adopting a natural remedy to replace

the unquantized weights wi by auxiliary weights w(t)
i , for i ≥ t+ 1, so that

t∑
i=1

qiX̃i +

N∑
i=t+1

w
(t)
i X̃i ≈ Xw =

N∑
i=1

wiXi.

OPTQ (Frantar et al., 2023) explores a similar weight update idea, but only in the case where
X = X̃ , by modifying the remaining unquantized weights after qt is selected. The Cholesky refor-
mulation used in Lemma 3.2 also resembles the key mechanism in OPTQ. In this way, the runtime
of Qronos scales similarly to OPTQ while also explicitly addressing the mismatch between X and
X̃; see Section 4.3 for details. This unexpected connection of Qronos to OPTQ also allows us to
derive a novel interpretation of OPTQ, which we now present.
Corollary 3.4. The OPTQ iterations, when applied to a single layer input X , are equivalent to

qt = argmin
p∈A

1

2
∥Xw −

t−1∑
j=1

qjXj − pXt −
N∑

j=t+1

w
(t−1)
j Xj∥2, (17)

w
(t)
≥t+1 = argmin

(vt+1,...,vN )∈RN−t

1

2
∥Xw −

t∑
j=1

qjXj −
N∑

j=t+1

vjXj∥2, (18)

with w
(0)
≥1 = w.

In other words, the updated weights and quantized weights at every iteration t that are produced by
OPTQ are identical to those produced by Equations 17 and 18. In particular, Equation 18 shows
that, at each step the updated weights w

(t)
≥t+1 indeed optimally correct for the errors produced by

the hitherto quantized sequence q1, ..., qt via orthogonal projection onto col(X≥t+1), as further
discussed in Appendix H.

Noticeably, OPTQ suffers from a systematic bias when the activation mismatch is non-negligible
as, unlike Qronos, it does not explicitly minimize the true discrepancy minq∈AN ∥Xw − X̃q∥2.
Consequently, as discussed in Appendix D, Qronos consistently reduces the relative error (measured
in ℓ2 norm) of block outputs compared to OPTQ, as illustrated in Figure 3.

4 EXPERIMENTS

The core contribution of this work is Qronos—our principled data-driven rounding algorithm that al-
ternates between (1) explicitly correcting quantization error due to both the weights and activations,
and (2) diffusing excess error into future weights yet to be quantized. Thus, our primary comparison
metric is preserving model quality in challenging quantization scenarios. We design our experiments
to isolate the impact of the rounding function (stage 2 in Figure 1), while varying the quantization
transforms (stage 1 in Figure 1), as further discussed in Sections 4.1 and 4.2.
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Table 2: 2-bit weight-only quantization of Qwen3 instruction fine-tuned models. We apply HIP
(stage 1 in Figure 1) and compare different rounding methods (stage 2).

WikiText2 (↓) 0-shot (↑)
0.6B 1.7B 4B 8B 14B 32B 0.6B 1.7B 4B 8B 14B 32B

BF16 18.6 15.2 12.2 8.6 7.6 6.8 51.1 61.4 68.9 72.4 75.4 77.2

RTN 7e5 8e6 4e5 4e4 3e5 1e5 32.1 31.9 32.4 31.8 32.9 32.8
OPTQ 1e2 60.0 22.8 14.7 14.9 12.8 32.0 32.8 37.4 41.4 42.5 47.0
GPFQ 1e2 45.3 25.4 17.1 15.6 13.4 33.0 32.4 35.9 39.4 40.4 46.0
GPTAQ 74.5 37.0 21.0 13.6 14.4 12.9 32.3 34.0 38.7 42.5 43.3 47.3
Qronos 46.0 23.5 17.8 12.9 13.4 12.0 35.0 36.7 41.5 44.7 45.2 48.0

Table 3: Weight-only quantization of Llama3 foundation models. We individually apply various
quantization transforms (stage 1 in Figure 1) to isolate the impact of different rounding functions
(stage 2) when quantizing to 3 and 4 bits, respectively denoted W3 and W4.

W3 W4
WikiText2 (↓) 0-shot (↑) WikiText2 (↓) 0-shot (↑)

Stage 1 Stage 2 1B 3B 8B 1B 3B 8B 1B 3B 8B 1B 3B 8B

BF16 - 8.9 7.1 5.9 59.4 67.5 74.4 8.9 7.1 5.9 59.4 67.5 74.4

None

RTN 2e4 1e4 3e4 32.3 32.4 32.6 18.0 10.1 8.4 49.1 60.8 67.4
OPTQ 42.5 13.8 11.4 37.5 48.1 53.8 10.4 7.8 6.5 54.3 63.4 71.0
GPFQ 35.3 13.4 11.1 35.7 49.9 53.5 10.4 7.8 6.5 56.0 65.2 71.2
GPTAQ 28.4 12.6 10.3 39.3 49.6 57.1 10.3 7.8 6.5 56.3 63.3 71.0
Qronos 22.8 11.3 9.3 39.5 53.1 56.7 10.1 7.6 6.4 56.2 64.5 72.0

Smooth
Quant

RTN 6e3 9e3 5e4 32.7 32.9 31.4 15.2 9.6 8.1 51.4 61.5 67.5
OPTQ 29.6 13.6 12.6 37.0 46.9 47.3 10.4 7.9 6.6 56.2 65.3 70.2
GPFQ 30.1 14.7 12.9 36.5 44.8 45.4 10.8 7.9 6.7 53.9 64.4 69.9
GPTAQ 25.0 12.9 11.4 37.9 46.8 49.1 10.4 7.9 6.6 55.2 63.1 71.2
Qronos 19.1 11.6 10.3 40.7 50.6 50.5 10.3 7.8 6.5 56.7 64.8 70.2

MagR

RTN 2e3 2e3 5e4 33.8 33.5 35.1 13.8 10.3 7.2 53.1 58.1 69.7
OPTQ 20.1 12.9 8.1 44.2 45.6 59.7 10.3 8.0 6.5 56.4 60.0 69.0
GPFQ 21.0 14.0 8.3 43.9 48.4 61.7 10.4 8.0 6.5 55.4 61.1 70.3
GPTAQ 18.0 12.4 8.0 46.8 51.2 60.7 10.3 8.0 6.4 56.2 60.0 70.3
Qronos 16.9 11.8 7.8 46.6 51.2 60.0 10.1 8.0 6.4 56.2 61.1 70.4

HIP

RTN 7e2 3e2 1e2 34.2 33.3 36.3 13.8 8.8 7.2 52.0 62.8 70.0
OPTQ 16.1 10.3 8.6 44.1 56.6 58.8 9.9 7.6 6.3 56.8 66.1 72.1
GPFQ 16.6 10.4 8.6 44.9 54.8 58.9 9.9 7.6 6.3 56.5 65.7 72.0
GPTAQ 14.7 9.9 8.3 46.5 56.9 59.3 9.8 7.5 6.3 57.8 66.0 72.4
Qronos 12.9 9.3 7.8 48.1 59.6 62.2 9.6 7.5 6.2 57.1 65.9 71.0

Models & Datasets. We conduct experiments on Llama3 (Grattafiori et al., 2024) and Qwen3 (Yang
et al., 2025) models using WikiText2 (Merity et al., 2016) for evaluation. We use, without modifica-
tion, the implementations made publicly available via Huggingface (Wolf et al., 2020). We provide
additional results in Appendix B. We use LightEval (Fourrier et al., 2023) to evaluate generalization
via 5 zero-shot reasoning tasks: ARC (challenge and easy) (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), PIQA (Bisk et al., 2020), and Winogrande (Sakaguchi et al., 2021), and report the
normalized average accuracy.

Setup. We implement Qronos in PyTorch (Paszke et al., 2019) using the Brevitas quantization li-
brary (Franco et al., 2025b), and quantize all models using a single AMD MI210 GPU with 64 GB
of memory. Unless otherwise specified, we construct our calibration dataset using 128 random se-
quences of 2048 tokens sampled from the WikiText2 dataset for all data-driven PTQ algorithms. We
compare Qronos against RTN and the unmodified Brevitas implementations of OPTQ and GPFQ,
also leveraging the unmodified Brevitas implementations of the various quantization transforms. We
provide quantization transform hyperparameter details in Appendix C, as well as ablation studies.
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Table 4: Weight-activation quantization of Llama3 foundation models. We individually apply
various transformations (stage 1) to isolate the impact of different rounding functions (stage 2).

W4A4KV16 W4A4KV4
WikiText2 (↓) 0-shot (↑) WikiText2 (↓) 0-shot (↑)

Stage 1 Stage 2 1B 3B 8B 1B 3B 8B 1B 3B 8B 1B 3B 8B

BF16 - 8.9 7.1 5.9 59.4 67.5 74.4 8.9 7.1 5.9 59.4 67.5 74.4

QuaRot

RTN 22.0 12.6 9.6 45.4 55.0 62.6 41.8 22.0 15.9 41.5 49.8 57.4
OPTQ 14.3 9.8 8.0 50.4 59.9 66.7 19.8 14.3 10.3 45.8 56.2 64.1
GPFQ 13.6 9.3 7.6 50.9 60.9 67.6 22.0 14.7 11.4 43.3 53.9 59.8
GPTAQ 13.4 9.2 7.4 51.2 61.4 68.1 18.0 12.2 9.3 46.6 57.3 64.8
Qronos 13.2 9.1 7.4 50.9 61.5 68.9 17.8 11.6 9.3 47.8 57.3 64.8

SmoothRot

RTN 22.4 12.2 11.1 42.9 54.8 62.6 39.3 19.5 34.3 40.4 49.4 50.6
OPTQ 13.6 9.5 7.9 51.0 60.3 68.5 18.6 12.9 16.1 45.9 55.9 59.1
GPFQ 12.9 8.8 7.4 50.4 62.0 67.7 20.8 14.3 12.2 44.4 54.9 59.0
GPTAQ 12.6 8.9 7.3 51.1 61.4 68.8 16.6 11.6 10.8 48.6 57.8 63.7
Qronos 12.6 8.8 7.2 50.8 60.9 69.4 16.9 11.6 9.5 47.1 57.8 65.2

SpinQuant

RTN 20.5 12.6 9.3 47.7 57.5 64.2 33.5 20.2 13.4 43.1 52.2 60.8
OPTQ 13.4 9.2 7.7 52.0 61.1 67.0 17.9 15.0 8.9 47.9 58.5 65.5
GPFQ 13.5 9.2 7.5 51.2 61.2 67.0 21.1 14.3 10.9 45.3 53.6 60.9
GPTAQ 12.9 9.0 7.4 51.8 61.1 68.3 17.1 NaN 8.7 49.4 NaN 65.3
Qronos 12.3 8.7 7.2 52.8 62.1 68.4 16.4 11.1 8.7 48.2 58.2 65.8

Baselines. Our baselines are RTN, OPTQ, GPFQ and GPTAQ. For OPTQ, we use the standard
dampened covariance matrix H̃ = H + λI , where λ is 1% of the average diagonal of H . We
similarly use a dampened covariance matrix for Qronos, but choose λ to be based on the maximum
singular value of H such that λ = α·σ1, which limits the condition number of H̃ to be less than α−1.
We select α = 1e−6 for weight-only quantization and α = 1e−3 for weight-activation quantization.
Additionally, we apply GPFQ, GPTAQ, and Qronos block-by-block; this corresponds to resetting
X̃ = X at the beginning of each block. Finally, we quantize weights in descending order of the
diagonals of H , as is now common practice (IST-DASLab, 2022; Franco et al., 2025b).

4.1 WEIGHT-ONLY QUANTIZATION

We first present state-of-the-art 2-bit and 1.58-bit results for weight-only PTQ on Llama3 foundation
models, controlling for the quantization transform and grid selection while varying the rounding
function. We quantize weights using the standard asymmetric weight quantizer (Frantar et al., 2023),
where scaling factor s and zero point z are defined per-channel on a scaled min-max grid such that
s = β · (max(w) − min(w))/(2b − 1) and z = β · min(w)/s. Following the analysis of Zhang
et al. (2024), we choose β = 0.8 when quantizing to 2 bits or fewer. We combine Hadamard-based
incoherence processing (HIP) (Tseng et al., 2024; Ashkboos et al., 2024) with weight magnitude
reduction (MagR) (Zhang et al., 2024) to jointly act as our quantization transform, as they are both
known to be effective at few-bit weight quantization (Chee et al., 2023; Adepu et al., 2024). We
present our results in Table 1, as well as the BF16 baselines, and highlight that Qronos consistently
outperforms existing rounding methods. For example, when compared to OPTQ, Qronos provides
a 1.4× reduction in WikiText2 perplexity and +3.3% increase in average zero-shot accuracy for
Llama3.2-1B at 2 bits, and a massive improvement in perplexity (4.9×) at 1.58 bits. We provide
additional 2-bit and 1.58-bit results with β = 1 in Appendix C.1.

Next, we present state-of-the-art 2-bit weight-only PTQ results on Qwen3 instruction fine-tuned
models. Here, we use HIP as our quantization transform then tune the grid to minimize the mean
squared error loss between the transformed weights and their RTN-quantized counterparts via a
linear search over s and z. Table 2 provides the results from Qwen3 0.6B to 32B. Qronos again
yields clear and consistent improvements for all models in this family.

Finally, we present 3-bit and 4-bit weight-only PTQ results (denoted W3 and W4, respectively) on
Llama3 foundation models while independently demonstrating compatibility with 3 notable quan-
tization transforms: SmoothQuant (Xiao et al., 2023), MagR, and HIP. Table 3 shows the results
across three models in the Llama3 family. For both W3 and W4, we use β = 1. Qronos consis-
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Figure 2: We compare the runtime of (a) the rounding algorithm and (b) the overall quantization
pipeline as we scale the input features N , as measured on an AMD MI210. We average all measure-
ments over 3 seeds and normalize to the runtime of OPTQ where N = 32.

tently provides higher quality quantized models than RTN, OPTQ, GPFQ and GPTAQ, as measured
in both WikiText2 perplexity and average zero-shot accuracy. Consistent with emerging work on
rotation-based quantization transforms (Chee et al., 2023; Tseng et al., 2024), incoherence pro-
cessing outperforms other transforms, with HIP + Qronos providing the best overall results. Note
that HIP + OPTQ is similar in spirit to QuIP by Theorem 6 in (Chee et al., 2023), which equates
LDLQ to OPTQ, with a notable difference that QuIP proposed random orthogonal matrices instead
of Hadamard matrices.

4.2 WEIGHT-ACTIVATION QUANTIZATION

We present 4-bit weight-activation quantization results with and without 4-bit KV cache quantiza-
tion (denoted W4A4KV16 and W4A4KV4, respectively) while demonstrating compatibility with
QuaRot (Ashkboos et al., 2024), SmoothRot (Czakó et al., 2025), and SpinQuant (Liu et al., 2025).
We quantize weights using the standard symmetric weight quantizer with per-channel scaling factors
optimized via linear search over the mean square error loss between the full-precision and quantized
weights. We quantize activations using the standard asymmetric activation quantizer with dynamic
per-token scaling factors and zero points defined on the min-max grid, as is common practice (Liu
et al., 2025). When quantizing KV caches, we similarly use per-token scaling and zero points.

Table 4 shows the results across three foundation models in the Llama3 family. Qronos again consis-
tently outperforms RTN, OPTQ, GPFQ and GPTAQ3 as measured in both WikiText2 perplexity and
average zero-shot accuracy. Consistent with emerging work on learned rotations (Liu et al., 2025; Hu
et al., 2025; Franco et al., 2025a), SpinQuant outperforms QuaRot and SmoothRot, with SpinQuant
+ Qronos providing the best overall results with and without KV cache quantization. We remark that
our experiments use per-token quantization for both the activations and KV caches, while Ashkboos
et al. (2024) and Liu et al. (2025) both use per-group scaling for KV cache quantization.

Our experimental analysis reveals an important pattern: Qronos provides larger improvements as
quantization tasks become more challenging. Specifically, Qronos demonstrates larger relative im-
provements over existing methods when transitioning from weight-only to weight-activation quan-
tization (i.e., W4 versus W4A4), and even more substantial gains when incorporating KV cache
quantization (i.e., W4A4 versus W4A4KV4). We further validate this pattern with additional W3A3
results in Appendix B (Table 8), which show larger improvements than both W4A4 and W3 weight-
only quantization. These findings suggest that Qronos is particularly effective in scenarios where
multiple sources of quantization error interact, making it especially valuable for aggressive quanti-
zation settings where traditional methods struggle to maintain model quality.

3We observed instability with GPTAQ, as reflected by the NaN entries in Table 4, and similar issues have
been reported by others attempting to reproduce results from Li et al. (2025) with their official repository.
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Table 5: Calibration Runtime Analysis. We report the end-to-end calibration time of OPTQ and
Qronos for the Qwen3 model family, normalized to Qwen3-0.6B, as measured on an AMD MI325X.

0.6B 1.7B 4B 8B 14B 32B

OPTQ 1.0 1.4 2.8 3.7 5.6 10.6
Qronos 1.2 1.6 3.1 4.0 6.1 11.5

Overhead 19.7% 16.2% 11.1% 9.0% 8.7% 8.7%

4.3 HARDWARE EFFICIENCY AND RUNTIME ANALYSIS

The hardware efficiency benefits of quantization (i.e., improved throughput, memory, power, and
area) are well-established (Jacob et al., 2018; Colbert et al., 2024). Since Qronos and other round-
ing algorithms leave the compute graph unaltered, they capture these benefits without introducing
inference overhead beyond the quantization transform. Prior works have already profiled inference
speedups and overheads; for example, Ashkboos et al. (2024) report up to 2.16× speedup for W4A4
Llama2 7B over FP16, with Hadamard transforms adding at most 7% overhead. Therefore, we focus
our runtime analysis on the quantization pipeline itself.

Microbenchmark. We perform our initial runtime analysis using a single linear layer. We use a
calibration set of m =10,000 random data sampled from a K-dimensional Gaussian distribution.
The linear layer has K ∈ [32, 1024] inputs with K/4 outputs. Figure 2 shows how the runtime
of OPTQ, GPFQ, and Qronos scale with K, where (a) isolates the algorithm runtime (i.e., without
the added inference cost of calculating H and G) and (b) aggregates the end-to-end runtime of
calibration. To highlight the benefits of our equivalent formulation, we implement a base version of
Qronos that uses the iterates for qt and w

(t)
≥t+1 from Equations 5 and 6. Note that via Theorem 3.1

and Lemma 3.2, we significantly improve the runtime scaling of Qronos over the base version, with
a 13.8× reduction in algorithm runtime and a 3.6× reduction in overall runtime when K = 1024.

Calibration Runtime. Compared with OPTQ, which only needs to collect X , GPFQ and Qronos re-
quire collecting both X̃ and X at each layer, which requires two forward passes (with and without
quantization) and increases the overall quantization pipeline runtime. To evaluate the overhead of
two forward passes in practice, we compare the calibration runtime of OPTQ and Qronos when
quantizing the Qwen3 model family. Table 5 provides the runtimes for each model from 0.6B to
32B, normalized to the calibration runtime when using OPTQ to quantize Qwen3-0.6B on an AMD
MI325X. We observe the overhead of Qronos decreases from 19.7% to 8.7% as model size increases
from 0.6B to 32B, indicating that algorithmic cost dominates the cost of executing inference twice
and underscoring the importance of Theorem 3.1.

5 CONCLUSIONS

We introduce Qronos—a new backpropagation-free rounding algorithm that alternates between cor-
recting quantization error in both the weights and activations of previous layers and diffusing error
into future weights within the current layer. Qronos is based on an interpretable and disciplined
optimization framework, and it demonstrably surpasses existing data-driven approaches. Our im-
plementation exploits several optimizations that together yield orders of magnitude improvements
in memory and compute efficiency. Our experiments isolate the impact of the rounding function in
the quantization pipeline while varying transformations on a scaled min-max grid. Our results show
that Qronos consistently offers improvements over previous state-of-the-art methods when quantiz-
ing weights, activations, and/or KV caches to 4 bits or fewer. That said, our results are intentionally
limited to the scaled min-max quantization grid to focus our experiments on transformations and
rounding; we believe our results could be further improved by leveraging weight and activation dis-
tributions to design quantization grids that are more effective than the scaled min-max grid used in
this work, possibly with non-uniform grids via vector quantization.
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A PSEUDOCODE OF QRONOS

We provide the pseudocode for our efficient version of Qronos derived in Section 3.1.

Algorithm 1 Qronos (Efficient Version)

H = X̃⊤X̃ , G = X̃⊤X
H−1 = (X̃⊤X̃)−1 = LL⊤ ▷ Cholesky Decomposition
for every w in W (in parallel) do
q = 0N

w(0) ← copy(w)

q1 = Q

(
G1,≥1w −H1,≥2w

(0)
≥2

H11

)
▷ By Proposition E.2

w
(1)
≥2 = L≥2,≥2L

⊤
≥2,≥2 (G≥2,≥1w −H≥2,1q1) ▷ By Lemma G.3

for t = 2 to N do ▷ By Theorem 3.1 and Lemma 3.2
qt = Q(w(t−1)

t )

w
(t)
≥t+1 = w

(t−1)
≥t+1 +∆(t)

∆(t) = −(w(t−1)
t − qt)

L≥t+1, t

Ltt

end for
end for
return Q

B RESULTS ON ADDITIONAL MODELS

Our main results evaluate Llama3 foundation models and Qwen3 instruction fine-tuned models.
Here, we demonstrate that Qronos maintains the quality of Llama3 instruction fine-tuned models and
Qwen3 foundation models as well. We again compare against RTN, OPTQ, GPFQ, and GPTAQ.

We present weight-only PTQ results with Llama3 instruction fine-tuned models at 3 and 4 bits in
Table 6. As in Section 4.1, we asymmetrically quantize weights to the scaled min-max grid with
β = 1 for both W3 and W4. We focus our instruction fine-tuned results on evaluating each round-
ing algorithm with and without Hadamard-based incoherence processing (HIP) as the quantization
transform. As in Section 4.1, we find that HIP + Qronos consistently provides the highest qual-
ity quantized models relative to BF16 counterparts, as measured in both WikiText2 perplexity and
zero-shot accuracy.

We then present weight-only PTQ results with Qwen3 foundation models in Table 7. We asymmet-
rically quantize weights to the scaled min-max grid with β = 0.9 for W3. We focus these results
with and without Hadamard-based incoherence processing (HIP). Again, we find HIP + Qronos
consistently yields the highest quality quantized models relative to the BF16 counterparts.

C EXPERIMENT DETAILS FOR QUANTIZATION TRANSFORMS

All experiments use WikiText2 as the calibration set, aside from SpinQuant, which uses C4. To pre-
process our calibration dataset, we ensure that the <bos> token always appears as the first token
in an input sequence as the recent study by Barbero et al. (2025) suggests removing <bos> during
inference may greatly reduce performance if models were trained with <bos> always appearing
at the first token; their analysis suggests the Llama3 family of models fits this category. Thus,
to quantize our models, we first load the pre-trained checkpoint, then pre-process the dataset(s),
then apply the quantization pipeline visualized in Figure 1. For Section 4.1, we intentionally select
SmoothQuant (Xiao et al., 2023), Hadamard-based incoherence processing (HIP) (Ashkboos et al.,
2024; Tseng et al., 2024), and MagR (Zhang et al., 2024) as they perform fundamentally different
transformations. For Section 4.2, we study QuaRot, SmoothRot, and SpinQuant. Here, we describe
hyperparameters for the data-driven transforms—SmoothQuant, MagR, SpinQuant, and SmoothRot.
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Table 6: Weight-only quantization of instruction fine-tuned Llama3 models. We apply
Hadamard-based incoherence processing (HIP) as our quantization transform (stage 1 in Figure 1)
to isolate the impact of different rounding functions (stage 2) when quantizing to 3 and 4 bits, re-
spectively denoted W3 and W4. We also evaluate no quantization transform (i.e., “None”).

W3 W4
WikiText2 (↓) 0-shot (↑) WikiText2 (↓) 0-shot (↑)

Stage 1 Stage 2 1B 3B 8B 1B 3B 8B 1B 3B 8B 1B 3B 8B

BF16 - 12.0 9.2 6.7 59.5 66.4 74.1 12.0 9.2 6.7 59.5 66.4 74.1

None

RTN 2e4 4e3 3e4 32.6 33.0 32.2 21.4 12.6 9.1 51.0 62.3 67.6
OPTQ 60.0 16.1 12.2 37.4 49.9 58.2 14.3 9.9 7.3 54.5 63.6 71.8
GPFQ 2e2 16.6 12.9 33.8 50.8 55.3 15.4 9.9 7.3 53.3 64.4 71.5
GPTAQ 52.0 14.9 11.4 37.4 49.8 57.5 13.8 9.9 7.3 55.5 63.1 71.2
Qronos 43.8 14.3 10.6 37.5 52.1 60.6 13.8 9.8 7.2 55.5 64.8 72.2

HIP

RTN 1e3 3e2 1e2 33.4 35.0 36.9 16.6 10.8 8.0 54.6 63.6 70.8
OPTQ 19.1 12.8 9.3 48.0 58.2 59.0 13.2 9.6 7.1 56.6 64.5 72.1
GPFQ 20.4 12.8 9.6 47.6 57.1 61.1 13.2 9.8 7.2 57.0 65.3 71.9
GPTAQ 18.0 12.2 9.1 49.2 57.4 63.2 12.9 9.8 7.1 56.9 63.9 72.7
Qronos 16.6 11.6 8.8 49.9 58.4 64.1 12.8 9.6 7.1 57.6 64.8 72.1

Table 7: Weight-only quantization of Qwen3 foundation models to 3 bits with β = 0.9. We apply
Hadamard-based incoherence processing (HIP) as our quantization transform (stage 1 in Figure 1)
to isolate the impact of different rounding functions (stage 2) when quantizing to 3 bits.

WikiText2 (↓) 0-shot (↑)
Stage 1 Stage 2 1.7B 4B 8B 1.7B 4B 8B

BF16 - 8.6 7.3 6.5 63.9 70.1 73.6

None

RTN 3e5 82.0 3e3 32.9 45.3 37.1
OPTQ 37.5 10.4 8.8 35.7 57.2 61.7
GPFQ 1e2 10.8 9.3 33.0 56.3 58.9
GPTAQ 33.8 10.1 8.5 36.1 63.7 58.5
Qronos 33.0 9.5 8.3 36.0 59.9 61.5

HIP

RTN 1e3 26.3 30.1 35.1 50.8 50.3
OPTQ 10.8 8.8 7.6 54.4 64.4 67.6
GPFQ 11.4 9.1 7.9 52.7 61.6 62.2
GPTAQ 10.6 8.6 7.5 54.9 63.6 66.0
Qronos 10.1 8.4 7.4 57.2 63.5 68.0

SmoothQuant. When applying SmoothQuant, we do so before quantizing weights or activations.
In practice, SmoothQuant requires the selection of a hyperparameter to control the scaling optimiza-
tion criteria. We refer to the SmoothQuant hyperparameter as γ so as to not clash with our use of α
in Section 4; note that γ ∈ [0, 1]. In Table 9, we provide the results of a uniform grid search over γ
when quantizing Llama3.2-1B-Instruct to 4 bits using round-to-nearest (RTN). These results moti-
vate our decision to use γ = 0.3 in all our weight-only PTQ experiments that apply SmoothQuant.

MagR. When applying MagR, we also do so before quantizing weights and activations. When
coupled with HIP, we do so after inserting rotations into the compute graph. In practice, MagR
requires tuning the ℓ∞ penalty; we refer to this hyperparameter as θ, again so as to not clash with
our use of α in Section 4. Zhang et al. (2024) tune θ to Llama2 models, settling on θ = 0.001
for their experiments. In Table 10, we provide new results for Llama3.2-1B-Instruct. These results
motivate our decision to use θ = 0.01 in all our weight-only PTQ experiments that apply MagR.

SpinQuant. When applying SpinQuant, Liu et al. (2025) do so after activation (and KV cache)
quantization but before weight quantization using an 800-sample calibration dataset; their ablation
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Table 8: 3-bit weight-activation (W3A3) quantization of Llama3 foundation models. We apply
QuaRot as quantization transformation (stage 1) and compare different rounding functions (stage 2).

WikiText2 (↓) 0-shot (↑)
1B 3B 8B 1B 3B 8B

RTN 2e3 9e2 1e3 33.0 32.3 32.8
OPTQ 9e2 2e2 1e2 32.3 33.2 35.9
GPFQ 60.0 30.1 27.9 35.6 39.2 40.3
GPTAQ 2e2 40.5 46.0 35.0 36.9 41.9
Qronos 46.8 22.0 20.4 37.0 43.4 47.4

Table 9: Impact of SmoothQuant’s γ on Llama3.2-1B-Instruct. We evaluate the impact of the
smoothing parameter γ on both WikiText2 perplexity and normalized average zero-shot accuracy
when quantizing Llama3.2-1B-Instruct to 4 bits using round-to-nearest (RTN).

γ 0.2 0.3 0.4 0.5 0.6 0.7 0.8

WikiText2 (↓) 24.6 18.6 18.9 21.4 87.0 4e2 3e4
0-shot (↑) 50.8 53.3 52.8 52.5 42.8 36.6 32.3

study demonstrates negligible degradation when using 128 samples. Thus, we employ Cayley SGD
on a network where only activations are quantized to optimize the learnable rotations for 100 itera-
tions using a calibration dataset constructed of 128 random samples from the C4 dataset.

SmoothRot. When applying SmoothRot Czakó et al. (2025), we do so before quantizing weights
or activations. Similar to SmoothQuant, SmoothRot requires the selection of a hyperparameter
(i.e., migration strength) to control the scaling optimization criteria. In our experiments, we use a
migration strength of 0.6 as it empirically performed well for Llama3 1B.

C.1 GRID SCALING ABLATION STUDY FOR 2 BITS AND FEWER

In Section 4.1, we have presented weight-only PTQ results when quantizing to 2 bits or fewer on the
scaled min-max grid with β = 0.8. Here, in Table 11, we provide additional results that demonstrate
Qronos outperforms other rounding algorithms on another choice β = 1. Recall that we jointly
apply Hadamard-based incoherence processing (HIP) and weight magnitude reduction (MagR) as
quantization transforms before each rounding algorithm. Our results highlight that β = 0.8 (see
Table 1) is an overall better choice for scaling the min-max grid in this setting, which is consistent
with Zhang et al. (2024), and that Qronos provides the best results on both grids at all bit widths and
model sizes. Our results with β = 1 also show that Qronos is more robust than GPTAQ when β is
not carefully selected.

D MORE ON WHY QRONOS OUTPERFORMS OPTQ

Let W be the full-precision weights of a layer, and Q their quantized counterparts. Let X be the
input to the layer and let its (possibly quantized) counterpart be X̃; importantly, X̃ reflects both
activation quantization and the residual error propagated from previously quantized layers (possibly
from previous blocks). Let Y, Ỹ denote the respective outputs resulting from inputs X, X̃ .

For any single layer, OPTQ only attempts to minimize ∥X̃(W −Q)∥F , which ignores the mismatch
between X and X̃ . In contrast, Qronos attempts to minimize ∥XW − X̃Q∥F , which is the actual
discrepancy between the full-precision outputs and their quantized counterparts.

A simple triangle inequality intuitively explains the distinction between OPTQ and Qronos:

∥Y − Ỹ ∥F = ∥XW − X̃Q∥F ≤ ∥(X − X̃)W∥F + ∥X̃(W −Q)∥F .

While OPTQ only corrects the second term, Qronos corrects both terms. Thus, OPTQ only corrects
quantization error in the weights at a given layer while Qronos corrects not only quantization error
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Table 10: Impact of MagR’s θ on Llama3.2-1B-Instruct. We evaluate the impact of the penalty
parameter θ on both WikiText2 perplexity and normalized average zero-shot accuracy when quan-
tizing Llama3.2-1B-Instruct to 4 bits using round-to-nearest (RTN).

θ 0.1 0.01 0.001 0.0001

WikiText2 (↓) 74.5 25.4 105.0 216.0
0-shot (↑) 44.2 53.0 44.7 42.6

Table 11: Weight-only quantization of Llama3 models to 2 bits or fewer with β = 1. We
jointly apply HIP and MagR as quantization transforms (stage 1 in Figure 1) and compare different
rounding functions (stage 2) on the scaled min-max grid (see Section 4). Note that these results
complement Table 1, which presents results with β = 0.8.

WikiText2 (↓) 0-shot (↑)
1B 3B 8B 1B 3B 8B

BF16 - 8.9 7.1 5.9 59.4 67.5 74.4

2-bit

RTN 1e4 1e4 2e4 32.4 32.4 32.9
OPTQ 45.3 20.8 18.9 35.2 39.3 41.2
GPFQ 47.5 22.4 17.8 33.9 38.4 39.2
GPTAQ 33.8 18.0 16.4 36.3 40.7 41.3
Qronos 24.6 14.9 12.4 38.4 43.4 45.6

1.58-bit

RTN 2e5 3e5 6e5 32.0 32.6 32.1
OPTQ 5e3 4e2 3e2 32.5 32.4 32.2
GPFQ 6e2 7e2 5e2 31.2 32.5 32.7
GPTAQ 2e3 3e2 2e2 32.2 32.5 33.2
Qronos 79.5 48.3 34.8 32.9 32.8 34.3

in both the weights and activations at a given layer, but also residual quantization error coming from
previous layers, possibly from previous blocks.

Furthermore, tuning the quantization grid (i.e., scaling factors and zeros points) cannot effectively
minimize our objective in Equation 2. As before, decomposing XW − X̃Q = [(X − X̃)W ] +

[X̃(W −Q)] isolates two error sources. Tuning quantization grids of the current layer only adjusts
Q, and thus can affect only the second term, while the first term is untouched by any choice of
quantization grids. Hence, it cannot close the performance gap between OPTQ and Qronos.

To illustrate this, we empirically compare quantization error accumulation by measuring the relative
ℓ2 error, given by ∥Y − Ỹ ∥/∥Y ∥, after each transformer block in Llama3.2 1B when quantizing
weights to 3 bits, as in Section 4.1. Here, in Figure 3, we report the relative ℓ2 error averaged over
each token in our calibration dataset (i.e., 128 samples of 2048 tokens from WikiText2). Qronos
yields the lowest average relative calibration error for each block, with 16% and 13% improvement
over OPTQ and GPFQ, respectively, at the output of the final block.

E PRELIMINARY PROPOSITIONS

Proposition E.1. The update rule given by

qt = argmin
p∈A

1

2
∥Xw −

t−1∑
j=1

qjX̃j − pX̃t −
N∑

j=t+1

w
(t−1)
j X̃j∥2,

w
(t)
≥t+1 = argmin

(vt+1,...,vN )∈RN−t

1

2
∥Xw −

t∑
j=1

qjX̃j −
N∑

j=t+1

vjX̃j∥2.
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Figure 3: We visualize the evolution of the average relative error over transformer blocks when
quantizing the Llama3 1B foundation model to 3 bits, further discussed in Appendix D.

has closed-form expressions

qt = Q

(
⟨Xw −

∑t−1
j=1 qjX̃j −

∑N
j=t+1 w

(t−1)
j X̃j , X̃t⟩

∥X̃t∥2

)
and

w
(t)
≥t+1 = X̃†

≥t+1

(
Xw − X̃≤tq≤t

)
.

Proof. For qt, the corresponding optimization objective function is a one-dimensional quadratic
function of p. Since minimizing a quadratic function over a discrete set A reduces to rounding its
real-valued minimizer, we compute the real-valued minimizer

⟨Xw −
∑t−1

j=1 qjX̃j −
∑N

j=t+1 w
(t−1)
j X̃j , X̃t⟩

∥X̃t∥2
.

Thus, we obtain the closed-form expression of qt,

qt = Q

(
⟨Xw −

∑t−1
j=1 qjX̃j −

∑N
j=t+1 w

(t−1)
j X̃j , X̃t⟩

∥X̃t∥2

)
,

where Q is the round-to-nearest operator.

For w(t)
≥t+1, the corresponding optimization problem is an unconstrained least-square problem in the

form of minv∈RN−t ∥Ax − b∥2, with A = X̃≥t+1 and b = Xw − X̃≤tq≤t. Thus, the minimizer is
given by A†b, which gives the desired closed-form expression.

Proposition E.2. The update rule given by

q1 = Q

(
X̃⊤

1 (Xw − X̃≥2w
(0)
≥2)

∥X̃1∥2

)
,

w
(1)
≥2 = X̃†

≥2

(
Xw − X̃1q1

)
is equivalent to

q1 = Q

(
G1,≥1w −H1,≥2w

(0)
≥2

H11

)
w

(1)
≥2 = (H≥2,≥2)

−1 (G≥2,≥1w −H≥2,1q1) ,

where G = X̃TX ∈ RN×N and H = X̃T X̃ ∈ RN×N .
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Proof. For q1, we have X̃⊤
1 X = (X̃⊤X)1,≥1 = G1,≥1. Also, X̃⊤

1 X̃≥2 = (X̃⊤X̃)1,≥2 = H1,≥2.
Thus, X̃⊤

1 (Xw − X̃≥2w
(0)
≥2) = G1,≥1w −H1,≥2w

(0)
≥2 . Further, ∥X̃1∥2 = (X̃⊤X̃)11 = H11. This

gives the equivalence for updating q1.

For w(1)
≥2 , X̃≥2 is given by (X̃⊤

≥2X̃≥2)
−1X̃⊤

≥2 = (H≥2,≥2)
−1X̃⊤

≥2. Then

X̃†
≥2

(
Xw − X̃1q1

)
= (H≥2,≥2)

−1X̃⊤
≥2

(
Xw − X̃1q1

)
= (H≥2,≥2)

−1
(
(X̃⊤X)≥2,≥1w − (X̃⊤X̃)≥2,1q1

)
= (H≥2,≥2)

−1 (G≥2,≥1w −H≥2,1q1) .

This gives the equivalence for updating w
(1)
≥2.

F PROOF OF THEOREM 3.1

Proof. We use induction to prove the theorem. Since at t = 1 equations Equation 3, Equation 4 and
equations Equation 7, Equation 8 are identical, the base case is trivially true. Now we proceed with
the induction, assuming ŵ

(t)
≥t+1 = w

(t)
≥t+1 and q̂t = qt.

Using definition Equation 3 and Proposition E.1, we can obtain the closed-form expression,

qt+1 = Q

(
⟨Xw −

∑t
j=1 qjX̃j −

∑N
j=t+2 w

(t)
j X̃j , X̃t+1⟩

∥X̃t+1∥2

)
,

where Q is the RTN operator. Next we note that (4), which is used to compute w
(t)
≥t+1, implies that

Xw −
∑t

j=1 qjX̃j −
∑N

j=t+1 w
(t)
j X̃j is orthogonal to the column space of X̃≥t+1. This in turn

implies that ⟨Xw −
∑t

j=1 qjX̃j −
∑N

j=t+1 w
(t)
j X̃j , X̃t+1⟩ = 0. Then we can compute,

qt+1 = Q

(
⟨Xw −

∑t
j=1 qjX̃j −

∑N
j=t+2 w

(t)
j X̃j , X̃t+1⟩

∥X̃t+1∥2

)

= Q

(
⟨Xw −

∑t
j=1 qjX̃j −

∑N
j=t+1 w

(t)
j X̃j + w

(t)
t+1X̃t+1, X̃t+1⟩

∥X̃t+1∥2

)

= Q

(
⟨w(t)

t+1X̃t+1, X̃t+1⟩
∥X̃t+1∥2

)
= Q

(
w

(t)
t+1

)
= Q

(
ŵ

(t)
t+1

)
= q̂t+1,

where in the last two inequalities, we used the induction hypothesis ŵ(t)
≥t+1 = w

(t)
≥t+1 and the update

rule (9).

Next, we prove ŵ
(t+1)
≥t+2 = w

(t+1)
≥t+2. We first compute

w
(t+1)
≥t+2 = argmin

v≥t+2

1

2
∥Xw −

t+1∑
j=1

qjX̃j −
N∑

j=t+2

vjX̃j∥2

= argmin
v≥t+2

1

2
∥Xw −

t∑
j=1

qjX̃j −
N∑

j=t+1

w
(t)
j X̃j + (w

(t)
t+1 − qt+1)X̃t+1 +

N∑
j=t+2

(w
(t)
j − vj)X̃j∥2.
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Due to the update rule (4), Xw −
∑t

j=1 qjX̃j −
∑N

j=t+1 w
(t)
j X̃j is orthogonal to the column span

of X̃≥t+1, hence to (w
(t)
t+1 − qt+1)X̃t+1 +

∑N
j=t+2(w

(t)
j − vj)X̃j . Then, we have

w
(t+1)
≥t+2 = argmin

v≥t+2

1

2
∥Xw −

t∑
j=1

qjX̃j −
N∑

j=t+1

w
(t)
j X̃j + (w

(t)
t+1 − qt+1)X̃t+1 +

N∑
j=t+2

(w
(t)
j − vj)X̃j∥2

= argmin
v≥t+2

1

2
∥(ŵ(t)

t+1 − q̂t+1)X̃t+1 +

N∑
j=t+2

(ŵ
(t)
j − vj)X̃j∥2 = ŵ

(t+1)
≥t+2,

where we used the Pythagorean theorem, the induction hypothesis ŵ
(t)
≥t+1 = w

(t)
≥t+1, and the fact

qt+1 = q̂t+1. This completes the induction.

G PROOF OF LEMMA 3.2

Throughout this section, we denote H≥t,≥t = X⊤
≥tX≥t ∈ R(N−t+1)×(N−t+1) and H−1

≥t,≥t =

(X⊤
≥tX≥t)

−1 ∈ R(N−t+1)×(N−t+1). We will begin with a few preliminary lemmas before we
prove Lemma 3.2. While some of these lemmas may already be known, we are not aware of any
rigorous proofs in the literature. Thus, we provide our proofs here for completeness.
Lemma G.1. Denote by [H−1

≥t,≥t]11 the first entry of H−1
≥t,≥t and by [H−1

≥t,≥t]≥2,1 ∈ RN−t the first
column of H−1

≥t,≥t albeit with the first entry removed. Then

(X⊤
≥t+1X≥t+1)

−1X⊤
≥t+1Xt = −

[H−1
≥t,≥t]≥2,1

[H−1
≥t,≥t]11

.

Proof. We denote r := [H−1
≥t,≥t]11 and b = [H−1

≥t,≥t]≥2,1. Then
(
r
b

)
is just the first column of

H−1
≥t,≥t, so we have H≥t,≥t

(
r
b

)
= e1. Let us write H =

[
X⊤

t Xt X⊤
t X≥t+1

X⊤
≥t+1Xt X⊤

≥t+1X≥t+1

]
. By

comparing the two sides of H
(
r
b

)
= e1 we can observe rX⊤

≥t+1Xt+X⊤
≥t+1X≥t+1b = 0, which

implies

(X⊤
≥t+1X≥t+1)

−1X⊤
≥t+1Xt = −

b

r
and finishes the proof.

The next lemma establishes how one can efficiently compute H−1
≥t+1,≥t+1 from H−1

≥t,≥t.

Lemma G.2. H−1
≥t+1,≥t+1 can be efficiently computed from H−1

≥t,≥t via

H−1
≥t+1,≥t+1 =

(
H−1

≥t,≥t −
1

[H−1
≥t,≥t]11

[H−1
≥t,≥t]≥1,1[H

−1
≥t,≥t]1,≥1

)
≥2,≥2

.

We note that this is a simple rank-1 update followed by a submatrix slicing.

Proof. We first recall a more general inverse formula for 2 × 2 block matrix using the Schur com-
plement. Consider the 2× 2 block matrix

M =

(
A B
C D

)
.

When A is invertible, the inverse of M is given by

M−1 =

(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
, (19)
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where S = D − CA−1B is the Schur complement of A in M .

When A is a scalar a and M is symmetric, i.e.

M =

(
a b⊤

b D

)
,

this formula becomes

M−1 =

(
a−1 + a−2b⊤S−1b −a−1b⊤S−1

−a−1S−1b S−1

)
,

where S = D − a−1bb⊤.

By the Sherman–Morrison formula (Horn and Johnson, 2012), we have

D−1 = S−1 − S−1bb⊤S−1

a+ b⊤S−1b

= S−1 − a−2S−1bb⊤S−1

a−1 + a−2b⊤S−1b
.

Returning to our setting where M−1 = H−1
≥t,≥t and D−1 = H−1

≥t+1,≥t+1, we have

H−1
≥t+1,≥t+1 = [H−1

≥t,≥t]≥2,≥2 −
1

[H−1
≥t,≥t]11

[H−1
≥t,≥t]≥2,1[H

−1
≥t,≥t]1,≥2

= [H−1
≥t,≥t]≥2,≥2 −

1

[H−1
≥t,≥t]11

(
[H−1

≥t,≥t]≥1,1[H
−1
≥t,≥t]1,≥1

)
≥2,≥2

=

(
H−1

≥t,≥t −
1

[H−1
≥t,≥t]11

[H−1
≥t,≥t]≥1,1[H

−1
≥t,≥t]1,≥1

)
≥2,≥2

.

Using the above lemma and Cholesky decomposition (Horn and Johnson, 2012), we can further
simplify the right hand side in Lemma G.1 via the following lemma.

Lemma G.3. Let H−1 = (X⊤X)−1 and H−1 = LL⊤ be its Cholesky decomposition where L is
a lower triangular matrix, then

[H−1
≥t,≥t]≥2,1

[H−1
≥t,≥t]11

=
L≥t+1,t

Ltt
∈ RN−t

holds for all t ∈ [N − 1].

Proof. We first prove that given the Cholesky decomposition H−1 = LL⊤, the Cholesky decompo-
sition of H−1

≥t,≥t is H−1
≥t,≥t = (L≥t,≥t)(L≥t,≥t)

⊤ for all t ∈ [N ], where H−1
≥t,≥t = (X⊤

≥tX≥t)
−1 ∈

R(N−t+1)×(N−t+1).

Let us proceed by induction. The base-case when t = 1 holds by assumption, and we now
assume the result holds for t. By Lemma G.2, the updated inverse Hessian H−1

≥t+1,≥t+1 =(
H−1

≥t,≥t −
1

[H−1
≥t,≥t

]11
[H−1

≥t,≥t]≥1,1[H
−1
≥t,≥t]1,≥1

)
≥2,≥2

. Thus,

(
(L≥t,≥t)(L≥t,≥t)

⊤ − 1

L2
tt

((L≥t,≥t)11 · [L≥t,≥t]≥1,1)((L≥t,≥t)11 · [L≥t,≥t]≥1,1)
⊤
)
≥2,≥2

=
(
(L≥t,≥t)(L≥t,≥t)

⊤ − [L≥t,≥t]≥1,1[L≥t,≥t]
⊤
≥1,1

)
≥2,≥2

=((L≥t,≥t)≥2,≥2)((L≥t,≥t)≥2,≥2)
⊤

=(L≥t+1,≥t+1)(L≥t+1,≥t+1)
⊤
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This finishes the induction and we have Cholesky decomposition H−1
≥t,≥t = (L≥t,≥t)(L≥t,≥t)

⊤ for
all t ∈ [N ]. To finish the proof, let M = RR⊤ be the Cholesky decomposition of any positive
definite matrix M . By a direct computation, the first column of M is R[R⊤]≥1,1 = R11 · [R]≥1,1

and the first entry M11 = R2
11. Then we have M≥1,1

M11
=

[R]≥1,1

R11
which implies that M≥2,1

M11
=

[R]≥2,1

R11
.

In our case, we have H−1
≥t,≥t = (L≥t,≥t)(L≥t,≥t)

⊤ in the place of M = RR⊤. Thus,

[H−1
≥t,≥t]≥2,1

[H−1
≥t,≥t]11

=
[L≥t,≥t]≥2,1

[L≥t,≥t]11
=

L≥t+1,t

Ltt
.

With the above preliminary lemmas, now we are ready to prove Lemma 3.2

Proof of Lemma 3.2. Since we initialize with w(0) = w, q1 = Q(w1) always holds. Thus the two
iterations produce the same q1 and w

(0)
≥1 . We proceed by induction. Assume at step t that qt and

w
(t−1)
≥t resulting from the update rules Equation 11 and Equation 12 match those following update

rules Equation 13 and Equation 14. In order to complete the induction, it suffices to show that (12)
and (14) produce the same w

(t)
≥t+1, which naturally results in the same qt+1 = Q(w(t)

t+1).

To that end, we note that the optimization problem defined by Equation 12 has a unique least-square
solution as X≥t+1 has full column rank. The minimizer is given by

w
(t)
≥t+1 = w

(t−1)
≥t+1 + (w

(t−1)
t − qt)X

†
t+1:Xt

= w≥t+1 + (w
(t−1)
t − qt)(X

⊤
≥t+1X≥t+1)

−1X⊤
≥t+1Xt

By Lemma G.1, we have

(X⊤
≥t+1X≥t+1)

−1X⊤
≥t+1Xt = −

[H−1
≥t,≥t]≥2,1

[H−1
≥t,≥t]11

.

Lastly, Lemma G.3 gives us

[H−1
≥t,≥t]≥2,1

[H−1
≥t,≥t]11

=
L≥t+1,t

Ltt
∈ RN−t.

This matches ∆t+1 in Equation 14 and completes our induction.

H PROOF OF COROLLARY 3.4

Algorithm 2 OPTQ: Quantize a layer W given inverse Hessian H−1 = (X⊤X)−1.

1: for every w in W in parallel do
2: q = 0N ▷ Initialize quantized neuron
3: H−1 = LL⊤ ▷ Perform Cholesky decomposition
4: for t = 1 to N do ▷ Iterate over rows
5: qt = Q(wt)
6: w≥t ← w≥t − L≥t,t · (wt − qt)/Ltt ▷ Update remaining weights
7: end for
8: end for
9: return Q

For our final result of this paper, we observe that updates of w(t)
≥t+1 via Equation 12 can be interpreted

by observing that the term (qt − w
(t−1)
t )Xt represents the error introduced by quantizing w

(t−1)
t .

The optimization problem Equation 12 seeks to mitigate this error by adjusting future weights so as
to minimize the resulting distortion, measured in the ℓ2-norm. Notably, this step does not explicitly
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attempt to correct errors introduced by earlier quantization steps 1, . . . , t− 1. However, by combin-
ing the proof of Theorem 3.1 in the case when X = X̃ with Lemma 3.2, we arrive at Corollary 3.4,
which provides a novel interpretation of OPTQ. It shows—perhaps unexpectedly—that Algorithm 2
optimally corrects the cumulative weight quantization error incurred over the first t entries of w.

Proof. The proof is based on induction on both arguments of the trajectory. Let {(ŵ(t−1)
≥t , q̂t)}Nt=1

denote the trajectory generated by update rules Equation 17, Equation 18. And let {(w(t−1)
≥t , qt)}Nt=1

be the trajectory generated by Algorithm 2. Our goal is to prove (ŵ
(t−1)
≥t , q̂t) = (w

(t−1)
≥t , qt) for

t = 1, . . . , N .

By Lemma 3.2, the trajectory {(w(t−1)
≥t , qt)}Nt=1 generated using Cholesky decomposition in Algo-

rithm 2 can be equivalently regarded as generated from Equation 11, Equation 12. Thus, we will use
Equation 11, Equation 12 as the update rule of w(t−1)

≥t and qt in the rest of our proof. In the base

case, ŵ(0)
≥1 = w

(0)
≥1 are both initialized with w and

q̂1 = argmin
p∈A

1

2
∥Xw − pX1 −

N∑
j=2

w
(0)
j Xj∥2 = argmin

p∈A

1

2
∥(w1 − p)X1∥2 = Q(w1) = q1.

Thus (w(0)
≥1, q1) = (ŵ

(0)
≥1, q̂1). Assume (ŵ

(t−1)
≥t , q̂t) = (w

(t−1)
≥t , qt) holds true. Now we proceed to

prove (ŵ
(t)
≥t+1, q̂t+1) = (w

(t)
≥t+1, qt+1).

Step 1: We first prove ŵ
(t)
≥t+1 = w

(t)
≥t+1. By construction,

ŵ
(t)
≥t+1 = argmin

v≥t+1∈RN−t

1

2
∥Xw −

t∑
j=1

q̂jXj −
N∑

j=t+1

vjXj∥2.

For an arbitrary v≥t+1 ∈ RN−t,

Xw −
t∑

j=1

q̂jXj −
N∑

j=t+1

vjXj =

(Xw −
t−1∑
j=1

q̂jXj −
N∑
j=t

ŵ
(t−1)
j Xj)︸ ︷︷ ︸

(I)

+

(ŵ
(t−1)
t − q̂t)Xt +

N∑
j=t+1

(ŵ
(t−1)
j − vj)Xj


︸ ︷︷ ︸

(II)

.

Since ŵ
(t−1)
≥t+1 is a minimizer of Equation 18, the first term (I) ∈ X⊥

≥t, and clearly the second term
(II) ∈ span{Xt, ......, XN}. Thus, we have∥∥∥∥∥∥Xw −

t∑
j=1

q̂jXj −
N∑

j=t+1

vjXj

∥∥∥∥∥∥
2

= ∥(I)∥2 + ∥(II)∥2 .

Notice that (I) does not depend on v≥t+1. Furthermore, ŵ(t−1)
≥t+1 and q̂t in (II) can be replaced by

w
(t−1)
≥t+1 and qt respectively using our induction hypothesis. Thus,

ŵ
(t)
≥t+1 = argmin

v≥t+1∈RN−t

1

2
∥Xw −

t∑
j=1

q̂jXj −
N∑

j=t+1

vjXj∥2

= argmin
v≥t+1∈RN−t

1

2
∥(ŵ(t−1)

t − q̂t)Xt +

N∑
j=t+1

(ŵ
(t−1)
j − vj)Xj∥2

= argmin
v≥t+1∈RN−t

1

2
∥(w(t−1)

t − qt)Xt +

N∑
j=t+1

(w
(t−1)
j − vj)Xj∥2

= w
(t)
≥t+1.
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Step 2: Now we prove q̂t+1 = qt+1. We just constructed

ŵ
(t)
≥t+1 = argmin

v≥t+1∈RN−t

1

2
∥Xw −

t∑
j=1

q̂jXj −
N∑

j=t+1

vjXj∥2.

This implies

Xw −
t∑

j=1

q̂jXj −
N∑

j=t+1

ŵ
(t)
j Xj = PX⊥

≥t+1
(Xw −

t∑
j=1

q̂jXj) ∈ X⊥
≥t+1. (20)

By construction, we have

q̂t+1 = argmin
q∈A

1

2
∥Xw −

t∑
j=1

q̂jXj − qXt+1 −
N∑

j=t+2

ŵ
(t)
j Xj∥2

= Q

(
⟨Xt+1, Xw −

∑t
j=1 q̂jXj −

∑N
j=t+2 ŵ

(t)
j Xj⟩

∥Xt+1∥2

)
.

Then we can use Equation 20 to deduce

⟨Xt+1, Xw −
∑t

j=1 q̂jXj −
∑N

j=t+2 ŵ
(t)
j Xj⟩

∥Xt+1∥2

=
⟨Xt+1, Xw −

∑t
j=1 q̂jXj −

∑N
j=t+1 ŵ

(t)
j Xj +Xt+1ŵ

(t)
t+1⟩

∥Xt+1∥2

=
⟨Xt+1, Xw −

∑t
j=1 q̂jXj −

∑N
j=t+1 ŵ

(t)
j Xj⟩

∥Xt+1∥2
+
⟨Xt+1, Xt+1ŵ

(t)
t+1⟩

∥Xt+1∥2

=
⟨Xt+1, Xt+1ŵ

(t)
t+1⟩

∥Xt+1∥2

= ŵ
(t)
t+1

= w
(t)
t+1.

The last step ŵ
(t)
t+1 = w

(t)
t+1 follows from what we just proved in Step 1 that ŵ(t)

≥t+1 = w
(t)
≥t+1. Thus

we know

q̂t+1 = Q(ŵ(t)
t+1) = Q(w

(t)
t+1) = qt+1.

This completes our induction.
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