

000 001 002 003 004 005 QRONOS: CORRECTING THE PAST BY SHAPING THE 006 FUTURE... IN POST-TRAINING QUANTIZATION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

We introduce Qronos—a new post-training quantization algorithm that not only explicitly corrects errors due to both weight and activation quantization, but also corrects errors accumulated from previously quantized layers. Our iterative algorithm is based on an interpretable and disciplined optimization framework that surpasses existing data-driven approaches. At each step, Qronos alternates between error correction and diffusion via optimal update rules. Importantly, we prove that Qronos admits an equivalent formulation that significantly improves algorithmic efficiency; we use our discovery to reduce peak memory usage by $18\times$ on Llama3 8B, and our scaling analysis shows a speedup of up to $13.8\times$ for a single-layer microbenchmark. We demonstrate compatibility with existing transformation techniques such as Hadamard-based incoherence processing and weight-activation scaling equalization, among others. We evaluate Qronos using recent language models in the Llama3 and Qwen3 families; Qronos consistently outperforms previous state-of-the-art adaptive rounding methods when quantizing the weights, activations, and/or KV caches to 4 bits or fewer.

1 INTRODUCTION

Recent advances in post-training quantization (PTQ) have enabled the practical use of few-bit weights and activations for large language model (LLM) inference, typically by focusing on one or both aspects of the quantization pipeline, visualized in Figure 1. The first aspect involves modifying the weights and activations of a model to make them more amenable to quantization, often through transformations that exploit invariances within the compute graph. The second aspect more directly concerns the design of the quantization mapping itself. It involves using data to minimize quantization error by either calibrating the quantization grid, which is defined by a bit width, scaling factor, and zero point, or adaptively rounding the (potentially transformed) weights.

The latest innovations in PTQ, including Ashkboos et al. (2024); Liu et al. (2025), among many others, are skewed towards proposing and improving transformations that address the quantization challenges exacerbated in LLMs. These studies often only consider round-to-nearest (RTN) and OPTQ (Frantar et al., 2023), also known as GPTQ. Meanwhile, our work explicitly focuses on improving the rounding method while remaining compatible with these transformations.

Contributions. We introduce Qronos as a new scalable algorithm that not only explicitly corrects quantization error in both the weights and activations, but also residual quantization error coming from previously quantized layers. In contrast, OPTQ can only correct weight quantization error. We derive Qronos in a well-disciplined and mathematically interpretable form, then rigorously derive an equivalent efficient implementation (see Theorem 3.1) that significantly improves algorithm scaling (see Remark 3.3 and Section 4.3). As a non-trivial by-product, we address a theoretical blind spot of OPTQ by deriving a novel interpretation (Corollary 3.4), which shows that its seemingly local greedy update rules in fact correct the weight quantization error accumulated over all previous iterations. Our novel interpretation also offers clear geometric insights: at each step, OPTQ performs an optimal grid selection followed by an orthogonal projection onto a lower dimensional hyperplane spanned by future columns of the data matrix. This is one of the first results on the geometry of LLM quantization, among a few concurrent works (Birnick, 2025; Chen et al., 2025).

We evaluate Qronos on the Llama3 (Grattafiori et al., 2024) and Qwen3 (Yang et al., 2025) model families, and compare against RTN, OPTQ, GPFQ (Lybrand and Saab, 2021) and GPTAQ (Li et al.,

Figure 1: The modern quantization pipeline is typically a two-stage process consisting of (1) transformations that make weights and/or activations more amenable to quantization, followed by (2) rounding functions that map weights and/or activations onto a quantization grid.

2025) while demonstrating compatibility with notable transformations for both weight-only quantization and weight-activation quantization. To our knowledge, this is the first work to isolate the impact of the rounding algorithm through a carefully designed experimental setup that fixes the quantization grid for each transformation method (or lack thereof). Our experiments show that Qronos consistently yields marked improvement over existing methods, as [highlighted](#) in Table 1.

Table 1: **Weight-only quantization of Llama3 foundation models.** We jointly apply Hadamard-based incoherence processing (Ashkboos et al., 2024) and MagR (Zhang et al., 2024) as quantization transforms (stage 1 in Figure 1) and compare different rounding methods (stage 2).

		WikiText2 (↓)			0-shot (↑)		
		1B	3B	8B	1B	3B	8B
BF16	-	8.9	7.1	5.9	59.4	67.5	74.4
2-bit	RTN	3e3	5e3	3e3	32.4	32.2	33.0
	OPTQ	24.6	13.2	10.4	39.3	47.3	55.2
	GPFQ	25.8	14.4	11.3	38.6	46.9	51.8
	GPTAQ	22.0	12.2	9.6	39.8	49.2	54.8
	Qronos	17.8	11.4	9.3	42.6	50.7	55.8
1.58-bit	RTN	5e5	4e4	9e4	32.3	32.9	32.2
	OPTQ	2e2	52.0	43.3	32.7	32.5	34.9
	GPFQ	1e2	51.3	35.8	32.4	32.6	33.4
	GPTAQ	99.0	41.8	35.3	33.3	33.7	34.7
	Qronos	39.3	22.8	18.0	34.8	36.5	37.8

2 BACKGROUND AND RELATED WORK

We first provide a short review of prior works that focus on the two key aspects of quantization we have mentioned: transformation techniques and rounding schemes. Figure 1 illustrates how these two aspects interact within the quantization pipeline.

Methods based on transformations. Many recent works propose transformations of weights and/or activations to facilitate quantization. One line of work, initially proposed for MobileNets (Nagel et al., 2019), exploits scaling invariance in neural network compute graphs to equalize the range or precision of weights and activations before quantization. Recent variants leverage scale invariance to redistribute quantization difficulty between weights and activations, with various proposals for learning scales or ranges based on custom objective functions (Xiao et al., 2023; Shao et al., 2024; Lin et al., 2024). Another line of work uses rotations within a compute graph to normalize weight and activation distributions, initially leveraging random orthogonal rotations to promote weight incoherence (Chee et al., 2023). Recent variants employ efficient Hadamard rotations (Tseng et al., 2024; Ashkboos et al., 2024), Stiefel manifold optimizations (Liu et al., 2025; Hu et al., 2025), and rotation expansion techniques (Adepu et al., 2024; Franco et al., 2025a). Finally, distinct from these invariance-based approaches, MagR (Zhang et al., 2024) directly minimizes the ℓ_∞ norm of weights via proximal gradient descent to reduce dynamic range before quantization. While we do not introduce novel transformations of this type in this work, we demonstrate that existing transformations can be combined with our proposed method.

108 **Methods based on rounding.** The earliest line of work on rounding relies on continuous optimization
 109 strategies based on gradient descent (Nagel et al., 2020). Although more recent methods exist
 110 (Hubara et al., 2021; Li et al., 2021), they had not been commonly evaluated on LLMs due to their
 111 computational cost until Cheng et al. (2024). Thus, early work on LLMs focused on grid scaling
 112 or shifting to reduce weight quantization error; for example, LLM.int8() (Dettmers et al., 2022) and
 113 ZeroQuant (Yao et al., 2022) directly round to nearest after heuristically selecting the quantization
 114 grid (*i.e.*, bit width, scaling factors, and zero points). The most relevant line of work to ours adopts
 115 principled discrete optimization using greedy, gradient-free rounding strategies to select quantized
 116 weights to minimize the layer-wise reconstruction error, and includes OBQ (Frantar and Alistarh,
 117 2022), OPTQ (Frantar et al., 2023), GPFQ (Lybrand and Saab, 2021; Zhang et al., 2023) and GPTAQ
 118 (Li et al., 2025). Qronos falls within this category.

119 **Notation.** Throughout the paper, the weight matrix of a layer is denoted by $W \in \mathbb{R}^{N \times N'}$, where
 120 each of the N' columns represents a N -dimensional channel. \mathcal{A} denotes the discrete quantiza-
 121 tion grid (or alphabet) used for weight quantization, and \mathcal{Q} denotes the corresponding RTN op-
 122 erator associated with \mathcal{A} , given by $\mathcal{Q}(W) := s \cdot (\text{clip}(\lceil \frac{W}{s} \rceil + z; \min \mathcal{A}, \max \mathcal{A}) - z)$. Here,
 123 $\text{clip}(x; a_{\min}, a_{\max}) = \min\{\max\{x, a_{\min}\}, a_{\max}\}$, while the quantization step size (or scaling fac-
 124 tor) is denoted by s and the quantization grid is shifted by an offset denoted by z , often referred
 125 to as a zero point. We specify our selection of $s, z \in \mathbb{R}^{N'}$ for the various settings in Section 4.
 126 When quantizing W , we use $X \in \mathbb{R}^{m \times N}$ to denote the input calibration dataset of m samples (*e.g.*,
 127 tokens) for the layer, resulting from the original pre-trained model, and $\tilde{X} \in \mathbb{R}^{m \times N}$ to denote the
 128 input calibration dataset coming from the partially quantized model. Given a vector $v \in \mathbb{R}^n$, we use
 129 v_i for its i -th entry, $v_{\geq j}$ for the subvector $(v_j, \dots, v_n)^\top$, and we define $v_{\leq j}$ analogously. $\|v\|$ is the
 130 Euclidean norm of v . Given a matrix $A \in \mathbb{R}^{m \times n}$, we use A_i to denote its i -th column. We use $A_{\geq j}$
 131 to denote the submatrix (A_j, \dots, A_n) . Similarly, $A_{\geq 2, \geq 2}$ denotes the submatrix of A obtained by
 132 removing the first row and the first column. We use $\text{col}(A)$ to denote the column space of A . P_A
 133 is the orthogonal projection onto $\text{col}(A)$, and P_{A^\perp} the projection onto its orthogonal complement.
 134 Throughout this paper, all indices start from 1, following the standard mathematical convention.

135 **Layer-wise reconstruction and error correction.** Data-driven weight quantization methods typi-
 136 cally aim to approximately minimize¹ the layer-wise reconstruction error given by

$$\min_{Q \in \mathcal{A}^{N \times N'}} \|XW - XQ\|_F^2. \quad (1)$$

137 At an arbitrary layer, the goal is to compute a quantized weight matrix $Q \in \mathcal{A}^{N \times N'}$ that preserves
 138 the output activations XW under quantization. In practice, however, quantizing weights in earlier
 139 layers affects the input to subsequent layers. Let $\tilde{X} \in \mathbb{R}^{m \times N}$ denote the activation matrix produced
 140 by a partially quantized model, where earlier layers have already been quantized. To account for the
 141 propagation of quantization error, we use a modified formulation, instead of Equation 1, that targets
 142 the mismatch between the original output XW and $\tilde{X}Q$ by approximately solving

$$\min_{Q \in \mathcal{A}^{N \times N'}} \|XW - \tilde{X}Q\|_F^2. \quad (2)$$

143 The type of mismatch in this formulation is typically not addressed in the literature but arises natu-
 144 rally in both weight-only and weight-activation quantization settings. For instance, in weight-only
 145 quantization, \tilde{X} arises as the output of previously quantized layers, while in weight-activation quan-
 146 tization, one may encounter $\mathcal{Q}(\tilde{X})$ rather than \tilde{X} if activations are quantized. Throughout this paper,
 147 we use the notation (X, \tilde{X}) to refer generically to mismatched input pairs.

3 QRONOS

148 We begin by describing the iterations associated with Qronos in Section 3.1. The iterations follow a
 149 disciplined and mathematically interpretable framework that alternates between error correction and
 150 diffusion using optimal update rules. We then prove that the explicit solutions to these minimization
 151 problems admit an efficient implementation. In Section 3.2, we provide deeper intuition behind

152 ¹Equation 1 is an instance of integer least-squares problems, which are known to be NP-hard (Hassibi and
 153 Vikalo, 2002). Thus, the best that one can hope for are approximate solutions.

162 Qronos in the context of previous state-of-the-art rounding algorithms, namely GPFQ and OPTQ.
 163 We also derive a novel interpretation of OPTQ (Corollary 3.4), which shows that it corrects the
 164 cumulative weight quantization error incurred over all the previous iterations. The proofs for all
 165 results in Section 3 are provided in the appendix.

166
 167 **3.1 ALGORITHM AND EFFICIENT IMPLEMENTATION**
 168

169 Let us first note that Qronos can process each column $w \in \mathbb{R}^N$ of $W \in \mathbb{R}^{N \times N'}$ independently and in
 170 parallel to produce each column $q \in \mathcal{A}^N$ of $Q \in \mathcal{A}^{N \times N'}$. Ideally, the goal is to find q that minimizes
 171 $\frac{1}{2} \|Xw - \tilde{X}q\|^2$. Since this problem is NP-hard, we propose an efficient sequential algorithm to
 172 approximate its solution. At each iteration, Qronos first selects the quantized weight that optimally
 173 corrects the current approximation error, holding the remaining weights fixed; see Equation 3 below.
 174 It then updates the unquantized weights to optimally compensate for the rounding error, a process
 175 we refer to as error diffusion; see Equation 4.

176 Let w , without superscripts or subscripts, denote the original unquantized weights. After deter-
 177 mining q_{t-1} , let $w_{\geq t}^{(t-1)}$ represent the updated unquantized weights corresponding to indices t
 178 through N . The full state of the algorithm after step $t-1$ is thus given by the vector $w^{(t-1)} =$
 179 $(q_{\leq t-1}, w_{\geq t}^{(t-1)})$, with the initialization $w^{(0)} = w$. At step t , the algorithm alternates between se-
 180 lecting q_t through error correction and updating the remaining weights through error diffusion. The
 181 update rules are given by

$$184 \quad q_t = \underset{p \in \mathcal{A}}{\operatorname{argmin}} \frac{1}{2} \|Xw - \sum_{j=1}^{t-1} q_j \tilde{X}_j - p \tilde{X}_t - \sum_{j=t+1}^N w_j^{(t-1)} \tilde{X}_j\|^2, \quad (3)$$

$$185 \quad w_{\geq t+1}^{(t)} = \underset{(v_{t+1}, \dots, v_N) \in \mathbb{R}^{N-t}}{\operatorname{argmin}} \frac{1}{2} \|Xw - \sum_{j=1}^t q_j \tilde{X}_j - \sum_{j=t+1}^N v_j \tilde{X}_j\|^2. \quad (4)$$

186 These optimization problems admit the following closed-form solutions (see Proposition E.1):

$$187 \quad q_t = \mathcal{Q} \left(\frac{\langle Xw - \sum_{j=1}^{t-1} q_j \tilde{X}_j - \sum_{j=t+1}^N w_j^{(t-1)} \tilde{X}_j, \tilde{X}_t \rangle}{\|\tilde{X}_t\|^2} \right), \quad (5)$$

$$188 \quad w_{\geq t+1}^{(t)} = \tilde{X}_{\geq t+1}^\dagger (Xw - \tilde{X}_{\leq t} q_{\leq t}). \quad (6)$$

189 While these expressions follow directly from the optimization problems, computing q_t and $w_{\geq t+1}^{(t)}$
 190 in this form is not computationally efficient and scales poorly, as we will show in Section 4.3. To
 191 address this, we present Theorem 3.1, which shows that for all $t \geq 2$, q_t can be computed via
 192 RTN, enabling a simpler implementation. In Lemma 3.2, we further show that the update for $w_{\geq t+1}^{(t)}$
 193 also admits an efficient implementation using Cholesky decomposition to solve the associated least-
 194 squares problem. Together, these results yield a practical and scalable implementation of Qronos.

195 **Theorem 3.1.** *Let $(q_t, w_{\geq t}^{(t-1)})$ be the iterates generated by Equation 3 and Equation 4, with ini-
 196 tialization $w_{\geq 1}^{(0)} = w$. Define an alternative sequence $(\hat{q}_t, \hat{w}_{\geq t}^{(t-1)})$ using the same initialization
 197 $\hat{w}_{\geq 1}^{(0)} = w$, by setting*

$$198 \quad \hat{q}_1 = \underset{p \in \mathcal{A}}{\operatorname{argmin}} \frac{1}{2} \|Xw - p \tilde{X}_1 - \sum_{j=2}^N w_j \tilde{X}_j\|^2, \quad (7)$$

$$199 \quad \hat{w}_{\geq 2}^{(1)} = \underset{(v_2, \dots, v_N) \in \mathbb{R}^{N-1}}{\operatorname{argmin}} \frac{1}{2} \|Xw - \hat{q}_1 \tilde{X}_1 - \sum_{j=2}^N v_j \tilde{X}_j\|^2, \quad (8)$$

216 and, for $t = 2, \dots, N$, define
 217

$$\hat{q}_t = \mathcal{Q}(\hat{w}_t^{(t-1)}), \quad (9)$$

$$\hat{w}_{\geq t+1}^{(t)} = \arg \min_{(v_{t+1}, \dots, v_N) \in \mathbb{R}^{N-t}} \frac{1}{2} \|(\hat{q}_t - \hat{w}_t^{(t-1)}) \tilde{X}_t + \sum_{j=t+1}^N (v_j - \hat{w}_j^{(t-1)}) \tilde{X}_j\|^2. \quad (10)$$

222 Then for $t = 1, \dots, N$, the two procedures yield identical iterates: $(q_t, w_{\geq t}^{(t-1)}) = (\hat{q}_t, \hat{w}_{\geq t}^{(t-1)})$.
 223

224 Starting from the second iteration, Theorem 3.1 shows that the updates in Equation 3 and Equation 4
 225 can be equivalently reformulated as Equation 9 and Equation 10, respectively. This reformulation
 226 allows q_t to be obtained via RTN for $t \geq 2$, followed by an adjustment of the remaining weights us-
 227 ing only the (potentially quantized) activation matrix \tilde{X} to compensate for the one-step quantization
 228 error $(q_t - w_t^{(t-1)}) \tilde{X}_t$.
 229

230 To further accelerate this adjustment step, we now present Lemma 3.2, which establishes the equiv-
 231 alence of the update in Equation 10 (for $t \geq 2$) with a Cholesky-based least-squares solution². For
 232 notational simplicity, we slightly abuse the indexing by treating $t = 2$ as a ‘restart.’
 233

234 **Lemma 3.2** (Equivalence of Least-Squares Formulation and Cholesky Formulation). *Assume that*
 235 $H = X^\top X$ *is invertible, and let* $H^{-1} = LL^\top$ *denote its Cholesky decomposition, with L lower*
 236 *triangular. Then, starting from* $w^{(0)} = w$, *the update rules*

$$q_t = \mathcal{Q}(w_t^{(t-1)}), \quad (11)$$

$$w_{\geq t+1}^{(t)} = \arg \min_{(v_{t+1}, \dots, v_N) \in \mathbb{R}^{N-t}} \frac{1}{2} \|(\hat{q}_t - \hat{w}_t^{(t-1)}) X_t + \sum_{j=t+1}^N (v_j - \hat{w}_j^{(t-1)}) X_j\|^2 \quad (12)$$

240 are equivalent to the Cholesky-based iterations
 241

$$q_t = \mathcal{Q}(w_t^{(t-1)}), \quad (13)$$

$$w_{\geq t+1}^{(t)} = w_{\geq t+1}^{(t-1)} + \Delta^{(t)}, \quad (14)$$

245 where

$$\Delta^{(t)} = -(w_t^{(t-1)} - q_t) \frac{L_{\geq t+1, t}}{L_{tt}} \in \mathbb{R}^{N-t}.$$

249 **Remark 3.3 (Memory Efficiency).** At the first iteration, both q_1 and $w_{\geq 2}^{(1)}$ depend on $\tilde{X}, X \in$
 250 $\mathbb{R}^{m \times N}$, requiring $\mathcal{O}(mN)$ peak memory, often where $m \gg N$. For example, Llama3.1-8B requires
 251 over 30 GB just to store 128 samples of 2048-token sequences at float32. We optimize this first
 252 iteration to use only square matrices such that
 253

$$q_1 = \mathcal{Q} \left(\frac{G_{1, \geq 1} w - H_{1, \geq 2} w_{\geq 2}^{(0)}}{H_{11}} \right), \quad (15)$$

$$w_{\geq 2}^{(1)} = (H_{\geq 2, \geq 2})^{-1} (G_{\geq 2, \geq 1} w - H_{\geq 2, 1} q_1), \quad (16)$$

259 where $G = \tilde{X}^T X \in \mathbb{R}^{N \times N}$ and $H = \tilde{X}^T \tilde{X} \in \mathbb{R}^{N \times N}$; see Proposition E.2 for a justification.
 260 Note that calculating G and H does not require storing \tilde{X}, X , as one can sequentially accumulate
 261 the outer products of each of the m samples. Thus, this square matrix formulation reduces peak
 262 memory requirements of Qronos from $\mathcal{O}(mN)$ to $\mathcal{O}(N^2)$, yielding an 18× reduction in the case of
 263 Llama3.1-8B. We note that Colbert et al. (2024) similarly identify a memory optimization for GPFQ,
 264 but use singular value decompositions that may not scale well with N .
 265

266 This completes our reduction of the original updates (Equations 3 and 4) to the equivalent implemen-
 267 tation given by Equations 13, 14, 15, and 16. The pseudocode for this efficient version is provided
 268 in Appendix A. We further present a runtime analysis comparing this efficient version with the base
 269 version (i.e., a direct evaluation of the closed-form solution) in Section 4.3.

²We do not claim that Lemma 3.2 is novel, though we were unable to find it stated explicitly in the literature.

270 3.2 THEORETICAL INTERPRETATION AND INTUITION
271

272 Theorem 3.1 and Lemma 3.2 connect the initial disciplined optimization formulation of Qronos to
273 our efficient implementation. These results guarantee that Qronos is both interpretable and scalable,
274 explicitly correcting error from the mismatched input pairs X and \tilde{X} . Here, we provide deeper
275 intuition in the context of previous state-of-the-art rounding algorithms, namely GPFQ and OPTQ.

276 When quantizing w , GPFQ (Lybrand and Saab, 2021; Zhang et al., 2023; Zhang and Saab, 2023)
277 interprets Xw as the endpoint of the path $\sum_{j=1}^t w_j X_j$ for $t = 1, \dots, N$, and handles mismatched
278 inputs by aiming to match $\sum_{j=1}^t w_j X_j$ and $\sum_{j=1}^t q_j \tilde{X}_j$ for all t . More precisely, q_t is selected as
279 $\arg \min_{p \in \mathcal{A}} \|\sum_{j=1}^t w_j X_j - \sum_{j=1}^{t-1} q_j \tilde{X}_j - p \tilde{X}_t\|^2$.
280

281 Although path following handles the case when $X = \tilde{X}$ well, additional considerations are re-
282 quired when $X \neq \tilde{X}$ since, in such a case, the tails of the two paths generally do not align when
283 $\sum_{i=t+1}^N w_i (X_i - \tilde{X}_i) \neq 0$. Qronos handles this drawback by adopting a natural remedy to replace
284 the unquantized weights w_i by auxiliary weights $w_i^{(t)}$, for $i \geq t+1$, so that
285

$$286 \sum_{i=1}^t q_i \tilde{X}_i + \sum_{i=t+1}^N w_i^{(t)} \tilde{X}_i \approx Xw = \sum_{i=1}^N w_i X_i.$$

290 OPTQ (Frantar et al., 2023) explores a similar weight update idea, but only in the case where
291 $X = \tilde{X}$, by modifying the remaining unquantized weights after q_t is selected. The Cholesky refor-
292 mulation used in Lemma 3.2 also resembles the key mechanism in OPTQ. In this way, the runtime
293 of Qronos scales similarly to OPTQ while also explicitly addressing the mismatch between X and
294 \tilde{X} ; see Section 4.3 for details. This unexpected connection of Qronos to OPTQ also allows us to
295 derive a novel interpretation of OPTQ, which we now present.
296

297 **Corollary 3.4.** *The OPTQ iterations, when applied to a single layer input X , are equivalent to*

$$298 q_t = \arg \min_{p \in \mathcal{A}} \frac{1}{2} \|Xw - \sum_{j=1}^{t-1} q_j X_j - p X_t - \sum_{j=t+1}^N w_j^{(t-1)} X_j\|^2, \quad (17)$$

$$301 w_{\geq t+1}^{(t)} = \arg \min_{(v_{t+1}, \dots, v_N) \in \mathbb{R}^{N-t}} \frac{1}{2} \|Xw - \sum_{j=1}^t q_j X_j - \sum_{j=t+1}^N v_j X_j\|^2, \quad (18)$$

304 with $w_{\geq 1}^{(0)} = w$.
305

306 In other words, the updated weights and quantized weights at every iteration t that are produced by
307 OPTQ are identical to those produced by Equations 17 and 18. In particular, Equation 18 shows
308 that, at each step the updated weights $w_{\geq t+1}^{(t)}$ indeed optimally correct for the errors produced by
309 the hitherto quantized sequence q_1, \dots, q_t via orthogonal projection onto $\text{col}(X_{\geq t+1})$, as further
310 discussed in Appendix H.
311

312 Noticeably, OPTQ suffers from a systematic bias when the activation mismatch is non-negligible
313 as, unlike Qronos, it does not explicitly minimize the true discrepancy $\min_{q \in \mathcal{A}^N} \|Xw - \tilde{X}q\|_2$.
314 Consequently, as discussed in Appendix D, Qronos consistently reduces the relative error (measured
315 in ℓ_2 norm) of block outputs compared to OPTQ, as illustrated in Figure 3.
316

317 4 EXPERIMENTS
318

319 The core contribution of this work is Qronos—our principled data-driven rounding algorithm that al-
320 ternates between (1) explicitly correcting quantization error due to both the weights and activations,
321 and (2) diffusing excess error into future weights yet to be quantized. Thus, our primary comparison
322 metric is preserving model quality in challenging quantization scenarios. We design our experiments
323 to isolate the impact of the rounding function (stage 2 in Figure 1), while varying the quantization
transforms (stage 1 in Figure 1), as further discussed in Sections 4.1 and 4.2.

324 Table 2: **2-bit weight-only quantization of Qwen3 instruction fine-tuned models.** We apply HIP
 325 (stage 1 in Figure 1) and compare different rounding methods (stage 2).

	WikiText2 (↓)						0-shot (↑)					
	0.6B	1.7B	4B	8B	14B	32B	0.6B	1.7B	4B	8B	14B	32B
BF16	18.6	15.2	12.2	8.6	7.6	6.8	51.1	61.4	68.9	72.4	75.4	77.2
RTN	7e5	8e6	4e5	4e4	3e5	1e5	32.1	31.9	32.4	31.8	32.9	32.8
OPTQ	1e2	60.0	22.8	14.7	14.9	12.8	32.0	32.8	37.4	41.4	42.5	47.0
GPFQ	1e2	45.3	25.4	17.1	15.6	13.4	33.0	32.4	35.9	39.4	40.4	46.0
GPTAQ	74.5	37.0	21.0	13.6	14.4	12.9	32.3	34.0	38.7	42.5	43.3	47.3
Qronos	46.0	23.5	17.8	12.9	13.4	12.0	35.0	36.7	41.5	44.7	45.2	48.0

335
 336 Table 3: **Weight-only quantization of Llama3 foundation models.** We individually apply various
 337 quantization transforms (stage 1 in Figure 1) to isolate the impact of different rounding functions
 338 (stage 2) when quantizing to 3 and 4 bits, respectively denoted W3 and W4.
 339

Stage 1	Stage 2	W3						W4						
		WikiText2 (↓)			0-shot (↑)			WikiText2 (↓)			0-shot (↑)			
		1B	3B	8B	1B	3B	8B	1B	3B	8B	1B	3B	8B	
None	BF16	-	8.9	7.1	5.9	59.4	67.5	74.4	8.9	7.1	5.9	59.4	67.5	74.4
	RTN	2e4	1e4	3e4	32.3	32.4	32.6	18.0	10.1	8.4	49.1	60.8	67.4	
	OPTQ	42.5	13.8	11.4	37.5	48.1	53.8	10.4	7.8	6.5	54.3	63.4	71.0	
	GPFQ	35.3	13.4	11.1	35.7	49.9	53.5	10.4	7.8	6.5	56.0	65.2	71.2	
	GPTAQ	28.4	12.6	10.3	39.3	49.6	57.1	10.3	7.8	6.5	56.3	63.3	71.0	
	Qronos	22.8	11.3	9.3	39.5	53.1	56.7	10.1	7.6	6.4	56.2	64.5	72.0	
Smooth Quant	RTN	6e3	9e3	5e4	32.7	32.9	31.4	15.2	9.6	8.1	51.4	61.5	67.5	
	OPTQ	29.6	13.6	12.6	37.0	46.9	47.3	10.4	7.9	6.6	56.2	65.3	70.2	
	GPFQ	30.1	14.7	12.9	36.5	44.8	45.4	10.8	7.9	6.7	53.9	64.4	69.9	
	GPTAQ	25.0	12.9	11.4	37.9	46.8	49.1	10.4	7.9	6.6	55.2	63.1	71.2	
	Qronos	19.1	11.6	10.3	40.7	50.6	50.5	10.3	7.8	6.5	56.7	64.8	70.2	
MagR	RTN	2e3	2e3	5e4	33.8	33.5	35.1	13.8	10.3	7.2	53.1	58.1	69.7	
	OPTQ	20.1	12.9	8.1	44.2	45.6	59.7	10.3	8.0	6.5	56.4	60.0	69.0	
	GPFQ	21.0	14.0	8.3	43.9	48.4	61.7	10.4	8.0	6.5	55.4	61.1	70.3	
	GPTAQ	18.0	12.4	8.0	46.8	51.2	60.7	10.3	8.0	6.4	56.2	60.0	70.3	
	Qronos	16.9	11.8	7.8	46.6	51.2	60.0	10.1	8.0	6.4	56.2	61.1	70.4	
HIP	RTN	7e2	3e2	1e2	34.2	33.3	36.3	13.8	8.8	7.2	52.0	62.8	70.0	
	OPTQ	16.1	10.3	8.6	44.1	56.6	58.8	9.9	7.6	6.3	56.8	66.1	72.1	
	GPFQ	16.6	10.4	8.6	44.9	54.8	58.9	9.9	7.6	6.3	56.5	65.7	72.0	
	GPTAQ	14.7	9.9	8.3	46.5	56.9	59.3	9.8	7.5	6.3	57.8	66.0	72.4	
	Qronos	12.9	9.3	7.8	48.1	59.6	62.2	9.6	7.5	6.2	57.1	65.9	71.0	

363
 364
 365 **Models & Datasets.** We conduct experiments on Llama3 (Grattafiori et al., 2024) and Qwen3 (Yang
 366 et al., 2025) models using WikiText2 (Merity et al., 2016) for evaluation. We use, without modifica-
 367 tion, the implementations made publicly available via Huggingface (Wolf et al., 2020). We provide
 368 additional results in Appendix B. We use LightEval (Fourrier et al., 2023) to evaluate generalization
 369 via 5 zero-shot reasoning tasks: ARC (challenge and easy) (Clark et al., 2018), HellaSwag (Zellers
 370 et al., 2019), PIQA (Bisk et al., 2020), and Winogrande (Sakaguchi et al., 2021), and report the
 371 normalized average accuracy.

372 **Setup.** We implement Qronos in PyTorch (Paszke et al., 2019) using the Brevitas quantization li-
 373 brary (Franco et al., 2025b), and quantize all models using a single AMD MI210 GPU with 64 GB
 374 of memory. Unless otherwise specified, we construct our calibration dataset using 128 random se-
 375 quences of 2048 tokens sampled from the WikiText2 dataset for all data-driven PTQ algorithms. We
 376 compare Qronos against RTN and the unmodified Brevitas implementations of OPTQ and GPFQ,
 377 also leveraging the unmodified Brevitas implementations of the various quantization transforms. We
 378 provide quantization transform hyperparameter details in Appendix C, as well as ablation studies.

378 Table 4: **Weight-activation quantization of Llama3 foundation models.** We individually apply
 379 various transformations (stage 1) to isolate the impact of different rounding functions (stage 2).

		W4A4KV16						W4A4KV4					
		WikiText2 (↓)			0-shot (↑)			WikiText2 (↓)			0-shot (↑)		
Stage 1	Stage 2	1B	3B	8B	1B	3B	8B	1B	3B	8B	1B	3B	8B
BF16	-	8.9	7.1	5.9	59.4	67.5	74.4	8.9	7.1	5.9	59.4	67.5	74.4
QuaRot	RTN	22.0	12.6	9.6	45.4	55.0	62.6	41.8	22.0	15.9	41.5	49.8	57.4
	OPTQ	14.3	9.8	8.0	50.4	59.9	66.7	19.8	14.3	10.3	45.8	56.2	64.1
	GPFQ	13.6	9.3	7.6	50.9	60.9	67.6	22.0	14.7	11.4	43.3	53.9	59.8
	GPTAQ	13.4	9.2	7.4	51.2	61.4	68.1	18.0	12.2	9.3	46.6	57.3	64.8
	Qronos	13.2	9.1	7.4	50.9	61.5	68.9	17.8	11.6	9.3	47.8	57.3	64.8
SmoothRot	RTN	22.4	12.2	11.1	42.9	54.8	62.6	39.3	19.5	34.3	40.4	49.4	50.6
	OPTQ	13.6	9.5	7.9	51.0	60.3	68.5	18.6	12.9	16.1	45.9	55.9	59.1
	GPFQ	12.9	8.8	7.4	50.4	62.0	67.7	20.8	14.3	12.2	44.4	54.9	59.0
	GPTAQ	12.6	8.9	7.3	51.1	61.4	68.8	16.6	11.6	10.8	48.6	57.8	63.7
	Qronos	12.6	8.8	7.2	50.8	60.9	69.4	16.9	11.6	9.5	47.1	57.8	65.2
SpinQuant	RTN	20.5	12.6	9.3	47.7	57.5	64.2	33.5	20.2	13.4	43.1	52.2	60.8
	OPTQ	13.4	9.2	7.7	52.0	61.1	67.0	17.9	15.0	8.9	47.9	58.5	65.5
	GPFQ	13.5	9.2	7.5	51.2	61.2	67.0	21.1	14.3	10.9	45.3	53.6	60.9
	GPTAQ	12.9	9.0	7.4	51.8	61.1	68.3	17.1	NaN	8.7	49.4	NaN	65.3
	Qronos	12.3	8.7	7.2	52.8	62.1	68.4	16.4	11.1	8.7	48.2	58.2	65.8

398
 399 **Baselines.** Our baselines are RTN, OPTQ, GPFQ and GPTAQ. For OPTQ, we use the standard
 400 damped covariance matrix $\tilde{H} = H + \lambda I$, where λ is 1% of the average diagonal of H . We
 401 similarly use a damped covariance matrix for Qronos, but choose λ to be based on the maximum
 402 singular value of H such that $\lambda = \alpha \cdot \sigma_1$, which limits the condition number of \tilde{H} to be less than α^{-1} .
 403 We select $\alpha = 1e^{-6}$ for weight-only quantization and $\alpha = 1e^{-3}$ for weight-activation quantization.
 404 Additionally, we apply GPFQ, GPTAQ, and Qronos block-by-block; this corresponds to resetting
 405 $\tilde{X} = X$ at the beginning of each block. Finally, we quantize weights in descending order of the
 406 diagonals of H , as is now common practice (IST-DASLab, 2022; Franco et al., 2025b).
 407

4.1 WEIGHT-ONLY QUANTIZATION

410 We first present state-of-the-art 2-bit and 1.58-bit results for weight-only PTQ on Llama3 [foundation](#)
 411 [models](#), controlling for the quantization transform and grid selection while varying the rounding
 412 function. We quantize weights using the standard asymmetric weight quantizer (Frantar et al., 2023),
 413 where scaling factor s and zero point z are defined per-channel on a scaled min-max grid such that
 414 $s = \beta \cdot (\max(w) - \min(w))/(2^b - 1)$ and $z = \beta \cdot \min(w)/s$. Following the analysis of Zhang
 415 et al. (2024), we choose $\beta = 0.8$ when quantizing to 2 bits or fewer. We combine Hadamard-based
 416 incoherence processing (HIP) (Tseng et al., 2024; Ashkboos et al., 2024) with weight magnitude
 417 reduction (MagR) (Zhang et al., 2024) to jointly act as our quantization transform, as they are both
 418 known to be effective at few-bit weight quantization (Chee et al., 2023; Adepu et al., 2024). We
 419 present our results in Table 1, as well as the BF16 baselines, and highlight that Qronos consistently
 420 outperforms existing rounding methods. For example, when compared to OPTQ, Qronos provides
 421 a $1.4\times$ reduction in WikiText2 perplexity and $+3.3\%$ increase in average zero-shot accuracy for
 422 Llama3.2-1B at 2 bits, and a massive improvement in perplexity ($4.9\times$) at 1.58 bits. We provide
 423 additional 2-bit and 1.58-bit results with $\beta = 1$ in Appendix C.1.

424 Next, we present state-of-the-art 2-bit weight-only PTQ results on Qwen3 instruction [fine-tuned](#)
 425 [models](#). Here, we use HIP as our quantization transform then tune the grid to minimize the mean
 426 squared error loss between the transformed weights and their RTN-quantized counterparts via a
 427 linear search over s and z . Table 2 provides the results from Qwen3 0.6B to 32B. Qronos again
 428 yields clear and consistent improvements for all models in this family.

429 Finally, we present 3-bit and 4-bit weight-only PTQ results (denoted W3 and W4, respectively) on
 430 Llama3 [foundation](#) [models](#) while independently demonstrating compatibility with 3 notable quantization
 431 transforms: SmoothQuant (Xiao et al., 2023), MagR, and HIP. Table 3 shows the results
 432 across three models in the Llama3 family. For both W3 and W4, we use $\beta = 1$. Qronos consis-

432
433
434
435
436
437
438
439
440
441
442

443
444
445 Figure 2: We compare the runtime of (a) the rounding algorithm and (b) the overall quantization
446 pipeline as we scale the input features N , as measured on an AMD MI210. We average all measure-
447 ments over 3 seeds and normalize to the runtime of OPTQ where $N = 32$.

448
449
450 tently provides higher quality quantized models than RTN, OPTQ, GPFQ and GPTAQ, as measured
451 in both WikiText2 perplexity and average zero-shot accuracy. Consistent with emerging work on
452 rotation-based quantization transforms (Chee et al., 2023; Tseng et al., 2024), incoherence pro-
453 cessing outperforms other transforms, with HIP + Qronos providing the best overall results. Note
454 that HIP + OPTQ is similar in spirit to QuIP by Theorem 6 in (Chee et al., 2023), which equates
455 LDLQ to OPTQ, with a notable difference that QuIP proposed random orthogonal matrices instead
456 of Hadamard matrices.

457 458 4.2 WEIGHT-ACTIVATION QUANTIZATION 459

460 We present 4-bit weight-activation quantization results with and without 4-bit KV cache quantiza-
461 tion (denoted W4A4KV16 and W4A4KV4, respectively) while demonstrating compatibility with
462 QuaRot (Ashkboos et al., 2024), SmoothRot (Czakó et al., 2025), and SpinQuant (Liu et al., 2025).
463 We quantize weights using the standard symmetric weight quantizer with per-channel scaling factors
464 optimized via linear search over the mean square error loss between the full-precision and quantized
465 weights. We quantize activations using the standard asymmetric activation quantizer with dynamic
466 per-token scaling factors and zero points defined on the min-max grid, as is common practice (Liu
467 et al., 2025). When quantizing KV caches, we similarly use per-token scaling and zero points.

468 Table 4 shows the results across three [foundation](#) models in the Llama3 family. Qronos again con-
469 sistently outperforms RTN, OPTQ, GPFQ and GPTAQ³ as measured in both WikiText2 perplexity and
470 average zero-shot accuracy. Consistent with emerging work on learned rotations (Liu et al., 2025; Hu
471 et al., 2025; Franco et al., 2025a), SpinQuant outperforms QuaRot and SmoothRot, with SpinQuant
472 + Qronos providing the best overall results with and without KV cache quantization. We remark that
473 our experiments use per-token quantization for both the activations and KV caches, while Ashkboos
474 et al. (2024) and Liu et al. (2025) both use per-group scaling for KV cache quantization.

475 Our experimental analysis reveals an important pattern: Qronos provides larger improvements as
476 quantization tasks become more challenging. Specifically, Qronos demonstrates larger relative im-
477 provements over existing methods when transitioning from weight-only to weight-activation quan-
478 tization (*i.e.*, W4 versus W4A4), and even more substantial gains when incorporating KV cache
479 quantization (*i.e.*, W4A4 versus W4A4KV4). We further validate this pattern with additional W3A3
480 results in Appendix B (Table 8), which show larger improvements than both W4A4 and W3 weight-
481 only quantization. These findings suggest that Qronos is particularly effective in scenarios where
482 multiple sources of quantization error interact, making it especially valuable for aggressive quanti-
483 zation settings where traditional methods struggle to maintain model quality.

484
485 ³We observed instability with GPTAQ, as reflected by the NaN entries in Table 4, and similar issues have
been reported by others attempting to reproduce results from Li et al. (2025) with their official repository.

486
 487 Table 5: **Calibration Runtime Analysis.** We report the end-to-end calibration time of OPTQ and
 488 Qronos for the Qwen3 model family, normalized to Qwen3-0.6B, as measured on an AMD MI325X.
 489

	0.6B	1.7B	4B	8B	14B	32B
OPTQ	1.0	1.4	2.8	3.7	5.6	10.6
Qronos	1.2	1.6	3.1	4.0	6.1	11.5
Overhead	19.7%	16.2%	11.1%	9.0%	8.7%	8.7%

490
 491
 492
 493
 494
 495
 496 4.3 HARDWARE EFFICIENCY AND RUNTIME ANALYSIS
 497

498 The hardware efficiency benefits of quantization (*i.e.*, improved throughput, memory, power, and
 499 area) are well-established (Jacob et al., 2018; Colbert et al., 2024). Since Qronos and other round-
 500 ing algorithms leave the compute graph unaltered, they capture these benefits without introducing
 501 inference overhead beyond the quantization transform. Prior works have already profiled inference
 502 speedups and overheads; for example, Ashkboos et al. (2024) report up to 2.16 \times speedup for W4A4
 503 Llama2 7B over FP16, with Hadamard transforms adding at most 7% overhead. Therefore, we focus
 504 our runtime analysis on the quantization pipeline itself.

505 **Microbenchmark.** We perform our initial runtime analysis using a single linear layer. We use a
 506 calibration set of $m = 10,000$ random data sampled from a K -dimensional Gaussian distribution.
 507 The linear layer has $K \in [32, 1024]$ inputs with $K/4$ outputs. Figure 2 shows how the runtime
 508 of OPTQ, GPFQ, and Qronos scale with K , where (a) isolates the algorithm runtime (*i.e.*, without
 509 the added inference cost of calculating H and G) and (b) aggregates the end-to-end runtime of
 510 calibration. To highlight the benefits of our equivalent formulation, we implement a base version of
 511 Qronos that uses the iterates for q_t and $w_{\geq t+1}^{(t)}$ from Equations 5 and 6. Note that via Theorem 3.1
 512 and Lemma 3.2, we significantly improve the runtime scaling of Qronos over the base version, with
 513 a **13.8 \times** reduction in algorithm runtime and a **3.6 \times** reduction in overall runtime when $K = 1024$.

514 **Calibration Runtime.** Compared with OPTQ, which only needs to collect X , GPFQ and Qronos re-
 515 quire collecting both \tilde{X} and X at each layer, which requires two forward passes (with and without
 516 quantization) and increases the overall quantization pipeline runtime. To evaluate the overhead of
 517 two forward passes in practice, we compare the calibration runtime of OPTQ and Qronos when
 518 quantizing the Qwen3 model family. Table 5 provides the runtimes for each model from 0.6B to
 519 32B, normalized to the calibration runtime when using OPTQ to quantize Qwen3-0.6B on an AMD
 520 MI325X. We observe the overhead of Qronos decreases from 19.7% to 8.7% as model size increases
 521 from 0.6B to 32B, indicating that algorithmic cost dominates the cost of executing inference twice
 522 and underscoring the importance of Theorem 3.1.

523
 524
 525 5 CONCLUSIONS
 526

527 We introduce Qronos—a new backpropagation-free rounding algorithm that alternates between cor-
 528 recting quantization error in both the weights and activations of previous layers and diffusing error
 529 into future weights within the current layer. Qronos is based on an interpretable and disciplined
 530 optimization framework, and it demonstrably surpasses existing data-driven approaches. Our
 531 implementation exploits several optimizations that together yield orders of magnitude improvements
 532 in memory and compute efficiency. Our experiments isolate the impact of the rounding function in
 533 the quantization pipeline while varying transformations on a scaled min-max grid. Our results show
 534 that Qronos consistently offers improvements over previous state-of-the-art methods when quantiz-
 535 ing weights, activations, and/or KV caches to 4 bits or fewer. That said, our results are intentionally
 536 limited to the scaled min-max quantization grid to focus our experiments on transformations and
 537 rounding; we believe our results could be further improved by leveraging weight and activation dis-
 538 tributions to design quantization grids that are more effective than the scaled min-max grid used in
 539 this work, possibly with non-uniform grids via vector quantization.

540 REFERENCES

541

542 H. Adepu, Z. Zeng, L. Zhang, and V. Singh. FrameQuant: flexible low-bit quantization for trans-
543 formers. In *Proceedings of the 41st International Conference on Machine Learning*, pages 203–
544 227, 2024.

545 S. Ashkboos, A. Mohtashami, M. L. Croci, B. Li, P. Cameron, M. Jaggi, D. Alistarh, T. Hoefer, and
546 J. Hensman. QuaRot: Outlier-free 4-bit inference in rotated LLMs. In *The Thirty-eighth Annual*
547 *Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=dfqsW38v1X>.

548

549 F. Barbero, A. Arroyo, X. Gu, C. Perivolaropoulos, M. Bronstein, P. Veličković, and R. Pascanu.
550 Why do llms attend to the first token? *arXiv preprint arXiv:2504.02732*, 2025.

551

552 J. Birnick. The lattice geometry of neural network quantization—a short equivalence proof of gptq
553 and babai’s algorithm. *arXiv preprint arXiv:2508.01077*, 2025.

554

555 Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. PIQA: Reasoning about physical commonsense in natural
556 language. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pages
557 7432–7439, 2020.

558

559 J. Chee, Y. Cai, V. Kuleshov, and C. M. De Sa. QuIP: 2-bit quantization of large language models
560 with guarantees. *Advances in Neural Information Processing Systems*, 36:4396–4429, 2023.

561

562 J. Chen, T. Hoefer, and D. Alistarh. The geometry of llm quantization: Gptq as babai’s nearest
563 plane algorithm. *arXiv preprint arXiv:2507.18553*, 2025.

564

565 W. Cheng, W. Zhang, H. Shen, Y. Cai, X. He, L. Kaokao, and Y. Liu. Optimize weight round-
566 ing via signed gradient descent for the quantization of llms. In *Findings of the Association for*
567 *Computational Linguistics: EMNLP 2024*, pages 11332–11350, 2024.

568

569 P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
570 you have solved question answering? Try ARC, the AI2 reasoning challenge. *arXiv preprint*
571 *arXiv:1803.05457*, 2018.

572

573 I. Colbert, F. Grob, G. Franco, J. Zhang, and R. Saab. Accumulator-aware post-training quantization.
574 *arXiv preprint arXiv:2409.17092*, 2024.

575

576 P. Czakó, G. Kertész, and S. Szénási. SmoothRot: Combining channel-wise scaling and rotation for
577 quantization-friendly llms. *arXiv preprint arXiv:2506.05413*, 2025.

578

579 T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer. GPT3. int8 (): 8-bit matrix multiplication
580 for transformers at scale. *Advances in neural information processing systems*, 35:30318–30332,
581 2022.

582

583 C. Fourrier, N. Habib, T. Wolf, and L. Tunstall. LightEval: A lightweight framework for llm eval-
584 uation, 2023. URL <https://github.com/huggingface/liteeval>.

585

586 G. Franco, P. Monteagudo-Lago, I. Colbert, N. Fraser, and M. Blott. Improving quantization with
587 post-training model expansion. *arXiv preprint arXiv:2503.17513*, 2025a.

588

589 G. Franco, A. Pappalardo, and N. J. Fraser. Xilinx/brevitas, 2025b. URL <https://doi.org/10.5281/zenodo.3333552>.

590

591 E. Frantar and D. Alistarh. Optimal brain compression: A framework for accurate post-training
592 quantization and pruning. *Advances in Neural Information Processing Systems*, 35:4475–4488,
593 2022.

594

595 E. Frantar, S. Ashkboos, T. Hoefer, and D. Alistarh. OPTQ: Accurate quantization for generative
596 pre-trained transformers. In *The Eleventh International Conference on Learning Representations*,
597 2023. URL <https://openreview.net/forum?id=tcbBPnfwxs>.

598

599 A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
600 A. Schelten, A. Vaughan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*,
601 2024.

594 B. Hassibi and H. Vikalo. On the expected complexity of integer least-squares problems. In *2002*
595 *IEEE International Conference on Acoustics, Speech, and Signal Processing*, volume 2, pages
596 II–1497. IEEE, 2002.

597

598 R. A. Horn and C. R. Johnson. *Matrix analysis*. Cambridge university press, 2012.

599

600 X. Hu, Y. Cheng, D. Yang, Z. Chen, Z. Xu, Jiangyong Yu, XUCHEN, Z. Yuan, Z. jiang, and S. Zhou.
601 OSTQuant: Refining large language model quantization with orthogonal and scaling transfor-
602 mations for better distribution fitting. In *The Thirteenth International Conference on Learning
603 Representations*, 2025. URL <https://openreview.net/forum?id=rAcgDBdKnP>.

604

605 I. Hubara, Y. Nahshan, Y. Hanani, R. Banner, and D. Soudry. Accurate post training quantization
606 with small calibration sets. In M. Meila and T. Zhang, editors, *Proceedings of the 38th Inter-
607 national Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning
608 Research*, pages 4466–4475. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/hubara21a.html>.

609

610 IST-DASLab. gptq. <https://github.com/ist-daslab/gptq>, 2022.

611

612 B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko.
613 Quantization and training of neural networks for efficient integer-arithmetic-only inference. In
614 *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June
615 2018.

616

617 Y. Li, R. Gong, X. Tan, Y. Yang, P. Hu, Q. Zhang, F. Yu, W. Wang, and S. Gu. BRECQ: Push-
618 ing the limit of post-training quantization by block reconstruction. In *International Confer-
619 ence on Learning Representations*, 2021. URL <https://openreview.net/forum?id=POWv6hDd9XH>.

620

621 Y. Li, R. Yin, D. Lee, S. Xiao, and P. Panda. GPTAQ: Efficient finetuning-free quantization for
622 asymmetric calibration. *arXiv preprint arXiv:2504.02692*, 2025.

623

624 J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang, C. Gan, and S. Han.
625 Awq: Activation-aware weight quantization for on-device llm compression and acceleration. *Pro-
626 ceedings of Machine Learning and Systems*, 6:87–100, 2024.

627

628 Z. Liu, C. Zhao, I. Fedorov, B. Soran, D. Choudhary, R. Krishnamoorthi, V. Chandra, Y. Tian,
629 and T. Blankevoort. SpinQuant: LLM quantization with learned rotations. In *The Thirteenth
630 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ogO6DGE6FZ>.

631

632 E. Lybrand and R. Saab. A greedy algorithm for quantizing neural networks. *Journal of Machine
633 Learning Research*, 22(156):1–38, 2021.

634

635 S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. *arXiv preprint
636 arXiv:1609.07843*, 2016.

637

638 M. Nagel, M. v. Baalen, T. Blankevoort, and M. Welling. Data-free quantization through weight
639 equalization and bias correction. In *Proceedings of the IEEE/CVF international conference on
640 computer vision*, pages 1325–1334, 2019.

641

642 M. Nagel, R. A. Amjad, M. Van Baalen, C. Louizos, and T. Blankevoort. Up or down? adaptive
643 rounding for post-training quantization. In *International conference on machine learning*, pages
644 7197–7206. PMLR, 2020.

645

646 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
647 L. Antiga, et al. PyTorch: An imperative style, high-performance deep learning library. *Advances
648 in neural information processing systems*, 32, 2019.

649

650 K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
651 schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

648 W. Shao, M. Chen, Z. Zhang, P. Xu, L. Zhao, Z. Li, K. Zhang, P. Gao, Y. Qiao, and P. Luo. Om-
 649 niQuant: Omni-directionally calibrated quantization for large language models. In *The Twelfth*
 650 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=8Wuvhh0LYW>.
 651

652 A. Tseng, J. Chee, Q. Sun, V. Kuleshov, and C. De Sa. QuIP#: Even better llm quantization with
 653 hadamard incoherence and lattice codebooks. *arXiv preprint arXiv:2402.04396*, 2024.
 654

655 T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
 656 towicz, et al. Transformers: State-of-the-art natural language processing. In *Proceedings of the*
 657 *2020 conference on empirical methods in natural language processing: system demonstrations*,
 658 pages 38–45, 2020.

659 G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han. SmoothQuant: Accurate and efficient
 660 post-training quantization for large language models. In *International Conference on Machine*
 661 *Learning*, pages 38087–38099. PMLR, 2023.
 662

663 A. Yang, A. Li, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Gao, C. Huang, C. Lv, et al. Qwen3
 664 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

665 Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He. Zeroquant: Efficient and afford-
 666 able post-training quantization for large-scale transformers. In S. Koyejo,
 667 S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, *Advances in Neural*
 668 *Information Processing Systems*, volume 35, pages 27168–27183. Curran Associates, Inc.,
 669 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf.
 670

671 R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. HellaSwag: Can a machine really finish
 672 your sentence? *arXiv preprint arXiv:1905.07830*, 2019.
 673

674 A. Zhang, N. Wang, Y. Deng, X. Li, Z. Yang, and P. Yin. Magr: Weight magnitude re-
 675 duction for enhancing post-training quantization. In A. Globerson, L. Mackey, D. Bel-
 676 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, *Advances in Neural In-*
 677 *formation Processing Systems*, volume 37, pages 85109–85130. Curran Associates, Inc.,
 678 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/9a987c98a7f36cc83f9065df3ca4f9e0-Paper-Conference.pdf.
 679

680 J. Zhang and R. Saab. SPFQ: A stochastic algorithm and its error analysis for neural network
 681 quantization. *arXiv preprint arXiv:2309.10975*, 2023.
 682

683 J. Zhang, Y. Zhou, and R. Saab. Post-training quantization for neural networks with provable guar-
 684 antees. *SIAM Journal on Mathematics of Data Science*, 5(2):373–399, 2023.
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A PSEUDOCODE OF QRONOS**
703704 We provide the pseudocode for our efficient version of Qronos derived in Section 3.1.
705706 **Algorithm 1** Qronos (Efficient Version)
707

```

708  $H = \tilde{X}^\top \tilde{X}$ ,  $G = \tilde{X}^\top X$ 
709  $H^{-1} = (\tilde{X}^\top \tilde{X})^{-1} = LL^\top$   $\triangleright$  Cholesky Decomposition
710 for every  $w$  in  $W$  (in parallel) do
711    $q = \mathbf{0}^N$ 
712    $w^{(0)} \leftarrow \text{copy}(w)$ 
713    $q_1 = \mathcal{Q} \left( \frac{G_{1,\geq 1}w - H_{1,\geq 2}w_{\geq 2}^{(0)}}{H_{11}} \right)$   $\triangleright$  By Proposition E.2
714    $w_{\geq 2}^{(1)} = L_{\geq 2,\geq 2}L_{\geq 2,\geq 2}^\top (G_{\geq 2,\geq 1}w - H_{\geq 2,1}q_1)$   $\triangleright$  By Lemma G.3
715
716   for  $t = 2$  to  $N$  do  $\triangleright$  By Theorem 3.1 and Lemma 3.2
717      $q_t = \mathcal{Q}(w_t^{(t-1)})$ 
718      $w_{\geq t+1}^{(t)} = w_{\geq t+1}^{(t-1)} + \Delta^{(t)}$ 
719      $\Delta^{(t)} = -(w_t^{(t-1)} - q_t) \frac{L_{\geq t+1,t}}{L_{tt}}$ 
720   end for
721 end for
722 return  $Q$ 

```

723 **B RESULTS ON ADDITIONAL MODELS**
724725
726 Our main results evaluate Llama3 foundation models and Qwen3 instruction fine-tuned models.
727 Here, we demonstrate that Qronos maintains the quality of Llama3 instruction fine-tuned models and
728 Qwen3 foundation models as well. We again compare against RTN, OPTQ, GPFQ, and GPTAQ.729 We present weight-only PTQ results with Llama3 instruction fine-tuned models at 3 and 4 bits in
730 Table 6. As in Section 4.1, we asymmetrically quantize weights to the scaled min-max grid with
731 $\beta = 1$ for both W3 and W4. We focus our instruction fine-tuned results on evaluating each rounding
732 algorithm with and without Hadamard-based incoherence processing (HIP) as the quantization
733 transform. As in Section 4.1, we find that HIP + Qronos consistently provides the highest quality
734 quantized models relative to BF16 counterparts, as measured in both WikiText2 perplexity and
735 zero-shot accuracy.736 We then present weight-only PTQ results with Qwen3 foundation models in Table 7. We asymmetrically
737 quantize weights to the scaled min-max grid with $\beta = 0.9$ for W3. We focus these results with and without
738 Hadamard-based incoherence processing (HIP). Again, we find HIP + Qronos consistently yields the highest quality
739 quantized models relative to the BF16 counterparts.740 **C EXPERIMENT DETAILS FOR QUANTIZATION TRANSFORMS**
741742 All experiments use WikiText2 as the calibration set, aside from SpinQuant, which uses C4. To pre-
743 process our calibration dataset, we ensure that the `<bos>` token always appears as the first token
744 in an input sequence as the recent study by Barbero et al. (2025) suggests removing `<bos>` during
745 inference may greatly reduce performance if models were trained with `<bos>` always appearing
746 at the first token; their analysis suggests the Llama3 family of models fits this category. Thus,
747 to quantize our models, we first load the pre-trained checkpoint, then pre-process the dataset(s),
748 then apply the quantization pipeline visualized in Figure 1. For Section 4.1, we intentionally select
749 SmoothQuant (Xiao et al., 2023), Hadamard-based incoherence processing (HIP) (Ashkboos et al.,
750 2024; Tseng et al., 2024), and MagR (Zhang et al., 2024) as they perform fundamentally different
751 transformations. For Section 4.2, we study QuaRot, SmoothRot, and SpinQuant. Here, we describe
752 hyperparameters for the data-driven transforms—SmoothQuant, MagR, SpinQuant, and SmoothRot.

756 **Table 6: Weight-only quantization of instruction fine-tuned Llama3 models.** We apply
 757 Hadamard-based incoherence processing (HIP) as our quantization transform (stage 1 in Figure 1)
 758 to isolate the impact of different rounding functions (stage 2) when quantizing to 3 and 4 bits, re-
 759 spectively denoted W3 and W4. We also evaluate no quantization transform (*i.e.*, “None”).
 760

		W3			W4								
		WikiText2 (↓)			0-shot (↑)			WikiText2 (↓)			0-shot (↑)		
Stage 1	Stage 2	1B	3B	8B	1B	3B	8B	1B	3B	8B	1B	3B	8B
BF16	-	12.0	9.2	6.7	59.5	66.4	74.1	12.0	9.2	6.7	59.5	66.4	74.1
None	RTN	2e4	4e3	3e4	32.6	33.0	32.2	21.4	12.6	9.1	51.0	62.3	67.6
	OPTQ	60.0	16.1	12.2	37.4	49.9	58.2	14.3	9.9	7.3	54.5	63.6	71.8
	GPFQ	2e2	16.6	12.9	33.8	50.8	55.3	15.4	9.9	7.3	53.3	64.4	71.5
	GPTAQ	52.0	14.9	11.4	37.4	49.8	57.5	13.8	9.9	7.3	55.5	63.1	71.2
	Qronos	43.8	14.3	10.6	37.5	52.1	60.6	13.8	9.8	7.2	55.5	64.8	72.2
HIP	RTN	1e3	3e2	1e2	33.4	35.0	36.9	16.6	10.8	8.0	54.6	63.6	70.8
	OPTQ	19.1	12.8	9.3	48.0	58.2	59.0	13.2	9.6	7.1	56.6	64.5	72.1
	GPFQ	20.4	12.8	9.6	47.6	57.1	61.1	13.2	9.8	7.2	57.0	65.3	71.9
	GPTAQ	18.0	12.2	9.1	49.2	57.4	63.2	12.9	9.8	7.1	56.9	63.9	72.7
	Qronos	16.6	11.6	8.8	49.9	58.4	64.1	12.8	9.6	7.1	57.6	64.8	72.1

775 **Table 7: Weight-only quantization of Qwen3 foundation models to 3 bits with $\beta = 0.9$.** We apply
 776 Hadamard-based incoherence processing (HIP) as our quantization transform (stage 1 in Figure 1)
 777 to isolate the impact of different rounding functions (stage 2) when quantizing to 3 bits.
 778

		WikiText2 (↓)			0-shot (↑)		
Stage 1	Stage 2	1.7B	4B	8B	1.7B	4B	8B
BF16	-	8.6	7.3	6.5	63.9	70.1	73.6
None	RTN	3e5	82.0	3e3	32.9	45.3	37.1
	OPTQ	37.5	10.4	8.8	35.7	57.2	61.7
	GPFQ	1e2	10.8	9.3	33.0	56.3	58.9
	GPTAQ	33.8	10.1	8.5	36.1	63.7	58.5
	Qronos	33.0	9.5	8.3	36.0	59.9	61.5
HIP	RTN	1e3	26.3	30.1	35.1	50.8	50.3
	OPTQ	10.8	8.8	7.6	54.4	64.4	67.6
	GPFQ	11.4	9.1	7.9	52.7	61.6	62.2
	GPTAQ	10.6	8.6	7.5	54.9	63.6	66.0
	Qronos	10.1	8.4	7.4	57.2	63.5	68.0

794 **SmoothQuant.** When applying SmoothQuant, we do so before quantizing weights or activations.
 795 In practice, SmoothQuant requires the selection of a hyperparameter to control the scaling optimization
 796 criteria. We refer to the SmoothQuant hyperparameter as γ so as to not clash with our use of α
 797 in Section 4; note that $\gamma \in [0, 1]$. In Table 9, we provide the results of a uniform grid search over γ
 798 when quantizing Llama3.2-1B-Instruct to 4 bits using round-to-nearest (RTN). These results moti-
 799 vate our decision to use $\gamma = 0.3$ in all our weight-only PTQ experiments that apply SmoothQuant.
 800

802 **MagR.** When applying MagR, we also do so before quantizing weights and activations. When
 803 coupled with HIP, we do so after inserting rotations into the compute graph. In practice, MagR
 804 requires tuning the ℓ_∞ penalty; we refer to this hyperparameter as θ , again so as to not clash with
 805 our use of α in Section 4. Zhang et al. (2024) tune θ to Llama2 models, settling on $\theta = 0.001$
 806 for their experiments. In Table 10, we provide new results for Llama3.2-1B-Instruct. These results
 807 motivate our decision to use $\theta = 0.01$ in all our weight-only PTQ experiments that apply MagR.
 808

809 **SpinQuant.** When applying SpinQuant, Liu et al. (2025) do so after activation (and KV cache)
 810 quantization but before weight quantization using an 800-sample calibration dataset; their ablation

810
811 Table 8: **3-bit weight-activation (W3A3) quantization of Llama3 foundation models.** We apply
812 QuaRot as quantization transformation (stage 1) and compare different rounding functions (stage 2).
813
814

	WikiText2 (↓)			0-shot (↑)		
	1B	3B	8B	1B	3B	8B
RTN	2e3	9e2	1e3	33.0	32.3	32.8
OPTQ	9e2	2e2	1e2	32.3	33.2	35.9
GPFQ	60.0	30.1	27.9	35.6	39.2	40.3
GPTAQ	2e2	40.5	46.0	35.0	36.9	41.9
Qronos	46.8	22.0	20.4	37.0	43.4	47.4

815
816
817
818
819 Table 9: **Impact of SmoothQuant’s γ on Llama3.2-1B-Instruct.** We evaluate the impact of the
820 smoothing parameter γ on both WikiText2 perplexity and normalized average zero-shot accuracy
821 when quantizing Llama3.2-1B-Instruct to 4 bits using round-to-nearest (RTN).
822
823

γ	0.2	0.3	0.4	0.5	0.6	0.7	0.8
WikiText2 (↓)	24.6	18.6	18.9	21.4	87.0	4e2	3e4
0-shot (↑)	50.8	53.3	52.8	52.5	42.8	36.6	32.3

824
825
826
827 study demonstrates negligible degradation when using 128 samples. Thus, we employ Cayley SGD
828 on a network where only activations are quantized to optimize the learnable rotations for 100 itera-
829 tions using a calibration dataset constructed of 128 random samples from the C4 dataset.
830

831 **SmoothRot.** When applying SmoothRot Czakó et al. (2025), we do so before quantizing weights
832 or activations. Similar to SmoothQuant, SmoothRot requires the selection of a hyperparameter
833 (*i.e.*, migration strength) to control the scaling optimization criteria. In our experiments, we use a
834 migration strength of 0.6 as it empirically performed well for Llama3 1B.
835

836 C.1 GRID SCALING ABLATION STUDY FOR 2 BITS AND FEWER

837 In Section 4.1, we have presented weight-only PTQ results when quantizing to 2 bits or fewer on the
838 scaled min-max grid with $\beta = 0.8$. Here, in Table 11, we provide additional results that demonstrate
839 Qronos outperforms other rounding algorithms on another choice $\beta = 1$. Recall that we jointly
840 apply Hadamard-based incoherence processing (HIP) and weight magnitude reduction (MagR) as
841 quantization transforms before each rounding algorithm. Our results highlight that $\beta = 0.8$ (see
842 Table 1) is an overall better choice for scaling the min-max grid in this setting, which is consistent
843 with Zhang et al. (2024), and that Qronos provides the best results on both grids at all bit widths and
844 model sizes. Our results with $\beta = 1$ also show that Qronos is more robust than GPTAQ when β is
845 not carefully selected.
846

847 D MORE ON WHY QRONOS OUTPERFORMS OPTQ

848 Let W be the full-precision weights of a layer, and Q their quantized counterparts. Let X be the
849 input to the layer and let its (possibly quantized) counterpart be \tilde{X} ; importantly, \tilde{X} reflects both
850 activation quantization and the residual error propagated from previously quantized layers (possibly
851 from previous blocks). Let Y, \tilde{Y} denote the respective outputs resulting from inputs X, \tilde{X} .
852

853 For any single layer, OPTQ only attempts to minimize $\|\tilde{X}(W - Q)\|_F$, which ignores the mismatch
854 between X and \tilde{X} . In contrast, Qronos attempts to minimize $\|XW - \tilde{X}Q\|_F$, which is the actual
855 discrepancy between the full-precision outputs and their quantized counterparts.
856

857 A simple triangle inequality intuitively explains the distinction between OPTQ and Qronos:
858

$$859 \|Y - \tilde{Y}\|_F = \|XW - \tilde{X}Q\|_F \leq \|(X - \tilde{X})W\|_F + \|\tilde{X}(W - Q)\|_F.
860$$

861 While OPTQ only corrects the second term, Qronos corrects both terms. Thus, OPTQ only corrects
862 quantization error in the weights at a given layer while Qronos corrects not only quantization error
863

864
 865 Table 10: **Impact of MagR’s θ on Llama3.2-1B-Instruct.** We evaluate the impact of the penalty
 866 parameter θ on both WikiText2 perplexity and normalized average zero-shot accuracy when quan-
 867 tizing Llama3.2-1B-Instruct to 4 bits using round-to-nearest (RTN).

θ	0.1	0.01	0.001	0.0001
WikiText2 (\downarrow)	74.5	25.4	105.0	216.0
0-shot (\uparrow)	44.2	53.0	44.7	42.6

872
 873 Table 11: **Weight-only quantization of Llama3 models to 2 bits or fewer with $\beta = 1$.** We
 874 jointly apply HIP and MagR as quantization transforms (stage 1 in Figure 1) and compare different
 875 rounding functions (stage 2) on the scaled min-max grid (see Section 4). Note that these results
 876 complement Table 1, which presents results with $\beta = 0.8$.

	BF16	-	WikiText2 (\downarrow)			0-shot (\uparrow)		
			1B	3B	8B	1B	3B	8B
2-bit	RTN	8.9	7.1	5.9		59.4	67.5	74.4
		1e4	1e4	2e4		32.4	32.4	32.9
		45.3	20.8	18.9		35.2	39.3	41.2
		47.5	22.4	17.8		33.9	38.4	39.2
		33.8	18.0	16.4		36.3	40.7	41.3
1.58-bit	Qronos	24.6	14.9	12.4		38.4	43.4	45.6
		2e5	3e5	6e5		32.0	32.6	32.1
		5e3	4e2	3e2		32.5	32.4	32.2
		6e2	7e2	5e2		31.2	32.5	32.7
		2e3	3e2	2e2		32.2	32.5	33.2
		79.5	48.3	34.8		32.9	32.8	34.3

891
 892 in both the weights and activations at a given layer, but also residual quantization error coming from
 893 previous layers, possibly from previous blocks.

894 Furthermore, tuning the quantization grid (*i.e.*, scaling factors and zeros points) cannot effectively
 895 minimize our objective in Equation 2. As before, decomposing $XW - \tilde{X}Q = [(X - \tilde{X})W] +$
 896 $[\tilde{X}(W - Q)]$ isolates two error sources. Tuning quantization grids of the current layer only adjusts
 897 Q , and thus can affect only the second term, while the first term is untouched by any choice of
 898 quantization grids. Hence, it cannot close the performance gap between OPTQ and Qronos.

899 To illustrate this, we empirically compare quantization error accumulation by measuring the relative
 900 ℓ_2 error, given by $\|Y - \tilde{Y}\|/\|Y\|$, after each transformer block in Llama3.2 1B when quantizing
 901 weights to 3 bits, as in Section 4.1. Here, in Figure 3, we report the relative ℓ_2 error averaged over
 902 each token in our calibration dataset (*i.e.*, 128 samples of 2048 tokens from WikiText2). Qronos
 903 yields the lowest average relative calibration error for each block, with 16% and 13% improvement
 904 over OPTQ and GPFQ, respectively, at the output of the final block.

905 E PRELIMINARY PROPOSITIONS

906
 907
 908 **Proposition E.1.** *The update rule given by*

$$913 \quad q_t = \operatorname{argmin}_{p \in \mathcal{A}} \frac{1}{2} \|Xw - \sum_{j=1}^{t-1} q_j \tilde{X}_j - p \tilde{X}_t - \sum_{j=t+1}^N w_j^{(t-1)} \tilde{X}_j\|^2,$$

$$914 \quad w_{\geq t+1}^{(t)} = \operatorname{argmin}_{(v_{t+1}, \dots, v_N) \in \mathbb{R}^{N-t}} \frac{1}{2} \|Xw - \sum_{j=1}^t q_j \tilde{X}_j - \sum_{j=t+1}^N v_j \tilde{X}_j\|^2.$$

918
919
920
921
922
923
924
925
926
927
928
929
930
931

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 3: We visualize the evolution of the average relative error over transformer blocks when quantizing the Llama3 1B foundation model to 3 bits, further discussed in Appendix D.

has closed-form expressions

$$q_t = \mathcal{Q} \left(\frac{\langle Xw - \sum_{j=1}^{t-1} q_j \tilde{X}_j - \sum_{j=t+1}^N w_j^{(t-1)} \tilde{X}_j, \tilde{X}_t \rangle}{\|\tilde{X}_t\|^2} \right)$$

and

$$w_{\geq t+1}^{(t)} = \tilde{X}_{\geq t+1}^\dagger (Xw - \tilde{X}_{\leq t} q_{\leq t}).$$

Proof. For q_t , the corresponding optimization objective function is a one-dimensional quadratic function of p . Since minimizing a quadratic function over a discrete set \mathcal{A} reduces to rounding its real-valued minimizer, we compute the real-valued minimizer

$$\frac{\langle Xw - \sum_{j=1}^{t-1} q_j \tilde{X}_j - \sum_{j=t+1}^N w_j^{(t-1)} \tilde{X}_j, \tilde{X}_t \rangle}{\|\tilde{X}_t\|^2}.$$

Thus, we obtain the closed-form expression of q_t ,

$$q_t = \mathcal{Q} \left(\frac{\langle Xw - \sum_{j=1}^{t-1} q_j \tilde{X}_j - \sum_{j=t+1}^N w_j^{(t-1)} \tilde{X}_j, \tilde{X}_t \rangle}{\|\tilde{X}_t\|^2} \right),$$

where \mathcal{Q} is the round-to-nearest operator.

For $w_{\geq t+1}^{(t)}$, the corresponding optimization problem is an unconstrained least-square problem in the form of $\min_{v \in \mathbb{R}^{N-t}} \|Ax - b\|^2$, with $A = \tilde{X}_{\geq t+1}$ and $b = Xw - \tilde{X}_{\leq t} q_{\leq t}$. Thus, the minimizer is given by $A^\dagger b$, which gives the desired closed-form expression. \square

Proposition E.2. The update rule given by

$$q_1 = \mathcal{Q} \left(\frac{\tilde{X}_1^\top (Xw - \tilde{X}_{\geq 2} w_{\geq 2}^{(0)})}{\|\tilde{X}_1\|^2} \right),$$

$$w_{\geq 2}^{(1)} = \tilde{X}_{\geq 2}^\dagger (Xw - \tilde{X}_1 q_1)$$

is equivalent to

$$q_1 = \mathcal{Q} \left(\frac{G_{1,\geq 1} w - H_{1,\geq 2} w_{\geq 2}^{(0)}}{H_{11}} \right)$$

$$w_{\geq 2}^{(1)} = (H_{\geq 2,\geq 2})^{-1} (G_{\geq 2,\geq 1} w - H_{\geq 2,1} q_1),$$

where $G = \tilde{X}^T X \in \mathbb{R}^{N \times N}$ and $H = \tilde{X}^T \tilde{X} \in \mathbb{R}^{N \times N}$.

972 *Proof.* For q_1 , we have $\tilde{X}_1^\top X = (\tilde{X}^\top X)_{1,\geq 1} = G_{1,\geq 1}$. Also, $\tilde{X}_1^\top \tilde{X}_{\geq 2} = (\tilde{X}^\top \tilde{X})_{1,\geq 2} = H_{1,\geq 2}$.
 973 Thus, $\tilde{X}_1^\top (Xw - \tilde{X}_{\geq 2} w_{\geq 2}^{(0)}) = G_{1,\geq 1}w - H_{1,\geq 2}w_{\geq 2}^{(0)}$. Further, $\|\tilde{X}_1\|^2 = (\tilde{X}^\top \tilde{X})_{11} = H_{11}$. This
 974 gives the equivalence for updating q_1 .
 975

976 For $w_{\geq 2}^{(1)}$, $\tilde{X}_{\geq 2}$ is given by $(\tilde{X}_{\geq 2}^\top \tilde{X}_{\geq 2})^{-1} \tilde{X}_{\geq 2}^\top = (H_{\geq 2,\geq 2})^{-1} \tilde{X}_{\geq 2}^\top$. Then
 977

$$\begin{aligned} \tilde{X}_{\geq 2}^\dagger (Xw - \tilde{X}_1 q_1) &= (H_{\geq 2,\geq 2})^{-1} \tilde{X}_{\geq 2}^\top (Xw - \tilde{X}_1 q_1) \\ &= (H_{\geq 2,\geq 2})^{-1} ((\tilde{X}^\top X)_{\geq 2,\geq 1} w - (\tilde{X}^\top \tilde{X})_{\geq 2,1} q_1) \\ &= (H_{\geq 2,\geq 2})^{-1} (G_{\geq 2,\geq 1} w - H_{\geq 2,1} q_1). \end{aligned}$$

984 This gives the equivalence for updating $w_{\geq 2}^{(1)}$. □
 985

987 F PROOF OF THEOREM 3.1

990 *Proof.* We use induction to prove the theorem. Since at $t = 1$ equations Equation 3, Equation 4 and
 991 equations Equation 7, Equation 8 are identical, the base case is trivially true. Now we proceed with
 992 the induction, assuming $\hat{w}_{\geq t+1}^{(t)} = w_{\geq t+1}^{(t)}$ and $\hat{q}_t = q_t$.
 993

994 Using definition Equation 3 and Proposition E.1, we can obtain the closed-form expression,
 995

$$q_{t+1} = \mathcal{Q} \left(\frac{\langle Xw - \sum_{j=1}^t q_j \tilde{X}_j - \sum_{j=t+2}^N w_j^{(t)} \tilde{X}_j, \tilde{X}_{t+1} \rangle}{\|\tilde{X}_{t+1}\|^2} \right),$$

999 where \mathcal{Q} is the RTN operator. Next we note that (4), which is used to compute $w_{\geq t+1}^{(t)}$, implies that
 1000 $Xw - \sum_{j=1}^t q_j \tilde{X}_j - \sum_{j=t+1}^N w_j^{(t)} \tilde{X}_j$ is orthogonal to the column space of $\tilde{X}_{\geq t+1}$. This in turn
 1001 implies that $\langle Xw - \sum_{j=1}^t q_j \tilde{X}_j - \sum_{j=t+1}^N w_j^{(t)} \tilde{X}_j, \tilde{X}_{t+1} \rangle = 0$. Then we can compute,
 1002

$$\begin{aligned} q_{t+1} &= \mathcal{Q} \left(\frac{\langle Xw - \sum_{j=1}^t q_j \tilde{X}_j - \sum_{j=t+2}^N w_j^{(t)} \tilde{X}_j, \tilde{X}_{t+1} \rangle}{\|\tilde{X}_{t+1}\|^2} \right) \\ &= \mathcal{Q} \left(\frac{\langle Xw - \sum_{j=1}^t q_j \tilde{X}_j - \sum_{j=t+1}^N w_j^{(t)} \tilde{X}_j + w_{t+1}^{(t)} \tilde{X}_{t+1}, \tilde{X}_{t+1} \rangle}{\|\tilde{X}_{t+1}\|^2} \right) \\ &= \mathcal{Q} \left(\frac{\langle w_{t+1}^{(t)} \tilde{X}_{t+1}, \tilde{X}_{t+1} \rangle}{\|\tilde{X}_{t+1}\|^2} \right) \\ &= \mathcal{Q} (w_{t+1}^{(t)}) = \mathcal{Q} (\hat{w}_{t+1}^{(t)}) = \hat{q}_{t+1}, \end{aligned}$$

1015 where in the last two inequalities, we used the induction hypothesis $\hat{w}_{\geq t+1}^{(t)} = w_{\geq t+1}^{(t)}$ and the update
 1016 rule (9).
 1017

1018 Next, we prove $\hat{w}_{\geq t+2}^{(t+1)} = w_{\geq t+2}^{(t+1)}$. We first compute
 1019

$$\begin{aligned} w_{\geq t+2}^{(t+1)} &= \operatorname{argmin}_{v_{\geq t+2}} \frac{1}{2} \|Xw - \sum_{j=1}^{t+1} q_j \tilde{X}_j - \sum_{j=t+2}^N v_j \tilde{X}_j\|^2 \\ &= \operatorname{argmin}_{v_{\geq t+2}} \frac{1}{2} \|Xw - \sum_{j=1}^t q_j \tilde{X}_j - \sum_{j=t+1}^N w_j^{(t)} \tilde{X}_j + (w_{t+1}^{(t)} - q_{t+1}) \tilde{X}_{t+1} + \sum_{j=t+2}^N (w_j^{(t)} - v_j) \tilde{X}_j\|^2. \end{aligned}$$

1026 Due to the update rule (4), $Xw - \sum_{j=1}^t q_j \tilde{X}_j - \sum_{j=t+1}^N w_j^{(t)} \tilde{X}_j$ is orthogonal to the column span
 1027 of $\tilde{X}_{\geq t+1}$, hence to $(w_{t+1}^{(t)} - q_{t+1}) \tilde{X}_{t+1} + \sum_{j=t+2}^N (w_j^{(t)} - v_j) \tilde{X}_j$. Then, we have
 1028

$$1029 \begin{aligned} 1030 w_{\geq t+2}^{(t+1)} &= \operatorname{argmin}_{v_{\geq t+2}} \frac{1}{2} \|Xw - \sum_{j=1}^t q_j \tilde{X}_j - \sum_{j=t+1}^N w_j^{(t)} \tilde{X}_j + (w_{t+1}^{(t)} - q_{t+1}) \tilde{X}_{t+1} + \sum_{j=t+2}^N (w_j^{(t)} - v_j) \tilde{X}_j\|^2 \\ 1031 &= \operatorname{argmin}_{v_{\geq t+2}} \frac{1}{2} \|(\hat{w}_{t+1}^{(t)} - \hat{q}_{t+1}) \tilde{X}_{t+1} + \sum_{j=t+2}^N (\hat{w}_j^{(t)} - v_j) \tilde{X}_j\|^2 = \hat{w}_{\geq t+2}^{(t+1)}, \end{aligned}$$

1032 where we used the Pythagorean theorem, the induction hypothesis $\hat{w}_{\geq t+1}^{(t)} = w_{\geq t+1}^{(t)}$, and the fact
 1033 $q_{t+1} = \hat{q}_{t+1}$. This completes the induction. \square
 1034

1039 G PROOF OF LEMMA 3.2

1040 Throughout this section, we denote $H_{\geq t, \geq t} = X_{\geq t}^\top X_{\geq t} \in \mathbb{R}^{(N-t+1) \times (N-t+1)}$ and $H_{\geq t, \geq t}^{-1} =$
 1041 $(X_{\geq t}^\top X_{\geq t})^{-1} \in \mathbb{R}^{(N-t+1) \times (N-t+1)}$. We will begin with a few preliminary lemmas before we
 1042 prove Lemma 3.2. While some of these lemmas may already be known, we are not aware of any
 1043 rigorous proofs in the literature. Thus, we provide our proofs here for completeness.
 1044

1045 **Lemma G.1.** *Denote by $[H_{\geq t, \geq t}^{-1}]_{11}$ the first entry of $H_{\geq t, \geq t}^{-1}$ and by $[H_{\geq t, \geq t}^{-1}]_{\geq 2, 1} \in \mathbb{R}^{N-t}$ the first
 1046 column of $H_{\geq t, \geq t}^{-1}$ albeit with the first entry removed. Then*

$$1047 (X_{\geq t+1}^\top X_{\geq t+1})^{-1} X_{\geq t+1}^\top X_t = -\frac{[H_{\geq t, \geq t}^{-1}]_{\geq 2, 1}}{[H_{\geq t, \geq t}^{-1}]_{11}}.$$

1048 *Proof.* We denote $r := [H_{\geq t, \geq t}^{-1}]_{11}$ and $\mathbf{b} = [H_{\geq t, \geq t}^{-1}]_{\geq 2, 1}$. Then $\begin{pmatrix} r \\ \mathbf{b} \end{pmatrix}$ is just the first column of
 1049 $H_{\geq t, \geq t}^{-1}$, so we have $H_{\geq t, \geq t} \begin{pmatrix} r \\ \mathbf{b} \end{pmatrix} = \mathbf{e}_1$. Let us write $H = \begin{bmatrix} X_t^\top X_t & X_t^\top X_{\geq t+1} \\ X_{\geq t+1}^\top X_t & X_{\geq t+1}^\top X_{\geq t+1} \end{bmatrix}$. By
 1050 comparing the two sides of $H \begin{pmatrix} r \\ \mathbf{b} \end{pmatrix} = \mathbf{e}_1$ we can observe $r X_{\geq t+1}^\top X_t + X_{\geq t+1}^\top X_{\geq t+1} \mathbf{b} = 0$, which
 1051 implies
 1052

$$1053 (X_{\geq t+1}^\top X_{\geq t+1})^{-1} X_{\geq t+1}^\top X_t = -\frac{\mathbf{b}}{r}$$

1054 and finishes the proof. \square

1055 The next lemma establishes how one can efficiently compute $H_{\geq t+1, \geq t+1}^{-1}$ from $H_{\geq t, \geq t}^{-1}$.
 1056

1057 **Lemma G.2.** *$H_{\geq t+1, \geq t+1}^{-1}$ can be efficiently computed from $H_{\geq t, \geq t}^{-1}$ via*

$$1058 H_{\geq t+1, \geq t+1}^{-1} = \left(H_{\geq t, \geq t}^{-1} - \frac{1}{[H_{\geq t, \geq t}^{-1}]_{11}} [H_{\geq t, \geq t}^{-1}]_{\geq 1, 1} [H_{\geq t, \geq t}^{-1}]_{1, \geq 1} \right)_{\geq 2, \geq 2}.$$

1059 We note that this is a simple rank-1 update followed by a submatrix slicing.
 1060

1061 *Proof.* We first recall a more general inverse formula for 2×2 block matrix using the Schur complement. Consider the 2×2 block matrix
 1062

$$1063 M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

1064 When A is invertible, the inverse of M is given by

$$1065 M^{-1} = \begin{pmatrix} A^{-1} + A^{-1} B S^{-1} C A^{-1} & -A^{-1} B S^{-1} \\ -S^{-1} C A^{-1} & S^{-1} \end{pmatrix}, \quad (19)$$

1080 where $S = D - CA^{-1}B$ is the Schur complement of A in M .
 1081

1082 When A is a scalar a and M is symmetric, i.e.
 1083

$$1084 M = \begin{pmatrix} a & b^\top \\ b & D \end{pmatrix}, \\ 1085$$

1086 this formula becomes
 1087

$$1088 M^{-1} = \begin{pmatrix} a^{-1} + a^{-2}b^\top S^{-1}b & -a^{-1}b^\top S^{-1} \\ -a^{-1}S^{-1}b & S^{-1} \end{pmatrix}, \\ 1089$$

1090 where $S = D - a^{-1}bb^\top$.
 1091

1092 By the Sherman–Morrison formula (Horn and Johnson, 2012), we have
 1093

$$1094 D^{-1} = S^{-1} - \frac{S^{-1}bb^\top S^{-1}}{a + b^\top S^{-1}b} \\ 1095 = S^{-1} - \frac{a^{-2}S^{-1}bb^\top S^{-1}}{a^{-1} + a^{-2}b^\top S^{-1}b}. \\ 1096$$

1097
 1098 Returning to our setting where $M^{-1} = H_{\geq t, \geq t}^{-1}$ and $D^{-1} = H_{\geq t+1, \geq t+1}^{-1}$, we have
 1099

$$1100 H_{\geq t+1, \geq t+1}^{-1} = [H_{\geq t, \geq t}^{-1}]_{\geq 2, \geq 2} - \frac{1}{[H_{\geq t, \geq t}^{-1}]_{11}} [H_{\geq t, \geq t}^{-1}]_{\geq 2, 1} [H_{\geq t, \geq t}^{-1}]_{1, \geq 2} \\ 1101 = [H_{\geq t, \geq t}^{-1}]_{\geq 2, \geq 2} - \frac{1}{[H_{\geq t, \geq t}^{-1}]_{11}} \left([H_{\geq t, \geq t}^{-1}]_{\geq 1, 1} [H_{\geq t, \geq t}^{-1}]_{1, \geq 1} \right)_{\geq 2, \geq 2} \\ 1102 = \left(H_{\geq t, \geq t}^{-1} - \frac{1}{[H_{\geq t, \geq t}^{-1}]_{11}} [H_{\geq t, \geq t}^{-1}]_{\geq 1, 1} [H_{\geq t, \geq t}^{-1}]_{1, \geq 1} \right)_{\geq 2, \geq 2}. \\ 1103 \\ 1104$$

1105 \square
 1106

1107 Using the above lemma and Cholesky decomposition (Horn and Johnson, 2012), we can further
 1108 simplify the right hand side in Lemma G.1 via the following lemma.
 1109

1110 **Lemma G.3.** *Let $H^{-1} = (X^\top X)^{-1}$ and $H^{-1} = LL^\top$ be its Cholesky decomposition where L is
 1111 a lower triangular matrix, then*
 1112

$$1113 \frac{[H_{\geq t, \geq t}^{-1}]_{\geq 2, 1}}{[H_{\geq t, \geq t}^{-1}]_{11}} = \frac{L_{\geq t+1, t}}{L_{tt}} \in \mathbb{R}^{N-t}$$

1114 holds for all $t \in [N-1]$.
 1115

1116 *Proof.* We first prove that given the Cholesky decomposition $H^{-1} = LL^\top$, the Cholesky decom-
 1117 position of $H_{\geq t, \geq t}^{-1}$ is $H_{\geq t, \geq t}^{-1} = (L_{\geq t, \geq t})(L_{\geq t, \geq t})^\top$ for all $t \in [N]$, where $H_{\geq t, \geq t}^{-1} = (X_{\geq t}^\top X_{\geq t})^{-1} \in$
 1118 $\mathbb{R}^{(N-t+1) \times (N-t+1)}$.
 1119

1120 Let us proceed by induction. The base-case when $t = 1$ holds by assumption, and we now
 1121 assume the result holds for t . By Lemma G.2, the updated inverse Hessian $H_{\geq t+1, \geq t+1}^{-1} =$
 1122 $\left(H_{\geq t, \geq t}^{-1} - \frac{1}{[H_{\geq t, \geq t}^{-1}]_{11}} [H_{\geq t, \geq t}^{-1}]_{\geq 1, 1} [H_{\geq t, \geq t}^{-1}]_{1, \geq 1} \right)_{\geq 2, \geq 2}$. Thus,
 1123

$$1124 \begin{aligned} 1125 & \left((L_{\geq t, \geq t})(L_{\geq t, \geq t})^\top - \frac{1}{L_{tt}^2} ((L_{\geq t, \geq t})_{11} \cdot [L_{\geq t, \geq t}]_{\geq 1, 1}) ((L_{\geq t, \geq t})_{11} \cdot [L_{\geq t, \geq t}]_{\geq 1, 1})^\top \right)_{\geq 2, \geq 2} \\ 1126 & = ((L_{\geq t, \geq t})(L_{\geq t, \geq t})^\top - [L_{\geq t, \geq t}]_{\geq 1, 1} [L_{\geq t, \geq t}]_{\geq 1, 1}^\top)_{\geq 2, \geq 2} \\ 1127 & = ((L_{\geq t, \geq t})_{\geq 2, \geq 2}) ((L_{\geq t, \geq t})_{\geq 2, \geq 2})^\top \\ 1128 & = (L_{\geq t+1, \geq t+1})(L_{\geq t+1, \geq t+1})^\top \end{aligned}$$

This finishes the induction and we have Cholesky decomposition $H_{\geq t, \geq t}^{-1} = (L_{\geq t, \geq t})(L_{\geq t, \geq t})^\top$ for all $t \in [N]$. To finish the proof, let $M = RR^\top$ be the Cholesky decomposition of any positive definite matrix M . By a direct computation, the first column of M is $R[R^\top]_{\geq 1, 1} = R_{11} \cdot [R]_{\geq 1, 1}$ and the first entry $M_{11} = R_{11}^2$. Then we have $\frac{M_{\geq 1, 1}}{M_{11}} = \frac{[R]_{\geq 1, 1}}{R_{11}}$ which implies that $\frac{M_{\geq 2, 1}}{M_{11}} = \frac{[R]_{\geq 2, 1}}{R_{11}}$. In our case, we have $H_{\geq t, \geq t}^{-1} = (L_{\geq t, \geq t})(L_{\geq t, \geq t})^\top$ in the place of $M = RR^\top$. Thus,

$$\frac{[H_{\geq t, \geq t}^{-1}]_{\geq 2, 1}}{[H_{\geq t, \geq t}^{-1}]_{11}} = \frac{[L_{\geq t, \geq t}]_{\geq 2, 1}}{[L_{\geq t, \geq t}]_{11}} = \frac{L_{\geq t+1, t}}{L_{tt}}.$$

□

With the above preliminary lemmas, now we are ready to prove Lemma 3.2

Proof of Lemma 3.2. Since we initialize with $w^{(0)} = w$, $q_1 = \mathcal{Q}(w_1)$ always holds. Thus the two iterations produce the same q_1 and $w_{\geq 1}^{(0)}$. We proceed by induction. Assume at step t that q_t and $w_{\geq t}^{(t-1)}$ resulting from the update rules Equation 11 and Equation 12 match those following update rules Equation 13 and Equation 14. In order to complete the induction, it suffices to show that (12) and (14) produce the same $w_{\geq t+1}^{(t)}$, which naturally results in the same $q_{t+1} = \mathcal{Q}(w_{t+1}^{(t)})$.

To that end, we note that the optimization problem defined by Equation 12 has a unique least-square solution as $X_{\geq t+1}$ has full column rank. The minimizer is given by

$$\begin{aligned} w_{\geq t+1}^{(t)} &= w_{\geq t+1}^{(t-1)} + (w_t^{(t-1)} - q_t)X_{t+1, t}^\dagger X_t \\ &= w_{\geq t+1} + (w_t^{(t-1)} - q_t)(X_{\geq t+1}^\top X_{\geq t+1})^{-1}X_{\geq t+1}^\top X_t \end{aligned}$$

By Lemma G.1, we have

$$(X_{\geq t+1}^\top X_{\geq t+1})^{-1}X_{\geq t+1}^\top X_t = -\frac{[H_{\geq t, \geq t}^{-1}]_{\geq 2, 1}}{[H_{\geq t, \geq t}^{-1}]_{11}}.$$

Lastly, Lemma G.3 gives us

$$\frac{[H_{\geq t, \geq t}^{-1}]_{\geq 2, 1}}{[H_{\geq t, \geq t}^{-1}]_{11}} = \frac{L_{\geq t+1, t}}{L_{tt}} \in \mathbb{R}^{N-t}.$$

This matches Δ_{t+1} in Equation 14 and completes our induction. □

H PROOF OF COROLLARY 3.4

Algorithm 2 OPTQ: Quantize a layer W given inverse Hessian $H^{-1} = (X^\top X)^{-1}$.

```

1: for every  $w$  in  $W$  in parallel do
2:    $q = \mathbf{0}^N$                                  $\triangleright$  Initialize quantized neuron
3:    $H^{-1} = LL^\top$                           $\triangleright$  Perform Cholesky decomposition
4:   for  $t = 1$  to  $N$  do                   $\triangleright$  Iterate over rows
5:      $q_t = \mathcal{Q}(w_t)$ 
6:      $w_{\geq t} \leftarrow w_{\geq t} - L_{\geq t, t} \cdot (w_t - q_t) / L_{tt}$        $\triangleright$  Update remaining weights
7:   end for
8: end for
9: return  $Q$ 

```

For our final result of this paper, we observe that updates of $w_{\geq t+1}^{(t)}$ via Equation 12 can be interpreted by observing that the term $(q_t - w_t^{(t-1)})X_t$ represents the error introduced by quantizing $w_t^{(t-1)}$. The optimization problem Equation 12 seeks to mitigate this error by adjusting future weights so as to minimize the resulting distortion, measured in the ℓ_2 -norm. Notably, this step does not *explicitly*

attempt to correct errors introduced by earlier quantization steps $1, \dots, t-1$. However, by combining the proof of Theorem 3.1 in the case when $X = \hat{X}$ with Lemma 3.2, we arrive at Corollary 3.4, which provides a novel interpretation of OPTQ. It shows—perhaps unexpectedly—that Algorithm 2 *optimally corrects* the cumulative weight quantization error incurred over the first t entries of w .

Proof. The proof is based on induction on both arguments of the trajectory. Let $\{(\hat{w}_{\geq t}^{(t-1)}, \hat{q}_t)\}_{t=1}^N$ denote the trajectory generated by update rules Equation 17, Equation 18. And let $\{(w_{\geq t}^{(t-1)}, q_t)\}_{t=1}^N$ be the trajectory generated by Algorithm 2. Our goal is to prove $(\hat{w}_{\geq t}^{(t-1)}, \hat{q}_t) = (w_{\geq t}^{(t-1)}, q_t)$ for $t = 1, \dots, N$.

By Lemma 3.2, the trajectory $\{(w_{\geq t}^{(t-1)}, q_t)\}_{t=1}^N$ generated using Cholesky decomposition in Algorithm 2 can be equivalently regarded as generated from Equation 11, Equation 12. Thus, we will use Equation 11, Equation 12 as the update rule of $w_{\geq t}^{(t-1)}$ and q_t in the rest of our proof. In the base case, $\hat{w}_{\geq 1}^{(0)} = w_{\geq 1}^{(0)}$ are both initialized with w and

$$\hat{q}_1 = \operatorname{argmin}_{p \in \mathcal{A}} \frac{1}{2} \|Xw - pX_1 - \sum_{j=2}^N w_j^{(0)} X_j\|^2 = \operatorname{argmin}_{p \in \mathcal{A}} \frac{1}{2} \|(w_1 - p)X_1\|^2 = \mathcal{Q}(w_1) = q_1.$$

Thus $(w_{\geq 1}^{(0)}, q_1) = (\hat{w}_{\geq 1}^{(0)}, \hat{q}_1)$. Assume $(\hat{w}_{\geq t}^{(t-1)}, \hat{q}_t) = (w_{\geq t}^{(t-1)}, q_t)$ holds true. Now we proceed to prove $(\hat{w}_{\geq t+1}^{(t)}, \hat{q}_{t+1}) = (w_{\geq t+1}^{(t)}, q_{t+1})$.

Step 1: We first prove $\hat{w}_{\geq t+1}^{(t)} = w_{\geq t+1}^{(t)}$. By construction,

$$\hat{w}_{\geq t+1}^{(t)} = \operatorname{argmin}_{v_{\geq t+1} \in \mathbb{R}^{N-t}} \frac{1}{2} \|Xw - \sum_{j=1}^t \hat{q}_j X_j - \sum_{j=t+1}^N v_j X_j\|^2.$$

For an arbitrary $v_{\geq t+1} \in \mathbb{R}^{N-t}$,

$$Xw - \sum_{j=1}^t \hat{q}_j X_j - \sum_{j=t+1}^N v_j X_j = \underbrace{\left(Xw - \sum_{j=1}^{t-1} \hat{q}_j X_j - \sum_{j=t}^N \hat{w}_j^{(t-1)} X_j \right)}_{\text{(I)}} + \underbrace{\left((\hat{w}_t^{(t-1)} - \hat{q}_t) X_t + \sum_{j=t+1}^N (\hat{w}_j^{(t-1)} - v_j) X_j \right)}_{\text{(II)}}.$$

Since $\hat{w}_{\geq t+1}^{(t-1)}$ is a minimizer of Equation 18, the first term **(I)** $\in X_{\geq t}^\perp$, and clearly the second term **(II)** $\in \text{span}\{X_t, \dots, X_N\}$. Thus, we have

$$\left\| Xw - \sum_{j=1}^t \hat{q}_j X_j - \sum_{j=t+1}^N v_j X_j \right\|^2 = \|\text{(I)}\|^2 + \|\text{(II)}\|^2.$$

Notice that **(I)** does not depend on $v_{\geq t+1}$. Furthermore, $\hat{w}_{\geq t+1}^{(t-1)}$ and \hat{q}_t in **(II)** can be replaced by $w_{\geq t+1}^{(t-1)}$ and q_t respectively using our induction hypothesis. Thus,

$$\begin{aligned} \hat{w}_{\geq t+1}^{(t)} &= \operatorname{argmin}_{v_{\geq t+1} \in \mathbb{R}^{N-t}} \frac{1}{2} \|Xw - \sum_{j=1}^t \hat{q}_j X_j - \sum_{j=t+1}^N v_j X_j\|^2 \\ &= \operatorname{argmin}_{v_{\geq t+1} \in \mathbb{R}^{N-t}} \frac{1}{2} \|(\hat{w}_t^{(t-1)} - \hat{q}_t) X_t + \sum_{j=t+1}^N (\hat{w}_j^{(t-1)} - v_j) X_j\|^2 \\ &= \operatorname{argmin}_{v_{\geq t+1} \in \mathbb{R}^{N-t}} \frac{1}{2} \|(w_t^{(t-1)} - q_t) X_t + \sum_{j=t+1}^N (w_j^{(t-1)} - v_j) X_j\|^2 \\ &= w_{\geq t+1}^{(t)}. \end{aligned}$$

1242

1243 **Step 2:** Now we prove $\hat{q}_{t+1} = q_{t+1}$. We just constructed

1244

1245
$$\hat{w}_{\geq t+1}^{(t)} = \underset{v_{\geq t+1} \in \mathbb{R}^{N-t}}{\operatorname{argmin}} \frac{1}{2} \|Xw - \sum_{j=1}^t \hat{q}_j X_j - \sum_{j=t+1}^N v_j X_j\|^2.$$
 1246

1247

1248 This implies

1249

1250
$$Xw - \sum_{j=1}^t \hat{q}_j X_j - \sum_{j=t+1}^N \hat{w}_j^{(t)} X_j = P_{X_{\geq t+1}^{\perp}}(Xw - \sum_{j=1}^t \hat{q}_j X_j) \in X_{\geq t+1}^{\perp}. \quad (20)$$
 1251

1252

1253 By construction, we have

1254

1255
$$\begin{aligned} \hat{q}_{t+1} &= \underset{q \in \mathcal{A}}{\operatorname{argmin}} \frac{1}{2} \|Xw - \sum_{j=1}^t \hat{q}_j X_j - q X_{t+1} - \sum_{j=t+2}^N \hat{w}_j^{(t)} X_j\|^2 \\ 1256 &= \mathcal{Q} \left(\frac{\langle X_{t+1}, Xw - \sum_{j=1}^t \hat{q}_j X_j - \sum_{j=t+2}^N \hat{w}_j^{(t)} X_j \rangle}{\|X_{t+1}\|^2} \right). \end{aligned}$$
 1257

1258

1259 Then we can use Equation 20 to deduce

1260

1261
$$\begin{aligned} & \frac{\langle X_{t+1}, Xw - \sum_{j=1}^t \hat{q}_j X_j - \sum_{j=t+2}^N \hat{w}_j^{(t)} X_j \rangle}{\|X_{t+1}\|^2} \\ 1262 &= \frac{\langle X_{t+1}, Xw - \sum_{j=1}^t \hat{q}_j X_j - \sum_{j=t+1}^N \hat{w}_j^{(t)} X_j + X_{t+1} \hat{w}_{t+1}^{(t)} \rangle}{\|X_{t+1}\|^2} \\ 1263 &= \frac{\langle X_{t+1}, Xw - \sum_{j=1}^t \hat{q}_j X_j - \sum_{j=t+1}^N \hat{w}_j^{(t)} X_j \rangle}{\|X_{t+1}\|^2} + \frac{\langle X_{t+1}, X_{t+1} \hat{w}_{t+1}^{(t)} \rangle}{\|X_{t+1}\|^2} \\ 1264 &= \frac{\langle X_{t+1}, X_{t+1} \hat{w}_{t+1}^{(t)} \rangle}{\|X_{t+1}\|^2} \\ 1265 &= \hat{w}_{t+1}^{(t)} \\ 1266 &= w_{t+1}^{(t)}. \end{aligned}$$
 1267

1268

1269 The last step $\hat{w}_{t+1}^{(t)} = w_{t+1}^{(t)}$ follows from what we just proved in Step 1 that $\hat{w}_{\geq t+1}^{(t)} = w_{\geq t+1}^{(t)}$. Thus
1270 we know

1271

1272
$$\hat{q}_{t+1} = \mathcal{Q}(\hat{w}_{t+1}^{(t)}) = \mathcal{Q}(w_{t+1}^{(t)}) = q_{t+1}.$$
 1273

1274

1275 This completes our induction. □

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295