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Abstract

Existing autoregressive models follow the two-stage gen-
eration paradigm that first learns a codebook in the la-
tent space for image reconstruction and then completes
the image generation autoregressively based on the learned
codebook. However, existing codebook learning simply
models all local region information of images without dis-
tinguishing their different perceptual importance, which
brings redundancy in the learned codebook that not only
limits the next stage’s autoregressive model’s ability to
model important structure but also results in high train-
ing cost and slow generation speed. In this study, we bor-
row the idea of importance perception from classical im-
age coding theory and propose a novel two-stage frame-
work, which consists of Masked Quantization VAE (MQ-
VAE) and Stackformer, to relieve the model from model-
ing redundancy. Specifically, MQ-VAE incorporates an
adaptive mask module for masking redundant region fea-
tures before quantization and an adaptive de-mask mod-
ule for recovering the original grid image feature map to
faithfully reconstruct the original images after quantiza-
tion. Then, Stackformer learns to predict the combination
of the next code and its position in the feature map. Com-
prehensive experiments on various image generation vali-
date our effectiveness and efficiency. Code will be released
at https://github.com/CrossmodalGroup/
MaskedVectorQuantization.

1. Introduction
Deep generative models of images have received signif-

icant improvements over the past few years and broadly
fall into two categories: likelihood-based models, which
include VAEs [24], flow-based [36], diffusion models [17]
and autoregressive models [40], and generative adversarial
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Figure 1. Illustration of our motivation. (a) Existing works model
all local regions without distinguishing their perceptual impor-
tance in stage 1, which not only brings redundancy (e.g., the textu-
ral regions like the background) in the learned codebook but also
make the autoregressive models overly focus on modeling this re-
dundancy and hinder other important structural regions modeling.
(b) The codebook learning in our method only includes the im-
portant regions, e.g., the structural regions like corners and edges,
since other unimportant ones can be restored even if missing, and
thus autoregressive model could focus on modeling these impor-
tant regions in stage 2 and results in better generation quality.

networks (GANs) [14], which use discriminator networks to
distinguish samples from generator networks and real ex-
amples. Compared with GANs, likelihood-based models’
training objective, i.e., the negative log-likelihood (NLL) or
its upper bound, incentives learning the full data distribution
and allows for detecting overfitting.

Among the likelihood-based models, autoregressive
models have recently attracted increasing attention for their
impressive modeling ability and scalability. Recent autore-
gressive image generation [10, 12, 13, 28, 28, 34, 35, 37, 39]
follows the two-stage generation paradigm, i.e., the first
stage learns a codebook in the latent space for image recon-
struction and the second stage completes the image genera-
tion in the raster-scan [13] order by autoregressive models



based on the learned codebook. Since codebook learning
in the first stage defines the discrete image representation
for the next autoregressive modeling, a high-quality code-
book is the key to generate high-quality images. Several
recent works focus on improving the codebook learning in
the first stage, e.g., VQGAN [13] introduces adversarial loss
and perceptual loss. ViT-VQGAN [42] introduces a more
expressive transformer backbone. RQ-VAE [28] introduces
the residual quantization to reduce the resolution of the la-
tent space. In general, the essence of existing codebook
learning is the modeling of all local region information (i.e.,
an 8× 8 or 16× 16 patch) of images in the dataset, without
distinguishing their different perceptual importance.

In this study, we point out that existing codebook learn-
ing exists gaps with classical image coding theory [20, 25,
26], the basic idea of which is to remove redundant infor-
mation by perceiving the importance of different regions
in images. The image coding theory reveals that an ideal
image coding method should only encode images’ percep-
tually important regions (i.e., which cannot be restored if
missing) while discarding the unimportant ones (i.e., which
can be restored by other image regions even if missing). The
neglect of considering such perceptual importance in exist-
ing works poses problems in two aspects, as illustrated in
Figure 1(a): (1) the existence of this large amount of repet-
itive and redundant information brings redundancy to the
learned codebook, which further makes the autoregressive
model in the next stage overly focus on modeling this redun-
dancy while overlooking other important regions and finally
degrades generation quality. (2) the redundancy makes
the autoregressive model need to predict more (redundant)
quantized codes to generate images, which significantly in-
creases the training cost and decreases the generating speed.
Although the effectiveness and efficiency of image coding
theory have been widely validated, how to introduce this
idea into codebook learning remains unexplored.

The key of applying image coding theory to codebook
learning is to distinguish important image parts from unim-
portant ones correctly. Considering that the essential dif-
ference between these two sets lies in whether they can be
restored if missing, we found that this distinction can be re-
alized through the mask mechanism, i.e., the masked part is
important if it cannot be faithfully restored, and otherwise
unimportant. Based on the above observation, we thereby
propose a novel two-stage generation paradigm upon the
mask mechanism to relieve the model from modeling redun-
dant information. Specifically, we first propose a Masked
Quantization VAE (MQ-VAE) with two novel modules, i.e.,
an adaptive mask module for adaptively masking redun-
dant region features before quantization, and an adaptive
de-mask module for adaptively recovering the original grid
image feature map to faithfully reconstruct original images
after quantization. As for the adaptive mask module, it in-

corporates a lightweight content-aware scoring network that
learns to measure the importance of each image region fea-
ture. The features are then ranked by the importance scores
and only a subset of high-scored features will be quantized
further. As for the adaptive de-mask module, we design
a direction-constrained self-attention to encourage the in-
formation flow from the unmasked regions to the masked
regions while blocking the reverse, which aims to infer
the original masked region information based on unmasked
ones. Thanks to the adaptive mask and de-mask mecha-
nism, our MQ-VAE removes the negative effects of redun-
dant image regions and also shortens the sequence length to
achieve both effectiveness and efficiency.

Moreover, since different images have different impor-
tant regions, the position of quantized codes in the feature
map also dynamically changed. Therefore, we further pro-
pose Stackformer for learning to predict the combination of
both codes and their corresponding positions. Concretely,
the proposed Stackformer stacks a Code-Transformer and a
Position-Transformer, where the Code-Transformer learns
to predict the next code based on all previous codes and
their positions, and the Position-Transformer learns to pre-
dict the next code’s position based on all previous codes’
positions and current code.

With our method, as shown in Figure 1(b), the codebook
learning only includes the important regions, e.g., the struc-
tural regions, since unimportant ones like the background
can be restored even if missing. And therefore the autore-
gressive model in the second stage could focus on modeling
these important regions and brings better generation quality.

In a nutshell, we summarize our main contributions as:
Conceptually, we point out that existing codebook

learning ignores distinguishing the perceptual importance
of different image regions, which brings redundancy that
degrades generation quality and decreases generation speed.

Technically, (i) we propose MQ-VAE with a novel
adaptive mask module to mask redundant region features
before quantization and a novel adaptive de-mask module
to recover the original feature map after quantization; (ii)
we propose a novel Stackformer to predict the combination
of both codes and their corresponding positions.

Experimentally, comprehensive experiments on various
generations validate our effectiveness and efficiency, i.e.,
we achieve 8.1%, 2.3%, and 18.6% FID improvement on
un-, class-, and text-conditional state-of-the-art at million-
level parameters, and faster generation speed compared to
existing autoregressive models.

2. Related Work

2.1. Autoregressive Modeling for Image Generation

Autoregressive models for image generation have re-
cently attracted increasing research attention and have



Figure 2. The Illustration of our proposed two-stage generation framework. (a) In the first stage, MQ-VAE adaptively masks the redundant
region features to prevent redundant codes while keeping important ones, which ensures that the original images can still be faithfully
recovered. Here, 10

16
regions are masked and 6

16
regions are kept. (b) In the second stage, Stackformer stacks a Code-Transformer and

a Position-Transformer to autoregressively predict the next code and its position in the original 2D feature map, respectively. (c) The
attention mask of the proposed direction-constrained self-attention in the adaptive de-mask module for inferring masked regions features.

shown impressive results [10, 12, 13, 32, 34, 35, 37, 39, 42]
among various generation tasks. Early autoregressive mod-
els [5, 33, 40] directly optimizing the likelihood of raw im-
age pixels, e.g., Image-GPT [5] trains a transformer [41]
to autoregressively predict pixels’ cluster centroids, which
could only generate images with a maximum resolution
of 64 × 64. [39] presents the Vector Quantized Varia-
tional Autoencoder (VQVAE), which learns images’ low-
dimension discrete representation and models their distri-
bution autoregressively. VQ-VAE2 [35] extends this ap-
proach using a hierarchy of discrete representations. VQ-
GAN [13] further improves the perceptual quality of recon-
structed images using adversarial [14, 19] and perceptual
loss [27]. ViT-VQGAN [42] introduces a more expressive
transformer backbone. RQ-VAE [28] uses Residual Quanti-
zation [21,31] to iteratively quantizes a vector and its resid-
uals and represent the vector as a stack of tokens. Although
vector quantization has become the fundamental technique
for modern visual autoregressive models, the critical remov-
ing redundancy in codebook learning has not been explored
yet, which becomes a critical bottleneck.

2.2. Masked Modeling

Masked modeling is popular among both natural lan-
guage processing and computer vision. BERT [8] randomly
masks a portion of the input sequence and trains models
to predict the missing content. In the computer vision do-
main, the ViT [11] studies masked patch prediction for self-
supervised learning. BEiT [1] proposes to predict discrete
tokens. Most recently, MaskGIT [4] also used the masking
strategy for VQ-based image generation. However, our pro-
posed method differs from MaskGIT in two aspects: (1) Our
primary motivation for the masking strategy applied in the
proposed MQ-VAE in the first stage aims to learn a more
compact and effective vector quantization (VQ) itself by
masking perceptual unimportant regions, while MaskGIT
uses masking strategy in the second stage to better use a
learned VQ. (2) The mask in our proposed MQ-VAE is
learned and adaptively changed according to different im-
age content, while the mask in MaskGIT is randomly sam-
pled for the mask-and-predict training. In conclusion, to
the best of our knowledge, this is the first time that masked
modeling has been applied for vector quantization.



3. Methodology
We propose a novel two-stage framework with MQ-VAE

and Stackformer for autoregressive image generation, as il-
lustrated in Figure 2. MQ-VAE only masks redundant re-
gion features to prevent redundant codes and Stackformer
stacks two transformers to autoregressively predict the next
code and its position. In the following, we will first briefly
revisit the formulation of vector quantization and then de-
scribe our proposed method in detail.

3.1. Preliminary

We follow the definition and notations of previous works
[13, 28]. Specifically, the codebook C := {(k, e(k))}k∈[K]

is defined as the set of finite pairs of code k and its code
embedding e(k) ∈ Rnz . Here K is the codebook size and
nz is the code dimension. An image X ∈ RH0×W0×3 is
first encoded into grid features Z = E(X) ∈ RH×W×nz

by the encoder E, where (H,W ) = (H0/f,W0/f) and f
is the corresponding downsampling factor. For each vector
z ∈ Rnz in Z, it is replaced with the code embedding that
has the closest euclidean distance with it in the codebook C
through the vector quantization operation Q(·):

Q(z; C) = arg min
k∈[K]

||z − ek||22. (1)

Here, Q(z; C) is the quantized code. zq = e(Q(z; C)) is
the quantized vector. By applying Q(·) to each feature vec-
tor, we could get the quantized code map M ∈ [K]H×W

and the quantized features Zq ∈ RH×W×nz . The original
image is reconstructed by the decoder D as X̃ = D(Zq).

3.2. Stage 1: MQ-VAE

Existing methods quantize each feature vector of Z with-
out distinguishing their different perceptual importance and
thus bring redundancy in the learned codebook, which not
only degrades the generation quality but also decreases the
generation speed. To relieve the model from this redun-
dancy, we propose MQ-VAE with two novel modules, i.e.,
the adaptive mask module for adaptively masking redun-
dant region features before vector quantization and adaptive
de-mask module for adaptively recovering the original grid
image feature map after vector quantization.

Adaptive Mask Module. The encoded grid feature map
Z ∈ RH×W×ne is first flattened into Z ∈ RL×ne , where
L = H×W . The proposed adaptive mask module then uses
a lightweight scoring network fs to measure the importance
of each region feature zl in Z, which is implemented as a
two-layer MLP:

sl = fs(zl), l = 1, ..., L. (2)

The larger score sl is, the more important the region fea-
ture zl is. Then the region features are sorted in descending

order according to the predicted scores. The sorted region
features and their scores are denoted as {z′

l} and {s′

l} re-
spectively, where l = 1, ..., L. To enable the learning of fs,
the predicted scores are further multiplied with the normal-
ized region features as modulating factors. We select the
top N scoring vectors as the important region features,

Ẑ = {z
′′

l |z
′′

l = LayerNorm(z
′

l) ∗ s
′

l}, l = 1, ..., N. (3)

P̂ = {pz′′
l
|pz′′

l
∈ {0, ..., L}}, l = 1, ..., N. (4)

Here, Ẑ denotes the selected important region features set,
and P̂ denotes the corresponding position set that represents
the position of each selected region feature in the original
2D feature map. The selected number N = α×L, where α
is a constant fractional value. The mask ratio is defined as
1−α. This design also enables a flexible trade-off between
the image generation speed and image generation quality,
which we will discuss in experiments. After obtaining Ẑ,
we further apply the quantization function Q to each of
them and obtain the quantized important region features set
Ẑq as well as its code matrix M̂.

Adaptive De-mask Module. After quantization, we fill
the quantized features Ẑq back into the original 2D fea-
ture map according to P̂, while other masked positions are
filled with a uniformly initialized learnable mask code em-
bedding, as shown in Figure 2(a). Directly inputting filled
grid features to the decoder D could bring sub-optimal re-
construction results since the mask code embedding here
only serves as the placeholders that contain little informa-
tion. Therefore, we further propose the adaptive de-mask
module, which applies a novel direction-constrained self-
attention to encourage the information flow from unmasked
regions to the masked ones while blocking the reverse. Such
a design allows the model to utilize the unmasked region
features to infer the masked ones while also preventing the
masked regions to have negative impacts on the unmasked
ones since they are less informative.

Our adaptive de-mask module is implemented as H
identical sub-modules, where each consists of a direction-
constrained self-attention block and a Resnet block.
The direction-constrained self-attention is mathematically
formed as (Resnet block is omitted for simplicity):

q,k,v = W qẐ
q,h,W kẐ

q,h,W vẐ
q,h (5)

A = (SoftMax(
qkT

√
ne

))⊙Bh (6)

Ẑq,h+1 = Av. (7)

Here h ∈ {1, ..,H} and Ẑq,1 is the filled quantized grid
features. W q,W k,W v ∈ Rne×ne are the learnable pa-
rameters. Bh is the attention mask at h sub-module. Specif-
ically, since the initial mask code contains little information,



we define B1 = [bl ∈ {0, 1}, |l = 1, ..., L] ∈ R1×L to
forbid it from attending to other unmasked codes to avoid
negative impact, where 0 for the mask position and 1 for
the unmasked. Considering that the mask code is updated
with more and more information after each sub-module, we
propose to synchronously amplify its interaction with other
codes step by step through a mask updating mechanism:

Bh+1 =
√
Bh, (8)

where the initial 0 in B1 is replaced with a small number
0.02, since

√
0 will always result in 0. Finally, the original

image is recovered by the decoder as X̃ = D(Ẑq,H).

3.3. Stage 2: Stackformer

The perceptual important regions of different images
vary. Therefore the positions of quantized codes in the fea-
ture map also dynamically change along with the image
content. As a result, our proposed MQ-VAE formulates an
image as both the code sequence M̂ and the code position
sequence P̂. To simultaneously learn the combination of
the codes and their positions, we propose a novel Stack-
former, which stacks a Code-Transformer and a Position-
Transformer. The Code-Transformer learns to predict the
next code based on all previous steps’ codes and their po-
sitions, while the Position-Transformer learns to predict the
next code’s position based on all previous steps’ positions
and current code. Directly treating the importance descend-
ing order sequence M̂ and P̂ as the inputs are natural, but
the dramatic position changes of adjacent code could make
the network hard to converge. For example, the position of
the first code may be in the upper left corner of the image,
while the position of the second code may be in the lower
right corner of the image. Therefore, we further propose to
use the raster-scan order [13] to rearrange both sequences
to deal with the converge problem.

Mathematically, taking the raster-scan code and code po-
sition sequence (M,P) = rearrange(M̂, P̂), Stackformer
learns p(M,P), which is autoregressively factorized as:

p(M,P) =

N∏
l=1

p(Ml|M<l,P<l)p(Pl|M≤l,P<l) (9)

Code-Transformer takes the sum of code embeddings
ec(·) and code position embedding ep(·) as inputs:

Uc = ec(M[1:Nc+N ]) + ep1(P[1:Nc+N ]), (10)

where Nc is the condition length. For the unconditional
generation, we add a <sos> code at the start of the code and
code position sequence. For conditioning, we append class
or text codes to the start of the code sequence and the same
length of <sos> code to the code position sequence. We

further add an extra learned absolute position embedding to
Uc to form the final input, which makes the network aware
of the absolute position of the sequence. After processing
by Code-Transformer, the output hidden vector Hc encodes
both code and their position information and is used for the
next code prediction. The negative log-likelihood (NLL)
loss for code autoregressive training is:

Lcode = E[− log p(Ml|M<l,P<l]). (11)

Position-Transformer takes the sum of Code-
Transformer’s output hidden vector Hc and an extra
code embedding as input:

Up = Hc[Nc : Nc +N − 1] + ec(M[Nc+1:Nc+N ]). (12)

Here Up is the input for Position-Transformer and the infor-
mation of current code is included in ec(M[Nc+1:Nc+N ]).
The design idea behind this is that when predicting the next
code’s position, the model should not only be aware of pre-
vious steps’ codes and their position information but also
should be aware of current code information. The negative
log-likelihood (NLL) for position autoregressive training is:

Lposition = E[− log p(Pl|M≤l,P<l)]. (13)

Training & Inference. The total loss for training Stack-
former is defined as:

L = Lcode + Lposition. (14)

The inference procedure is illustrated in Algorithm 1, where
we take the unconditional generation as an example and
conditional generation can be derived accordingly.

Algorithm 1 Unconditional sampling of Stackformer.

Input: The sample step N ;
The code sequence Msample of a single <sos>;
The code position sequence Psample of a single <sos>.

Output: The generated image I.
1: for each n ∈ [1, N ] do
2: Hc = Code-Transformer(Msample, Psample);
3: Sample next code Mn by Hc;
4: Msample = concat(Msample,Mn);
5: Hp = Position-Transformer(Hc,Msample[2 :]);
6: Mask already sampled positions to avoid conflicts;
7: Sample next code position Pn by Hp;
8: Psample = concat(Psample, Pn);
9: end for

10: Re-map Msample to 2D code map according to Psample

and the rest are filled with the mask code;
11: Decode the code map to the image I
12: return The generated image I



Figure 3. Left: Our unconditional generated images on FFHQ benchmark. Right: Our class-conditional generated images on ImageNet.

4. Experiment
4.1. Experimental Settings

Benchmarks. We validate our model for unconditional,
class-conditional, and text-conditional image generation
tasks on FFHQ [22], ImageNet [7], and MS-COCO [30]
benchmarks respectively, with 256× 256 image resolution.

Metrics. Following previous works [13,28,42], the stan-
dard Frechet Inception Distance (FID) [16] is adopted for
evaluating the generation and reconstruction quality (de-
noted as rFID). Inception Score (IS) [2] is also used for
class-conditional generation on the ImageNet benchmark.
FID and IS are calculated by sampling 50k images. rFID is
calculated over the entire test set.

Implemented details. The architecture of MQ-VAE ex-
actly follows [13] except for the proposed mask and de-
mask modules, with the codebook size of K = 1024.
For the de-mask module, the sub-module number H = 8.
For the Stackformer, we implement two settings: a small
version uses 18 transformer encoder blocks for the Code-
Transformer and another 6 transformer encoder blocks for
the Position-Transformer with a total of 307M parameters,
and a base version uses 36 transformer encoder blocks for
the Code-Transformer and another 12 transformer encoder
blocks for the Position-Transformer with a total of 607M
parameters to further demonstrate our scalability. The gen-
eration results are reported with a 25% mask ratio at 32×32
resolution feature map using eight RTX-3090 GPUs. Top-k
and top-p sampling are used to report the best performance.
More details could be found in the supplementary.

4.2. Comparison with state-of-the-art methods

Unconditional generation. We first compare with
million-level state-of-the-art autoregressive models in Table
1. Our model significantly outperforms other autoregres-
sive models with the same parameters (307M). With more
parameters, we further increase the FID from 6.84 to 5.67,
which demonstrates our scalability. We also compare with
other types of unconditional state-of-the-art and large-scale
big models in Table 3, where we also achieve top-level per-
formance. Our qualitative unconditional generation results
are shown on the left of Figure 3.

Methods #Params FID↓
DCT [32] 738M 13.06
VQGAN [13] (72.1+307)M 11.4
RQ-Transformer [28] (100+355)M 10.38
Mo-VQGAN [44] (82.7+307)M 8.52
Stackformer (44.4+307)M 6.84
Stackformer (44.4+607)M 5.67

Table 1. Comparison of autoregressive unconditional generation
at million-level parameters on FFHQ [22] benchmark. #Params
splits in (VAE + autoregressive model).

Model Type Methods #Params FID↓ IS↑
Diffusion ADM [9] 554M 10.94 101.0
GAN BigGAN [3] 164M 7.53 168.6
GAN BigGAN-deep [3] 112M 6.84 203.6
Bidirection MaskGIT [4] 227M 6.18 182.1
Autoregressive DCT [32] 738M 36.5 n/a
Autoregressive VQ-GAN† [13] 679M 17.03 76.85
Autoregressive RQ-Transformer [28] 821M 13.11 104.3
Autoregressive Mo-VQGAN [44] 383M 7.13 138.3
Autoregressive Stackformer 651M 6.04 172.6

Table 2. Comparison of class-conditional image generation at
million-level parameters without rejection sampling on ImageNet
[7]. † denotes the model we train with the same setup with ours.

Model Type Methods #Params FID↓
VAE VDVAE [6] 115M 28.5
Diffusion ImageBART [12] 3.5B 9.57
GAN StyleGAN2 [23] - 3.8
GAN BigGAN [3] 164M 12.4
Autoregressive ViT-VQGAN [42] 2.2B 5.3
Autoregressive Stackformer 651M 5.67

Table 3. Comparison with other types of state-of-the-art genera-
tive models and large-scale billion-level parameters autoregressive
models on unconditional FFHQ [22] benchmark.

Class-conditional generation. We first compare with
million-level state-of-the-art in Table 2. We achieve the best
FID score compared to all types of models including the re-



Figure 4. The visualization of our adaptive mask module which learns to mask unimportant regions on ImageNet [7]. In the importance
map, red denotes high scores while blue denotes low scores.

Model Type Methods #Params FID↓ IS↑
Diffusion ImageBART [12] 3.5B 21.19 61.6
Autoregressive VQVAE2 [35] 13.5B 31 45
Autoregressive VQ-GAN [13] 1.4B 15.78 78.3
Autoregressive ViT-VQGAN [42] 2.2B 4.17 175.1
Autoregressive RQ-Transformer [28] 3.8B 7.55 134
Autoregressive Stackformer 651M 6.04 172.6

Table 4. Comparison between our model and large-scale billion-
level parameters models of class-conditional generation without
rejection sampling on ImageNet [7] benchmark.

Model Type Method FID↓
GAN DMGAN [45] 32.64
GAN XMCGAN† [43] 50.08
GAN DFGAN [38] 21.42
GAN SSA-GAN [29] 19.37
GAN DSE-GAN [18] 15.30
Diffusion VQ-Diffusion [15] 19.75
Autoregressive VQ-GAN† [13] 22.28
Autoregressive Stackformer 10.08

Table 5. Comparison of text-conditional generation on MS-COCO
[30] without using extra web-scale data or pre-trained models.
† denotes reproduced results under our same experimental setting.

cent Mo-VQGAN [44] and RQ-Transformer [28]. We also
compare our million-level model with existing billion-level
big models in Table 4, where we also achieve top perfor-
mance with fewer parameters and is only inferior to ViT-
VQGAN big model. Our qualitative class-conditional gen-
eration results are shown on the right of Figure 3.

Text-conditional generation. We compare with exist-
ing text-conditional state-of-the-art without extra web-scale

mask ratio f mask type rFID↓ FID↓ usage↑ (%)
0% 32 - 8.1 13.5 70.02
0% 16 - 4.46 11.4 63.89

10% 16 adaptive 4.55 7.81 72.34
25% 16 adaptive 4.79 7.67 78.22
25% 16 random 6.13 12.21 67.48
50% 16 adaptive 5.31 8.36 84.29
50% 16 random 7.855 15.67 69.04
75% 16 adaptive 7.62 11.71 87.60
75% 16 random 10.58 17.62 70.41

Table 6. Ablations of adaptive mask module on FFHQ. Here f is
the downsampling factor. The codebook usage is calculated as the
percentage of used codes over the entire test dataset.

data or pretrained models on MS-COCO [30] for fair com-
parison in Table.5. We achieve 18.6% FID improvement.

Figure 5. The PCA of learned codebook (1024 codebook size).

4.3. Ablations

We conduct ablations on 16× 16 resolution feature map
using four RTX-3090 GPUs for saving computation re-
sources and the experimental trends are all consistent with
32× 32 resolution feature map of the main results.

Ablations of adaptive mask module. As shown in Ta-
ble 6, our proposed learned adaptive mask mechanism sig-



Figure 6. Comparison of training & validation curves and sample
speed between VQGAN [13] and Stackformer.

nificantly outperforms the random one, which quantitatively
validates that the adaptive mask module enables the model
to learn perceptually important regions.

Our model with 10% and 25% mask radio has only
slightly inferior reconstruction compared with VQGAN
[13], but achieves a significant improvement in genera-
tion quality, which indicates that the effectiveness of focus-
ing autoregressive models on modeling important regions.
When we further increase the mask radio to 50% and 75%,
the final generation quality drops, we believe the reason lies
that an improper high mask radio will inevitably mask some
important regions that greatly decrease the reconstruction
results and hinder autoregressive modeling.

The redundancy of the existing learned codebook can be
verified from two aspects: i) the PCA of the learned code-
book in Figure 5, where each point is a code and closer
codes have more similar semantics. We show many codes in
VQGAN’s codebook overlap, which indicates these codes
have nearly the same semantics and are thus redundant. The
redundancy increase (more overlaps) when VQGAN uses
more code to represent images (smaller downsampling fac-
tor f ). The redundancy is largely alleviated in our MQ-
VAE. ii) in Table 6, a higher codebook usage indicates more
“useful” codes in the codebook and thus less redundant.
VQGAN has a lower usage compared with our MQ-VAE.

We visualize the training and validation curves of VQ-
GAN and Stackformer in Figure 6(a). Previous autoregres-
sive models [13, 28, 42] always suffer from the overfitting
problem while our Stackformer successfully gets rid of it,
which indicates the better generalization of our masked dis-
crete representation and our model.

Model setting rFID↓ FID↓
VQGAN 4.46 11.4
VQGAN* 4.17 11.02

MQ-VAE w/o de-mask 7.02 10.74
MQ-VAE w/ de-mask (SA) 6.56 9.8

MQ-VAE w/ de-mask (DC-SA w/o mask update) 5.84 8.92
MQ-VAE w/ de-mask (DC-SA w/ mask update) 5.31 8.36

Table 7. Ablations of adaptive de-mask module on FFHQ. SA for
self-attention and DC-SA for direction-constrained self-attention.
“VQGAN*” is the stronger baseline, where the same numbers of
SA and Resnet blocks as MQ-VAE’s de-mask module are added.

We compare the sampling speed on a single RTX-1080Ti
in Figure 6(b). Compared with VQGAN, our 25% mask
radio model achieves 32.72% quality improvement and
15.45% speed improvement, while Our 50% mask radio
model achieves 26.67% quality improvement and 61.1%
speed improvement. Therefore, our design enables a flexi-
ble trade-off between speed and quality.

Finally, We visualize the learned mask in Figure 4, with
a 75% mask ratio on 32× 32 resolution feature map, which
validates that our proposed adaptive mask mechanism suc-
cessfully learns to preserve the perceptual important image
regions, i.e., the structural and edge regions of objects.

Ablations of adaptive de-mask module. In Table 7, we
show that MQ-VAE outperforms VQGAN and the stronger
baseline (“VQGAN*”), which validates our effectiveness.
We could conclude that the proposed direction-constrained
self-attention and the mask updating mechanism both im-
prove the reconstruction and generation quality.

5. Conclusion
In this study, we point out that the existing two-stage

autoregressive generation paradigm ignores distinguishing
the perceptual importance of different image regions, which
brings redundancy that not only degrades generation qual-
ity but also decreases generation speed. We propose a novel
two-stage generation paradigm with MQ-VAE and Stack-
former to relieve the model from redundancy. MQ-VAE in-
corporates the adaptive mask module to mask redundant re-
gion features before quantization and the adaptive de-mask
module to recover the original feature map after quantiza-
tion. Stackformer then efficiently predict the combination
of both codes and their positions. Comprehensive experi-
ments on various types of image generation tasks validate
the effectiveness and efficiency of our method.
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