

000 001 AQUA: TOWARD STRATEGIC RESPONSE GENERA- 002 TION FOR AMBIGUOUS VISUAL QUESTIONS 003

004
005 **Anonymous authors**
006 Paper under double-blind review
007

008 009 ABSTRACT 010

011
012 Visual Question Answering (VQA) is a core task for evaluating the capabilities
013 of Vision–Language Models (VLMs). Existing VQA benchmarks primarily fea-
014 ture clear and unambiguous image–question pairs, whereas real-world scenarios
015 often involve varying degrees of ambiguity that require nuanced reasoning and
016 context-appropriate response strategies. Although recent studies have begun to
017 address ambiguity in VQA, they lack (1) a systematic categorization of ambi-
018 guity levels and (2) datasets and models that support strategy-aware responses.
019 In this paper, we introduce Ambiguous Visual Question Answering (AQUA), a
020 fine-grained dataset that classifies ambiguous VQA instances into four levels ac-
021 cording to the nature and degree of ambiguity, along with the optimal response
022 strategy for each case. Our evaluation of diverse open-source and proprietary
023 VLMs shows that most models fail to adapt their strategy to the ambiguity type,
024 frequently producing overconfident answers rather than seeking clarification or
025 acknowledging uncertainty. To address this challenge, we fine-tune VLMs on
026 AQUA, enabling them to adaptively choose among multiple response strategies,
027 such as directly answering, inferring intent from contextual cues, listing plausible
028 alternatives, or requesting clarification. VLMs trained on AQUA achieve strategic
029 response generation for ambiguous VQA, demonstrating the ability to recognize
030 ambiguity, manage uncertainty, and respond with context-appropriate strategies,
031 while outperforming both open-source and closed-source baselines.

032 1 INTRODUCTION 033

034 Recent advances in Vision–Language Models (VLMs) (Dai et al., 2023; Liu et al., 2023; Chen
035 et al., 2024; Bai et al., 2025) have significantly improved their performance across a broad range
036 of Visual Question Answering (VQA) tasks (Antol et al., 2015; Goyal et al., 2017; Gurari et al.,
037 2018; Singh et al., 2019; Mathew et al., 2021). Traditional VQA benchmarks primarily evaluate
038 whether models can provide correct answers to clearly stated, unambiguous questions paired with
039 well-defined images (Johnson et al., 2017; Hudson & Manning, 2019; Biten et al., 2019). While such
040 benchmarks are valuable for assessing basic multimodal reasoning, they fail to capture a critical
041 challenge in real-world use: the ability to handle ambiguous or unclear queries. This capability
042 remains underexplored.

043 In human communication, ambiguity is typically resolved through contextual inference or follow-up
044 questions. For example, when asked “*What brand is this vehicle?*” in an image with multiple cars,
045 one may seek clarification or infer the intended car from context. Previous research in ambiguous
046 VQA has mainly focused on making models always ask clarifying questions when uncertain (Jian
047 et al., 2025). While this binary answer-or-ask strategy can be useful, it does not reflect real-world
048 conversational dynamics, where clarification is not always the most efficient approach (Chen et al.,
049 2025). Humans instead adapt their strategy to the situation—sometimes inferring intent from con-
050 text, sometimes offering multiple plausible answers when they are few, and requesting clarification
051 only when necessary.

052 To bridge this gap, we propose Ambiguous Visual Question Answering (AQUA), a novel dataset
053 designed to enable VLMs to choose contextually appropriate strategies for ambiguous VQA. Our
dataset categorizes VQA instances into four fine-grained levels, based on both the nature and degree

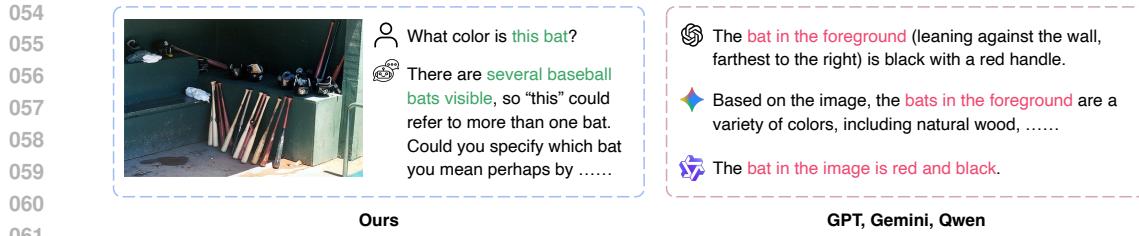


Figure 1: Examples of model responses to an ambiguous visual question about the color of a baseball bat in an image with multiple bats. While GPT, Gemini, and Qwen provide answers by arbitrarily selecting (e.g., the bat in the foreground) despite the ambiguity, our model, which is trained to handle such cases strategically, requests clarification instead.

of ambiguity: (Level 0) unambiguous questions, (Level 1) questions whose intended referent can be inferred from context, (Level 2) questions with multiple plausible answers where listing options is preferable, and (Level 3) highly ambiguous questions requiring explicit clarification. To our best knowledge, AQUA is the first resource enabling systematic training and evaluation of strategy selection across these distinct ambiguity scenarios.

We empirically show that both open-source models (Bai et al., 2025; Chen et al., 2024) and high-performing closed-source models (GPT-5¹ and Gemini 2.5 Flash²) fail to properly handle ambiguous VQA, often responding overconfidently rather than adapting to the ambiguity (Figure 1). Building on these findings, we train models on AQUA to enable them to produce strategy-aware responses that adapt to the degree of ambiguity. Since generating strategy-adaptive responses is highly challenging for baseline models, we begin with supervised fine-tuning (SFT) to explicitly teach them the space of possible strategies. SFT provides a solid foundation for ambiguity-aware responses, but it does not directly optimize for strategic choice. To address this, we further apply Group Relative Policy Optimization (GRPO) (Shao et al., 2024), rewarding models when they produce strategy-aligned outputs and thereby improving their ability to adapt to varying degrees of ambiguity. VLMs fine-tuned on AQUA achieve substantially better performance by developing adaptive ambiguity-handling abilities. Our analysis demonstrates not only whether VLMs genuinely understand ambiguity and respond strategically, but also why such strategy-based responses are effective.

Our contributions in this paper are as follows:

1. We propose AQUA, a novel VQA dataset designed to train and evaluate how VLMs handle ambiguity. AQUA is organized into four fine-grained levels based on the degree and nature of ambiguity, enabling systematic analysis of response strategies across different ambiguous scenarios.
2. We fine-tune open-source models on AQUA, and they outperform larger open-source and high-performing closed-source models by autonomously selecting contextually appropriate response strategies.
3. Through extensive analysis, we verify why VLMs fail to generate strategic responses, analyze their error patterns, and confirm the effectiveness of strategic responses in handling ambiguity.

2 RELATED WORKS

Ambiguity in Question Answering. Traditional Question Answering (QA) benchmarks typically focus on unambiguous question–context pairs with clear answers, which effectively measure models’ basic comprehension but fail to assess their ability to handle ambiguity (Rajpurkar et al., 2016; Joshi et al., 2017; Kwiatkowski et al., 2019). In text-based QA, ambiguity has been extensively studied (Min et al., 2020; Stelmakh et al., 2022; Kim et al., 2023; Lee et al., 2023; Li et al., 2025b), whereas visual QA research has only recently begun addressing this gap. For example, Focus Ambiguity (Chen et al., 2025) analyzes the responses of GPT-4o and InternVL2 to ambiguous questions, revealing that models often generate answers that appear plausible but lack semantic adequacy. ClearVQA (Jian et al., 2025) trains LLaVA to ask clarifying questions for ambiguous queries, but

¹<https://openai.com/index/introducing-gpt-5/>

²<https://deepmind.google/models/gemini/flash/>

Figure 2: Examples of the four ambiguity levels in AQUA.

adopts a rigid binary strategy by always seeking clarification, without adapting to different types or degrees of ambiguity, which limits its practicality. In contrast, VAGUE (Nam et al., 2024) introduces a benchmark specifically designed to evaluate how visual contexts help resolve ambiguous linguistic expressions. To the best of our knowledge, AQUA is the first dataset to provide a fine-grained categorization of ambiguity in VQA, thus enabling systematic evaluation of diverse and context-appropriate response strategies.

Uncertainty Handling Strategies. While Large Language Models (LLMs) and VLMs can respond with “I don’t know” in uncertain situations, they often show a tendency to answer even unanswerable questions (Guo et al., 2024; Li et al., 2025a). Previous research has primarily addressed this problem through binary approaches: training models to respond only when confident and to abstain when uncertain (Whitehead et al., 2022; Jian et al., 2025). These methods focus mainly on teaching models when to withhold responses. However, simply abstaining in uncertain situations does not always align with real-world human behavior (Liu et al., 2025). Depending on the degree of uncertainty, humans may leverage contextual clues to infer answers (Nam et al., 2024), provide all possible answers when there are only a few viable options, or ask follow-up questions to resolve ambiguity (Jian et al., 2025). We adopt this perspective in the context of ambiguous VQA, examining how VLMs should respond based on different types and degrees of ambiguity. To our knowledge, this is the first work that enables models to select among multiple response strategies based on specific ambiguous scenarios.

3 DATASET

In this work, we introduce **Ambiguous Visual Question Answering (AQUA)**, a novel dataset that enables not only comprehensive evaluation but also effective training of VLMs on ambiguity in VQA. Unlike existing datasets that treat ambiguous queries in a uniform or binary fashion, our dataset systematically categorizes ambiguity into four distinct levels, enabling controlled and fine-grained training and evaluation.

3.1 LEVEL DEFINITIONS

In natural human communication, when confronted with ambiguous questions about visual information, people do not rely on a single strategy. Instead, they adapt their response according to the situation: asking for clarification when necessary, inferring answers from contextual cues when ambiguity is low, or enumerating all candidates when multiple plausible targets exist. For example, when looking at a crowded scene and asked, “*What is that person wearing?*”, a human might respond “*Which person?*” if there are several individuals, or directly answer if only one person is prominently visible.

Our goal in designing AQUA is not only to test whether VLMs can request clarification, but also to assess whether they can strategically respond using contextual reasoning when faced with ambiguity. To this end, we construct our VQA dataset with the following four levels (Figure 2):

- **Level 0. Unambiguous Questions:** Standard VQA cases with clear, unique answers, such as “*What food is on the baking tray?*” when there is only one tray with food. This category serves

162 as a control group to verify that models can still perform well on conventional VQA without
 163 over-applying ambiguity-handling strategies.

164

- 165 • **Level 1. Low-Level Referential Ambiguity:** Questions often involve pronouns like “*it*”,
 166 “*this*”, “*that*”, or “*these*” where context makes the referent obvious. For instance, in the exam-
 167 ple “*What toppings are on this?*”, the term “*this*” can be resolved from context because the hot
 168 dog is the only plausible referent for a topping-related question. Thus, the model is expected to
 169 infer that “*this*” refers to the hot dog and directly provide the corresponding answer, rather than
 170 treating the question as ambiguous.
- 171 • **Level 2. Multiple Valid Interpretations:** In these cases, offering all reasonable interpretations
 172 is preferable while asking for clarification may be unnecessary or inefficient. For example,
 173 consider the question “*What is this player doing right now?*” in an image where two baseball
 174 players are engaged in clearly distinct activities, with one running and the other fielding. At this
 175 level, there are only two or three plausible interpretations, and mentioning all of them is more
 176 efficient than asking for clarification.
- 177 • **Level 3. High-Level Ambiguity Requiring Clarification:** Questions that genuinely require
 178 clarification due to a high level of ambiguity. For example, in the question “*What shape is this
 179 furniture?*”, the image contains many visually similar objects, including multiple sofas, tables,
 180 desks, and lighting fixtures, making it unclear which one the question refers to. In such cases,
 181 enumerating all possible candidates would be inefficient, and the most appropriate strategy is to
 182 request clarification.

183 **3.2 DATASET GENERATION**

184

185 We construct our dataset using images from the COCO dataset (Lin et al., 2014) as the visual source.
 186 To identify objects and potential sources of ambiguity, we rely on the bounding box annotations
 187 provided in COCO. These annotations specify the location and category of each object in the scene,
 188 enabling a systematic identification of potential ambiguity sources. In particular, bounding boxes
 189 allow us to quantify both the number and the spatial prominence of objects, providing a principled
 190 basis for controlling ambiguity levels.

191 For Level 0, we use randomly sampled images and design unambiguous questions such that the
 192 target object is explicitly specified without vague referential terms (e.g., “*this*”, “*that*”, “*these*”). This
 193 guarantees a unique, distraction-free interpretation, corresponding to the zero-ambiguity setting. For
 194 Level 1, we select images that contain a single salient object, defined as a scene where exactly
 195 one bounding box exceeds a predefined size threshold (e.g., covering more than 20% of the image
 196 area). While other minor objects may be present, their visual prominence is negligible, ensuring that
 197 vague referential terms can be resolved unambiguously through context. For Level 2, we identify
 198 images with a small number of salient objects (two to four bounding boxes above the threshold),
 199 where multiple plausible answers exist and enumerating alternatives is the most natural strategy. For
 200 Level 3, we target complex scenes with a larger number of salient objects (five or more bounding
 201 boxes, often of similar categories or sizes), where ambiguous questions genuinely require explicit
 202 clarification.

203 To generate question–answer pairs for collected images, we employ GPT-5 with level-specific
 204 prompts aligned to the above definitions. This controlled prompting procedure ensures that the
 205 linguistic form of the questions and the corresponding answer strategies consistently reflect the in-
 206 tended ambiguity level. Please see Appendix I for all prompts used in dataset construction.

207

208 **3.3 DATASET FILTERING**

209

210 To ensure the quality of AQUA, we adopt a three-stage filtering pipeline: (i) we first verify that each
 211 instance satisfies the requirements of its designated ambiguity type; (ii) we then verify if each im-
 212 age–question pair better fits a different ambiguity level, ensuring that the assigned level is uniquely
 213 justified by the visual context; and (iii) we confirm that the image is a real-world photograph and
 214 validate both the clarity of the question and the factual correctness of the answer. All three stages
 215 are evaluated using GPT-5-mini, and only image–question–answer triplets that pass all stages are
 216 retained. Please refer to Appendix I for the dataset filtering prompts.

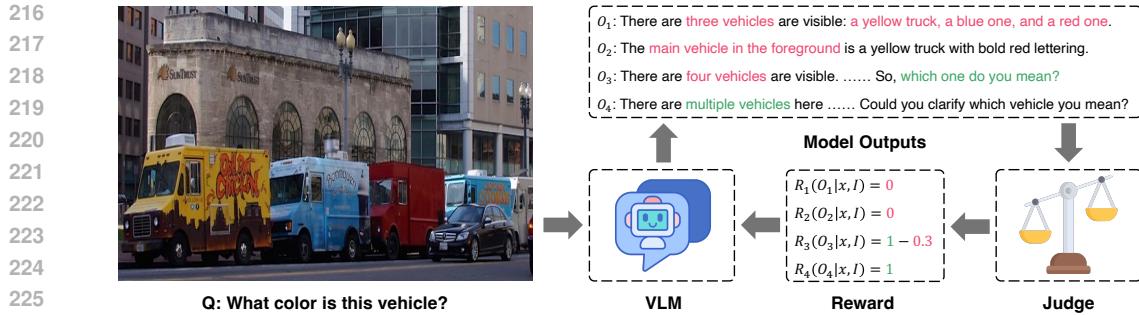


Figure 3: Reward assignment process. Since the given image contains multiple vehicles, the correct response is to request clarification. A perfectly accurate clarification receives a reward of 1. If clarification is requested but contains factual error, a 0.3 penalty is applied. All other response types are assigned a reward of 0.

Through this process, we collect 7.2K samples in total: 3.6K for training and 3.6K for evaluation. Each split is evenly balanced across the four ambiguity levels, with 0.9K instances per level. Please see Appendix A for additional examples of the AQUA.

To ensure the reliability of the evaluation split, we perform human validation on all samples in this split using Amazon Mechanical Turk (MTurk).³ For each generated sample, annotators verify whether the image–question–answer triplet conforms to its assigned ambiguity level, providing a binary PASS/FAIL judgment. Each instance is independently evaluated by two annotators, and only samples that receive a PASS label from both annotators are retained. Further details of the filtering procedure and annotation protocol are also provided in Appendix B.

4 EXPERIMENTS

We evaluate a range of open-source and closed-source models on our AQUA to assess their ability to handle ambiguity. In addition, we fine-tune two open-source models to investigate whether VLMs are capable of demonstrating strategic ambiguity-handling.

4.1 MODEL TRAINING

To investigate whether VLMs can develop strategic capabilities for handling different types and degrees of ambiguity, we fine-tune Qwen2.5-VL-3B-Instruct and InternVL3-2B-Instruct on AQUA. These models were chosen because (1) they are widely adopted and well-regarded in the research community, (2) they perform strongly on standard VQA benchmarks, and (3) their parameter sizes offer practical trade-offs between computational efficiency and performance.

Training Strategy. We train all models using a two-stage pipeline consisting of supervised fine-tuning (SFT) followed by Group Relative Policy Optimization (GRPO) (Shao et al., 2024). SFT alone does not reliably enforce the correct choice of strategy under different ambiguity levels. To address this limitation, we then apply GRPO, which provides explicit rewards for strategy-aware outputs and thereby strengthens the model’s ability to make contextually appropriate decisions.

Reward Design. GRPO is conducted under an LLM-as-a-judge framework, where GPT-5-mini serves as the judge (see Appendix I for prompt). For a generated response y given input (x, I) , where x denotes the question and I the corresponding image, the reward $R(y|x, I)$ is defined as (Figure 3):

$$R(y|x, I) = \begin{cases} 1 - \lambda & \text{if strategy is correct but factual distortion detected,} \\ 1 & \text{if strategy is correct and no distortion,} \\ 0 & \text{otherwise,} \end{cases}$$

where λ denotes the penalty applied if hallucination or factual inconsistency is detected, and is set to 0.3 in our experiments.

³<https://www.mturk.com/>

270 Table 1: Main benchmarking results of various VLMs on AQUA. Unk denotes Unknown.
271

272 Model	273 Factual Acc.			274 Strategic Acc.				
	275 Grounded	276 Ungrounded	277 Level 0	278 Level 1	279 Level 2	279 Level 3	280 Overall	280 Unk
Zero-shot								
Qwen2.5-VL-3B-Instruct	79.86	20.14	97.11	0.11	33.33	0.78	32.83	104
Qwen2.5-VL-72B-Instruct	89.33	10.67	99.56	0.56	2.11	0.89	25.78	12
InternVL3-2B-Instruct	76.63	23.37	96.0	2.33	3.56	1.89	25.95	138
InternVL3-78B-Instruct	80.5	19.5	96.0	2.11	3.0	5.67	26.7	133
GPT-5	98.4	1.6	89.67	0.67	0.33	0.78	22.86	178
Gemini 2.5 Flash	91.89	8.11	99.00	5.22	4.44	0.89	27.39	9
Chain-of-Thought (CoT)								
Qwen2.5-VL-3B-Instruct	78.22	21.78	95.89	8.33	5.67	3.78	28.42	60
Qwen2.5-VL-72B-Instruct	86.97	13.03	93.0	13.78	2.78	1.33	27.72	10
InternVL3-2B-Instruct	76.08	23.92	97.67	2.44	1.33	1.11	25.64	54
InternVL3-78B-Instruct	79.75	20.25	96.78	5.22	3.67	12.33	29.5	74
GPT-5	98.83	1.17	97.33	3.78	0.67	1.11	25.72	14
Gemini 2.5 Flash	91.64	8.36	98.0	7.89	3.56	0.22	27.42	22
Strategy Prompting								
Qwen2.5-VL-3B-Instruct	88.08	11.92	99.78	0.22	0.22	1.44	25.42	8
Qwen2.5-VL-72B-Instruct	91.5	8.5	99.78	5.89	17.11	46.11	42.22	12
InternVL3-2B-Instruct	68.42	31.58	93.33	1.22	4.0	10.11	27.17	152
InternVL3-78B-Instruct	86.44	13.56	96.89	5.56	5.89	14.11	30.61	64
GPT-5	99.17	0.83	94.56	59.0	10.67	4.78	42.25	19
Gemini 2.5 Flash	94.08	5.92	99.11	8.0	10.68	30.11	36.98	35
AQUA Tuned Models								
Qwen2.5-VL-3B-Tuned	81.06	18.94	99.56	77.0	82.22	86.33	86.28	1
InternVL3-2B-Tuned	80.44	19.56	98.78	80.0	59.67	78.0	79.11	12

295 **Data Splits.** For SFT, we use the training split of AQUA, dividing it into 80% for training and 20%
296 for validation, ensuring balanced coverage of all four ambiguity levels. For GRPO, we randomly
297 sample 15 instances per level for training and 5 per level for validation from the same split, again
298 maintaining balanced label distribution. Additional optimization details and hyperparameters are
299 provided in Appendix C.
300

301 4.2 EVALUATION METRICS

303 Our evaluation is performed under an LLM-as-a-judge framework, where GPT-5-mini serves as the
304 judge. To verify the reliability of this automatic evaluation, we sample 400 cases from the test
305 split and compare GPT-5-mini’s judgments against an in-house human evaluation, confirming that
306 the automated judgments are highly aligned with human assessment (98.5% agreement). Detailed
307 explanations are provided in Appendix D.
308

309 We report two complementary metrics. First, ***factual consistency*** indicates that the model’s response
310 is faithful to the content of the given image, even if not all details are included, and is judged
311 in a binary manner (Grounded or Ungrounded). Second, ***strategic accuracy*** measures whether the
312 response strategy matches the ground-truth ambiguity level. If a response cannot be reliably mapped
313 to any of the four defined levels, it is assigned an *Unknown* label. This metric is computed over all
314 responses independent of their factual consistency, since our goal is to evaluate the model’s ability
315 to choose the correct strategy rather than to remain factually accurate.
316

317 5 RESULTS

319 Table 1 shows the performance of a range of VLMs on AQUA. Across all models, factual consistency
320 remains quite high, indicating that hallucinations are rare. The primary challenge, however,
321 lies in strategic reasoning, where performance is poor across all levels except Level 0. This sug-
322 gests that differences in performance primarily reflect the models’ inability to select appropriate
323 ambiguity-handling strategies. Please refer to Appendix E for full benchmarking results, including
models of other sizes.
324

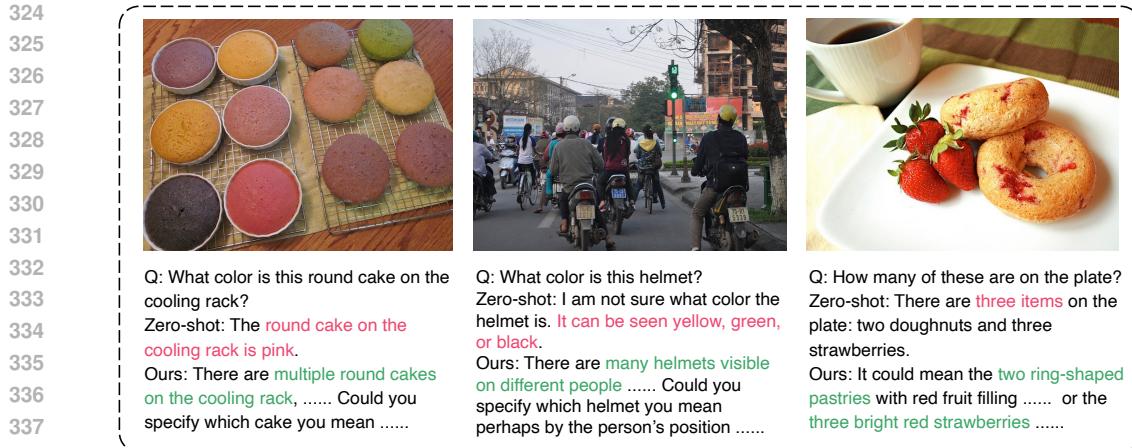


Figure 4: Response comparison of Qwen2.5-VL-3B-Instruct in zero-shot and tuned settings.

Base VLMs. Both open-source models (Qwen2.5-VL-Instruct and InternVL3-Instruct series) and strong closed-source models (GPT-5 and Gemini 2.5 Flash) exhibit similar performance patterns. While these models perform well on unambiguous cases (Level 0), they consistently struggle with ambiguous scenarios (Levels 1–3), showing poor performance when multiple plausible interpretations or clarification requests are required. Notably, even the strongest closed-source models struggle with higher levels of ambiguity, indicating that model scale alone does not resolve the strategic reasoning challenges posed by our dataset. The same holds for large open-source variants (e.g., Qwen2.5-VL-72B-Instruct and InternVL3-78B-Instruct), which also fail to consistently outperform their smaller counterparts despite their increased size.

CoT and Strategy-Prompting. We next examine whether standard prompting techniques improve ambiguity handling. We consider two prompting variants: (i) *Chain-of-Thought (CoT)* (Wei *et al.*, 2022), where we append “*Let’s think step by step.*” to encourage stepwise reasoning, and (ii) *Strategy Prompting*, which explicitly instructs the model to choose among four response strategies depending on the level of ambiguity (see Appendix I for prompt). As shown in Table 1, CoT provides no meaningful benefit and often reduces performance, since models tend to generate verbose single-answer responses instead of adapting their strategy. Strategy prompting has no effect on smaller open-source models, but yields slight improvements for larger or stronger closed-source models. These findings suggest that models cannot handle ambiguity reliably through prompting alone and instead need explicit training on datasets like AQUA to acquire strategy-aware response abilities.

Trained Models. In contrast, Qwen2.5-VL-3B-Tuned and InternVL3-2B-Tuned models reach approximately 80% overall strategic accuracy, substantially higher than all baselines and prompting-based variants. Importantly, these models maintain robust strategic reasoning across all ambiguity levels. Unlike base VLMs, which default to overconfident single answers, the tuned models reliably adapt their strategies. This consistent behavior shows that explicit training on AQUA enables models to handle visual ambiguity in a human-like and strategy-aware manner. Please refer to Figure 4 for examples of our model’s strategic response.

6 ANALYSIS

6.1 SFT AND RL TRAINING

To better understand the effect of each training stage, we conduct an ablation comparing models trained with SFT alone against those further optimized with GRPO. As shown in Table 2, models trained with SFT alone already achieve over 73% strategic accuracy overall, confirming that simple supervised training on ambiguity-aware responses is sufficient to yield strong gains. Nonetheless, performance on highly ambiguous cases (Levels 2 and 3) remains lower. Applying GRPO further boosts performance, this stage not only raises accuracy on Levels 2 and 3, but also stabilizes performance more broadly, leading to balanced and robust strategic reasoning. However, we observe a slight drop in Level 1 performance after applying GRPO following SFT (Figure 5b and 5c). We

378
379
Table 2: Performance comparison of models tuned on AQuA with SFT and SFT+GRPO. G, U, and
380
Unk respectively denote Grounded, Ungrounded, and Unknown.
381

Model	Factual Acc.					Strategic Acc.					
	G	U	Level 0	Level 1	Level 2	Level 3	Overall	Unk			
Qwen2.5-VL-3B-Tuned (SFT)	82.78	17.22	99.56	92.22	61.33	82.11	83.81	2			
Qwen2.5-VL-3B-Tuned (SFT+GRPO)	81.06	18.94	99.56	77.0	82.22	86.33	86.28	1			
InternVL3-2B-Tuned (SFT)	66.08	33.92	99.22	82.67	37.67	74.11	73.42	2			
InternVL3-2B-Tuned (SFT+GRPO)	80.44	19.56	98.78	80.0	59.67	78.0	79.11	12			

Ground Truth Type	L0	97.11	0.11	2.67	0.00	0.11	L0	99.56	0.22	0.00	0.00	0.22	L0	99.56	0.11	0.33	0.00	0.00
	L1	66.22	0.11	31.00	0.11	2.56	L1	2.11	92.22	5.00	0.67	0.00	L1	0.44	77.00	21.11	1.44	0.00
L2	61.11	0.22	33.33	0.89	4.44	L2	9.67	16.78	61.33	12.22	0.00	L2	0.33	2.67	82.22	14.67	0.11	
L3	66.78	0.22	27.78	0.78	4.44	L3	0.56	9.56	7.78	82.11	0.00	L3	0.11	4.33	9.22	86.33	0.00	
	L0	L1	L2	L3	Unk		L0	L1	L2	L3	Unk		L0	L1	L2	L3	Unk	
	Predicted Level						Predicted Level						Predicted Level					
(a) Zero-shot										(b) SFT			(c) SFT+GRPO					

395
396
Figure 5: Confusion matrices of the response patterns of Qwen2.5-VL-3B-Instruct on the AQUA.
397

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
find that models trained only with SFT tend to concentrate most of their errors in Level 1, indicating either a form of overfitting to that level or an insufficient understanding of Levels 2 and 3. As GRPO encourages more strategic decision-making across all ambiguity levels, this bias is mitigated, and the resulting redistribution of errors naturally leads to a minor decrease in Level 1 accuracy. Please see Appendix F for confusion matrices of InternVL3-2B based models.

6.2 ERROR PATTERNS

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Biased Default Strategy of VLMs. Figure 5 presents the confusion matrices of Qwen2.5-VL-3B-Instruct and Qwen2.5-VL-3B-Tuned (SFT+GRPO) evaluated on AQUA. In the base model (Figure 5a), we observe a strong bias toward Level 0 predictions, where the model outputs a single confident answer even when ambiguity requires context inference (Level 1), multiple listings (Level 2), or explicit clarification (Level 3). This indicates that the model defaults to a *one-correct-answer* strategy regardless of the degree of ambiguity. Similar patterns are observed in other baseline models. However, Qwen2.5-VL-3B-Instruct shows an unusually high proportion of Level 1 predictions.⁴

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299<br

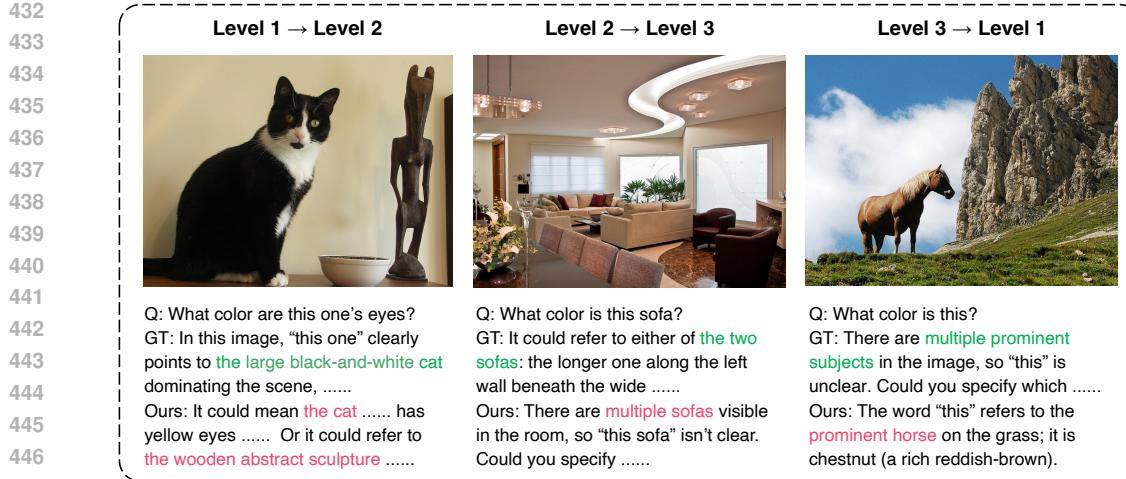


Figure 6: Our model responses to level-boundary confusion and salience-driven errors.

Level 3 to Level 1. Such cases often arise from salient or stereotypical features that lead the model to overcommit to a single referent instead of requesting clarification or listing alternatives.

6.3 EFFECTIVENESS OF CLARIFICATION

In cases of high ambiguity, the model tends to ask for clarification. To assess the effectiveness of this strategy, we design an experiment in a two-turn question–answer setting. Specifically, we filter 100 Level 3 instances and use GPT-5 to generate a follow-up turn consisting of a single disambiguating hint and the corresponding unambiguous answer (see Appendix G for examples).

For each response, GPT-5-mini serves as the judge, assigning a binary PASS or FAIL depending on whether the model’s final answer matches the ground-truth unambiguous answer (see Appendix I for prompt). As summarized in Table 3, both models achieve consistently high PASS rates, once a clarifying hint is provided, demonstrating that Level 3 ambiguity can be effectively resolved with a single clarification turn.

These findings highlight the value of clarification: with a short follow-up, the model can resolve uncertainty and provide accurate, well-grounded answers rather than enumerating all possible answers in the first place.

7 CONCLUSION

In this work, we introduce AQUA, a new dataset designed not only to evaluate but also to train VLMs in handling ambiguity in VQA. AQUA defines four fine-grained levels, each aligned with a distinct response strategy. Through this design, we show that current VLMs often fail to recognize and adapt to different types of ambiguity, defaulting to overconfident answers rather than reasoning strategically. By fine-tuning open-source models with supervised learning and GRPO on AQUA, we demonstrate that even relatively small VLMs can learn to choose strategies contextually—whether by direct answering, inference from context, controlled enumeration, or explicit clarification. These tuned models outperform both larger open-source and strong closed-source systems on ambiguous VQA, highlighting the effectiveness of strategy-aware training. In addition, we conduct an extensive analysis to understand why VLMs fail to generate strategy-aware responses under ambiguity. Untuned models often do not even recognize when a question–image pair is ambiguous, leading them to produce overconfident answers. In contrast, failures in our tuned models mostly arise in boundary cases, where ambiguity levels are difficult to distinguish, or from salience-driven errors, where prominent visual features bias the response. These findings provide a deeper explanation of the limitations of current VLMs and point toward the need for models that can reason more flexibly about uncertainty.

Table 3: Evaluation results on the clarification subset.

Model	PASS	FAIL
Qwen2.5-VL-3B-Tuned	83%	17%
InternVL3-2B-Tuned	89%	11%

486 REPRODUCIBILITY STATEMENT
487

488 We provide samples of the AQUA and the training code in the supplementary materials. After the
489 review process is complete, we will publicly release the full dataset, model checkpoints, and all
490 source code to ensure reproducibility. In addition, implementation details for training are described
491 in Section 4.1 and Appendix C, and all prompts used in this study are provided in Appendix I and
492 can be used to fully reproduce our experiments.

494 REFERENCES
495

496 Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
497 nick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE international*
498 *conference on computer vision*, pp. 2425–2433, 2015.

499 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
500 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
501 2025.

502 Ali Furkan Biten, Ruben Tito, Andres Mafra, Lluis Gomez, Marçal Rusinol, Ernest Valveny,
503 CV Jawahar, and Dimosthenis Karatzas. Scene text visual question answering. In *Proceedings of*
504 *the IEEE/CVF international conference on computer vision*, pp. 4291–4301, 2019.

505 Chongyan Chen, Yu-Yun Tseng, Zhuoheng Li, Anush Venkatesh, and Danna Gurari. Acknowl-
506 edging focus ambiguity in visual questions, 2025. URL <https://arxiv.org/abs/2501.02201>.

507 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
508 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
509 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer*
510 *vision and pattern recognition*, pp. 24185–24198, 2024.

511 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
512 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
513 with instruction tuning. *Advances in neural information processing systems*, 36:49250–49267,
514 2023.

515 Yue Fan, Xuehai He, Diji Yang, Kaizhi Zheng, Ching-Chen Kuo, Yuting Zheng, Sravana Jyothi
516 Narayananaraju, Xinze Guan, and Xin Eric Wang. Grit: Teaching mllms to think with images.
517 *arXiv preprint arXiv:2505.15879*, 2025.

518 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
519 matter: Elevating the role of image understanding in visual question answering. In *Proceedings*
520 *of the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.

521 Yangyang Guo, Fangkai Jiao, Zhiqi Shen, Liqiang Nie, and Mohan Kankanhalli. Unk-vqa: A dataset
522 and a probe into the abstention ability of multi-modal large models. *IEEE Transactions on Pattern*
523 *Analysis and Machine Intelligence*, 2024.

524 Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
525 Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
526 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3608–3617,
527 2018.

528 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
529 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer*
530 *vision and pattern recognition*, pp. 6700–6709, 2019.

531 Pu Jian, Donglei Yu, Wen Yang, Shuo Ren, and Jiajun Zhang. Teaching vision-language mod-
532 els to ask: Resolving ambiguity in visual questions. In Wanxiang Che, Joyce Nabende, Eka-
533 terina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meet-
534 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3619–3638,
535 2024.

540 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
 541 251-0. doi: 10.18653/v1/2025.acl-long.182. URL <https://aclanthology.org/2025.acl-long.182/>.

542

543 Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
 544 Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
 545 reasoning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 546 pp. 2901–2910, 2017.

547

548 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
 549 supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
 550 (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
 551 (Volume 1: Long Papers)*, pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
 552 putational Linguistics. doi: 10.18653/v1/P17-1147. URL <https://aclanthology.org/P17-1147/>.

553

554 Gangwoo Kim, Sungdong Kim, Byeongguk Jeon, Joonsuk Park, and Jaewoo Kang. Tree of clar-
 555 ifications: Answering ambiguous questions with retrieval-augmented large language models.
 556 In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference
 557 on Empirical Methods in Natural Language Processing*, pp. 996–1009, Singapore, December
 558 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.63. URL
 559 <https://aclanthology.org/2023.emnlp-main.63/>.

560

561 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 562 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 563 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 564 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the
 565 Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 566 <https://aclanthology.org/Q19-1026/>.

567

568 Dongryeol Lee, Segwang Kim, Minwoo Lee, Hwanhee Lee, Joonsuk Park, Sang-Woo Lee, and
 569 Kyomin Jung. Asking clarification questions to handle ambiguity in open-domain QA. In
 570 Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Compu-
 571 tational Linguistics: EMNLP 2023*, pp. 11526–11544, Singapore, December 2023. Associa-
 572 tion for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.772. URL <https://aclanthology.org/2023.findings-emnlp.772/>.

573

574 Jiaqi Li, Yixuan Tang, and Yi Yang. Know the unknown: An uncertainty-sensitive method for LLM
 575 instruction tuning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
 576 Pilehvar (eds.), *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 2972–
 577 2989, Vienna, Austria, July 2025a. Association for Computational Linguistics. ISBN 979-8-
 578 89176-256-5. doi: 10.18653/v1/2025.findings-acl.153. URL <https://aclanthology.org/2025.findings-acl.153/>.

579

580 Zongxi Li, Yang Li, Haoran Xie, and S Joe Qin. Condambigqa: A benchmark and dataset for
 581 conditional ambiguous question answering. *arXiv preprint arXiv:2502.01523*, 2025b.

582

583 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 584 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 585 conference on computer vision*, pp. 740–755. Springer, 2014.

586

587 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances
 588 in neural information processing systems*, 36:34892–34916, 2023.

589

590 Jingyu Liu, JingquanPeng JingquanPeng, Xiaopeng Wu, Xubin Li, Tiezheng Ge, Bo Zheng, and
 591 Yong Liu. Do not abstain! identify and solve the uncertainty. In Wanxiang Che, Joyce Nabende,
 592 Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meet-
 593 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 17177–17197,
 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
 251-0. doi: 10.18653/v1/2025.acl-long.840. URL <https://aclanthology.org/2025.acl-long.840/>.

594 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 595 images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 596 pp. 2200–2209, 2021.

597

598 Sewon Min, Julian Michael, Hannaneh Hajishirzi, and Luke Zettlemoyer. AmbigQA: Answering
 599 ambiguous open-domain questions. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu
 600 (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing* (EMNLP), pp. 5783–5797, Online, November 2020. Association for Computational Linguistics.
 601 doi: 10.18653/v1/2020.emnlp-main.466. URL [https://aclanthology.org/2020.emnlp-main.466/](https://aclanthology.org/2020.emnlp-main.466).

602

603

604 Heejeong Nam, Jinwoo Ahn, Keummin Ka, Jiwan Chung, and Youngjae Yu. Vague: Visual contexts
 605 clarify ambiguous expressions. *arXiv preprint arXiv:2411.14137*, 2024.

606

607 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
 608 for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), *Pro-
 609 ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pp.
 610 2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
 10.18653/v1/D16-1264. URL <https://aclanthology.org/D16-1264/>.

611

612 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 613 Mingchuan Zhang, YK Li, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
 614 open language models. *arXiv preprint arXiv:2402.03300*, 2024.

615

616 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 617 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF
 618 conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.

619

620 Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-Wei Chang. ASQA: Factoid questions meet
 621 long-form answers. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of
 622 the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 8273–8288,
 623 Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
 624 doi: 10.18653/v1/2022.emnlp-main.566. URL <https://aclanthology.org/2022.emnlp-main.566/>.

625

626 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 627 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 628 neural information processing systems*, 35:24824–24837, 2022.

629

630 Spencer Whitehead, Suzanne Petryk, Vedaad Shakib, Joseph Gonzalez, Trevor Darrell, Anna
 631 Rohrbach, and Marcus Rohrbach. Reliable visual question answering: Abstain rather than an-
 632 swer incorrectly. In *European Conference on Computer Vision*, pp. 148–166. Springer, 2022.

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A EXAMPLES OF AQUA 649

650 Please refer to Figure 7 for Level 0, Figure 8 for Level 1, Figure 9 for Level 2, and Figure 10 for
651 Level 3 of the AQUA dataset.
652

653 Q: What animal is shown behind the chain-link fence?
654

655 A: The animal behind the chain-link fence is a dog.
656

657 Q: What water sport is the person wearing a black wetsuit performing?
658

659 A: The person is surfing.
660

661 Q: what is the kite shaped like?
662

663 A: The kite is shaped like an airplane.
664

665 Figure 7: Level 0 examples of AQUA.
666

667 Q: What style are these cut in?
668

669 A: The word “these” refers to the big pile of French fries in the
670 foreground, and they are crinkle-cut.
671

672 Q: How many pillows are on it?
673

674 A: In this image, “it” refers to the large bed dominating the scene, and
675 there are two pillows on it.
676

677 Q: What is this made of?
678

679 A: The word “this” points to the large round container that dominates
680 the scene-the bowl holding the fruit-and it is made of wood.
681

682 Figure 8: Level 1 examples of AQUA.
683

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710

Q: What is on **this plate**?
A: It could refer to the **upper plate**, which holds one slice of pizza topped with leafy spinach and white cheese. Or it could refer to the **lower plate**, which holds two slices of pepperoni pizza with red pepperoni discs.

711
712
713
714
715

Q: What color are **these apples**?
A: If you mean the **two apples** on the raised granite countertop near the center, **one is red**, and **the other is greenish-yellow**.

716
717
718
719
720
721
722

Q: Where is **this person with a bat standing**?
A: One interpretation is **the batter at home plate on the left**, wearing a red helmet and standing in the batter's box beside the catcher and umpire. Another interpretation is **the on-deck batter in the right foreground**, holding a bat while standing on the dirt near the foul line at the edge of the grass.

723
724
725
726
727
728
729
730
731
732

Q: What color is **this food truck**?
A: There are **multiple food trucks** visible, so "this" could refer to more than one. Could you specify which truck you mean (for example, by its position or a detail on it)? That clarification is needed to identify the correct target.

733
734
735
736
737
738
739
740
741
742
743
744
745

Q: What color is **this skier's jacket**?
A: There are **many skiers** visible, so I'm not sure which one you mean. Could you specify which skier you're referring to (for example, their position in the image)? I need clarification because multiple jackets are equally prominent and "this skier" isn't uniquely identifiable.

746
747
748
749
750
751
752
753
754
755

Q: How many fruits are in **this box**?
A: There are **several boxes** visible, so I'm not sure which one you mean. Could you specify the box by its position or a nearby detail? I need clarification because multiple boxes are equally prominent and 'this box' could refer to any of them.

Figure 9: Level 2 examples of AQuA.

810
811 **B DATASET FILTERING METHOD**812 To ensure the quality of AQUA, we designed a three-stage filtering pipeline:
813

- 814 • **Stage 1 - Level Consistency Check:** This stage verifies that each generated question–answer
815 pair satisfies the requirements of its assigned ambiguity level. For example, Level 0 samples
816 must contain no ambiguous terms and allow only one definitive answer, while Level 1 samples
817 must contain at least one ambiguous term but resolve it confidently in the answer. This acts as a
818 strict rule-based gate to filter out obvious mislabeling (e.g., a Level 0 example using “this”, or a
819 Level 2 answer that selects only one option).
- 820 • **Stage 2 - Best Fit Validation:** Even if a sample meets the basic criteria of its assigned level,
821 it may be more appropriately categorized under a different level. This stage checks whether
822 the assigned level is the unique best fit among the four categories. LLM-as-a-judge compares
823 the question–answer pair against canonical definitions and applies explicit priority rules. For
824 example, if a question uses an ambiguous term but only one dominant object is present, Level
825 1 is always preferred. This ensures that each retained sample is not only valid but also aligned
826 with the most specific ambiguity level.
- 827 • **Stage 3 - Real-World and Quality Validation:** The final stage ensures that each sample is suit-
828 able for inclusion in a real-world VQA dataset. This includes (i) confirming that the underlying
829 image is a natural photograph with sufficient clarity, (ii) verifying that the question refers only to
830 observable properties (e.g., color, shape, size, count) without requiring hidden knowledge, and
831 (iii) checking that the answer is grounded in the image and consistent with the behavioral ex-
832 pectations of its level. This stage also eliminates degenerate cases such as synthetic or corrupted
833 images, or hallucinated content in answers.

834 After applying the three-stage filtering process to all data samples, we further enhance the reliability
835 of AQUA by conducting an additional human validation stage for the evaluation split. This step is
836 carried out on the Amazon Mechanical Turk (MTurk) platform, where we restrict participation to
837 workers with more than 5K previously approved HITs and an approval rate above 95%. Annotators
838 are presented with the image, question, and answer, and asked to judge, considering the assigned
839 ambiguity level, whether the sample is acceptable, providing a binary PASS/FAIL decision. Each
840 sample is independently evaluated by two annotators, and only those that receive a PASS label
841 from both are retained in the dataset. As an additional safeguard, we inject 10% fake samples into
842 the annotation pool. If a worker incorrectly assigns a PASS label to any fake sample, all of their
843 submitted annotations are discarded. Please see Figure 11 for the instructions and interface used in
844 the human validation stage.

845 **C IMPLEMENTATION DETAILS**
846

847 Our training procedure consists of two stages: (1) supervised fine-tuning (SFT) and (2) Group Rel-
848 ative Policy Optimization (GRPO). All trainings are conducted on 8 NVIDIA RTX A6000 GPUs.
849

850 For SFT, we fully fine-tune Qwen2.5-VL-3B-Instruct using the HuggingFace Trainer with the
851 AdamW optimizer, a learning rate of 5×10^{-5} , a constant_with_warmup scheduler with a warmup
852 ratio of 0.03, and gradient checkpointing enabled. Training is performed for 3 epochs with an auto-
853 fined per-device batch size and a gradient accumulation step of 4, and gradients are clipped at 1.0.
854 For InternVL3-2B-Instruct, we also fully fine-tune the model using the official InternVL training
855 script with the AdamW optimizer, a learning rate of 2×10^{-5} , a weight decay of 0.05, a cosine
856 learning rate scheduler with a warmup ratio of 0.03, and gradient checkpointing. Training is con-
857 ducted for 3 epoch with a per-device batch size of 4 and a gradient accumulation step of 4. We
858 apply early stopping with a patience of 1 for both models and select the best-performing checkpoint
859 accordingly.

860 For GRPO, we adapt the training scripts released by Fan et al. (2025). The reward function is
861 implemented with GPT-5-mini. We train for 30 epochs with a learning rate of 5×10^{-6} , batch size
862 of 2, gradient accumulation steps of 2, and $\beta = 0.01$, using a cosine learning rate scheduler. For
863 each sample, we generate four responses, compute rewards for each, and update the model using
group-based advantages combined with KL divergence against a reference model. We select the
final checkpoint based on the highest validation reward.

864 Table 4: Full benchmarking results of various VLMs on AQUA. G, U, and Unk respectively denote
 865 Grounded, Ungrounded, and Unknown.

867 868 869 870 Model	871 872 873 874 875 876 Factual Acc.		877 878 879 880 881 882 883 Strategic Acc.						
	871 872 873 874 875 876 G	871 872 873 874 875 876 U	871 872 873 874 875 876 Level 0	871 872 873 874 875 876 Level 1	871 872 873 874 875 876 Level 2	871 872 873 874 875 876 Level 3	871 872 873 874 875 876 Overall	871 872 873 874 875 876 Unk	
Zero-shot									
Qwen2.5-VL-3B-Instruct	79.86	20.14	97.11	0.11	33.33	0.78	32.83	104	
Qwen2.5-VL-7B-Instruct	87.97	12.03	98.78	0.78	3.67	3.33	26.64	25	
Qwen2.5-VL-72B-Instruct	89.33	10.67	99.56	0.56	2.11	0.89	25.78	12	
InternVL3-2B-Instruct	76.63	23.37	96.0	2.33	3.56	1.89	25.95	138	
InternVL3-8B-Instruct	81.52	18.48	97.67	1.67	2.11	2.67	26.03	94	
InternVL3-78B-Instruct	80.5	19.5	96.0	2.11	3.0	5.67	26.7	133	
GPT-5	98.4	1.6	89.67	0.67	0.33	0.78	22.86	178	
Gemini 2.5 Flash	91.89	8.11	99.00	5.22	4.44	0.89	27.39	9	
Chain-of-Thought (CoT)									
Qwen2.5-VL-3B-Instruct	78.22	21.78	95.89	8.33	5.67	3.78	28.42	60	
Qwen2.5-VL-7B-Instruct	83.69	16.31	88.0	11.46	5.01	2.89	26.85	31	
Qwen2.5-VL-72B-Instruct	86.97	13.03	93.0	13.78	2.78	1.33	27.72	10	
InternVL3-2B-Instruct	76.08	23.92	97.67	2.44	1.33	1.11	25.64	54	
InternVL3-8B-Instruct	76.17	23.83	95.22	7.67	3.0	9.11	28.74	127	
InternVL3-78B-Instruct	79.75	20.25	96.78	5.22	3.67	12.33	29.5	74	
GPT-5	98.83	1.17	97.33	3.78	0.67	1.11	25.72	14	
Gemini 2.5 Flash	91.64	8.36	98.0	7.89	3.56	0.22	27.42	22	
Strategy Prompting									
Qwen2.5-VL-3B-Instruct	88.08	11.92	99.78	0.22	0.22	1.44	25.42	8	
Qwen2.5-VL-7B-Instruct	90.64	9.36	99.67	0.78	1.33	10.33	28.03	16	
Qwen2.5-VL-72B-Instruct	91.5	8.5	99.78	5.89	17.11	46.11	42.22	12	
InternVL3-2B-Instruct	68.42	31.58	93.33	1.22	4.0	10.11	27.17	152	
InternVL3-8B-Instruct	78.03	21.97	90.67	11.11	9.67	17.11	32.14	57	
InternVL3-78B-Instruct	86.44	13.56	96.89	5.56	5.89	14.11	30.61	64	
GPT-5	99.17	0.83	94.56	59.0	10.67	4.78	42.25	19	
Gemini 2.5 Flash	94.08	5.92	99.11	8.0	10.68	30.11	36.98	35	
AQUA Tuned Models									
Qwen2.5-VL-3B-Tuned (SFT)	82.78	17.22	99.56	92.22	61.33	82.11	83.81	2	
Qwen2.5-VL-3B-Tuned (SFT+GRPO)	81.06	18.94	99.56	77.0	82.22	86.33	86.28	1	
InternVL3-2B-Tuned (SFT)	66.08	33.92	99.22	82.67	37.67	74.11	73.42	2	
InternVL3-2B-Tuned (SFT+GRPO)	80.44	19.56	98.78	80.0	59.67	78.0	79.11	12	

D VERIFICATION FOR LLM-AS-A-JUDGE

902 To verify the reliability of our LLM-as-a-judge framework, we conduct an in-house evaluation on a
 903 sample of responses from Qwen2.5-VL-3B-Instruct and Qwen2.5-VL-3B-Tuned. Specifically, we
 904 randomly sample 400 responses: 100 classified as Grounded and 100 classified as Ungrounded for
 905 factual consistency, and 50 from each ambiguity level for strategic accuracy. Human annotators then
 906 independently assess whether GPT-5-mini’s judgments are correct.

907 The results show a high degree of agreement between GPT-5-mini and human evaluation. Out of
 908 the 400 sampled cases, only 5 are misclassified in factual consistency and 1 in strategic accuracy,
 909 resulting in an overall agreement of 98.5%. This strong alignment demonstrates that GPT-5-mini
 910 serves as a reliable judge for our evaluation protocol and confirms that our automatic evaluation is
 911 trustworthy for large-scale benchmarking.

E FULL BENCHMARKING RESULTS

912
 913
 914
 915 Please see Table 4 for full benchmark results for a range of VLMs.
 916
 917

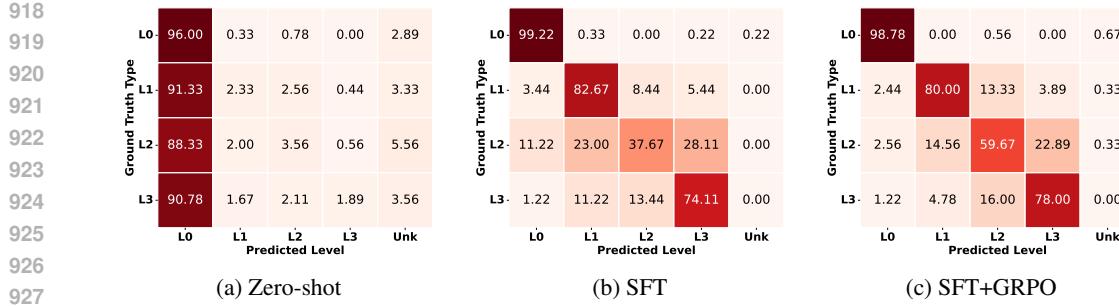


Figure 12: Confusion matrices of the response patterns of InternVL3-2B-Instruct on the AQUA.

Q_{ambig}: How many people are standing to the left of this person?

A_{clarify}: I'm not sure which person you're referring to—**there are several people visible**. Could you specify which one you mean so I can count accurately? Clarification is necessary because the number changes depending on the chosen person.

Q_{resolved}: Count the number of people standing to the left of **the person holding the red umbrella in the center**.

A_{gold}: There are **three people standing** to the left of the person with the red umbrella.

Q_{ambig}: What color is this player's jersey?

A_{clarify}: There are **several players visible**, so I can't tell which person you mean. Which player are you referring to? I need clarification because “this player” could be any of them and the image doesn't indicate a specific target.

Q_{resolved}: The reference is to the jersey color of the **player lying on the ground in the foreground** being attended by two men in black.

A_{gold}: **The player's jersey is red**.

Figure 13: Examples from Level 3 of the AQUA dataset, where follow-up questions are used to resolve ambiguity and arrive at the gold answer.

F ANALYSIS OF ERROR PATTERNS

The confusion matrices of InternVL3-2B-Instruct and InternVL3-2B-Tuned (SFT+GRPO) on AQUA are shown in Figure 12.

G EXAMPLES OF CLARIFICATION SUBSET FOR LEVEL 3

Please refer to Figure 13 for Level 3 subset examples, where follow-up questions help resolve ambiguity and guide the model to the intended gold answer.

H THE USE OF LARGE LANGUAGE MODELS

We use large language models (LLMs) throughout this work to support tasks such as data generation, filtering, and reward modeling. During these processes, the authors remain actively involved, carefully reviewing the process and outputs to ensure that results are not solely produced by LLMs but refined through human review and curation. We also use LLMs during the paper writing stage for grammar checking and minor language refinement. However, the overall writing of the paper are conducted directly by the authors without relying on LLMs.

972 I PROMPTS LIST
973974 **Prompt for Level 0 Sample Generation**

975 ### Instruction:

976 Given an image, create exactly one question–answer pair that is clear, factual, and unambiguous, such that only one correct answer exists.

977 ### Requirements:

978 Must:

979

- 980 - Ensure the question has a single, definitive interpretation.
- 981 - Base the question entirely on factual, observable elements in the image.
- 982 - Phrase both the question and the answer in complete, clear sentences.
- 983 - Ensure the answer is definitively determinable from the image without external knowledge.

984 Avoid:

985

- 986 - Any ambiguous terms like “this”, “that”, “it”, or “there”.
- 987 - Subjective or interpretive elements (e.g., opinions, feelings, aesthetic judgments).
- 988 - Questions that allow multiple plausible answers.

989 ### Output Format:

990 {Question: [Your generated question], Answer: [The definitive answer]}

991 If the image does not allow for such a question–answer pair, output exactly: none

992 Do not include explanations or additional text.

993 ### Response:

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1001 **Prompt for Level 1 Sample Generation**

1002 ### Instruction:

1003 Given an image, create exactly one question–answer pair where:

1004

- 1005 - The question uses an ambiguous term, but the image context makes the intended subject completely clear.
- 1006 - The answer must explicitly resolve the ambiguity first and then give the factual answer.

1007 ### Must:

1008

- 1009 - Use at least one ambiguous term (e.g., “this”, “that”, “it”, “the thing”, etc.).
- 1010 - Ensure there is exactly one clearly dominant object in the image that stands out from all others in size, position, or salience.
- 1011 - In the answer, naturally explain what the ambiguous term refers to in this specific image, then provide the definitive descriptive answer.

1012 - Write the answer in full sentences.

1013 ### Avoid:

1014

- 1015 - Questions that would remain clear without ambiguous terms.
- 1016 - Scenes with multiple objects of equal prominence.
- 1017 - Answers that only give the fact without clarifying the referent.
- 1018 - Overly short or one-word answers.

1026 - Beginning with fixed templates such as “Here, ‘this’ refers to …”. Each answer must be
 1027 phrased naturally and vary across samples.
 1028
 1029 **### Output Format:**
 1030 {Question: [Your ambiguous question], Answer: [Your natural clarification plus the definitive
 1031 descriptive answer]}
 1032 If the image does not meet requirements, output exactly: none
 1033
 1034 Do not include explanations or any extra text.
 1035
 1036 **### Response:**

Prompt for Level 2 Sample Generation

1037
 1038 **### Instruction:**
 1039 Given an image, create exactly one question–answer pair where:
 1040
 1041 - The question is ambiguous and could reasonably refer to multiple distinct objects in the scene.
 1042
 1043 - The answer lists all plausible interpretations rather than choosing only one.
 1044
 1045 **### Must:**
 1046 - Ensure the image contains at least two and at most three reasonable target objects.
 1047
 1048 - Use ambiguous terms (e.g., “this”, “that”, “they”, “these”, etc.) in the question.
 1049
 1050 - Clearly describe each possible target in the answer so that the user can decide.
 1051
 1052 - Make each description factual and directly observable from the image.

1053
 1054 **### Avoid:**
 1055 - Questions that clearly refer to only one object.
 1056 - Scenes where one object completely dominates.
 1057 - Scenes with more than three equally plausible candidates.
 1058 - Random guessing or adding details not visible in the image.

1059
 1060 **### Output Format:**

1061 {Question: [Your ambiguous question], Answer: [Natural, descriptive sentences listing each
 1062 plausible interpretation]}

1063 If the image does not meet requirements, output exactly: none

1064 Do not include explanations or any extra text.

1065
 1066 **### Response:**

Prompt for Level 3 Sample Generation

1067
 1068 **### Instruction:**
 1069 Given an image, create exactly one question–answer pair where:
 1070
 1071 - The question contains ambiguous references, and the image provides no clear clues to identify
 1072 the intended target.
 1073
 1074 - The answer requests clarification without attempting to guess or list possible options.
 1075

1076
 1077 **### Must:**
 1078 - Include at least one ambiguous term (e.g., “this”, “that”, “it”, “the thing”, etc.).
 1079 - Ensure there are multiple equally prominent objects in the image.

1080 - Make the question about clearly visible, observable properties (e.g., color, shape, size, position, visible text, count, material, etc.).
 1081
 1082 - In the answer, acknowledge that there are multiple possible targets and politely ask which one is intended.
 1083
 1084 - Briefly explain why clarification is necessary.
 1085
 1086 **### Avoid:**
 1087 - Listing all possible targets.
 1088 - Making any guesses or inferences.
 1089 - Using scenes where one object is clearly dominant.
 1090 - Asking about non-observable or speculative properties (e.g., device state, hidden contents, functionality, temperature, brand unless clearly visible).
 1091
 1092 **### Output Format:**
 1093 {Question: [Your ambiguous question], Answer: [Your clarification request]}
 1094 If the image does not meet requirements, output exactly: none
 1095
 1096 Do not include explanations or any extra text.
 1097
 1098 **### Response:**

Prompt for Filtering Stage 1

1102 **### Role** You are the Level 2HECKER. Decide ONLY whether the given (Level, Question, Answer) correctly demonstrates the REQUIRED behavior for the assigned Level.
 1103
 1104 If any requirement is not satisfied, output FAIL. Do NOT suggest other Levels or reassign.
 1105
 1106 **### Level Requirements (must ALL hold)**
 1107
 1108 Level 0 (Clear VQA): - Question: clear, specific, and unambiguous; no demonstratives like “this/that/it”.
 1109
 1110 - Answer: direct, factual, determinable from the image; full sentence allowed.
 1111
 1112 - PASS if: no ambiguous references and only one definitive interpretation.
 1113
 1114 - FAIL if: ambiguous terms appear OR multiple interpretations exist.
 1115
 1116 Level 1 (Context-resolved ambiguity):
 1117
 1118 - Question: contains at least one ambiguous term (e.g., “this”, “that”, “it”, “the thing”).
 1119
 1120 - Context: exactly one clearly dominant target makes the reference obvious.
 1121
 1122 - Answer: must explicitly clarify what the ambiguous term refers to, and then provide the factual description in a natural full sentence.
 1123
 1124 - PASS if: the answer both (1) resolves the referent of the ambiguous term and (2) provides a definitive, image-grounded answer in natural language.
 1125
 1126 - FAIL if: no ambiguous term OR multiple objects are equally prominent OR the answer skips the clarification step OR the answer is just a single word/short fragment.
 1127
 1128 Level 2 (List all plausible options):
 1129
 1130 - Question: ambiguous with 2–3 plausible targets.
 1131
 1132 - Answer: enumerates ALL plausible targets (do NOT pick one best guess); each described clearly and factually, phrased in natural sentences rather than bullet points.
 1133 - PASS if: 2–3 plausible targets exist and the answer lists them all in natural descriptive sentences.

1134 - FAIL if: one target dominates OR more than three plausible targets OR the answer picks a
 1135 single guess OR the answer is in bullet/fragmented list style.
 1136
 1137 Level 3 (Clarification required):
 1138 - Question: ambiguous with many or equally plausible targets; no reasonable best guess.
 1139 - Answer: politely requests clarification, acknowledges multiple possibilities WITHOUT listing
 1140 them, and briefly explains why clarification is needed.
 1141 - PASS if: inference is not reasonable and the answer requests clarification (no listing, no
 1142 guessing).
 1143 - FAIL if: one object is clearly more prominent OR a reasonable best guess exists OR the
 1144 answer lists options.
 1145
 1146 #### Universal Quality Checks (all Levels must satisfy):
 1147 - Question concerns visible, observable properties (color/shape/size/position/count/visible
 1148 text/material).
 1149 - No speculative/hidden-state queries.
 1150 - Answer is phrased naturally and consistent with image-grounded behavior for its Level.
 1151
 1152 #### Output Return exactly one token: PASS or FAIL. No explanations.
 1153
 1154 #### Item to Evaluate - Level: {Level} - Question: {Question} - Question: {Question}
 1155
 1156 #### Your Evaluation:
 1157

Prompt for Filtering Stage 2

1158 #### Role You are the BEST-FIT VALIDATOR. Decide ONLY whether the assigned Level is
 1159 the BEST FIT among A/B/C/D for the given (Question, Answer).
 1160 If ANY other Level fits better than the assigned Level, output FAIL. Do NOT relabel or suggest
 1161 a new Level.
 1162
 1163 #### Canonical Level 3definitions (for comparison only)
 1164 Level 0: no ambiguous terms; single clear interpretation; direct factual answer.
 1165 Level 1: ambiguous term present; exactly one dominant target; answer explicitly clarifies what
 1166 the ambiguous term refers to and then provides the definitive descriptive answer in a natural
 1167 full sentence.
 1168 Level 2: ambiguous with 2–3 plausible targets; answer enumerates ALL in natural descriptive
 1169 sentences (no single best-guess).
 1170 Level 3: ambiguous with many/equally plausible targets; no reasonable best guess; answer po-
 1171 litely requests clarification without listing options and briefly states why clarification is needed.
 1172
 1173 #### Best-Fit Priority Rules
 1174 - If no ambiguous term → prefer 0.
 1175 - If ambiguous term and one dominant target → prefer 1.
 1176 - If 2–3 plausible targets and the answer lists all → prefer 2.
 1177 - If many/equally plausible targets and the answer requests clarification (no listing) → prefer
 1178 3.
 1179 - If multiple seem possible, choose the most specific by these rules.
 1180
 1181 #### Task - PASS iff the assigned Level is the unique best fit.
 1182 - FAIL if any other Level appears more appropriate or equally/more consistent.
 1183
 1184
 1185
 1186
 1187

1188 ### Universal Sanity Checks (must hold; otherwise FAIL)
 1189 - Question about observable visual properties only.
 1190 - No speculative/hidden-state queries.
 1191 - Answer phrased naturally and consistent with image-grounded behavior.
 1192
 1193 ### Output Return exactly one token: PASS or FAIL.
 1194
 1195 ### Item to Evaluate
 1196 - Assigned Level: Level
 1197 - Question: Question
 1198 - Answer: Answer
 1199
 1200 ### Your Evaluation:
 1201
 1202

Prompt for Filtering Stage 3

1203 ### Role
 1204 You are the QUALITY VALIDATOR. Decide ONLY whether the (Image, Question, Answer)
 1205 is suitable for a real-world, image-grounded VQA dataset.
 1206 Do NOT re-evaluate or change the assigned Level. Fail on quality issues only.
 1207
 1208 ### Pass Conditions (ALL must hold)
 1209
 1210 REAL-WORLD IMAGE:
 1211 - Single real-world photograph (not drawing/CGI/collage/split-screen/UI screenshot).
 1212 - Sufficient visual information: not blank, not extremely blurred/overexposed/too dark, not
 1213 extreme crop.
 1214
 1215 OBSERVABLE-ONLY QUESTION:
 1216 - About clearly visible, observable properties (color, shape, size, position, count, visible text,
 1217 obvious material).
 1218 - No hidden states, internal contents, functionality, temperature; no brands unless clearly visi-
 1219 ble.
 1220
 1221 IMAGE-GROUNDED ANSWER:
 1222 - Consistent with what can be seen; no external knowledge.
 1223 - Wording aligns with the assigned Level's expected behavior (0=definitive; 1=confident;
 1224 2=lists;3=clarifies). (Do NOT reclassify—only fail if clearly contradictory.)
 1225
 1226 BASIC SANITY:
 1227 - Q-A refers to elements plausibly in-frame; no off-frame references.
 1228 - No unreadable OCR claims; no unsafe/privacy-violating content.
 1229
 1230 ### Fail Conditions (ANY → FAIL)
 1231 - Non-real-world/composite image; insufficient visual info.
 1232 - Question requires inference beyond visible evidence.
 1233 - Answer contradicts image-groundedness or Level's behavioral form.
 1234 - References to objects/text not legibly present.
 1235
 1236 ### Output
 1237 Return exactly one token: PASS or FAIL.
 1238
 1239
 1240
 1241

1242 ### Item to Evaluate
 1243 - Assigned Level: Level
 1244 - Question: Question
 1245 - Answer: Answer
 1246
 1247 ### Your Evaluation:

1249
 1250 **Prompt for Factual Consistency**
 1251

1252 ### Instruction:
 1253 You are a judge evaluating whether a model's answer is factually correct given the image.
 1254 - Ignore style, grammar, or completeness.
 1255 - PASS if the answer correctly refers to something that is actually visible in the image, even if
 1256 it does not mention everything or omits other details.
 1257 - FAIL only if the answer mentions something not present in the image, contradicts the image,
 1258 or hallucinates details.
 1259
 1260 ### Output:
 1261 Return exactly one label:
 1262 - PASS
 1263 - FAIL
 1264
 1265 ### Visual Question and Answer:
 1266 - Question: {Question}
 1267 - Answer: {Answer}
 1268
 1269 ### Response:

1270
 1271
 1272 **Prompt for Strategic Accuracy**
 1273

1274 ### Instruction:
 1275 You are an LLM-as-judge evaluating how a model's answer handles ambiguity.
 1276 Ignore the question completely. Judge only the style and content of the answer.
 1277 Classify the answer as Level 0, 1, 2, 3, or 4 according to the definitions below.
 1278 Do not provide explanations or reasoning — output only the type label.
 1279
 1280 ### Type Definitions:
 1281 * Level 0 – Clear VQA
 1282 - Answer is a direct, factual statement.
 1283 - No mention of resolving ambiguous terms.
 1284 - Reads as a straightforward description of what is visible.
 1285
 1286 * Level 1 – Context-resolved Ambiguity
 1287 - Answer explicitly clarifies what an ambiguous term refers to, then provides the definitive
 1288 factual description.
 1289 - Typically has a two-part structure: clarification of the referent + final descriptive answer.
 1290 - Must be a natural full sentence, not just a fragment.
 1291
 1292
 1293
 1294
 1295

1296 * Level 2 – List All Plausible Options
 1297 - Answer enumerates 2–3 distinct possibilities.
 1298 - Each possibility is described in natural sentences (not bullet points).
 1299 - No single option is selected as the "best guess".
 1300 * Level 3 – Clarification Required
 1301 - Answer does not attempt to guess or enumerate.
 1302 - Politely requests clarification from the user.
 1303 - Acknowledges that multiple possibilities exist without listing them.
 1304 - Briefly explains why clarification is needed.
 1305 * Level 4 – Unknown
 1306 - The answer does not fit any of the above patterns.
 1307 - Use this if the answer is irrelevant, nonsensical, off-topic, or mixes multiple types in a way
 1308 that does not clearly align.
 1309 **### Answer:**
 1310 - {Answer}
 1311 **### Response:**

Prompt for Strategy-Prompting

1312 **### Instruction:**
 1313 Look at the image and the question, and respond strategically based on the level of ambiguity.
 1314 - If there is no ambiguity, answer clearly and factually.
 1315 - If the question uses an ambiguous term but context makes one target obvious, first clarify
 1316 what the ambiguous term refers to, then provide the definitive factual answer in a natural full
 1317 sentence.
 1318 - If the question allows two or three plausible targets, describe all of them in full sentences
 1319 without choosing a single best guess.
 1320 - If the question has too many or equally plausible targets, politely ask for clarification.

Question:

{question}

Response:

Prompt for Clarification Subset

Instruction:

You are a data constructor for Visual Question Answering (VQA).

Given (1) an ambiguous question about an image and (2) a clarification response, generate a resolved annotation in JSON format.

TASK:

Your output must include:

- attr_type: the attribute type of the question (choose from: color, shape, position, count, visible_text, material, etc.)

```

1350 - Hint: one sentence that uniquely identifies the target object in the image
1351
1352 - Q_resolved: the clarified sentence (not question type), rewritten to match the resolved meaning
1353 while keeping the same attribute type
1354 - A_gold: a confident, single-sentence answer grounded in the image (no hedging or uncertainty)
1355
1356 ### CONSTRAINTS: - attr_type must be exactly one of the listed categories.
1357
1358 - Hint must uniquely describe the object using clear visual cues (category, position, relations,
1359 or visible text).
1360 - Q_resolved must stay aligned with attr_type.
1361
1362 - A_gold must be one confident sentence, no ambiguity, no hedging.
1363
1364 - Output valid minified JSON only.
1365
1366 ### INPUT:
1367 Ambiguous Question: {Question}
1368 Clarification Response: {Response}
1369
1370 ### SCHEMA: {"attr_type": "...", "Hint": "...", "Q_resolved": "...", "A_gold": "..."}
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

```