
Published as a conference paper at ICLR 2025

GRAPH NEURAL RICCI FLOW: EVOLVING FEATURE
FROM A CURVATURE PERSPECTIVE

Jialong Chen, Bowen Deng, Zhen Wang, Chuan Chen∗ , Zibin Zheng
Sun Yat-sen University
{chenjlong7, dengbw3}@mail2.sysu.edu.cn
{wangzh665, chenchuan, zhzibin}@mail.sysu.edu.cn

ABSTRACT

Differential equations provide a dynamical perspective for understanding and de-
signing graph neural networks (GNNs). By generalizing the discrete Ricci flow
(DRF) to attributed graphs, we can leverage a new paradigm for the evolution of
node features with the help of curvature. We show that in the attributed graphs,
DRF guarantees a vital property: The curvature of each edge concentrates to-
ward zero over time. This property leads to two interesting consequences: 1)
graph Dirichlet energy with bilateral bounds and 2) data-independent curvature
decay rate. Based on these theoretical results, we propose the Graph Neural Ricci
Flow (GNRF), a novel curvature-aware continuous-depth GNN. Compared to tra-
ditional curvature-based graph learning methods, GNRF is not limited to a specific
curvature definition. It computes and adjusts time-varying curvature efficiently in
linear time. We illustrate that GNRF performs excellently on diverse datasets.

1 INTRODUCTION

Graph Neural Networks (GNNs) have currently achieved significant success in tasks such as com-
munity detection (Liu et al., 2020), product recommendation (Wu et al., 2022; Gao et al., 2023)
molecular design (Zhang et al., 2021; Wieder et al., 2020), and enhancing language models (Chen
et al., 2024; Jin et al., 2023). One of the most successful ideas in designing GNNs is to stack sev-
eral message-passing layers, allowing nodes to receive information and update their representations
within multiple hops (Kipf & Welling, 2016; Veličković et al., 2017; Wu et al., 2019).

Recent research has revealed a close connection between these layered GNNs and differential equa-
tions (DEs). Oono & Suzuki (2019) first proposed the idea of viewing Graph Convolutional Net-
works (GCN) (Kipf & Welling, 2016) as discrete dynamical systems. While Chamberlain et al.
(2021), using the heat diffusion equation, derives the continuous-depth counterpart for Graph At-
tention Networks (Veličković et al., 2017). By establishing DEs for node representations over time,
more refined and theoretically sound evolution strategies can be designed, including energy con-
servation (Rusch et al., 2022), anti-symmetry (Gravina et al., 2022), and repulsion (Wang et al.,
2022).

Most DE-GNNs are based on the heat equation and its variants (Chamberlain et al., 2021; Thorpe
et al., 2022; Choi et al., 2023; Li et al., 2024; Bodnar et al., 2022). However, the classical heat
equation forces the temperature in the system to become uniform over time, leading to a loss of
expressive node representations in GNNs inspired by this equation when reaching an equilibrium
state. In this paper, we break away from this fixed mindset for the first time and turn to explore the
benefits of another important differential equation — the Ricci flow — for graph learning.

In differential geometry, Ricci flow is metaphorically described as a process where a complex man-
ifold gradually becomes “regular”. This process is governed by the Ricci curvature, causing regions
with larger absolute curvature values to decay more significantly. When defining edge curvature
based on node-attributed graphs, we find that the Ricci Flow works: it forces the edge curvature to
concentrate towards zero quickly, thus time-efficiently yielding stable and non-smooth node repre-
sentations.

∗Corresponding author.

1

Published as a conference paper at ICLR 2025

1T

2T

3T

Feature space

Differential manifold

Attributed graph

1T 2T 3T
Ricci Flow

0 0

Curvature distribution

- + - +

Figure 1: Analogize the feature evolution process on the node-attributed graph to the Ricci flow in
differential manifolds, where the curvature gradually concentrates to zero.

Based on this observation, we design a novel continuous-depth GNN called the Graph Neural Ricci
Flow (GNRF). To our knowledge, GNRF is the first deep graph learning model based on time-
varying edge Ricci curvature. (SelfRGNN (Sun et al., 2022) is a potentially confusing related work,
but they focus on curvature in the embedded space rather than on the edges.) Previously, the main-
stream paradigm for utilizing Ricci curvature in graph learning was graph rewiring (Nguyen et al.,
2023; Fesser & Weber, 2024; Shen et al., 2024), where edge curvature was considered an intrin-
sic property related only to topology, precomputed, and stored. Additionally, they consider only a
specific curvature definition and require quadratic time complexity. GNRF, for the first time, de-
fines time-varying edge curvature based on node attributes and introduces an auxiliary network to
compute curvature for any given definition within linear time.

Our contributions can be summarized as follows:

1. We are the first to consider the evolution of node attributes from the perspective of attirbute
discrete Ricci flow, providing theoretical guarantees on decay rate and Dirichlet energy.

2. We propose GNRF, the first GNN, to apply time-varying edge curvature and introduce an
auxiliary network for unified and efficient curvature computation.

3. We empirically test how well the GNRF fits the theory and describe its mechanism. We
also verify its significant validity on a wide range of datasets.

2 PRELIMINARIES

Notations. We consider a simple undirected graph G = (V, E), where V is a node set with size of
|V| and a edge set E ⊆ V × V with size of |E|. The i-th node is associated with a feature vector
xi ∈ Rn, and the matrix form of all features is denoted as X = [xi, . . . ,xN]T ∈ RN×n. Similarly,
let H(t) = [hi(t), . . . ,hN (t)]T ∈ RN×m be the node representations evolved to time t according
to a differential equation. The initial representation H(0) is obtained from X through a function
F , i.e., H(0) = F (X). We denote the time-varying attribute on edge i ∼ j as wij(t). w may
be defined by H , in which case we have: wij(t) = w(hi(t),hj(t)). κij(t) represents the edge
curvature under any given definition.

Differential equation inspired GNNs (DE-GNNs). Continuous depth is the fundamental charac-
teristic that distinguishes DE-GNN from other GNN architectures. It can be unified as:

∂H(t)

∂t
= f(G,H(0),H(t)), t ∈ [0, T]. (1)

The update function f can be either non-parametric (Oono & Suzuki, 2019; Veličković et al., 2017;
Wu et al., 2023) or parametric (Li et al., 2020; Xu et al., 2023). The heat diffusion equation is the
most extensively discussed in DE-GNN methods (Chamberlain et al., 2021; Thorpe et al., 2022; Li
et al., 2024). A classic description of it is provided by Chamberlain et al. (2021):

∂hi(t)

∂t
= div[g · ∇hi(t)] =

∑
j∼i

a (hi(t),hj(t)) (hj(t)− hi(t)), (2)

2

Published as a conference paper at ICLR 2025

where g is the diffusion flux, and a(·, ·) is the similarity function for representations which is usually
assumed to be non-negative (Chamberlain et al., 2021; Li et al., 2024).

Edge curvature on weighted graph. For a weighted graph G where each edge i ∼ j corresponds
to a weight wij , the edge curvature κij measures the tightness of the connection between the ego-
graph of node i and the ego-graph of node j. κij has multiple definitions, with the earliest being the
purely combinatorial one proposed by Forman (2003) via CW complex, known as the Forman-Ricci
curvature κFR

ij . In addition, Ollivier (2007) proposes Ollivier-Ricci curvature κOR
ij , which is based

on the optimal transport distance between ego-graphs. Devriendt & Lambiotte (2022) proposes
viewing a weighted graph as a resistance network and establishing the resistance curvature κRC

ij via
effective resistance. See Appendix A.1 for a more detailed introduction.

Currently, curvature-based graph learning methods generally treat curvature as a static property of
edges, using it to perform graph rewiring (Nguyen et al., 2023; Topping et al., 2021; Fesser & Weber,
2024), edge sampling (Liu et al., 2023), or neighbor reweighting (Li et al., 2022). Their underlying
idea is similar: to mitigate the influence of edges with extreme positive/negative curvature. owever,
these methods often precompute Ricci curvature, resulting in a quadratic time complexity. Moreover,
they focus on using a specific definition of curvature, which may lack sufficient robustness when
dealing with different graph data (Southern et al., 2023; Attali et al., 2024). In contrast, Our method
provides a way to evolve node features in linear time to adjust curvature, which is applicable to any
curvature definition.

Discrete Ricci flow (DRF). The Ricci flow was first introduced by (Hamilton, 1982) in differential
geometry and was later extended to complex networks by (Ollivier, 2009; 2010) using the definition:

∂wij(t)

∂t
= −κij(t)wij(t), wij(t) > 0, (3)

which is referred to as the discrete Ricci flow. Recently, DRF has found its applications in network
mining, such as in community detection (Ni et al., 2019; Lai et al., 2022), network alignment (Flow,
2018), and biological structures prediction (Baptista et al., 2024). However, they all focus on graphs
without node attributes, where edge weights are treated as inherent properties, which is inconsistent
with the majority of datasets used in modern graph deep learning.

3 APPLYING DRF ON ATTRIBUTED GRAPHS

We aim to establish a dynamical system on node-attributed graphs similar to Equation (3). The
intuitive idea is to treat edge weights as a function of the attributes of the two connected nodes, i.e.,
wij(t) = w(hi(t),hj(t)), where w(·, ·) > 0 :

∂w(hi(t),hj(t))

∂t
= −κij(t)w(hi(t),hj(t)). (4)

We refer to this dynamical system as Attribute Discrete Ricci Flow (Attri-DRF). Note that cur-
vature is defined based on edge weights, which themselves are functions of node attributes. This
implies that in Attri-DRF, curvature is also determined by the node attributes. Consequently, as
node attributes evolve over time, the curvature changes accordingly. Attri-DRF also, for the first
time, realizes the modeling of graphs curvature in continuous-time scenario.

Ricci flow is analogous to heat diffusion of the metric on a Riemannian manifold. A fundamental
characteristic of standard heat diffusion is that the temperature distribution of any heat field gradually
becomes smoother over time, ultimately reaching a steady state (thermal equilibrium). This implies
that GNNs based on heat diffusion (such as GRAND Chamberlain et al. (2021) and GRAND++
Thorpe et al. (2022)) will exhibit a similar steady state as time approaches infinity, where the node
features gradually become uniform—consistent with the well-known over-smoothing phenomenon.
By contrast, Ricci flow, as a ‘diffusion on the metric’, leads to a ‘metric equilibrium’, meaning that
the curvature on the manifold gradually becomes uniform. Specifically, in the context of Attri-DRF,
we can conclude the following:

Lemma 1 (informal). Consider the Attri-DRF on any edge i ∼ j, if wij(t) is monotonic over
a non-zero interval [t1, t2] and |wij(t2) − wij(t1)| is sufficiently close to 0, then the average
curvature over [t1, t2], i.e., Et∈[t1,t2](|κij(t)|), is also sufficiently close to 0.

3

Published as a conference paper at ICLR 2025

Lemma 1 indicates that if the Attri-DRF on an edge approaches an equilibrium state, the curvature
of that edge must necessarily be close to zero. Since excessively large or small curvature can lead
to over-smoothing or over-squashing (Nguyen et al., 2023), Attri-DRF offers a unified and novel
solution to these issues: leveraging the evolution of the Ricci flow to drive the curvature towards 0.
It is worth noting that this process evolves automatically over time and is independent of any specific
definition of curvature, which contrasts sharply with the currently popular graph rewiring paradigm
(Nguyen et al., 2023; Topping et al., 2021; Fesser & Weber, 2024; Shen et al., 2024).

To have a closer look, from now on, we let wij(t) ≡ cos(hi(t),hj(t))+1+ ϵ be a non-negative co-
sine similarity, where ϵ is a small positive number. Additionally, let |h(t)| ≡ 1 to prevent numerical
vanishing or explosion. At this point, w satisfies: w ∈ [ϵ, 2 + ϵ].

3.1 DIRICHLET ENERGY

The Dirichlet energy E(H(t)) of a graph G is used to characterize the smoothness of attributes
between nodes. As neighboring node representations become similar, E tends towards 0. Proving
that E has a lower bound is a common theoretical means to demonstrate the ability of GNN to resist
over-smoothing (Wang et al., 2022; Zhou et al., 2021a). Using Theorem 2, we demonstrate that when
Attri-DRF stabilizes (i.e., κ(t) approaches 0), E has both upper and lower bounds. This means
that the Attri-DRF avoids over-smoothing and prevents neighboring nodes from having excessive
differences. See Appendix A.2 for more details about Dirichlet energy.

Theorem 2 (Informal). Consider the Attri-DRF with wij(t) ≡ cos(hi(t),hj(t)) + 1 + ϵ and
|h| ≡ 1. If within [t1, t2], each edge of graph G reaches evolutionary equilibrium, then at this
time G has both non-trivial upper and lower bounds on Dirichlet energy that are independent of
the definition of curvature.

Here, we provide an intuitive explanation. Extreme smoothing results in completely uniform node
attributes, whereby the edge curvature is determined solely by the local topology. In most graphs
without additional assumptions, differences in local topology lead to different curvatures, which
contradicts Lemma 1. Therefore, for almost all graphs, we can derive a nonzero lower bound for the
Dirichlet energy.

3.2 UNIFORM CURVATURE DECAY

We have characterized the asymptotic equilibrium of Attri-DRF and how it benefits graph learning.
Now, we further discuss how this equilibrium is achieved, with particular attention to its practical
significance—specifically, whether it can reach a satisfactory state within a finite time.

Theorem 3 (Informal). Consider the Attri-DRF with wij(t) ≡ cos(hi(t),hj(t)) + 1 + ϵ and
|h| ≡ 1 on any edge i ∼ j. Assume that the curvature is bi-Lipschitz continuous when considered
as a function of the weights. For any arbitrarily small positive number δ, if |κij(0)| > δ, then κij

will first decay to a value smaller than δ at t = O
(
ln
(
δ−1
))

.

Theorem 3 implies that Attri-DRF requires about O(ln δ−1) time to achieve a steady state. There
are three points worth noting: (1) This bound is practically feasible: for δ = 10−5, ln(δ−1) remains
no greater than 10. (2) The result is independent of wij(0) and κij(0): for any given δ, the result
applies to every edge in any G. In contrast, Newton’s law of cooling indicates that the time for heat
diffusion to reach a steady state depends on the initial conditions (Winterton, 1999). (3) The decay
rate is uniform: Theorem 3 can be applied to all edges of the same graph, leading to a synchronized
decay of all curvatures. This eliminates the need to balance the differences in the evolution processes
of various edges. In summary, the feature evolution of Attri-DRF is feasible, independent of the
initial state, and uniform.

4 OUR MODEL: GRAPH NEURAL RICCI FLOW

4.1 INCORPORATING ATTRI-DRF INTO THE DE-GNN FRAMEWORK

Attri-DRF alleviates the issue of node representation quality degradation caused by excessively high
or low curvature, and shows advantages in evolution time. To leverage these beneficial properties,

4

Published as a conference paper at ICLR 2025

we next demonstrate how to derive the general form of the DE-inspired GNN (Equation (1)) from
Attri-DRF (Equation (86)).

By expanding Equation (86) using the chain rule, we obtain1:〈
∂w(hi,hj)

∂hi
,
∂hi(t)

∂t

〉
+

〈
∂w(hi,hj)

∂hj
,
∂hj(t)

∂t

〉
= −κij(t)w(hi,hj). (5)

Equation (5) splits the effect of Attri-DRF on wij into two parts: the effect on hi and the ef-
fect on hj . To weigh these two parts, we introduce a scaling function λ(hi(t),hj(t)), i.e.,〈

∂w(hi,hj)
∂hi

, ∂hi(t)
∂t

〉
= λ(hi(t),hj(t))

〈
∂w(hi,hj)

∂hj
,
∂hj(t)

∂t

〉
. We can now focus solely on one side:〈

∂w(hi,hj)

∂hi
,
∂hi(t)

∂t

〉
= − κij(t)w(hi,hj)

1 + λ(hi(t),hj(t))
. (6)

Equation (6) provides the first constraint for hi(t), while |hi(t)| ≡ 1 is the second one. Under
the satisfaction constraint, we minimize ∥∂thi(t)∥, which means that hi(t) always applies only the
slightest change to satisfy the Attr-DRF, which guarantees that the evolution of hi(t) is numerically
stable. Formally, this leads us to the following optimization objective:

min

∥∥∥∥∂hi(t)

∂t

∥∥∥∥ , s.t. (I)

〈
∂w(hi,hj)

∂hi
,
∂hi(t)

∂t

〉
= − κij(t)w(hi,hj)

1 + λ(hi(t),hj(t))
, (II) |hi(t)| ≡ 1.

(7)
Proposition 4. The optimization objective given by Equation (7) has a closed-form solution with
linear time and space complexity as follows:

∂hi(t)

∂t
= −κ′

ij(t)

[
hj − cos

(
hi,hj

)
hi

]
, (8)

where κ′
ij(t) =

κij(t)w(hi,hj)

(1+λ(hi(t),hj(t)))(1−(hT
i hj)2)

.

Considering that the update of hi(t) is actually influenced by all the neighbors of the node i, denoted
as N (i), we let j in Equation (8) range over all elements in N (i) and take the sum. This leads to
deriving a Ricci flow-based node representation evolution, which forms the DE-GNN model. We
refer to this as Graph Neural Ricci Flow (GNRF):

∂hi(t)

∂t
=
∑
j∼i

−κ′
ij(t)︸ ︷︷ ︸

weight

[
hj(t)− cos

(
hj(t),hi(t)

)︸ ︷︷ ︸
damping factor

hi(t)

]
. (9)

By comparing Equation (9) with Equation (2), one can get more insights between GNRF and heat
diffusion. In early graph heat diffusion models like GRAND (Chamberlain et al., 2021), the aggre-
gation weight is always positive, which is considered the driving force behind the smoothing of node
attributes (Wang et al., 2022). Negative weights, on the other hand, are considered repulsive forces,
making node attributes dissimilar. In GNRF, the sign of the aggregation weights (−κ′) is opposite
to that of the curvature (κ), which results in nodes with positive curvature being pushed apart, while
other nodes are pulled closer. As demonstrated by experiments, we find that this helps in generating
smoother decision boundaries.

Another distinction between GNRF and heat diffusion is the damping factor. It restricts the degree
of the feature evolution. An intuitive explanation is that when ∥h(t)∥ ≡ 1, then:∥∥hj(t)− cos

(
hj(t),hi(t)

)
hi(t)

∥∥2 = 1− cos2
(
hj(t),hi(t)

)
. (10)

so excessive similarity or dissimilarity between hi and hj (close to 1 or -1) may weaken ∥∂thi(t)∥.

4.2 UNIFYING CURVATURES VIA EDGENET

The key distinction of GNRF from other GNNs lies in its ability to perceive time-varying edge
curvature. However, curvature is often computationally expensive. For instance, calculating the re-
sistance curvature κRC requires computing the matrix pseudo-inverse, while Ollivier-Ricci curvature

1When unambiguous, we omit the independent variable t for simplicity.

5

Published as a conference paper at ICLR 2025

κOR involves solving the optimal transport distance. These complexities make real-time curvature
computation a major bottleneck, hindering the broader application of curvature.

GNRF addresses this challenge by introducing an auxiliary network. Recent research has shown
that the Wasserstein distance can be approximated in linear time using a simple network (Chen &
Wang, 2024). Inspired by this, we aim to leverage the universal approximation capability of neural
networks to seek a general solution for approximating the curvature under any definition.

Theorem 5 (Informal). There exists a unified network structure called EdgeNet, which takes as
input the weights of all edges connected to nodes i and j, and approximates κ′

ij with arbitrary
precision in linear time, i.e., κ′

ij(t) = EdgeNet({wik(t)|k ∼ i}, {wjk(t)|k ∼ j}). The definition
of edge curvature can be Forman-Ricci curvature κFR

ij (t), Ollivier-Ricci curvature κOR
ij (t) and

approximate resistance curvature κ̃RC
ij (t).

EdgeNet not only enables the computation of curvature in linear time, but more importantly, it over-
comes the limitations of existing definitions by realizing adaptive curvature. Despite the variety of
curvature definitions, to the best of our knowledge, there is no theoretical foundation that definitively
identifies one as superior. Moreover, based on experimental results in Southern et al. (2023) and At-
tali et al. (2024), we observe that different curvature definitions have a significant impact on the
effectiveness of graph learning, yet it remains challenging to establish clear empirical guidelines.
Therefore, using adaptive curvature may be a more ideal approach, and our experimental results
support this view.

Computational complexity. Following the calculation protocol in Blakely et al. (2021), the compu-
tational complexity of GNRF is O(l|V|n2 + l|E|n), where l is the number of iteration steps of ODE
and n is the feature length. This complexity is linear with graph size (|E| and |V|) and consistent
with l-layer GCN. The method of pre-computing curvature usually requires square complexity, such
as O(|V|2) (FOSR (Karhadkar et al., 2022)).

Differential Equation Solver. We use the Adams-Moulton method implemented by
torchdiffeq (Chen et al., 2018) as the default solver for GNRF. Although GNRF performs
well on most solvers, the Adams-Moulton method often achieves numerically stable solutions with
larger fixed step sizes.

5 EXPERIMENT

Datasets. To evaluate the model fairly, we collect a total of 14 datasets from 6 commonly used
node classification benchmarks. We report 12 of these datasets in the main experiment: Cornell,
Wisconsin, and Texas from WebKB used in Pei et al. (2020); Roman-Empire, Tolokers, Amazon-
ratings, Minesweeper and Questions from Heterophilous Graph benchmark (Platonov et al., 2023);
Cora Full, Cora ML, DBLP and Pubmed from CitationFull benchmark (Bojchevski & Günnemann,
2017). In addition, to verify the scalability of the model, we also introduce two larger-scale data
sets: OBGN-Arxiv from Open Graph Benchmark (Hu et al., 2020) and OGBN-Year from Lim
et al. (2021). We report the performance and cost of models on these two datasets in scalability
experiments. For all datasets, we uniformly adopted a random split strategy of 60%/20%/20% for
the training, validation, and test sets. We report the mean and standard deviation of the experiments
based on ten different splits.

Comparison method. We compared GNRF with two categories of methods. The first category is
discrete-depth GNNs, including two classic models: Graph Convolution Network (Kipf & Welling,
2016) and Graph Attention Network (Veličković et al., 2017), as well as two advanced state-of-the-
art models: Feature Selection GNN (Maurya et al., 2022) and Directed GNN (Rossi et al., 2024).
Recent studies show that simple modifications can significantly improve classic model performance
(Luo et al., 2024; Platonov et al., 2023). Therefore, we add residual connections to GCN and GAT,
resulting in enhanced versions: GCN+res and GAT+res. The second category is continuous-depth
GNNs, including Graph Neural Diffusion (Chamberlain et al., 2021), GRAND++ (Thorpe et al.,
2022), Allen-Cahn Message Passing (Wang et al., 2022) and High-order Graph Diffusion Network
(Li et al., 2024). To evaluate the advantages of adaptive curvature, we also compared two variants:
GNRFFRC and GNRFARC . Instead of using EdgeNet, these variants directly use the definitions of
Forman-Ricci curvature and approximate resistance curvature to obtain κ.

6

Published as a conference paper at ICLR 2025

5.1 SEMI-SUPERVISED NODE CLASSIFICATION

Corn. Wisc. Texas R. Emp. Tolo. Mine. Ques. A.-rat. C. Full PubM. DBLP C. ML
Hom. level 0.1227 0.1778 0.0609 0.0000 0.6344 0.6827 0.8359 0.3803 0.5670 0.8024 0.8279 0.7885
Node 183 251 183 22,662 11,758 10,000 48,921 24,492 19,793 19,717 17,716 2,995

Discrete-depth GNNs

GCN
55.14

(±8.46)
61.60

(±7.00)
60.00

(±6.45)
71.23

(±0.22)
79.61

(±0.66)
74.79

(±1.78)
50.21

(±2.24)
37.99

(±0.61)
68.06

(±0.98)
86.74

(±0.47)
83.93

(±0.34)
87.07

(±1.21)

GCN+res
70.11

(±10.21)
69.50

(±6.00)
71.66

(±4.13)
73.91

(±0.66)
83.44

(±0.61)
90.13

(±0.70)
75.45

(±2.31)
48.17

(±0.55)
69.53

(±0.44)
86.91

(±0.31)
82.64

(±0.51)
85.62

(±0.72)

GAT
53.64

(±11.1)
60.00

(±11.0)
61.21

(±8.17)
77.40

(±1.53)
81.45

(±0.92)
80.12

(±1.11)
65.47

(±0.88)
42.52

(±1.22)
67.55

(±1.23)
87.24

(±0.55)
80.61

(±1.21)
84.12

(±0.55)

GAT+res
65.42

(±7.33)
72.20

(±4.00)
73.45

(±6.11)
81.55

(±0.26)
83.91

(±0.33)
92.45

(±0.77)
76.95

(±0.85)
50.00

(±0.43)
67.33

(±0.68)
87.50

(±0.40)
83.51

(±0.72)
85.11

(±0.19)

DirGNN
76.51

(±6.14)
80.50

(±5.50)
76.25

(±6.31)
85.21

(±0.44)
82.64

(±0.75)
81.52

(±0.41)
59.95

(±0.79)
46.66

(±0.61)
67.80

(±0.53)
86.94

(±0.55)
81.22

(±0.54)
85.66

(±0.31)

FSGNN
87.43

(±3.65)
87.60

(±5.10)
85.15

(±3.91)
83.64

(±0.71)
81.01

(±0.65)
85.53

(±0.41)
71.41

(±0.32)
40.02

(±0.51)
71.90

(±0.65)
90.24

(±0.71)
83.31

(±0.55)
89.44

(±0.43)

Continuous-depth GNNs

GRAND
81.76

(±13.9)
84.00

(±7.50)
81.70

(±8.42)
60.12

(±0.75)
79.01

(±0.45)
80.56

(±3.12)
54.90

(±2.12)
37.53

(±0.36)
67.66

(±1.01)
86.79

(±0.57)
84.60

(±0.99)
88.49

(±0.81)

GRAND++
81.34

(±7.12)
81.50

(±6.00)
79.34

(±7.22)
68.13

(±0.51)
78.85

(±0.56)
78.55

(±2.11)
60.14

(±0.88)
38.01

(±0.50)
67.53

(±0.74)
87.21

(±0.33)
85.21

(±0.24)
88.44

(±0.53)

ACMP
85.66

(±5.10)
86.50

(±5.00)
87.65

(±3.54) OOM OOM
85.11

(±1.06)
71.92

(±0.55)
37.32

(±0.64) OOM
88.01

(±1.44)
82.31

(±0.44)
76.11

(±2.12)

HiD-Net
83.53

(±7.10)
81.30

(±6.60)
77.11

(±6.91)
62.37

(±0.73)
79.50

(±0.71)
84.33

(±0.65)
63.77

(±0.85)
41.19

(±1.03)
68.11

(±0.64)
88.60

(±0.45)
84.92

(±0.31)
89.00

(±0.51)

GNRF 87.28
(±3.12)

88.00
(±2.00)

87.39
(±4.13)

86.25
(±0.46)

83.96
(±0.39)

95.03
(±0.20)

73.86
(±1.18)

46.89
(±1.08)

72.12
(±0.50)

90.37
(±0.69)

85.73
(±0.76)

89.18
(±0.19)

GNRFFRC
85.59

(±1.56)
80.00

(±10.50)
82.08

(±5.41)
75.23

(±0.68)
76.17

(±0.46)
81.61

(±1.07)
61.78

(±0.99)
41.22

(±0.43)
67.51

(±0.87)
88.96

(±0.14)
82.55

(±0.32)
87.29

(±0.55)

GNRFARC
86.49

(±2.70)
88.00

(±2.00)
81.90

(±5.63)
76.52

(±0.33)
78.14

(±0.32)
87.25

(±1.01)
64.55

(±1.33)
41.74

(±0.46)
70.17

(±0.61)
88.21

(±0.40)
83.83

(±0.45)
89.43

(±0.22)

Table 1: We compare GNRF with two classes of methods on the node classification task. Highlighted
are the top first, second, and third results. OOM means out of memory. Accuracy is the measure for
the vast majority of datasets, and for Minesweeper, Tolokers, and Questions, we use ROC-AUC.

Main results (Table 1). GNRF consistently demonstrates outstanding performance across diverse
datasets. Compared to Cora Full, PubMed and Cora ML, GNRF shows significant improvements
of over 20% compared to GCN on the other 8 heterophilic datasets. This improvement is attributed
to GNRF forcing positive curvature edges to repel each other, as ACMP also performs well with a
similar repulsive bias. However, since ACMP by default uses an adaptive step solver (Dormand-
Prince 5), it excessively subdivides the step size when solving near-stiff equations, leading to an
OOM. In contrast, GNRF remains stable on these datasets. Another observation is that GNRFFRC
and GNRFARC indeed show significant improvements over classic algorithms (such as GCN, GAT,
GRAND, GRAND++), but they still fall short compared to GNRF using EdgeNet. This suggests
that Attri-DRF itself is beneficial for graph learning, but adaptive curvature can maximize its utility.

Ablation study (Table 2). Two key modules: EdgeNet (e) and the damping factor (d), are used for
ablation. When we remove EdgeNet from GNRF, we replace the aggregation weights with a train-
able positive scalar. The results show that EdgeNet provides the primary improvement of GNRF,
while the damping factor ensures numerical stability. Due to the inability to utilize negative weights,
GRAND performs poorly on two heterogeneous datasets—Roman-Empire and Tolokers—and ad-
justing the damping factor does not lead to additional performance improvement. In contrast, ACMP
performs much better, as it is similar to GRAND but can leverage negative weights. GNRF further
improves upon ACMP, as it enables more fine-grained control over the weight signs—achieved
through Ricci flow. On the other hand, ACMP uses an adaptive step-size solver, making it diffi-
cult to effectively handle near-stiff equations. However, when the damping factor is introduced, it
produces stable and competitive numerical results.

Resource consumption (Table 3). We validated the scalability of GNRF on the OGBN-Arxiv
dataset. We fixed the depth of all compared methods to 3 and reported the model parameter count,
runtime per epoch (averaged over 1000 iterations), and accuracy for hidden layer sizes of 16, 64,
and 256. For GCN, we used the hyperparameters recommended by the official OGB guidelines (Hu
et al., 2020); for GAT, we used the same hyperparameters as GCN and set the number of attention
heads to 3. We performed full-batch training on OGBN-Arxiv. Our results show that, for the same
model capacity (i.e., the same hidden layer size), GNRF outperforms the other three methods. The

7

Published as a conference paper at ICLR 2025

ODE Solver Dormand-Prince 5
(adaptive step)

Adams-Moulton
(fix step)

Method ACMP ACMP+d ACMP ACMP+d GNRF GNRF/d GNRF/e GRAND GRAND+d

Roman-Empire OOM OOM NC 72.44 86.25 NC 53.71 60.12 58.57
Tolokers OOM OOM NC 80.33 83.96 NC 78.60 79.01 78.78
Cora Full OOM OOM NC 71.17 72.12 NC 71.55 67.66 67.31

Table 2: NC means Not Convergent. “d” and “e” represent the damping factor and EdgeNet respec-
tively. We use “+” or “/” to denote adding or removing a module.

#hidden=16 #Hidden=64 #Hidden=256
#Param Time Acc. #Param Time Acc. #Param Time Acc.

Depth=3

GCN 3.15k 0.12s 60.95 15.2k 0.14s 68.55 110k 0.21s 71.65
GAT 15.0k 0.17s 59.52 86.8k 0.25s 64.39 788k OOM OOM

ACMP 4.18k 3.29s 61.03 32.0k 6.35s 68.89 374k OOM OOM
GNRF 5.50k 0.31s 62.11 52.6k 0.78s 69.33 701k OOM OOM

Table 3: With a fixed depth of 3, we compare the performance and scalability of GNRF with other
models at hidden layer sizes of 16, 64 and 256 respectively.

number of learnable parameters in GNRF lies between those of GCN and GAT, and its training
time is comparable to theirs, significantly faster than ACMP (the current state-of-the-art continuous
deep GNN model). At a hidden layer size of 256, GAT, ACMP, and GNRF all experienced out-of-
memory. We conclude that GNRF strikes a meaningful trade-off between the high scalability but low
accuracy of classical discrete deep GNNs and the low scalability but high accuracy of continuous-
depth GNNs.

5.2 CURVATURE

We demonstrate whether GNRF faithfully adheres to the theoretical guidance provided in Chapter
3. We measure the curvature distribution of all edges in the graph dataset at different time points
(Figure 2 above) and record the variance of these curvatures over time (Figure 2 below). We perform
a 0-1 normalization of the variance from t = 0 to t = 20 to scale multiple datasets to a unified scale.

−0.04 −0.02 0.00 0.02 0.04
0

25

50

75

100

De
ns
ity

Roman-empire

−0.4 −0.2 0.0 0.2
0

5

10

15

Tolokers

0.000 0.005 0.010 0.015 0.020
0

500

1000

1500

De
ns
ity

Cora_Full

0 2 4 6
0.0

0.5

1.0

1.5

2.0
Pubmed

0 2.5 5 7.5 10 12.5 15 17.5 20
Time

0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

Va
r(κ

) Wisconsin
Cornell
Texas

Roman-empire
Tolokers

Pubmed
Cora-Full

t=0 t=2.5 t=5

Figure 2: The distribution of curvature across dif-
ferent datasets (above) and the variation of their
variance over time (below).

As the results show, in homophilic graphs
(Cora-Full and Pubmed), positive curvature
edges dominate, while in heterophilic graphs
(Roman-empire and Tolokers), negative cur-
vature holds more weight. The reason is
that in homophilic graphs, nodes of the same
class tend to form tightly connected commu-
nity structures, which lead to edges with pos-
itive curvature (Topping et al., 2021).

However, regardless of the curvature distribu-
tion, as predicted by Lemma 1, the GNRF
designed based on Attir-DRF will force them
to concentrate around zero. This avoids the
over-smoothing or information bottleneck is-
sues caused by extreme curvature (Nguyen
et al., 2023). Another observation is that the
speed of this “concentration towards zero” is
roughly the same across different datasets, as
their curvature variances follow a similar in-
verse relationship, achieving relatively stable
values around t = 10. This means that re-
gardless of the dataset, the GNRF can always
achieve stable curvature within a feasible time, indicating that the model designed based on Attri-
DRF is consistently efficient in the evolution of node features and aligns with the expectations of
Theorem 3.

8

Published as a conference paper at ICLR 2025

5.3 DIRICHLET ENERGY AND FEATURE VISUALIZATION

We present the evolution of the Dirichlet energy of GNRF with random parameters on synthetic
graphs without any training. The synthetic graph consists of 10,000 nodes, where any pair of
nodes has a connection probability of 0.5, and the node features are sampled from a 10-dimensional
standard Gaussian distribution. We measure the energy variations of GNRF compared to GCN
(Kipf & Welling, 2016), GAT (Veličković et al., 2017), and GRAND (Chamberlain et al., 2021)
in the random graph. Specifically, to understand the impact of the damping factor (DF), two de-
rived models—GNRF without DF and GRAND with DF—are also used for comparison (Figure 3).

��� ��

�� ��
 ���� ���
 �
�� ���
 ����
��������

��

��

�

�

�

	

lo
g 1

0
E(

t)
�
�
���

�����
����������

����
�����������

Figure 3: The trend of Dirichlet energy changes
over time across different models.

The features of GCN, GAT, and GRAND be-
come significantly smoother with the increase
of time (for GCN and GAT, time corresponds
to the number of layers). However, the damp-
ing factor can reduce the length of the up-
date gradient when features become similar, al-
lowing GRAND to achieve a non-zero energy
lower bound. For GNRF, even without the
DF, it will lead to a decrease in ∥∂thi(t)∥ as
∥EdgeNetij(t)∥ approaches 0 (due to curva-
ture approaches 0), which similarly causes the
Dirichlet energy to converge to a positive value.
Under the combined influence of the damp-
ing factor and curvature, the Dirichlet energy
of GNRF exhibits near-steady-state behavior,
which is also within the scenarios envisioned
in Theorem 2.

��� ��

�� ��
 ���� ���
 �
�� ���
 ����
������#�

�

�

�

	

�

�

lo
g 1

0
E(

t)

��"���"��
��!����
��%�"

�������� �!�
������!"

�$����
��!���$��

Figure 4: The evolution of Dirichlet energy of GNRF across different datasets (left); visualization
of node representations for Roman-Empire (right).

Figure 5: Visualization of node features
for Roman-Empire’s Class 11 and 13.

Next, we show the Dirichlet energy evolution of the well-
trained GNRF under each dataset (Fig. 4, left). The re-
sults illustrate that the GNRF guarantees that the Dirich-
let energy is nearly constant, regardless of whether it is
trained. However, constant energy does not mean stagna-
tion of feature evolution. We use t-SNE to visualize the
node features of the Roman-empire dataset (Fig. 4 right)
and found that nodes of the same category do form larger
and larger clusters, suggesting that the GNRF is beneficial
for classification. We select two classes of node features
in the dataset for visualization (Fig. 5) to further illus-
trate the mechanism by which GNRF takes effect. When
we look at the data at t = 0, we see that nodes of the same
class form many very tight clusters. Moreover, the clus-

9

Published as a conference paper at ICLR 2025

ters of the same class are closer to each other than the clusters of different classes. As time evolves,
small tight clusters gradually become loose and merge with other clusters of the same class to form
larger wholes. This, in turn, leads to more regular decision boundaries. However, we also recog-
nize that too long an evolutionary time can exacerbate category indistinguishability and, therefore,
requires careful tradeoffs.

6 CONCLUSION

We propose a novel continuous-depth graph neural network called Graph Neural Ricci Flow
(GNRF). Specifically, we find that if the classical discrete Ricci flow (DRF) is generalized to at-
tributed graphs, this benefits the evolution of node features, including Dirichlet energy with bilateral
bounds and data-independent evolution time. GNRF is built on the attribute DRF and is the first
graph deep learning model to use time-varying edge curvature. GNRF can fit edge curvature in
linear time and adjust it to near zero, which prevents over-smoothing and information bottlenecks.

ACKNOWLEDGMENTS

The National Natural Science Foundation of China under Grant 62176269 and The National Natural
Science Foundation of China under Grant 62302537 support the research.

REFERENCES

Hugo Attali, Davide Buscaldi, and Nathalie Pernelle. Curvature constrained mpnns: Improving
message passing with local structural properties. 2024.

Anthony Baptista, Ben D MacArthur, and Christopher RS Banerji. Charting cellular differentiation
trajectories with ricci flow. Nature Communications, 15(1):2258, 2024.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning,
pp. 2528–2547. PMLR, 2023.

Derrick Blakely, Jack Lanchantin, and Yanjun Qi. Time and space complexity of graph convolutional
networks. Accessed on: Dec, 31:2021, 2021.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lio, and Michael Bronstein.
Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns.
Advances in Neural Information Processing Systems, 35:18527–18541, 2022.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In International Conference on Machine
Learning, pp. 1407–1418. PMLR, 2021.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. Advances in neural information processing systems, 32, 2019.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 3438–3445, 2020a.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pp. 1725–1735. PMLR,
2020b.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

10

Published as a conference paper at ICLR 2025

Samantha Chen and Yusu Wang. Neural approximation of wasserstein distance via a universal archi-
tecture for symmetric and factorwise group invariant functions. Advances in Neural Information
Processing Systems, 36, 2024.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, et al. Exploring the potential of large language models (llms) in learning
on graphs. ACM SIGKDD Explorations Newsletter, 25(2):42–61, 2024.

Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. Gread: Graph neural
reaction-diffusion networks. In International Conference on Machine Learning, pp. 5722–5747.
PMLR, 2023.

Corinna Coupette, Sebastian Dalleiger, and Bastian Rieck. Ollivier-ricci curvature for hypergraphs:
A unified framework. arXiv preprint arXiv:2210.12048, 2022.

Karel Devriendt and Renaud Lambiotte. Discrete curvature on graphs from the effective resistance.
Journal of Physics: Complexity, 3(2):025008, 2022.

Karel Devriendt, Andrea Ottolini, and Stefan Steinerberger. Graph curvature via resistance distance.
Discrete Applied Mathematics, 348:68–78, 2024.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. Advances in Neural Information
Processing Systems, 35:22326–22340, 2022.

Lukas Fesser and Melanie Weber. Mitigating over-smoothing and over-squashing using augmenta-
tions of forman-ricci curvature. In Learning on Graphs Conference, pp. 19–1. PMLR, 2024.

Ollivier-Ricci Flow. Network alignment by discrete. In Graph Drawing and Network Visualization:
26th International Symposium, GD 2018, Barcelona, Spain, September 26-28, 2018, Proceedings,
volume 11282, pp. 447. Springer, 2018.

Forman. Bochner’s method for cell complexes and combinatorial ricci curvature. Discrete &
Computational Geometry, 29:323–374, 2003.

Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan Quan, Jianxin Chang,
Depeng Jin, Xiangnan He, et al. A survey of graph neural networks for recommender systems:
Challenges, methods, and directions. ACM Transactions on Recommender Systems, 1(1):1–51,
2023.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric dgn: a stable architecture
for deep graph networks. arXiv preprint arXiv:2210.09789, 2022.

Richard S Hamilton. Three-manifolds with positive ricci curvature. Journal of Differential geometry,
17(2):255–306, 1982.

Moritz Hehl. Ollivier-ricci curvature of regular graphs. arXiv preprint arXiv:2407.08854, 2024.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Sergio Serrano de Haro Iváñez. Comparative analysis of forman-ricci curvature versions applied to
the persistent homology of networks. arXiv preprint arXiv:2212.01357, 2022.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
graphs: A comprehensive survey. arXiv preprint arXiv:2312.02783, 2023.

11

Published as a conference paper at ICLR 2025

Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring for
addressing oversquashing in gnns. arXiv preprint arXiv:2210.11790, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Xin Lai, Shuliang Bai, and Yong Lin. Normalized discrete ricci flow used in community detection.
Physica A: Statistical Mechanics and its Applications, 597:127251, 2022.

Haifeng Li, Jun Cao, Jiawei Zhu, Yu Liu, Qing Zhu, and Guohua Wu. Curvature graph neural
network. Information Sciences, 592:50–66, 2022.

Yibo Li, Xiao Wang, Hongrui Liu, and Chuan Shi. A generalized neural diffusion framework on
graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 8707–
8715, 2024.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
ential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

Fanzhen Liu, Shan Xue, Jia Wu, Chuan Zhou, Wenbin Hu, Cecile Paris, Surya Nepal, Jian Yang,
and Philip S Yu. Deep learning for community detection: progress, challenges and opportunities.
arXiv preprint arXiv:2005.08225, 2020.

Yang Liu, Chuan Zhou, Shirui Pan, Jia Wu, Zhao Li, Hongyang Chen, and Peng Zhang. Curvdrop:
A ricci curvature based approach to prevent graph neural networks from over-smoothing and
over-squashing. In Proceedings of the ACM Web Conference 2023, pp. 221–230, 2023.

Yuankai Luo, Lei Shi, and Xiao-Ming Wu. Classic gnns are strong baselines: Reassessing gnns for
node classification. arXiv preprint arXiv:2406.08993, 2024.

Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph convolutional networks with
eigenpooling. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 723–731, 2019.

Koji Maruhashi, Junichi Shigezumi, Nobuhiro Yugami, and Christos Faloutsos. Eigensp: A more ac-
curate shortest path distance estimation on large-scale networks. In 2012 IEEE 12th International
Conference on Data Mining Workshops, pp. 234–241. IEEE, 2012.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node classification
in graph neural networks. Journal of Computational Science, 62:101695, 2022.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In
International Conference on Machine Learning, pp. 25956–25979. PMLR, 2023.

Chien-Chun Ni, Yu-Yao Lin, Feng Luo, and Jie Gao. Community detection on networks with ricci
flow. Scientific reports, 9(1):9984, 2019.

Yann Ollivier. Ricci curvature of metric spaces. Comptes Rendus Mathematique, 345(11):643–646,
2007.

Yann Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional Analysis,
256(3):810–864, 2009.

12

Published as a conference paper at ICLR 2025

Yann Ollivier. A survey of ricci curvature for metric spaces and markov chains. In Probabilistic
approach to geometry, volume 57, pp. 343–382. Mathematical Society of Japan, 2010.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

Seong-Hun Paeng. Volume and diameter of a graph and ollivier’s ricci curvature. European Journal
of Combinatorics, 33(8):1808–1819, 2012.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Agnes Radl, Ulrike von Luxburg, and Matthias Hein. The resistance distance is meaningless for
large random geometric graphs. In Proc. Workshop on Analyzing Networks and Learning with
Graphs. Citeseer, 2009.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan
Günnemann, and Michael M Bronstein. Edge directionality improves learning on heterophilic
graphs. In Learning on Graphs Conference, pp. 25–1. PMLR, 2024.

T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bron-
stein. Graph-coupled oscillator networks. In International Conference on Machine Learning, pp.
18888–18909. PMLR, 2022.

Xu Shen, Pietro Lio, Lintao Yang, Ru Yuan, Yuyang Zhang, and Chengbin Peng. Graph rewiring
and preprocessing for graph neural networks based on effective resistance. IEEE Transactions on
Knowledge and Data Engineering, 2024.

Jayson Sia, Edmond Jonckheere, and Paul Bogdan. Ollivier-ricci curvature-based method to com-
munity detection in complex networks. Scientific reports, 9(1):9800, 2019.

Joshua Southern, Jeremy Wayland, Michael Bronstein, and Bastian Rieck. Curvature filtrations for
graph generative model evaluation. Advances in Neural Information Processing Systems, 36:
63036–63061, 2023.

RP Sreejith, Karthikeyan Mohanraj, Jürgen Jost, Emil Saucan, and Areejit Samal. Forman curva-
ture for complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2016(6):
063206, 2016.

Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Hao Peng, Sen Su, and S Yu Philip. Hy-
perbolic variational graph neural network for modeling dynamic graphs. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 4375–4383, 2021.

Li Sun, Junda Ye, Hao Peng, and Philip S Yu. A self-supervised riemannian gnn with time varying
curvature for temporal graph learning. In Proceedings of the 31st ACM international conference
on information & knowledge management, pp. 1827–1836, 2022.

Matthew Thorpe, Tan Minh Nguyen, Heidi Xia, Thomas Strohmer, Andrea Bertozzi, Stanley Osher,
and Bao Wang. Grand++: Graph neural diffusion with a source term. In International Conference
on Learning Representation (ICLR), 2022.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

13

Published as a conference paper at ICLR 2025

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Yuelin Wang, Kai Yi, Xinliang Liu, Yu Guang Wang, and Shi Jin. Acmp: Allen-cahn message pass-
ing for graph neural networks with particle phase transition. arXiv preprint arXiv:2206.05437,
2022.

Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot, Thomas Sei-
del, and Thierry Langer. A compact review of molecular property prediction with graph neural
networks. Drug Discovery Today: Technologies, 37:1–12, 2020.

RHS Winterton. Newton’s law of cooling. Contemporary Physics, 40(3):205–212, 1999.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Dif-
former: Scalable (graph) transformers induced by energy constrained diffusion. arXiv preprint
arXiv:2301.09474, 2023.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022.

Ke Xu, Yuanjie Zhu, Weizhi Zhang, and S Yu Philip. Graph neural ordinary differential equations-
based method for collaborative filtering. In 2023 IEEE International Conference on Data Mining
(ICDM), pp. 1445–1450. IEEE, 2023.

Menglin Yang, Min Zhou, Zhihao Li, Jiahong Liu, Lujia Pan, Hui Xiong, and Irwin King.
Hyperbolic graph neural networks: A review of methods and applications. arXiv preprint
arXiv:2202.13852, 2022.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural networks and their current
applications in bioinformatics. Frontiers in genetics, 12:690049, 2021.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and Can Wang.
Hierarchical graph pooling with structure learning. arXiv preprint arXiv:1911.05954, 2019.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. arXiv preprint
arXiv:1909.12223, 2019.

Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Dirichlet
energy constrained learning for deep graph neural networks. Advances in Neural Information
Processing Systems, 34:21834–21846, 2021a.

Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Dirichlet
energy constrained learning for deep graph neural networks. Advances in Neural Information
Processing Systems, 34:21834–21846, 2021b.

14

Published as a conference paper at ICLR 2025

A RELATED WORK

A.1 RIEMANNIAN GRAPH LEARNING

Recent research has shown that studying GNNs from the perspective of Riemannian geometry can
provide additional benefits. For instance, embedding graph data into a hyperbolic space can effec-
tively address the neighborhood explosion problem that arises when performing message aggrega-
tion on graphs with a power-law distribution (Yang et al., 2022; Sun et al., 2021; Chami et al., 2019).
The core idea of such work is to map representations into a space of constant negative curvature (in
contrast to the zero curvature of Euclidean space), thereby improving representation quality. An-
other more direct approach is to learn based on general Riemannian manifolds. They use graph
curvature as a measurement for graph topology, and achieve structure-aware learning through graph
rewiring (Nguyen et al., 2023; Topping et al., 2021; Fesser & Weber, 2024), edge sampling (Liu
et al., 2023), or neighbor reweighting (Li et al., 2022).

A.2 EDGE CURVATURE ON WEIGHTED GRAPHS

Forman-Ricci curvature. The idea of transferring the concept of curvature from Riemannian geom-
etry to discrete graph-structured data was initially proposed by Forman (2003). This paper suggests
constructing an analog of curvature in graph spaces using k-dimensional discrete CW complexes and
their weights. A commonly used definition considers 1-dimensional and 2-dimensional complexes
(Sreejith et al., 2016), which is:

κFR
ij = wi + wj − wij

∑
u∼i

√
wi

wiu
− wij

∑
v∼j

√
wj

wjv
. (11)

Here, wi represents the weight on node i. However, in many cases, we only have edge weights
without node weights. A simple approach in this situation is to consider the node weight as the sum
of the weights of all its connected edges:

κFR
ij = 2−

∑
u∼i

wij√
wiu

−
∑
v∼j

wij√
wjv

. (12)

Although there have been several improvements to Forman-Ricci curvature, the most notable ones
being balanced Forman curvature (Topping et al., 2021) and augmented Forman curvature (Iváñez,
2022) , they cannot be defined on weighted graphs.

Resistance curvature. Resistance curvature is defined based on the equivalent resistance in a re-
sistance network. We envision a network composed of multiple resistors connected, where each
edge in the network has an associated resistor, and the positive edge weights represent the resistance
values. Suppose we measure the voltage and current between any two vertices externally. In that
case, the network can be simplified to a single equivalent resistor, and the resistance value of this
resistor is referred to as the equivalent resistance. Equivalent resistance is a form of distance (De-
vriendt & Lambiotte, 2022; Devriendt et al., 2024), and compared to other distance metrics defined
on edge-weighted graphs, it effectively captures the connectivity information of the entire network.
Specifically, if we define the following weighted Laplacian matrix Q:

(Q)ij =


− wij if i ∼ j

Σj∼iwij if i = j

0 otherwise.

(13)

then the equivalent resistance between nodes i and j can be defined as:

rij = (ei − ej)
TQ+(ei − ej). (14)

where ei represents the i-th unit vector, and Q+ denotes the pseudo-inverse of Q. Resistance dis-
tance helps understand the robustness of GNNs and addresses the overs-quashing problem (Shen
et al., 2024; Black et al., 2023); it can also be used to define new discrete curvatures (Devriendt &
Lambiotte, 2022; Devriendt et al., 2024). In this paper, we use the definition proposed by Devriendt
& Lambiotte (2022), which is:

κRC
ij =

2−
∑

k∼i rikwik −
∑

k∼j rikwjk

rij
. (15)

15

Published as a conference paper at ICLR 2025

Although this definition seems appealing, it is not computable in real-time. The reason is that
calculating the pseudo-inverse of a matrix requires at least cubic time complexity. Fortunately, Radl
et al. (2009) provides us with a simple approximation:

rij ≈ r̃ij =
1

N

(
1∑

u∼i wui
+

1∑
v∼j wvj

)
. (16)

Where N represents the number of nodes in the graph. This formula guarantees an error of O(1/N).
The curvature obtained using this approximation is referred to as the approximate resistance cur-
vature:

κ̃RC
ij =

2−
∑

k∼i r̃ikwik −
∑

k∼j r̃ikwjk

r̃ij
. (17)

Ollivier-Ricci curvature. Since Ollivier (2007) introduced this concept, ORC has become one of
the most commonly used mathematical tools for analyzing networks using geometric methods. It has
been widely applied in various areas, including complex network analysis (Paeng, 2012), community
detection (Sia et al., 2019), hypergraph learning (Coupette et al., 2022), and understanding over-
smoothing and over-squashing (Nguyen et al., 2023). A more accessible definition can be found in
Hehl (2024). Specifically, let us define the probability measure of a random walk originating from
any node u within its first-order neighbors as:

µu(v) =


wxy∑
z∼x wxz

if y ∼ x

0, otherwise.
(18)

Then, the κOR
ij between any node pair (i, j) is defined as:

κOR
ij = 1− W1(µi, µj)

d(i, j)
. (19)

where d(i, j) represents the shortest distance between nodes i and j in graph G. For adjacent nodes
i and j, d(i, j) = 1. W1 denotes the 1-Wasserstein distance between the two probability measures.

A.3 DIRICHLET ENERGY

Dirichlet energy is a commonly used measure of the smoothness of node attributes (Chen et al.,
2020a; Zhao & Akoglu, 2019), and it is also employed as a regularization term to mitigate GNN
over-smoothing (Zhou et al., 2021b). First, we define the symmetrically normalized adjacency ma-
trix for graph G as follows:

Ã =


1√

(1 + di)(1 + dj)
, i ∼ j,

0, otherwise.

(20)

Here, di denotes the degree of node i. When the node attribute matrix on G is H , the Dirichlet
energy is defined as:

E(H) = Tr
(
HT (I − Ã)H

)
=

1

2

∑
(i,j)∈E

∥∥∥∥∥ hi√
1 + di

− hj√
1 + dj

∥∥∥∥∥
2

2

(21)

B PROOF

Lemma B.1. If there exists a constant L such that for any x1, x2 ∈ [xl, xr], the continuous
function f satisfies |f(x1)− f(x2)| ≥ L|x1 − x2|, then f(x) is monotonic in [xl, xr].

Proof. Consider a proof by contradiction. Suppose f is not monotonic. Then a critical point x∗ ∈
(xl, xr) must exist. Without loss of generality, assume f(x∗) is a local maximum. Then there must
exist points x∗

− and x∗
+ on either side of x∗ such that f(x∗) > f(x∗

−) = f(x∗
+) .

0 = |f(x∗
+)− f(x∗

−)| ≥ L|x∗
+ − x∗

−| > 0. (22)
This leads to a contradiction, so f(x) cannot have any critical points in [xl, xr], which implies that
f(x) is monotonic.

16

Published as a conference paper at ICLR 2025

Lemma B.2. (Maruhashi et al., 2012) Let A denote the unweighted adjacency matrix of an
undirected graph G, vr the r-th eigenvector of A, λ the vector composed of all eigenvalues of A.
λk implies that the k-th power is applied to each element of λ. Then the shortest path distance
between any two nodes i and j is:

d(i, j) = min
k

[(
vi ◦ λk ◦ vj

)T
1 > 0

]
. (23)

Lemma B.3. (Chen & Wang, 2024) Let ϵ > 0, (Ω, dΩ) be a compact metric space and let X
be the space of weighted point sets equipped with p-Wasserstein, for any A,B ∈ X , there exist
trainable networks ϕ1, ϕ2, and ϕ3 with sufficiently large numbers of parameters such that:∣∣∣∣∣∣Wp(A,B)− ϕ1

ϕ2

 ∑
(x,wx)∈A

wxϕ3(x)

+ ϕ2

 ∑
(y,wy)∈B

wyϕ3(y)

∣∣∣∣∣∣ < ϵ. (24)

Lemma B.4. For any symmetric adjacency matrix A ∈ {0, 1}n×n, and its corresponding degree
matrix D = diag(d1, · · · , dn), the following inequality holds:∑

i∈[n]

di
1 + di

−
∑
i∈[n]

∑
j∈[n]

Aij√
(1 + di)(1 + dj)

≥ 0 (25)

The equality sign is taken when and only when A is a regular graph.

Proof. Notes that:∑
i∈[n]

di
1 + di

=
∑
i∈[n]

di√
(1 + di)(1 + di)

= 1T
n (I +D)−

1
2D(I +D)−

1
21n, (26)

and ∑
i∈[n]

∑
j∈[n]

Aij√
(1 + di)(1 + dj)

= 1T
n (I +D)−

1
2A(I +D)−

1
21n. (27)

Thus the inequality to be proved can be transformed into:

1T
n (I +D)−

1
2 (D −A)(I +D)−

1
21n ≥ 0. (28)

Let x = 1n(I +D)−
1
2 and L = D −A, now we need to prove:

xTLx ≥ 0. (29)

This is clearly valid according to the semi-positive characterization of the Laplace matrix.

We now consider the conditions under which the equal sign holds. From linear algebra, we know
that the quadratic form xTLx is equal to 0 if and only if x lies in the null space of L, i.e., Lx = 0.
More specifically, (D −A)(I +D)−

1
21n = 0. Expanding it into elemental form, we get that for

every node i, it must satisfy:
di√
1 + di

=
∑
j∼i

1√
1 + dj

. (30)

Obviously, when A is a regular graph, i.e., di ≡ r, this condition always holds. However, if A is
not a regular graph, then there must exist a node in A with the highest degree among all nodes, and
it is connected to at least one node with a lower degree. Let us denote such a node as i. In this case,
we can conclude:

di√
1 + di

=
∑
j∼i

1√
1 + dj

>
∑
j∼i

1√
1 + di

=
di√
1 + di

. (31)

This leads to a contradiction, meaning that the equality can only hold when A is a regular graph.

17

Published as a conference paper at ICLR 2025

B.1 PROOF OF LEMMA 1

Lemma B.5 (Formal version of lemma 1). Consider the Attri-DRF over the interval [t1, t2].
If the edge weight wij(t) has a finite number of N extrema points within (t1, t2), denoted by
T1, . . . , TN , and define T0 = t1 and TN+1 = t2, then:

λ− 1

ζ
> Et∈[t1,t2](|κij(t)|) >

1− λ−1

t2 − t1
, (32)

where ζ = min0≤i≤N (Ti+1 − Ti) represents the length of the most minor maximal monotonic
interval within [t1, t2], and λ = maxa w(Ta)

minb w(Tb)
denotes the ratio of the maximum to the minimum

value of w(t). Specifically, if wij(t) is monotonic within (t1, t2), we have:

1

min{w(t2), w(t1)}
|w(t2)− t(t1)|

t2 − t1
> Et∈[t1,t2](|κij(t)|), (33)

which |w(t2)− t(t1)| → 0 implies Et∈[t1,t2](|κij(t)|) → 0.

Since the edge i ∼ j is arbitrary, we omit the κij(t) subscript in the proof. First, we integrate
Equation (3) over an arbitrary time interval [t1, t2]:

w(t2)− w(t1) = −
∫ t2

t1

κ(t)w(t)dt. (34)

Suppose that within [t1, t2], the function w(t) has N extremum points. These N points divide
the interval [t1, t2] into N + 1 adjacent monotonic sub-intervals. Given that w(t) > 0, according to
Equation (1), it follows that the sign of ∂w(t)

∂t is determined by κ(t). Moreover, the κ(t) sign remains
non-negative or non-positive within each monotonic sub-interval.

Let [Ti, Ti+1] denote any one of these N+1 monotonic sub-intervals. If κ(t) ≥ 0 for t ∈ [Ti, Ti+1],
then w(t) is monotonically decreasing, which implies w(Ti) > w(t) > w(Ti+1) > 0. Therefore:

0 > −w(Ti+1)

∫ Ti+1

Ti

κ(t)dt > −
∫ Ti+1

Ti

κ(t)w(t)dt > −w(Ti)

∫ Ti+1

Ti

κ(t)dt. (35)

If κ(t) ≤ 0 for t ∈ [Ti, Ti+1], then w(t) is monotonically increasing, which implies w(Ti+1) >
w(t) > w(Ti) > 0 and

−w(Ti+1)

∫ Ti+1

Ti

κ(t)dt > −
∫ Ti+1

Ti

κ(t)w(t)dt > −w(Ti)

∫ Ti+1

Ti

κ(t)dt > 0. (36)

Therefore, on any monotonic sub-interval, we have:

−w(Ti+1)

∫ Ti+1

Ti

κ(t)dt > w(Ti+1)− w(Ti) > −w(Ti)

∫ Ti+1

Ti

κ(t)dt. (37)

Take the absolute value of the above inequality:

max{w(Ti), w(Ti+1)}
∫ Ti+1

Ti

|κ(t)|dt > |w(Ti+1)−w(Ti)| > min{w(Ti), w(Ti+1)}
∫ Ti+1

Ti

|κ(t)|dt.

(38)
Let wmax > max{w(Ti), w(Ti+1)} > min{w(Ti), w(Ti+1)} > wmin, we have:

|w(Ti+1)− w(Ti)|
wmin

>

∫ Ti+1

Ti

|κ(t)|dt > |w(Ti+1)− w(Ti)|
wmax

. (39)

Summing over i from 0 to N and then dividing by t2 − t1:∑N
i=0 |w(Ti+1)− w(Ti)|

wmin(t2 − t1)
>

1

t2 − t1

∫ t2

t1

|κ(t)|dt = Et∈[t1,t2](|κij(t)|) >
∑N

i=0 |w(Ti+1)− w(Ti)|
wmax(t2 − t1)

.

(40)
Because (N +1)(wmax−wmin) >

∑N
i=0 |w(Ti+1)−w(Ti)| > wmax−wmin, and λ = wmax

wmin
, then:

(N + 1)(λ− 1)

t2 − t1
> Et∈[t1,t2](|κij(t)|) >

1− λ−1

t2 − t1
. (41)

According to the definition of ζ, we have (t2 − t1) > ζ(N + 1). Thus, the estimation of the upper
bound can be replaced by ζ−1(λ− 1) > (N+1)(λ−1)

t2−t1
, thereby completing the proof.

18

Published as a conference paper at ICLR 2025

B.2 PROOF OF THEOREM 2

Theorem B.6. Consider the Attri-DRF with edge weight wij(t) ≡ cos(hi,hj) + 1 + ϵ and
|h(t)| ≡ 1. If for any i ∼ j in G, wij(t) has a finite number of monotonic intervals on [t1, t2],
then the average Dirichlet energy within [t1, t2] has following bound:

B1 ≥ Et∈[t1,t2](E(H(t))) ≥ B2, (42)

where:

B1 = (t2 − t1)
∑
i∈V

∑
j∼i λijζ

−1
ij

1 + di
+
∑

(i,j)∈E

((t2 − t1)λijζ
−1
ij (1 + ϵ)− ϵλij)Ãij ,

B2 =
∑

(i,j)∈E

Ãij

(
1 + ϵ− (2 + ϵ)ζ−1

ij (t2 − t1)
)
+
∑
i∈V

di
1 + di

.

(43)

di denotes the degree of node i, and Ã represents the symmetrically normalized adjacency matrix
of graph G.

We begin the proof by expanding the definition of the Dirichlet energy. Noting that ∥hi(t)∥ = 1 and
wij(t) = hi(t)

Thj(t) + 1 + ϵ, we have:

E(H(t)) =
1

2

∑
(i,j)∈E

∥∥∥∥∥ hi(t)√
1 + di

− hj(t)√
1 + dj

∥∥∥∥∥
2

2

=
1

2

∑
(i,j)∈E

(
∥hi(t)∥2

1 + di
+

∥hj(t)∥2

1 + dj
− 2

hi(t)
Thj(t)√

(1 + di)(1 + dj)

)

=
∑

(i,j)∈E

[
1

2

(
1

1 + di
+

1

1 + dj

)
+

1 + ϵ√
(1 + di)(1 + dj)

− wij(t)√
(1 + di)(1 + dj)

]
.

(44)
By defining cij ≜ 1

2

(
1

1+di
+ 1

1+dj

)
+ 1+ϵ√

(1+di)(1+dj)
and Eij(t) ≜ cij − wij(t)√

(1+di)(1+dj)
, the

Dirichlet energy can also be simplified to:

E(H(t)) =
∑

(i,j)∈E

(
cij −

wij(t)√
(1 + di)(1 + dj)

)
=

∑
(i,j)∈E

Eij(t). (45)

Take the partial derivative of the above equality to t:

∂E(H(t))

∂t
=

∑
(i,j)∈E

(
− 1√

(1 + di)(1 + dj)

∂wij(t)

∂t

)

=
∑

(i,j)∈E

κij(t)wij(t)√
(1 + di)(1 + dj)

=
∑

(i,j)∈E

κij(t) [cij −Eij(t)] .

(46)

Noting that the above equation holds for any graph G, we can construct a subgraph Gij such that it
contains only two vertices {i, j} and a single edge i ∼ j. In this case, we have:

∂Eij(t)

∂t
= κij(t) [cij −Eij(t)] . (47)

Integrate over an arbitrary time interval [t1, t2]:

Eij(t2)−Eij(t1) = cij

∫ t2

t1

κij(t)dt−
∫ t2

t1

κij(t)Eij(t)dt. (48)

19

Published as a conference paper at ICLR 2025

We first prove the lower bound. Similar to the proof of Lemma 1, we consider the N extremum
points of wij(t) within (t1, t2): T1, · · · , TN . For any i, κij(t) does not change its sign within

(Ti, Ti+1), and since Eij(t) ≥ 0, we have
∣∣∣∫ Ti+1

Ti
κij(t)Eij(t)dt

∣∣∣ = ∫ Ti+1

Ti
|κij(t)|Eij(t)dt, so:

|Eij(Ti+1)−Eij(Ti)| =

∣∣∣∣∣cij
∫ Ti+1

Ti

κij(t)dt−
∫ Ti+1

Ti

κij(t)Eij(t)dt

∣∣∣∣∣
=

∣∣∣∣∣cij
∫ Ti+1

Ti

κij(t)dt

∣∣∣∣∣−
∣∣∣∣∣
∫ Ti+1

Ti

κij(t)Eij(t)dt

∣∣∣∣∣
= cij

∫ Ti+1

Ti

|κij(t)|dt−
∫ Ti+1

Ti

|κij(t)|Eij(t)dt

≈ cij

∫ Ti+1

Ti

|κij(t)|dt− Et∈[t1,t2](|κij(t)|)
∫ Ti+1

Ti

Eij(t)dt.

(49)

Sum over i from 0 to N and then divide by t2 − t1:

1

t2 − t1

N∑
i=0

|Eij(Ti+1)−Eij(Ti)| ≥ Et∈[t1,t2](|κij(t)|)
[
cij − Et∈[t1,t2](Eij(t))

]
. (50)

Noting that (N + 1)ζij ≤ t2 − t1 and wij ≤ 2 + ϵ, the left-hand side of the above inequality can be
enlarged to:

1

t2 − t1

N∑
i=0

|Eij(Ti+1)−Eij(Ti)| =
1

t2 − t1

N∑
i=0

|wij(Ti+1)− wij(Ti)|√
(1 + di)(1 + dj)

≤ (N + 1)(maxwij −minwij)

(t2 − t1)
√

(1 + di)(1 + dj)

≤
ζ−1
ij maxwij(1− λ−1

ij)√
(1 + di)(1 + dj)

≤
(2 + ϵ)ζ−1

ij (1− λ−1
ij)√

(1 + di)(1 + dj)
.

(51)

Thus we have:

(2 + ϵ)ζ−1(1− λ−1)√
(1 + di)(1 + dj)

≥ Et∈[t1,t2](|κ(t)|)
[
cij − Et∈[t1,t2](E(t))

]
. (52)

By applying Lemma B.1, we can obtain the lower bound for Et∈[t1,t2](Eij(t)):

Et∈[t1,t2](Eij(t)) ≥cij −
(2 + ϵ)ζ−1

ij (1− λ−1
ij)

Et∈[t1,t2](|κ(t)|)
√
(1 + di)(1 + dj)

=

(
1 + ϵ−

(2 + ϵ)ζ−1
ij (1− λ−1

ij)

Et∈[t1,t2](|κij(t)|)

)
1√

(1 + di)(1 + dj)
+

1

2

(
1

1 + di
+

1

1 + dj

)

=Ãij

(
1 + ϵ−

(2 + ϵ)ζ−1
ij (1− λ−1

ij)

Et∈[t1,t2](|κij(t)|)

)
+

1

2

(
1

1 + di
+

1

1 + dj

)
≥Ãij

(
1 + ϵ− (2 + ϵ)ζ−1

ij (t2 − t1)
)
+

1

2

(
1

1 + di
+

1

1 + dj

)
.

(53)
Take the sum over all edge:

Et∈[t1,t2](E(t)) ≥
∑

(i,j)∈E

Ãij

(
1 + ϵ− (2 + ϵ)ζ−1

ij (t2 − t1)
)
+
∑
i∈V

di
1 + di

. (54)

20

Published as a conference paper at ICLR 2025

Now, let’s derive the upper bound. Recalling Eq. (49), for any maximal monotonic interval [Ti, Ti+1]
of wij(t), we have:∫ Ti+1

Ti

|κij(t)|Eij(t)dt = cij

∫ Ti+1

Ti

|κij(t)|dt− |Eij(Ti+1)−Eij(Ti)|. (55)

Sum over i from 0 to N :∫ t2

t1

|κij(t)|Eij(t)dt = cij

∫ t2

t1

|κij(t)|dt−
N∑
i=0

|Eij(Ti+1)−Eij(Ti)|

= cij

∫ t2

t1

|κij(t)|dt−
N∑
i=0

|wij(Ti+1)− wij(Ti)|√
(1 + di)(1 + dj)

≤ cij

∫ t2

t1

|κij(t)|dt−
maxwij −minwij√

(1 + di)(1 + dj)

≤ cij

∫ t2

t1

|κij(t)|dt−
ϵ(λij − 1)√

(1 + di)(1 + dj)
.

(56)

Divide both sides by t2 − t1:

Et∈[t1,t2]

(
|κij(t)|Eij(t)

)
≤ cijEt∈[t1,t2]

(
|κij(t)|

)
− ϵ(λij − 1)

(t2 − t1)
√

(1 + di)(1 + dj)
. (57)

Applying Lemma 1, we obtain:

1− λ−1
ij

t2 − t1
Et∈[t1,t2]

(
Eij(t)

)
≤ cijζ

−1
ij (λij − 1)− ϵ(λij − 1)

(t2 − t1)
√

(1 + di)(1 + dj)
. (58)

Due to E(t) =
∑

(i∼j)∈E Eij(t), we can derive the upper bound as:

Et∈[t1,t2](E(t)) ≤ (t2 − t1)
∑

(i∼j)∈E

cijλijζ
−1
ij −

∑
(i∼j)∈E

ϵλij√
(1 + di)(1 + dj)

= (t2 − t1)

 ∑
(i,j)∈E

λijζ
−1
ij

(
1

2
(

1

1 + di
+

1

1 + dj
) + (1 + ϵ)Ãij

)− ϵ
∑

(i,j)∈E

λijÃij

= (t2 − t1)
∑
i∈V

∑
j∼i λijζ

−1
ij

1 + di
+
∑

(i,j)∈E

((t2 − t1)λijζ
−1
ij (1 + ϵ)− ϵλij)Ãij .

(59)
Combining the results of Eq. (53) and Eq. (59), we have:

(t2 − t1)
∑
i∈V

∑
j∼i λijζ

−1
ij

1 + di
+
∑

(i,j)∈E

((t2 − t1)λijζ
−1
ij (1 + ϵ)− ϵλij)Ãij

≥ Et∈[t1,t2](E(t)) ≥
∑

(i,j)∈E

Ãij

(
1 + ϵ− (2 + ϵ)ζ−1

ij (t2 − t1)
)
+
∑
i∈V

di
1 + di

.

(60)

Theorem B.7 (Formal version of Theorem 2). Consider the Attri-DRF with edge weight wij(t) ≡
cos(hi,hj) + 1 + ϵ and |h(t)| ≡ 1. If G is a non-regular graph, and all wij are monotonic on
[t1, t2], let λmax = max(i,j)∈E λij ,we have:

λmax

(∑
i∈V

di
1 + di

+ sum(Ã)

)
≥ Et∈[t1,t2](E(H(t))) ≥

∑
i∈V

di
1 + di

− sum(Ã) > 0. (61)

Note that if κ(t) is monotonically approaching 0 within [t2, t1], we have t2 − t1 = ζ. Then this
conclusion is a direct generalization of Theorem B.6 and Lemma B.4.

21

Published as a conference paper at ICLR 2025

B.3 PROOF OF THEOREM 3

Theorem B.8 (Formal version of Theorem 3). Consider the Attri-DRF with wij(t) ≡
cos(hi,hj) + 1 + ϵ and |h(t)| ≡ 1 and |h| ≡ 1 on any edge i ∼ j. Assume that the curva-
ture is bi-Lipschitz continuous when considered as a function of the weights, i.e., there exist L, K
such that K|w(t2) − w(t1)| ≥ |κ(t2) − κ(t1)| ≥ L|w(t2) − w(t1)|. Let |κij(0)| > 0. For any
arbitrarily small positive number δ, it holds that:

min
t∈[0,+∞)

{|κij(t)| = δ} ≤ 1

Lϵ− δ
ln

(
2L+ δ

δ(2 + ϵ)

)
. (62)

Similarly to the proof of Lemma 1, we omit the edge i ∼ j as a subscript. Since the proof process
for κ(0) < 0 is entirely analogous to that for κ(0) > 0, we can assume κ(0) > 0 without loss of
generality in the following proof.

Denote mint∈[0,+∞){|κij(t)| = δ} = T ∗. Because κ(t) > 0 for all t ∈ [0, T ∗), then ∂w(t)
∂t < 0

and w(t) < w(0). In this case, the condition |κ(t2) − κ(t1)| ≥ L|w(t2) − w(t1)| will lead to the
following two cases:

1. κ(t) ≥ κ(0) + L(w(0)− w(t))

2. κ(t) ≤ κ(0)− L(w(0)− w(t))

We first discuss the case 1, we will demonstrate that this case is impossible. For any t ∈ [0, T ∗), we
can fix the values of w for all edges except the one currently under consideration. At this point, κ(t)
can be expressed as a function of w(t), i.e., κ(t) = κ(w(t)). According to κ(t) > κ(0) and Lemma
B.1, we know that κ(w(t)) increases monotonically as w(t) decreases, i.e., ∂κ(w(t))

∂w(t) ≤ −L < 0.
Please note that this holds for all t ∈ [0,+∞), not just within [0, T ∗). So for any t ∈ [0,+∞), we
have:

∂κ(t)

∂t
=

∂κ(w(t))

∂w(t)

∂w(t)

∂t
= −κ(w(t))w(t)

∂κ(w(t))

∂w(t)
> 0. (63)

Therefore:
∂w(t)

∂t
= −κ(t)w(t) ≤ −κ(0)ϵ < 0, ∀t ∈ [0,+∞). (64)

However, this is impossible because it would lead to w(t) decreasing without bound, while w(t) ≥ ϵ.
This results in a contradiction, so this situation cannot occur.

Next, we consider Case 2. Using a similar proof method as in Case 1, we can show that for κ(t) > 0,
∂κ(w(t))
∂w(t) ≥ L > 0 holds. Reviewing w(t) over [0, T ∗), it is monotonically decreasing. To maximize

T ∗, we need to: 1) maximize w(0)−w(T ∗), where lead to w(0) = 2+ϵ and w(T ∗) = ϵ. 2) minimize
|∂w∂t |. Since κ(T ∗) = δ, for any t ∈ [0, T ∗], the minimum value of κ(t) satisfies κ(t) − κ(T ∗) =
L(w(t)− w(T ∗)), so: κ(t) = L(w(t)− ϵ) + δ. Therefore we have:

∂w(t)

∂t
= −[L(w(t)− ϵ) + δ]w(t) = −Lw(t)2 + (Lϵ− δ)w(t). (65)

This is a first-order nonlinear differential equation of the form y′ = −ay2 + by, whose general
solution is y = b

Caebx−a
+ b

a , where a = L and b = Lϵ− δ. By manipulating the general solution,
we obtain:

Cebt =
aw(t)

aw(t)− b
. (66)

When t = T ∗, w(t) = ϵ, and when t = 0, w(t) = 2+ ϵ. Substituting these values, T ∗ can be solved
as follows:

T ∗ =
1

b
ln

(
aw(T)

aw(T)− b
· aw(0)− b

aw(0)

)
=

1

Lϵ− δ
ln

(
2L+ δ

δ(2 + ϵ)

)
.

(67)

Treating L and ϵ as non-zero constants, we have:
T ∗ = O

(
ln
(
δ−1
))

. (68)

22

Published as a conference paper at ICLR 2025

B.4 DERIVATION OF PROPOSITION 4

From the condition |hi(t)| ≡ 1, we know that ∂t∥hi(t)∥2 ≡ 0, which expands using the chain rule
to:

2

〈
hi(t),

∂hi(t)

∂t

〉
= 0. (69)

Moreover, due to wij(t) = hi(t)
Thj(t) + 1 + ϵ, we know that ∂w(hi,hj)

∂hi
= hj(t). To simplify

notation, we omit the independent variable t and denote ∂hi(t)
∂t as y. Let µ = − κij(t)w(hi,hj)

1+λ(hi(t),hj(t))
. At

this point, the original problem takes the following quadratic programming form:

min yTy

s.t. hT
j y = µ, (70)

hT
i y = 0. (71)

Consider the method of Lagrange multipliers:

∇yL(y) = 0

−→ ∇y

(
yTy + λ(hT

j y − µ) + τhT
i y
)
= 0

−→ 2y + λhj + τhi = 0. (72)

Left-multiplying Eq. (72) by hT
i , and combining it with Eq. (71) and hT

i hi = 1, we get:

τ = −λhT
i hj . (73)

Similarly, left-multiplying Eq. (72) by hT
j :

2hT
j y + λ+ τhT

j hi = 0

−→ 2µ+ λ− λ(hT
j hi)

2 = 0

−→ λ = −2µ
(
1− (hT

j hi)
2
)−1

(74)

Thus we can obtain the solution to this optimization problem:

y∗ = −λhj + τhi

2
= −λhj − λhT

i hjhi

2
= −

λ
(
I − hih

T
i

)
hj

2

=
µ
(
I − hih

T
i

)
hj

1− (hT
j hi)2

=
µ

1− (hT
i hj)2

[
hj − cos

(
hi,hj

)
hi

]
= −κ′

ij(t)

[
hj − cos

(
hi,hj

)
hi

]
.

(75)

Note that the constraint condition does not provide an upper bound for ∥y∥, but ∥y∥ ≥ 0 always
holds. Therefore, y∗ corresponds to the point of minimum y.

B.5 PROOF OF THEOREM 5

We first define an EdgeNet layer as follow:

e
(k+1)
ij = MLP

(k)
θ2

∑
u∼i

MLP
(k)
θ1

(
e
(k)
ui

)∥∥∥∥e(k)ij

∥∥∥∥∑
v∼j

MLP
(k)
θ1

(
e
(k)
vj

) , (76)

where, eij represents the attributes on edges i ∼ j, which can be a scalar or vector. ∥ indicates
concat operation. EdgeNet can be viewed as a natural generalization of DeepSet (Zaheer et al.,
2017) on graphs, which performs a permutation-invariant mapping of the neighborhood of an edge.

23

Published as a conference paper at ICLR 2025

Theorem B.9 (Formal version of Theorem 5). Let λ ≡ 1. When Forman-Ricci curvature κFR,
Ollivier-Ricci curvature κOR or approximate resistance curvature κ̃RC are used as the definition
of edge curvature in GNRF, there exists an EdgeNet that can approximate the aggregation weight
of GNRF κ′ with arbitrarily high precision. Respectively, we have:

• If κ ≡ κFR, then a 1-layer EdgeNet with inputs e(0)ij ≡ hi(t)∥hj(t) approximate κ′, i.e.,

κ′
ij(t) = e

(1)
ij .

• If κ ≡ κ̃RC, then a 2-layer EdgeNet with inputs e(0)ij ≡ hi(t)∥hj(t) approximate κ′, i.e.,

κ′
ij(t) = e

(2)
ij .

• If κ ≡ κOR, then a 1-layer EdgeNet with inputs e(0)ij ≡ hi(t)∥hj(t)∥vi approximate κ′,

i.e., κ′
ij(t) = e

(1)
ij .

Here, vi is the i-th eigen-vector of the adjacent matrix A.

According to the standard Universal Approximation Theorem (Hornik et al., 1989), an MLP can
approximate a continuous function to any desired accuracy. Therefore, to prove Theorem 5, we
only need to assign each learnable MLP in the EdgeNet a continuous function. By approximating
eachMLP to its corresponding continuous function, EdgeNet can ultimately approximate any defined
curvature.

If λ ≡ 1, then there exist a continuous function f such that:

κ′
ij =

κijwij

2− 2(wij − 1− ϵ)
≡ f(κij , wij). (77)

For simplicity, we also denote MLP
(k)
θn

as φ
(k)
n . let φ

(0)
1 (hi(t)∥hj(t)) = wij(t)

−0.5 and

φ
(0)
2 (x∥y∥z∥r) = f(2 − (yT z + 1 + ϵ)(x + r), yT z + 1 + ϵ) then we approximate Forman-Ricci

curvature:

e
(1)
ij =φ

(0)
2

∑
u∼i

φ
(0)
1 (hu(t)∥hi(t))

∥∥∥∥hi(t)∥hj(t)

∥∥∥∥∑
v∼j

φ
(0)
1 (hv(t)∥hj(t))


=φ

(0)
2

∑
u∼i

w
− 1

2
ui

∥∥∥∥hi(t)∥hj(t)

∥∥∥∥∑
v∼j

w
− 1

2
vj


=κFR

ij

let φ(0)
1 (hi(t)∥hj(t)) = wij(t), φ

(0)
2 (x∥y∥z∥r) =

(
1

Nx + 1
Nr

) ∥∥yT z+1+ ϵ, φ(1)
1 (x∥y) = xy and

φ
(1)
2 (x∥y∥z∥r) = f(2−(x+r)

y , z) then we approximate κ̃RC
ij :

e
(1)
ij =φ

(0)
2

∑
u∼i

φ
(0)
1 (hu(t)∥hi(t))

∥∥∥∥hi(t)∥hj(t)

∥∥∥∥∑
v∼j

φ
(0)
1 (hv(t)∥hj(t))


=φ

(0)
2

∑
u∼i

wui

∥∥∥∥hi(t)∥hj(t)

∥∥∥∥∑
v∼j

wvj


=r̃ij∥wij

24

Published as a conference paper at ICLR 2025

e
(2)
ij =φ

(1)
2

∑
u∼i

φ
(1)
1 (r̃ui∥wui)

∥∥∥∥r̃ij∥∥∥∥wij

∥∥∥∥∑
v∼j

φ
(1)
1 (r̃vj∥wvj)


=φ

(1)
2

∑
u∼i

r̃uiwui

∥∥∥∥r̃ij∥∥∥∥wij

∥∥∥∥∑
v∼j

r̃vjwvj


=κ̃RC

ij

For κOR
ij , the situation becomes a bit more complex. Noting κOR

ij = 1 −W1(µi, µj), our objective
transforms into approximating the 1-Wasserstein distance on the graph using neural networks. Due
to the result of Lamma B.3, we need to find a representation for each node such that there exists a
distance function on this representation to form a compact metric space. For Ollivier-Ricci Curva-
ture, this distance must be the shortest path distance. To achieve this, we can to perform spectral
decomposition on the unweighted adjacency matrix of graph G to obtain a set of eigenvalues and
eigenvectors:

{vi},λ = SVD(A). (78)
Then, according to Lamma B.2, there exists a function f such that f(vi,vj) = d(i, j), where d(i, j)
is the shortest path distance between nodes i and j. Therefore, {vi} forms a reasonable set of points
in the graph shortest distance space. In this time, there exist trainable functions ϕ1, ϕ2, and ϕ3 such
that:

W1(µi, µj) = ϕ3

ϕ2

(∑
u∼i

wuiϕ1(vu)

)
+ ϕ2

∑
v∼j

wvjϕ1(vv)

 . (79)

Let φ(0)
1 (hi(t)∥hj(t)∥vi) = wij(t)ϕ1(vi) and φ

(0)
2 (x∥y∥z∥r∥s) = f(1−ϕ3(ϕ2(x)+ϕ2(s)), y

T z+
1 + ϵ) then we have:

e
(1)
ij =φ

(0)
2

∑
u∼i

φ
(0)
1 (hu(t)∥hi(t)∥vu)

∥∥∥∥∥(hi(t)∥hj(t)∥vi)

∥∥∥∥∥∑
v∼j

φ
(0)
1 (hv(t)∥hj(t)∥vv)


=φ

(0)
2

∑
u∼i

wuiϕ1 (vu)

∥∥∥∥∥(hi(t)∥hj(t)∥vi)

∥∥∥∥∥∑
v∼j

wvjϕ1 (vv)


=κOR

ij

C EXPERIMENTS

C.1 IMPLEMENT DETAILS

Code. An implementation is available at:

https://github.com/Loong-Chan/GNRF new

Models. In the experiments, we set EdgeNet to be single-layer because we found that this performed
well enough. Specifically, we perform experiments using the following formula:

∂hi(t)

∂t
=
∑
j∼i

−EdgeNetij(t)

[
hj(t)− cos

(
hj(t),hi(t)

)
hi(t)

]
, (80)

where

EdgeNetij(t) ≡ MLPθ2

∑
u∼i

MLPθ1 (eui)

∥∥∥∥eij∥∥∥∥∑
v∼j

MLPθ1 (evj)

 , (81)

and eij ≡ hi(t)∥hj(t). Both MLPθ1 andMLPθ2 are 2 layers. Among them, the number of their
hidden neurons and the number of output neurons of MLPθ1 are consistent with the dimension of

25

https://github.com/Loong-Chan/GNRF_new

Published as a conference paper at ICLR 2025

Algorithm 1 Solve GNRF with Forward difference method (PyTorch Geometric style)

1: Input: Features X , labels y, edge index E
2: H = pre transform(X);
3: sour idx, dest idx = E ;
4: for t = 0, 1, · · · , T − 1 do
5: Hsour(t) = H(t)[sour idx]; Hdest(t) = H(t)[dest idx];
6: if use EdgeNet then
7: E(0) = Hsour(t)∥Hdest(t);
8: for l = 0, 1, · · · , L− 1 do
9: Ẽ

(l)
sour = scatter(MLP

(l)
θ1

(
E(l)

)
, sour idx);

10: Ẽ
(l)
dest = scatter(MLP

(l)
θ1

(
E(l)

)
, dest idx);

11: E(l+1) = MLP
(l)
θ2

(
Ẽ

(l)
sour

∥∥∥∥E(l)

∥∥∥∥Ẽ(l)
dest

)
12: end for
13: K = E(L);
14: else
15: Compute curvatures κ(t) by H(t) and E ;
16: K = κ(t)◦(cos(Hsour(t),Hdest(t))+1+ϵ)

2−2 cos2(Hsour(t),Hdest(t))
;

17: end if
18: H̃(t) = Hdest(t)− cos

(
Hsour(t),Hdest(t)

)
Hsour(t);

19: H(t+ 1) = H(t)− η · scatter
(
−K ◦ H̃(t), sour idx

)
;

20: end for
21: Z = post transform(H(T));
22: Compute loss and back propagation via Z and y.

h. The output dimension of MLPθ1 is 1. One can also extend the output dimension of MLPθ2 to
|h|, which we call channel-wise curvature.

An explicit scheme of GNRF can be given using forward time difference:

h′
i = hi − η

∑
j∼i

−EdgeNetij ·
[
hj − cos

(
hj ,hi

)
hi

]
, (82)

where η is step size. When people set a termination time T , this update process will be executed
multiple times within [0, T], eventually producing output h(T). The division of time slices is auto-
matically performed by the ODE solver and is highly related to the solution algorithm.

Experimental Platform. Our code is implemented in Python 3.11.5, with the primary libraries be-
ing PyTorch 2.1.1, PyTorch Geometric 2.4.0, and Torchdiffeq 0.2.4. All experiments are conducted
on a single NVIDIA 4090 GPU with with 40GB of VRAM.

Hyperparameters. We fine-tune GNRF within the hyperparameter search space, performing up to
100 trials on each dataset. The hyperparameter search space is as follows:

Hyperparameters Search Space Distribution Remark

learning rate [10−5, 10−2] log-uniform N/A
weight decay [10−6, 10−3] log-uniform N/A

dropout [0.01,0.99] uniform N/A
hidden dim {64,128,256} categorical For Ogbn-arxiv, it is fixed at 64.

time [0.1,10] log-uniform N/A

Table 4: Hyperparameter Search Space

26

Published as a conference paper at ICLR 2025

Compute curvature via EdgeNet. In GNRF, we use the output of EdgeNet as the value of κij(t):

EdgeNetij(t) = κ′
ij(t) =

κij(t)w(hi,hj)

(1 + λ(hi(t),hj(t)))(1− (hT
i hj)2)

. (83)

Where λ is a scaling factor used to adjust the influence ratio of Attir-DRF on hi and hj for edge
i ∼ j. Currently, we set λ ≡ 1 by default, and the calculation formula for the learnable time-varying
edge curvature is as follows:

κij(t) =
2− 2hT

i hj

hT
i hj + 1

EdgeNetij(t). (84)

This equation is applied in Section 5.1.

Homophily. To comprehensively evaluate the model’s performance, we pay particular attention to
the diversity of the datasets when making our selections. As a result, we chose three homophilic
graphs and five heterophilic graphs. The homophilic graphs exhibit a higher level of homophily in
comparison, with homophily defined as follows:

H =
|{(u, v) : (u, v) ∈ E ∧ yu = yv}|

|E|
. (85)

This is also referred to as edge homophily ratio in the literature.

C.2 MORE EXPERIMENTS

Graph rewiring (Table 5). Graph rewiring typically has a complexity of O(|V|2) (FOSR (Karhad-
kar et al., 2022)) or O(|V||E|) (SDRF (Topping et al., 2021)), which restricts its application to
smaller datasets. In contrast, GNRF operates with a O(|V| + |E|) complexity while still offering
similar curvature adjustments as graph rewiring. Moreover, graph rewiring overlooks label informa-
tion, potentially losing valuable structural priors that are useful for downstream tasks, which hinder
consistent improvements. The end-to-end GNRF effectively addresses this issue.

Backbone Rewiring Cornell Wisconsin Texas

GCN FOSR 57.75(↑ 2.61) 62.50(↑ 0.90) 57.33(↓ 2.67)
SDRF 56.63(↑ 1.49) 61.60(↑ 0.00) 55.11(↓ 4.89)

GNRF FOSR 86.49(↓ 0.79) 88.67(↑ 0.67) 83.38(↓ 4.01)
SDRF 87.39(↑ 0.09) 87.33(↓ 0.67) 84.98(↓ 2.41)

Table 5: GNRF as the backbone model for graph rewiring

Graph classification (Table 6). We report graph classification results on three commonly used
molecular graph or protein graph datasets (NCI1, DD, PROTEINS). We use the widely adopted
80%/10%10% train/validation/test ratio for random splitting (Ma et al., 2019; Zhang et al., 2019;
Ying et al., 2018). And report the mean and variance over 10 different divisions. We perform both
Sum and Mean pooling for all methods. The parameter search range remains consistent with the
main experiment (Table 1). We found that continuous-depth GNNs generally perform better. We
speculate that this may be because the graph-level task requires fusing information from all node
information in the entire graph, which is a challenge for discrete GNNs, but is easier for continuous
GNNs. This is because in order to achieve sufficiently high accuracy, the ODE solver often needs to
perform many time step within [0, T], and it is usually much more than the common layer setting of
discrete GNN (for example, within 5). GNRF performs better than the current advanced continuous
depth GNN, namely ACMP.

Long range graph learning (Table 7). We verify the ability of GNRF to combat the over-squashing
problem on two graph classification datasets with more than 1 million node reviews - Peptides-func
and Peptides-struct. We use the same partitioning and verification methods as in Dwivedi et al.
(2022). We use two commonly used position/structure encodings: LapPE and RWSE to enhance
model performance Rampášek et al. (2022). GatedGCN Li et al. (2015) and SAN Kreuzer et al.
(2021) were added for comparison. Based on our results, we find that GNRF shows significant

27

Published as a conference paper at ICLR 2025

NCI1 DD PROTEINS
Pooling Sum Mean Sum Mean Sum Mean

GCN+res 75.28± 1.33 76.26± 1.05 74.81± 0.96 76.12± 0.57 75.42± 1.30 75.82± 0.35
GAT+res 73.25± 2.11 73.65± 1.35 76.68± 0.88 77.26± 2.01 74.44± 1.35 74.51± 0.96
GRAND 76.54± 1.51 77.82± 0.68 76.56± 0.55 78.51± 0.87 77.12± 0.53 78.25± 1.14
ACMP 77.42± 0.60 79.09± 0.77 75.82± 1.83 78.44± 0.53 78.88± 0.33 78.34± 0.66

GNRF 79.59± 0.69 81.67± 0.51 78.52± 0.64 79.08± 0.88 78.59± 2.12 80.12± 0.54

Table 6: We compare GNRF with other models on 3 graph classification datasets.

improvements over classic message-passing-based GNNs. Without additional encoding, GNRF im-
proves performance by at least 3% over GCN on both Peptides-func and Peptides-struct. When
additional encodings are used, GNRF’s performance can rival that of SAN (a Transformer-based ar-
chitecture). However, we acknowledge that GNRF still struggles to match the state-of-the-art Graph
Transformer methods on the LRGB dataset. But it is forgivable because GNRF remains a fully
message-passing architecture, where first-order neighbors are the only direct source of information
for feature updates. Compared to Graph Transformer methods, GNRF has much lower computa-
tional complexity and is more suitable for large-scale single-graph scenarios.

GCN GatedGCN+RWSE SAN+LapPE SAN+RWSE GNRF GNRF+LapPE GNRF+RWSE

Peptides-func
AP(↑) 0.5930±0.0023 0.6069±0.0035 0.6384±0.0121 0.6439±0.0075 0.6233±0.0080 0.6455±0.0062 0.6480±0.0056

Peptides-struct
MAE(↓) 0.3496±0.0013 0.3357±0.0006 0.2683±0.0043 0.2545±0.0012 0.3166±0.0053 0.2675±0.0044 0.2811±0.0031

Table 7: We verify GNRF on Long Range Graph Benchmark.

Model depth (Table 8). We measure the resource consumption and performance of the models dur-
ing training on the OGBN-Arxiv and OGBN-Year datasets. Since these two datasets share the same
graph structure and attributes (differing only in labels), we only present the resource consumption
results for OGBN-Arxiv. The length of the hidden representation for all models was fixed at 64.
Two classic deep GNNs: APPNP (Gasteiger et al., 2018) and GCNII (Chen et al., 2020b), are used
for comparison. In GCNII, each layer of discrete-depth GNNs uses different learnable parameters,
resulting in parameter count, memory, and time consumption increasing linearly with the number
of layers. In contrast, continuous-depth GNNs have parameter count and memory usage indepen-
dent of depth, giving them a significant advantage at greater depths. Compared with ACMP, the
training time of GNRF does not increase as the depth increases. This is an advantage brought by
the fixed-step ODE solver. In terms of performance, whether it is the homophilious graph (Arxiv)
or the hetrophilious graph (Year), coutinious-depth GNNs (In particular, GNRF) shows significant
advantages when the depth is 4 or 16. When the depth becomes deeper, the performance of both
ACMP and GNRF decreases due to the accumulation of errors in the ODE solver.

GCNII APPNP ACMP GNRF
#Param Mem. Time Acc. #Param Mem. Time Acc. #Param Mem. Time Acc. #Param Mem. Time Acc.

Arxiv
&

Year

4 27.2k 2.24G 0.14s 63.55
33.94 15.0k 1.64G 0.16s 64.52

39.38 19.5k 7.15G 8.43s 67.16
47.55 35.9k 11.5G 0.79s 69.25

48.55

16 76.0k 4.06G 0.24s 64.37
35.01 15.0k 1.64G 0.22s 64.51

39.03 19.5k 7.15G 13.7s 65.72
43.53 35.9k 11.5G 0.79s 65.14

44.13

64 273k 10.7G 0.66s 67.55
35.44 15.0k 1.64G 0.55s 64.66

39.08 19.5k 7.15G 17.6s 51.72
42.31 35.9k 11.5G 0.79s 55.23

40.15

Table 8: We verify the performance of GNRF at different depths and report the model overhead.

C.3 FUTURE DIRECTION

In this paper, we focus on the application of Attribute Discrete Ricci flow in message passing-
based discrete/continuous-depth GNNs. However, in view of the excellent performance of Graph
Transformers (GTs), especially on graph-level tasks, we believe that it is also meaningful to consider
the application of Attri-DRF in this type of method. We believe that this generalization may be
feasible, based on two observations:

28

Published as a conference paper at ICLR 2025

(1) In theory, there are certain curvatures that can be defined on any node pair (i, j) without requiring
i and j to be adjacent (For example, Ollivier Ricci curvature). This is in GTs is very useful because
GTs directly aggregates information from the entire graph.

(2) In practice, a significant difference between our model GNRF and GARND is that the ag-
gregation weight replaces the attention coefficient with a curvature-aware coefficient. Given the
widespread reference of attention coefficients in GTs, this replacement is likely natural.

We also provide a possible promotion here. Let PE(·) be some position encoding function and
sim(·, ·) be some similarity function. We can let wij(t) ≡ sim(PE(i, t),PE(j, t)) to get the general-
ization of Attri-DRF:

∂sim(PE(i, t),PE(j, t))

∂t
= −κij(t)sim(PE(i, t),PE(j, t)). (86)

We leave application on GTs of this definition to future work.

29

	Introduction
	Preliminaries
	Applying DRF on Attributed Graphs
	Dirichlet Energy
	Uniform Curvature Decay

	Our Model: Graph Neural Ricci Flow
	Incorporating Attri-DRF into the DE-GNN framework
	Unifying curvatures via EdgeNet

	Experiment
	Semi-supervised Node Classification
	Curvature
	Dirichlet Energy and Feature Visualization

	Conclusion
	Related Work
	Riemannian Graph Learning
	Edge Curvature on Weighted Graphs
	Dirichlet Energy

	Proof
	Proof of Lemma [lemma 1]1
	Proof of Theorem [theorem 2]2
	Proof of Theorem [theorem 3]3
	Derivation of Proposition [proposition 4]4
	Proof of Theorem [theorem 5]5

	Experiments
	Implement details
	More experiments
	Future direction

