
000 TOWARDS FEW-SHOT ADAPTATION FOR DENSE 001 002 CROSS-MODALITY IMAGE MATCHING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Cross-modality image matching aims to establish correspondences between im-
011 ages captured under different sensing modalities. Recent advances in transformer-
012 based dense matchers and large-scale synthetic training data have led to foun-
013 dation models with strong generalization to unseen modalities. However, their
014 performance degrades when the target modality diverges substantially from the
015 pretraining distribution, making domain-specific adaptation essential. Since an-
016 notated data is often costly and limited, while unlabelled data is plentiful, we
017 address this challenge by adapting pretrained dense matchers with a combination
018 of few-shot labelled and abundant unlabelled samples. Specifically, we exploit the
019 multi-scale architecture of dense matchers by using the finest-scale predictions to
020 guide learning at coarser scales on unlabelled data. Extensive experiments across
021 diverse modalities demonstrate that our approach consistently outperforms both
022 foundation models and purely supervised adaptation, achieving up to 40% im-
023 provement in matching accuracy.

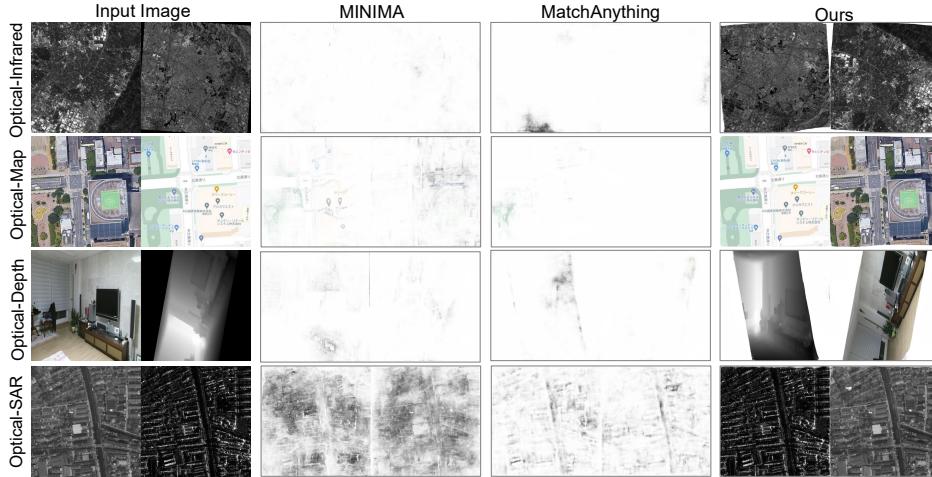
024 025 1 INTRODUCTION 026

027 Cross-modality image matching, which aims to identify corresponding point pairs between images
028 captured under different modalities, is a fundamental task in computer vision. It underpins applica-
029 tions such as image alignment, information fusion, and change detection. The task is challenging
030 because image pairs can exhibit not only geometric variations but also drastic appearance changes
031 due to different imaging principles.

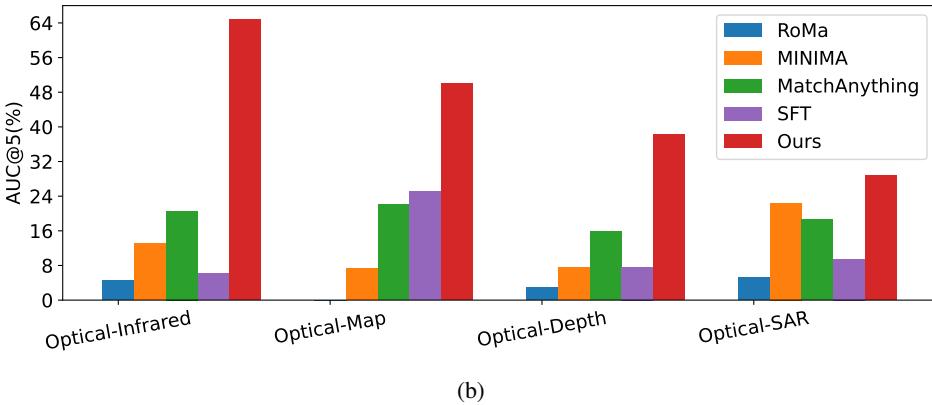
032 Traditional methods (Li et al., 2023) typically follow the “keypoint detection–descriptor extraction–
033 matching” pipeline using SIFT-like features. In contrast, modern approaches (Tuzcuoğlu et al.,
034 2024) adopt a learning-based paradigm, leveraging deep neural networks to directly learn optimal
035 matches. Recent progress has been driven by transformer-based dense matchers (Edstedt et al.,
036 2024) and large-scale synthetic cross-modality datasets (He et al., 2025; Ren et al., 2025), leading
037 to the development of foundation models for cross-modality image matching. Foundation models
038 such as MatchAnything (He et al., 2025) and MINIMA (Ren et al., 2025) demonstrate impressive
039 generalization across diverse domains. However, as shown in Fig. 1, their performance degrades
040 substantially on modalities that deviate significantly from their pretraining data, highlighting the
041 need for domain-specific adaptation.

042 While labelled data is indispensable for training high-quality deep models, it is often expensive and
043 time-consuming to obtain, especially when expert annotation is required. By contrast, unlabelled
044 data is typically abundant and easily accessible. Semi-supervised learning (SSL) offers a promising
045 solution by leveraging unlabelled data to learn generalizable representations, while using a small set
046 of labelled samples to guide task-specific adaptation.

047 Although SSL has been extensively studied in classification (Yang et al., 2022), its application to
048 cross-modality image matching remains largely unexplored. Existing efforts are limited to specific
049 domains and mostly follow detector-based matching pipelines (Hughes & Schmitt, 2019; Liu et al.,
050 2022), with little success in the extremely low-label regime. Our work addresses this gap by adopt-
051 ing the detector-free dense matching paradigm, which has demonstrated superior accuracy, and by
052 introducing an SSL framework that works effectively with few-shot labelled samples across diverse
053 modalities.



(a)



(b)

Figure 1: State-of-the-art foundation models perform poorly on modalities that differ significantly from their pretraining data. (a) Visualization of matching results. The results are visualized by transferring pixel values from the paired image using the estimated correspondences, weighted by the estimated certainty (white color indicates low certainty). (b) Quantitative comparison across different cross-modality matching methods. With only 2-shot labelled samples, our method improves $AUC@5px$ by up to 40% relative to foundation models (see Section 4.2 for more details).

The central challenge of SSL is how to compute losses on unlabelled data. A common strategy is pseudo-labelling, which uses high-confidence predictions of the model as pseudo ground truth for training. In classification, pseudo-labels can be obtained by discretizing the predicted probability distribution into one-hot labels. However, dense matching involves not only classification but also regression tasks, which are typically optimized via an ℓ_p -norm loss. Directly using model outputs as pseudo-labels for ℓ_p -norm loss results in zero gradient during backpropagation, due to the lack of discretization step in regression tasks. One solution is to employ a separate teacher model, often an EMA (exponential moving averaging) of the student, to provide pseudo-labels. This approach will however incur additional memory and computation cost, and it is not guaranteed that the teacher model will always generate better pseudo labels than the student model. In this work, we instead exploit the multi-scale architecture of dense matchers to generate pseudo-labels.

Our main contributions are as follows:

- We propose a novel SSL framework for few-shot adaptation of dense matchers to downstream cross-modality data. Our method leverages the multi-scale architecture of dense matchers by using the finest-scale predictions as pseudo-labels to supervise coarser-scale learning.

108 • We investigate key design choices of the proposed pseudo-labelling method and identify ef-
109 fective pseudo-label generation and thresholding schemes for cross-modality image match-
110 ing.
111 • We extensively evaluate the proposed method across diverse modalities and dataset diffi-
112 culties, and demonstrate that our approach consistently improves matching accuracy over
113 both purely supervised learning and foundation models.
114

115 2 RELATED WORK
116

117 2.1 VISIBLE IMAGE MATCHING
118

119 Visible image matching aims to identify corresponding pixel locations between images captured by
120 visible cameras. Existing methods can be broadly categorized into three paradigms: detector-based
121 (a.k.a. sparse) (Lowe, 2004; DeTone et al., 2018; Sarlin et al., 2020), detector-free (a.k.a. semi-
122 dense) (Sun et al., 2021), and dense matching (Edstedt et al., 2023; 2024). Detector-based methods
123 first detect a sparse set of keypoints, then extract features and perform matching on these loca-
124 tions. Traditional approaches, exemplified by the classical SIFT algorithm (Lowe, 2004), rely on
125 handcrafted features for keypoint detection and descriptor extraction. Modern approaches employ
126 deep neural networks for joint keypoint detection and description (DeTone et al., 2018; Sarlin et al.,
127 2020). Detector-free methods, represented by LoFTR (Sun et al., 2021), eliminate the explicit key-
128 point detection step and instead match features at a coarse resolution, followed by refinement of the
129 high-confidence coarse matches using fine-scale features. Dense matching methods, such as DKM
130 (Edstedt et al., 2023) and RoMa (Edstedt et al., 2024), have recently demonstrated strong robustness
131 under challenging real-world conditions. These methods estimate a 2D flow field at coarse scales
132 and refine it to original image resolution progressively at finer scales..

133 2.2 CROSS-MODALITY IMAGE MATCHING
134

135 Cross-modality image matching addresses the more challenging setting where two images are cap-
136 tured under different sensing modalities. Methods typically adapt visible image matching pipelines
137 to handle the large appearance variations between modalities, and can also be grouped into detector-
138 based (Li et al., 2023), detector-free (Tuzcuoğlu et al., 2024), and dense matching (Ren et al., 2025;
139 He et al., 2025) paradigms. SRIF (Li et al., 2023) enhances structural information through a local
140 intensity binary transform and computes SIFT-like descriptors on the transformed images. XoFTR
141 (Tuzcuoğlu et al., 2024) extends LoFTR by introducing a fine-level matching module and a sub-
142 pixel refinement stage. More recently, foundation models such as MINIMA (Ren et al., 2025) and
143 MatchAnything (He et al., 2025) pretrain existing matching models (*e.g.*, LoFTR and RoMa) on
144 large-scale synthetic cross-modality pairs, achieving strong generalization to unseen modalities.

145 2.3 SEMI-SUPERVISED LEARNING
146

147 Semi-supervised learning (SSL) improves model generalization by leveraging unlabelled data in
148 addition to a limited set of labelled samples. Consistency regularization and pseudo-labeling are
149 two popular paradigms for SSL. Consistency regularization is based on the smoothness assumption:
150 model predictions should remain stable under realistic perturbations (Yang et al., 2022). This can
151 be achieved through input perturbations or augmentations (Miyato et al., 2018; Xie et al., 2020),
152 or by employing a teacher-student framework where a teacher model provides consistency targets
153 (Tarvainen & Valpola, 2017). Pseudo-labelling (Lee et al., 2013) relies on the assumption that high-
154 confidence predictions are likely correct and can serve as pseudo ground truth for unlabelled data.
155 It can be combined with consistency regularization by enforcing consistent pseudo-labels across
156 weakly and strongly augmented samples (Sohn et al., 2020). A fixed confidence threshold (*e.g.*,
157 0.95) is typically used to select reliable pseudo-labels, while recent methods (Zhang et al., 2021;
158 Wang et al., 2022) adapt thresholds dynamically based on the model’s learning status.

159 2.4 SEMI-SUPERVISED LEARNING FOR IMAGE MATCHING
160

161 Most SSL approaches for image matching have been developed within the detector-based paradigm.
For example, Hughes & Schmitt (2019) proposed an SSL framework for Optical-SAR (Synthetic

Aperture Radar) matching by training an autoencoder with reconstruction loss on unlabelled data and matching loss on labelled data. SuperRetina (Liu et al., 2022) exploits unlabelled data for retinal image matching by enforcing consistent keypoint and descriptor predictions under geometric transformations. For dense visible image matching, Truong et al. (2021) proposed to warp one of the two images by a randomly sampled flow and derive an unsupervised loss by bipath consistency constraints. To the best of our knowledge, SSL has not yet been explored for dense cross-modality image matching. Our work addresses this gap by introducing the first SSL framework tailored for this setting.

3 METHOD

3.1 BACKGROUND: SUPERVISED LEARNING FOR DENSE MATCHERS

Given two images I^A and I^B , dense matchers estimate a flow field by first performing global matching on coarse-scale features and then refining the warp on finer-scale features. Let S denote the set of scales. During training, the loss is computed at each scale and summed to form the final objective: $\mathcal{L} = \sum_{i \in S} \mathcal{L}_i$. The loss is defined on normalized coordinates in $[-1, 1]$, where each scale i predicts correspondences on a grid of size $h_i \times w_i$ (the height and width of the feature map). Let X_i^A denote the set of locations considered at scale i in I^A , and $X_i^{A\mathcal{P}} \subseteq X_i^A$ the subset with reliable matches in I^B . At each scale, the loss consists of a regression loss term (e.g., ℓ_2 loss in (Edstedt et al., 2023), generalized Charbonnier loss in (Edstedt et al., 2024)) on the warp and a binary cross-entropy (BCE) loss term on the certainty score:

$$\mathcal{L}_i^{\text{sup}} = \mathbb{E}_{(I^A, I^B) \in I_L} \left[\frac{1}{|X_i^{A\mathcal{P}}|} \sum_{x \in X_i^{A\mathcal{P}}} \mathcal{L}_{\text{reg}}(\hat{w}(x), w(x)) + \lambda^{\text{sup}} \frac{1}{|X_i^A|} \sum_{x \in X_i^A} \mathcal{L}_{\text{BCE}}(\hat{p}(x), p(x)) \right], \quad (1)$$

where I_L is the set of labelled image pairs, $\hat{w}(x)$ and $w(x)$ are the predicted and ground-truth matching coordinates in I^B for pixel x in I^A , and $\hat{p}(x)$ and $p(x)$ are the predicted and ground-truth certainty scores. The ground-truth warp $w(x)$ is obtained by projecting coordinates from I^A into I^B using the known transformation (e.g., homography or camera pose). The certainty ground truth $p(x)$ is generated by applying visibility and depth consistency constraints on the projection (i.e., pixels satisfying the constraints are classified as 1, otherwise 0).

3.2 SEMI-SUPERVISED LEARNING FOR DENSE MATCHERS

State-of-the-art dense matchers (Edstedt et al., 2023; 2024) refine predictions progressively across scales, with the finest-scale prediction providing the final output. We propose to use these high-confidence finest-scale predictions as pseudo-labels for supervising coarser scales. Specifically, the finest-scale warp and certainty maps, $\hat{w}^f(\cdot)$ and $\hat{p}^f(\cdot)$, are interpolated to the grid of scale i via bilinear interpolation, yielding $\hat{w}_i^f(\cdot)$ and $\hat{p}_i^f(\cdot)$. This assumes local smoothness of the motion field, which generally holds since high-confidence predictions rarely occur at motion boundaries.

The SSL loss at scale i is defined as:

$$\mathcal{L}_i^{\text{ssl}} = \mathbb{E}_{(I^A, I^B) \in I_U} \left[\frac{1}{|\hat{X}_i^{A\mathcal{P}}|} \sum_{x \in \hat{X}_i^{A\mathcal{P}}} \mathcal{L}_{\text{reg}}(\hat{w}(x), \hat{w}_i^f(x)) + \lambda^{\text{ssl}} \frac{1}{|\hat{X}_i^A|} \sum_{x \in \hat{X}_i^A} \mathcal{L}_{\text{BCE}}(\hat{p}(x), \mathbb{I}(\hat{p}_i^f(x) > \tau_h)) \right], \quad (2)$$

where I_U denote the set of image pairs without ground truth labels, $\mathbb{I}(\cdot)$ is the indicator function that takes 1 if the condition is met and 0 if otherwise, $\hat{X}_i^{A\mathcal{P}} = \{x | \hat{p}_i^f(x) > \tau_h\}$ and $\hat{X}_i^A = \{x | \hat{p}_i^f(x) > \tau_h \mid \hat{p}_i^f(x) < \tau_l\}$.

Instead of using fixed thresholds for pseudo-labelling, we adopt a self-adaptive strategy inspired by FreeMatch (Wang et al., 2022). We maintain a global threshold τ_t reflecting the model's overall

216 confidence on unlabelled data:

$$218 \quad \tau_t = \begin{cases} 0.5, & t = 0, \\ 219 \quad \gamma \tau_{t-1} + (1 - \gamma) \frac{1}{|X_f^b|} \sum_{x \in X_f^b} \hat{p}^f(x), & \text{otherwise,} \end{cases} \quad (3)$$

221 where X_f^b denotes the set of the finest-scale pixels in the current batch, and $\gamma = 0.999$ is the
222 momentum decay of EMA.

223 Unlike multi-class classification, where FreeMatch adjusts thresholds per class to handle intra-class
224 diversity and class adjacency, our task involves only binary classification via a sigmoid output. Thus,
225 we simply interpret samples above the global mean τ_t as high-confidence positives, and those below
226 $1 - \tau_t$ as high-confidence negatives. The final thresholds are:

$$227 \quad \tau_h = \tau_t, \quad \tau_l = \min(1 - \tau_t, \tau_h), \quad (4)$$

229 with τ_l constrained to not exceed τ_h .

231 The overall training objective combines the supervised loss on labelled samples with the semi-
232 supervised loss on unlabelled samples, aggregated across all scales:

$$233 \quad \mathcal{L} = \sum_{i \in S} (\mathcal{L}_i^{\text{sup}} + \mathcal{L}_i^{\text{ssl}}). \quad (5)$$

236 4 EXPERIMENTS

238 4.1 EXPERIMENTAL SETUP

240 **Training Details** We adopt RoMa (Edstedt et al., 2024) as the dense matcher and train it using
241 the AdamW optimizer (Loshchilov, 2017), with a weight decay of 0.01. The learning rates are set
242 to 1×10^{-4} for the encoder and 5×10^{-6} for the decoder. All experiments are conducted on 4
243 NVIDIA A5000 GPUs with a total batch size of 8. Input images are resized to 448×448 , and ran-
244 dom geometric transformations (including perspective, scaling, rotation, translation, and horizontal
245 flipping) are applied for data augmentation on both labelled and unlabelled data. Training is run for
246 12,500 iterations, alternating between labelled and unlabelled batches, and requires approximately
247 2.5 hours per experiment.

248 For λ^{sup} in Eq. (1), we follow (Edstedt et al., 2023; 2024) and set it to 0.01. For λ^{ssl} in Eq. (2),
249 we use 10^{-4} , with sensitivity analysis provided in Section 5.4. The model is initialized with the
250 MatchAnything (He et al., 2025) pretrained weights. Few-shot labelled samples are randomly drawn
251 from the training set, while the remaining images in the training set are treated as unlabelled data.
252 Unless otherwise specified, we use 2-shot labelled samples per dataset (see Section 5.3 for further
253 discussion on the effect of pretrained weights and the number of labelled samples). The checkpoint
254 achieving the best validation performance is selected as the final model, and benchmarking results
255 are reported on the test set. All results are averaged over three runs with different few-shot splits.

256 **Dataset Information** We conduct experiments on four datasets spanning diverse cross-modality
257 settings: Optical-Infrared (Li et al., 2023), Optical-Depth (Li et al., 2023), Optical-Map (Li et al.,
258 2023), and Optical-SAR (Xiang et al., 2023). For Optical-Infrared, Optical-Depth and Optical-Map,
259 we randomly split the data into 60%/20%/20% for training/validation/testing, while for Optical-SAR
260 we adopt the default split. The detailed statistics of each dataset are provided in Table 1.

262 Table 1: Statistics of the evaluation datasets.

	Optical-Infrared	Optical-Depth	Optical-Map	Optical-SAR
Train	120	120	120	2011
Val	40	40	40	238
Test	40	40	40	424
Total	200	200	200	2673

270 4.2 EXPERIMENTAL RESULTS
 271

272 We benchmark against foundation models and a supervised finetuning (SFT) baseline, where the
 273 model is trained solely with the supervised loss in Eq. (1) on labelled data. The results are summa-
 274 rized in Table 2. We find that SFT often underperforms foundation models—except on the Optical-
 275 Map dataset—primarily due to overfitting to the limited labelled samples. In contrast, the proposed
 276 SSL strategy consistently yields substantial improvements. On the Optical-Infrared dataset, our
 277 method improves $AUC@5px$ by 44% over MatchAnything with only 2-shot labelled samples, un-
 278 derscoring the effectiveness of leveraging unlabelled data to regularize training and mitigate overfit-
 279 ting in the few-shot setting.

280 Table 2: Homography estimation on cross-modality datasets. The AUC (area under curve) of the
 281 projective error in percentage is reported.
 282

283 Method	284 Optical-Infrared				285 Optical-Map				286 Optical-Depth				287 Optical-SAR			
	288 @3px	289 @5px	288 @10px	289 @3px	288 @5px	289 @10px	288 @3px	289 @5px	288 @10px	288 @3px	289 @5px	288 @10px	288 @3px	289 @5px	288 @10px	
RoMa	1.54	4.48	8.50	0.00	0.00	0.00	1.68	2.85	5.80	1.76	5.27	13.18				
MINIMA	8.67	13.16	19.04	2.88	7.34	14.79	3.20	7.48	17.88	7.38	22.44	49.45				
MatchAnything	9.98	20.57	40.04	8.22	22.11	50.04	8.77	15.87	35.42	4.68	18.58	45.82				
SFT	2.49	6.14	13.54	7.61	25.13	55.44	3.01	7.64	21.30	1.96	9.50	32.49				
Ours	44.62	64.77	81.79	23.94	49.98	74.10	21.86	38.18	60.57	9.66	28.86	58.58				

290
 291 5 FURTHER ANALYSES
 293

294 5.1 EFFECT OF PSEUDO-LABEL GENERATION SCHEMES
 295

296 We evaluate several pseudo-label generation schemes to validate the effectiveness of the proposed
 297 method. The proposed scheme that uses the finest-scale predictions of current model as pseudo-
 298 labels is denoted as *PL-F* and compared against the following alternatives:

299 • *PL-T*: When the transformation between two images is known a priori (e.g., homography
 300 or camera pose), we estimate the transformation matrix from the model prediction and
 301 compute pseudo ground truth using the same procedure as in supervised learning.
 302 • *PL*: Directly uses high-confidence predictions at each scale as pseudo-labels for loss com-
 303 putation at that scale.
 304 • *PL-EMA*: Employs a teacher-student framework where the teacher model is obtained by
 305 EMA of the student model (Tarvainen & Valpola, 2017), and teacher’s confident predictions
 306 serve as pseudo-labels for training the student at the corresponding scale.
 307 • *PL-EMA-F*: A hybrid scheme that combines *PL-F* with *PL-EMA*, where the teacher’s
 308 finest-scale confident predictions are downsampled to generate pseudo-labels at coarser
 309 scales for the student.
 310

311 Results are shown in Fig. 2a. *PL-T* performs poorly and can even fail in cases where the geometric
 312 transformation is difficult to estimate (e.g., Optical-Depth). This is likely because errors in the
 313 estimated transformation matrix amplify confirmation bias in SSL, leading to trivial solutions where
 314 the certainty branch outputs only 0s or 1s. All other schemes outperform *PL-T*. Notably, variants
 315 with the *-F* suffix consistently achieve better or comparable performance than their counterparts
 316 without the suffix (e.g., *PL-F* vs. *PL*, *PL-EMA-F* vs. *PL-EMA*), validating the effectiveness of our
 317 finest-scale pseudo-labelling strategy. Between *PL-EMA-F* and *PL-F*, the latter performs better or
 318 on par, while avoiding the additional computational overhead of maintaining a teacher model. We
 319 therefore advocate *PL-F* as our final method.
 320

321 5.2 EFFECT OF PSEUDO-LABEL THRESHOLDING SCHEMES
 322

323 The parameters τ_h and τ_l in Eq. (2) control the thresholding of high-confidence predictions for
 324 pseudo-labeling. We compare different thresholding schemes. In the fixed scheme, τ_h is set to a

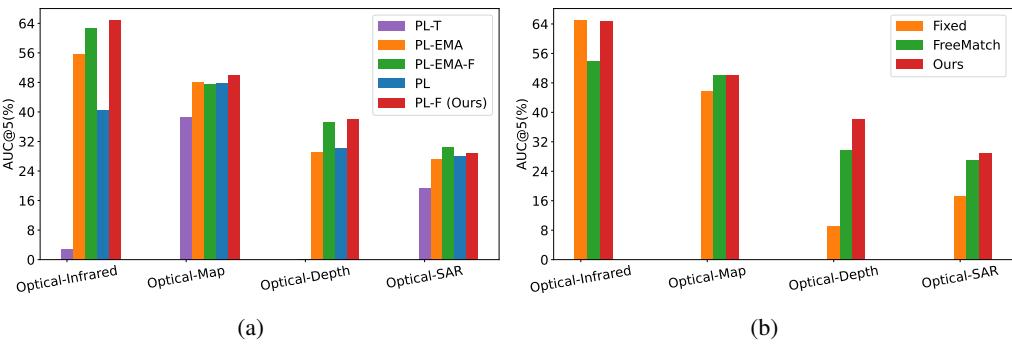


Figure 2: Effect of pseudo-label generation schemes and thresholding schemes. (a) Effect of pseudo-label generation schemes. (b) Effect of pseudo-label thresholding schemes.

constant value and τ_l is set symmetrically as $1 - \tau_h$. Following the SSL literature (Sohn et al., 2020), we set $\tau_h = 0.95$ in our experiments. FreeMatch (Wang et al., 2022) instead computes a global threshold that reflects overall model confidence and then modulates it locally based on class confidence. To adapt FreeMatch to our binary setting, we treat $(1 - \hat{p}^f(\cdot))$ as the probability for the negative class (*i.e.*, the pixel is not matchable).

Results are shown in Fig. 2b. The fixed scheme fails to perform consistently well across datasets. FreeMatch achieves performance close to ours on Optical-Map and Optical-SAR, but underperforms on Optical-Infrared and Optical-Depth. We observe that the global threshold in FreeMatch follows a trend similar to ours, gradually increasing to a high value (*e.g.*, 0.9) as training progresses. However, the additional class-wise modulation alters τ_h and τ_l in a way that appears less effective for our problem. Specifically, FreeMatch lowers the threshold for the less frequent class to encourage more pseudo-labels for that class, but this also introduces more incorrect pseudo-labels, especially when class distributions are highly imbalanced. In our case, large image overlaps result in a majority of pixels belonging to the matchable class, making this modulation detrimental and explaining why FreeMatch is less effective.

5.3 EFFECT OF PRETRAINED WEIGHTS

We evaluate three publicly available pretrained models: RoMa (Edstedt et al., 2024), which is pre-trained only on single-modality image pairs; MINIMA (Ren et al., 2025), which adopts the RoMa architecture and employs a two-stage pretraining pipeline (*i.e.*, first on single-modality data and then on large-scale synthetic cross-modality data); and MatchAnything (He et al., 2025), which also builds on the RoMa architecture but is pre-trained directly on large-scale synthetic cross-modality data. Intuitively, MINIMA and MatchAnything should provide stronger initialization for downstream cross-modality image matching tasks, as their pretraining already incorporates cross-modality supervision.

Experimental results with different pretrained weights are shown in Fig. 3. The proposed SSL framework consistently outperforms the SFT counterpart across different pretrained weights and varying numbers of labelled samples. SSL with MatchAnything pretrained weights generally yields the best performance when only a small number of labelled samples are available, although its advantage diminishes when the number of labelled samples increases (*e.g.*, in the 10-shot setting). Overall, these results highlight that cross-modality foundation models provide the greatest benefit in the extreme low-label regime.

5.4 SENSITIVITY ON λ^{ssl}

The parameter λ^{ssl} in Eq. (2) controls the relative contribution of the certainty prediction branch. Experimental results with varying λ^{ssl} are shown in Fig. 4. We find that model performance remains stable within the range $[0, 10^{-4}]$ across all evaluation datasets, whereas excessively large values (*e.g.*, 10^{-2}) degrade performance, particularly under low-shot setting. This behavior may be attributed to the fact that RoMa’s regression and certainty branches share the same input features and differ only in the prediction head; thus, backpropagation from the regression loss alone can also learn useful representations. Furthermore, since pseudo-labels are inherently noisy, assigning a large

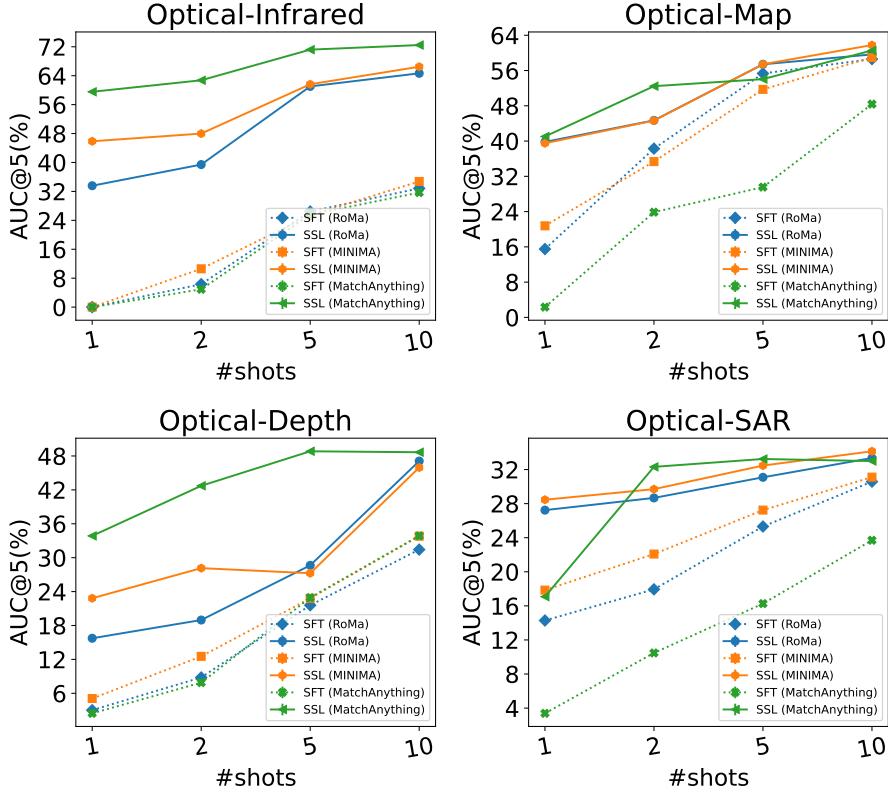


Figure 3: Effect of pretrained weights. SFT denotes the supervised finetuning baseline, while SSL refers to the proposed semi-supervised learning method. The names in brackets indicate the pretrained weights used for model initialization. Across different pretrained weights and varying numbers of labelled samples, SSL consistently outperforms its SFT counterpart.

weight to the certainty loss may amplify confirmation bias—where errors in pseudo-labels reinforce themselves—often leading to trivial solutions.

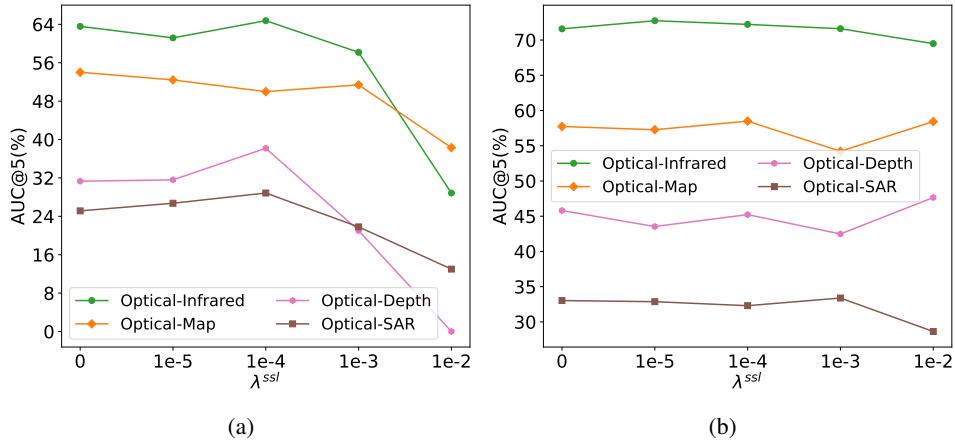
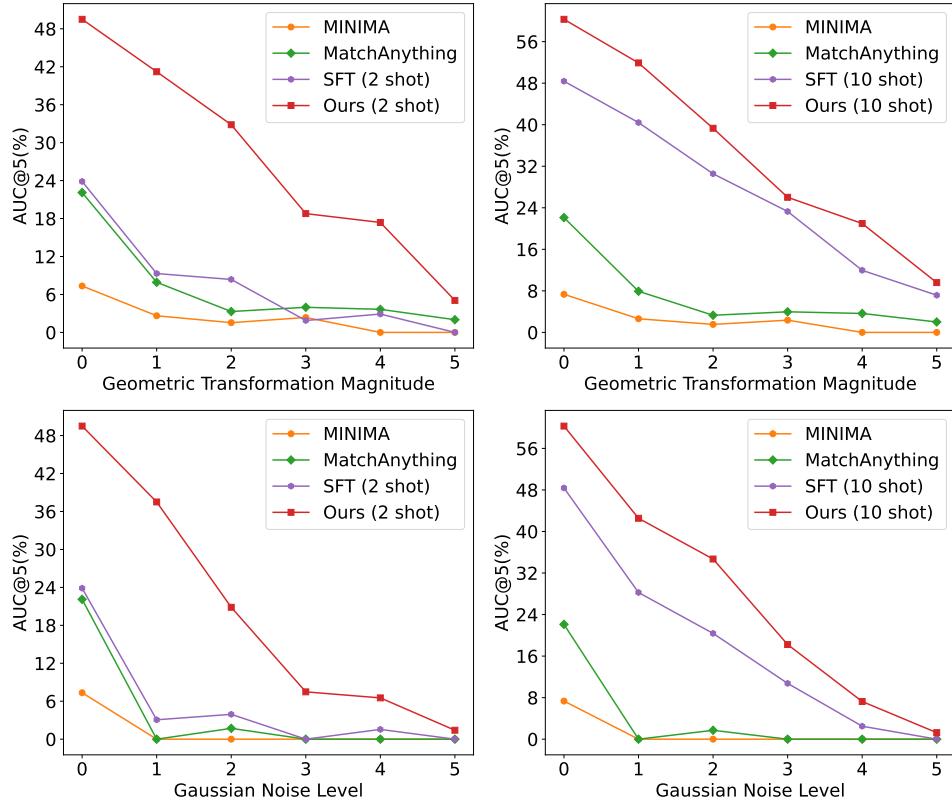


Figure 4: Sensitivity on λ^{ssl} . (a) Trained with 2-shot labelled samples. (b) Trained with 10-shot labelled samples. We find that model performance remains stable within the range $[0, 10^{-4}]$ across all evaluation datasets, whereas excessively large values (e.g., 10^{-2}) lead to performance degradation, particularly under low-shot setting.

432 5.5 EFFECT OF DATASET DIFFICULTY
433

434 Pseudo-labeling builds on the self-training assumption in SSL, namely that high-confidence predictions
435 are more likely to be correct. However, as variations between two images grow larger and
436 more complex, obtaining reliable pseudo-labels becomes increasingly difficult. To study the effect
437 of dataset difficulty on our method, we augment the Optical-Map dataset with geometric transfor-
438 mations and Gaussian noise (Hendrycks & Dietterich, 2019) of increasing magnitude. Results in
439 Fig. 5 show that foundation models are highly sensitive to Gaussian noise, with matching accuracy
440 quickly dropping to zero, while SFT with 2-shot supervision also performs poorly. By contrast, our
441 method consistently outperforms foundation models and SFT, demonstrating that finetuning with
442 the proposed pseudo-labeling strategy is effective even under challenging conditions.
443

469 Figure 5: Effect of dataset difficulty on the Optical-Map dataset. The dataset is perturbed by
470 geometric transformations or Gaussian noise of increasing magnitude (with 0 denoting the unaltered
471 dataset). Our method consistently outperforms foundation models and SFT under challenging
472 conditions.
473

474 6 CONCLUSIONS
475

476 In this work, we propose a semi-supervised framework for adapting pretrained dense matchers to
477 downstream cross-modality data by leveraging a small number of labelled samples together with
478 abundant unlabelled samples. Specifically, we exploit the inherent multi-scale structure of dense
479 matchers and use the finest-scale predictions as pseudo-labels to supervise learning at coarser scales.
480 We benchmark the proposed method against foundation models and demonstrate consistent and sub-
481 stantial improvements across diverse cross-modality datasets. Remarkably, with only 2-shot labelled
482 samples, our approach improves $AUC@5px$ by up to 40% compared to foundation models. We
483 further validate the robustness of our framework under different initialization weights and varying
484 numbers of labelled samples. Finally, we examine the effect of dataset difficulty by introducing
485 geometric transformations and Gaussian noise of increasing severity, and observe that our method
486 consistently outperforms both supervised finetuning and foundation models under these challenging
487 conditions.
488

486 REFERENCES

487

488 Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-supervised interest
489 point detection and description. In *Proceedings of the IEEE conference on computer vision and*
490 *pattern recognition workshops*, pp. 224–236, 2018.

491 Johan Edstedt, Ioannis Athanasiadis, Mårten Wadenbäck, and Michael Felsberg. DKM: Dense
492 kernelized feature matching for geometry estimation. In *IEEE Conference on Computer Vision*
493 *and Pattern Recognition*, 2023.

494 Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten Wadenbäck, and Michael Felsberg. Roma: Robust
495 dense feature matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
496 *Pattern Recognition*, pp. 19790–19800, 2024.

497 Xingyi He, Hao Yu, Sida Peng, Dongli Tan, Zehong Shen, Hujun Bao, and Xiaowei Zhou.
498 Matchanything: Universal cross-modality image matching with large-scale pre-training. In *Arxiv*,
499 2025.

500 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
501 ruptions and perturbations. *arXiv preprint arXiv:1903.12261*, 2019.

502 LH Hughes and M Schmitt. A semi-supervised approach to sar-optical image matching. *ISPRS
503 Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, 4:71–78, 2019.

504 Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
505 deep neural networks. In *Workshop on challenges in representation learning, ICML*, volume 3,
506 pp. 896. Atlanta, 2013.

507 Jiayuan Li, Qingwu Hu, and Yongjun Zhang. Multimodal image matching: A scale-invariant algo-
508 rithm and an open dataset. *ISPRS Journal of Photogrammetry and Remote Sensing*, 204:77–88,
509 2023.

510 Jiazheng Liu, Xirong Li, Qijie Wei, Jie Xu, and Dayong Ding. Semi-supervised keypoint detector and
511 descriptor for retinal image matching. In *European Conference on Computer Vision*, pp. 593–609.
512 Springer, 2022.

513 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.

514 David G Lowe. Distinctive image features from scale-invariant keypoints. *International journal of
515 computer vision*, 60:91–110, 2004.

516 Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
517 regularization method for supervised and semi-supervised learning. *IEEE transactions on pattern
518 analysis and machine intelligence*, 41(8):1979–1993, 2018.

519 Jiangwei Ren, Xingyu Jiang, Zizhuo Li, Dingkang Liang, Xin Zhou, and Xiang Bai. Minima:
520 Modality invariant image matching. In *Proceedings of the Computer Vision and Pattern Recog-
521 nition Conference*, pp. 23059–23068, 2025.

522 Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Super glue:
523 Learning feature matching with graph neural networks. In *Proceedings of the IEEE/CVF confer-
524 ence on computer vision and pattern recognition*, pp. 4938–4947, 2020.

525 Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
526 Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised
527 learning with consistency and confidence. *Advances in neural information processing systems*,
528 33:596–608, 2020.

529 Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. LoFTR: Detector-free
530 local feature matching with transformers. In *Proceedings of the IEEE/CVF Conference on Com-
531 puter Vision and Pattern Recognition*, pp. 8922–8931, 2021.

532 Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
533 sistency targets improve semi-supervised deep learning results. *Advances in neural information
534 processing systems*, 30, 2017.

540 Prune Truong, Martin Danelljan, Fisher Yu, and Luc Van Gool. Warp consistency for unsupervised
541 learning of dense correspondences. In *Proceedings of the IEEE/CVF international conference on*
542 *computer vision*, pp. 10346–10356, 2021.

543
544 Önder Tuzcuoğlu, Aybora Köksal, Buğra Sofu, Sinan Kalkan, and A Aydin Alatan. Xoftr: Cross-
545 modal feature matching transformer. In *Proceedings of the IEEE/CVF conference on computer*
546 *vision and pattern recognition*, pp. 4275–4286, 2024.

547
548 Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu, Jindong Wang, Marios
549 Savvides, Takahiro Shinozaki, Bhiksha Raj, et al. Freematch: Self-adaptive thresholding for
550 semi-supervised learning. *arXiv preprint arXiv:2205.07246*, 2022.

551
552 Yuming Xiang, Xuanqi Wang, Feng Wang, Hongjian You, Xiaolan Qiu, and Kun Fu. A global-
553 to-local algorithm for high-resolution optical and sar image registration. *IEEE Transactions on*
554 *Geoscience and Remote Sensing*, 2023.

555
556 Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation
557 for consistency training. *Advances in neural information processing systems*, 33:6256–6268,
558 2020.

559
560 Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised learning.
561 *IEEE transactions on knowledge and data engineering*, 35(9):8934–8954, 2022.

562
563 Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and
564 Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo la-
565 beling. *Advances in neural information processing systems*, 34:18408–18419, 2021.

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593