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Abstract

A function f : Fn
2 → R is said to be s-Fourier sparse if its Fourier expansion

contains at most s nonzero coefficients. In general, the existence of a sparse
representation in the Fourier basis serves as a key enabler for the design of efficient
learning algorithms. However, most existing techniques assume prior knowledge
of the function’s Fourier sparsity, with algorithmic parameters carefully tuned to
this value. This motivates the following decision problem: given s > 0, determine
whether a function is s-Fourier sparse.
In this work, we study the problem of tolerant testing of Fourier Sparsity for
real-valued functions over Fn

2 , accessed via oracle queries. The goal is to decide
whether a given function is close to being s-Fourier sparse or far from every s-
Fourier sparse function. Our algorithm provides an estimator that, given oracle
access to the function, estimates its distance to the nearest s-Fourier sparse function
with query complexity Õ(s), for constant accuracy and confidence parameters.
A key structural ingredient in our analysis is a new spectral concentration result for
real-valued functions over Fn

2 when restricted to small-dimensional random affine
subspaces. We further complement our upper bound with a matching lower bound
of Ω(s), establishing that our tester is optimal up to logarithmic factors. The lower
bound exploits spectral properties of a class of cryptographically hard functions,
namely, the Maiorana–McFarland family, in a novel way.

1 Introduction

Sparsity is one of the most powerful ideas connecting modern machine learning and theoretical
computer science. It captures the intuition that, even in high-dimensional settings, many natural
functions or signals depend only on a small number of relevant components. This assumption
underlies algorithms that are both sample- and time-efficient, forming the basis of techniques such as
sparse linear regression, decision tree learning, and compressed sensing. Across these frameworks,
the common principle is simple yet profound: if a function admits a sparse representation in a suitable
basis, such as Fourier, wavelet, polynomial, or a learned dictionary, then learning and inference can
be made dramatically more efficient.

A particularly elegant setting where sparsity plays a central role is that of real-valued functions over
the Boolean hypercube Fn

2 . Fourier analysis provides a natural orthonormal basis for such functions.
Every function f : Fn

2 → R can be expressed as

f(x) =
∑
α∈Fn

2

f̂(α) (−1)x·α,

where f̂(α) denotes the Fourier coefficient at frequency α. The Fourier sparsity of f , the number of
nonzero coefficients in this expansion quantifies how succinctly the function can be represented in
the Fourier basis.
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Fourier sparsity is a recurring theme across many areas of theoretical computer science. In complexity
theory, it lies at the heart of problems involving communication complexity and parity decision trees
for Boolean functions f : Fn

2 → {+1,−1} [31, 32, 29, 27, 10]. In learning theory, it has become a
central tool for designing algorithms that efficiently learn functions with low-degree or low-support
Fourier spectra. Many natural Boolean functions exhibit this property: graph and hypergraph cut
functions, as well as decision trees of bounded depth, are inherently Fourier sparse because their
spectra are concentrated on low-degree coefficients [28, 21]. For example, the cut function of a graph
corresponds to a degree-2 polynomial in the Fourier basis, while a degree-d hypergraph cut function
has degree at most d. Similarly, a Boolean decision tree of depth d has its spectrum supported entirely
on coefficients of degree at most d.

Beyond these classical examples, Fourier-sparse models have found renewed relevance in modern
machine learning. They appear in settings such as neural network hyperparameter optimization [19]
and the learning of structured set functions [4]. The impact of Fourier sparsity extends even further,
into cryptography, where the celebrated Goldreich–Levin theorem [12] established a deep connection
between identifying large Fourier coefficients and constructing hardcore predicates for one-way
functions.

Algorithmically, two main approaches have emerged for learning or recovering Fourier-sparse
functions: Sparse Hadamard Transform methods [16, 25, 20] and Compressed Sensing techniques [24,
18]. Both families of algorithms, however, rely critically on prior knowledge of the function’s sparsity
level. This partcular gap motivates our work, which focuses on efficiently estimating the Fourier
sparsity, up to a desired approximation in ℓ2 distance. Such an estimator can serve as a useful
preprocessing step in learning pipelines, both for verifying whether sparsity-based assumptions hold
and for guiding the initialization of sparsity parameters in downstream algorithms.

To formalize this setting, we first introduce some basic definitions. We measure distances between
functions using the squared ℓ2-norm:

dist22(f, g) := ∥f − g∥22 =
1

2n

∑
x∈Fn

2

(f(x)− g(x))2.

For a function f and a class of functions P , the distance of f from P is defined as

dist22(f,P) := min
g∈P

∥f − g∥22.

We also recall the standard definition of the ℓ2-norm. For any function f : Fn
2 → R,

∥f∥22 :=
1

2n

∑
x∈Fn

2

f(x)2.

Let Fs denote the class of all s-Fourier sparse functions, that is, functions f : Fn
2 → R whose Fourier

spectrum has at most s nonzero coefficients. We are interested in determining how close a given
function f is to this class.
Problem 1.1. Given query access to a function f : Fn

2 → R with ∥f∥22 = 1, and parameters s > 0,
ϵ ∈ (0, 1], and δ ∈ [0, 1], the task is to design a randomized algorithm that distinguishes between the
following two cases:

• (Close): There exists g ∈ Fs such that ∥f − g∥22 ≤ δ.

• (Far): For every g ∈ Fs, ∥f − g∥22 ≥ δ + ϵ.

The goal is to construct such an algorithm using as few queries to f as possible, while ensuring that
it distinguishes the two cases with high probability.

Our main contribution in this paper is the design of a simple, nonadaptive and almost optimal query
algorithm for testing Fourier sparsity.
Theorem 1.2. Let s > 0, ϵ ∈ (0, 1], and δ ∈ [0, 1]. Let f : Fn

2 → R be an unknown function with
∥f∥2 = 1, accessible only via query access. Then, there exists a nonadaptive algorithm that, with
success probability at least 2/3, distinguishes between the following two cases:

• f is δ-close to being s-Fourier sparse,
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• f is (δ + ϵ)-far from every s-Fourier sparse function,

using at most Õ(s/ϵ2) queries to f , where the Õ(·) notation hides factors polynomial in log s and
log(1/ϵ).

Theorem 1.2 is proved in Section 3. Although stated under the assumption that the function has unit
ℓ2-norm, the result extends to any nonzero function f : Fn

2 → R via normalization.

We also show that the query complexity of our algorithm is tight up to logarithmic factors by proving
a matching lower bound.
Theorem 1.3. Let s > 0. Any randomized algorithm that decides whether a function f : Fn

2 →
{−1,+1}, is s-Fourier sparse or (1/4)-far from every s-Fourier sparse function over Fn

2 , must make
Ω(s) queries to f to succeed with probability at least 2/3.

The reader may note that any Boolean function f : Fn
2 → {−1,+1} satisfies ∥f∥22 = 1. The proof of

Theorem 1.3 is presented in Section 4.

1.1 Related works

Testing Fourier sparsity was first studied by Gopalan et al. [15], who focused on Boolean functions
and used the Hamming distance as a measure of proximity. (The Hamming distance between two
functions f, g : Fn

2 → {0, 1} is the fraction of inputs on which they differ.) Their algorithm has
query complexity O(s14), which quickly becomes impractical for even moderately large values of s.
Similarly, the regularity framework of Hatami and Lovett [17] provides a general-purpose, black-box
reduction for testing Fourier sparsity under Hamming distance, but this approach suffers from a query
complexity that grows as a tower function in s.

In the real-valued setting, Yaroslavtsev and Zhou [30] considered testing Fourier sparsity with
respect to the squared ℓ2-distance. They designed an algorithm with query complexity Õ(s/ϵ4) and
established a lower bound of Ω(

√
s). In comparison, our algorithm improves the dependence on

the proximity parameter ϵ, requiring only Õ(s/ϵ2) queries, and is conceptually simpler. We further
establish a nearly tight lower bound of Ω(s), quadratically improving the current state of art [30],
showing that our algorithm is optimal up to logarithmic factors.

It is important to note that testing Fourier sparsity in the random example model is significantly more
challenging. As shown in [13], even for linearity testing, where the target functions are 1-Fourier
sparse, it is not known how to design a tester whose sample complexity is independent of the ambient
dimension n. In contrast, in the query access model, linearity testing can be performed efficiently
using the well-known 3-query BLR test. Our work aims to estimate the Fourier sparsity level of a
function in a way that depends only on the sparsity s and the proximity parameter ϵ, while remaining
independent of the ambient dimension n.

1.2 Proof Sketch of Theorem 1.2.

The design of our tester is inspired by the well-established framework for testing hereditary graph
properties. A canonical tester for such a property P samples a small random subset of vertices,
queries all induced edges, and checks whether the resulting subgraph satisfies P . For hereditary
properties, those preserved under taking induced subgraphs, this approach guarantees only a modest
(quadratic) overhead in query complexity [2, 14, 1]. Indeed, for several natural properties, such as
bipartiteness, the canonical tester achieves optimal performance up to constant factors.

A similar idea has been successfully adapted to Boolean functions, particularly for testing affine-
invariant properties [8, 6]. In this setting, the canonical approach restricts the function to random
low-dimensional affine subspaces and tests the property on these restrictions. While this strategy
enjoys strong generality and theoretical support, e.g., via regularity-like lemmas, it often suffers from
impractical query complexity, including tower-type dependencies [17]. Nonetheless, specialized
testers exploiting finer structural properties have been developed for specific cases, such as low
algebraic degree [3] and odd-cycle-freeness [7]. Surprisingly, despite being a natural and central
affine-invariant property, Fourier sparsity has largely resisted similar progress.

Prior works in Fourier sparsity testing typically project the Fourier spectrum into randomly chosen
cosets of sufficiently large codimension, a process commonly referred to as Fourier hashing, which
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was originally introduced in [11]. Analytical or combinatorial tools are then applied to extract sparsity
information. For example, Gopalan et al. [15] presents a granularity theorem for Fourier-sparse
functions, showing that individual coefficients cannot be too small and reducing the problem to
counting large-weight cosets. Similarly, Yaroslavtsev et al. [30] certain concentration of the ℓ2-norm
of heavy buckets to design their tester.

In contrast, our approach analyzes the function restricted to a randomly chosen subspace. We
approximately recover the Fourier spectrum of this restricted function and use it to infer the sparsity
of the original function. A new structural relationship between the Fourier coefficients of the restricted
and original functions shows that, under suitable subspace choices, their magnitudes closely match.
This relationship is central to our analysis. Instead of explicitly defining a hashing process, restricting
the function to a subspace implicitly induces a hashing, allowing us to derive a concentration bound
in terms of the ℓ1-norm of bucketed Fourier coefficients, which constitutes our main technical
contribution.

1.3 Proof Sketch of Theorem 1.3.

We prove a lower bound for testing Fourier sparsity via a reduction from randomized communication
complexity, following the approach introduced by Blais, Brody, and Matulef [9]. Our reduction builds
on the structure of Maiorana–McFarland functions and their connection to the Approximate Matrix
Rank problem. Maiorana–McFarland functions are widely used in theoretical computer science,
especially for circuit lower bounds and structural analysis of Boolean functions. They also play a
central role in symmetric-key cryptography, thanks to their spectral properties that support strong
confusion and diffusion.

Consider a communication problem where Alice and Bob receive matrices A,B ∈ Fm×n
2 , and their

goal is to determine whether the sum C = A+B has rank at least R, or at most cR, for some fixed
constant c < 1. We encode this instance into the Fourier domain by composing Maiorana–McFarland
functions with linear transformations derived from the input matrices. A central property of this
construction is that the Fourier sparsity of the resulting function is closely tied to the rank of the
matrix C. Thus, distinguishing high-rank from low-rank instances in the matrix problem reduces to
distinguishing functions that are close to being Fourier sparse from those that are far.

To complete the reduction, we use a result of Sherstov and Storozhenko [26], which shows that any
randomized protocol for the Approximate Matrix Rank problem must communicate at least Ω(R2)
bits. Since our reduction incurs only a constant overhead, we conclude that any nonadaptive algorithm
for testing Fourier sparsity must make Ω(R2) queries in the worst case. This matches our upper
bound up to logarithmic factors and establishes the optimality of our tester.

2 Background

Any function f : Fn
2 → R can be uniquely expressed as

f(x) =
∑
α∈Fn

2

f̂(α)χα(x),

where χα(x) = (−1)⟨α,x⟩ and f̂(α) = Ex[f(x)χα(x)]. The quantity f̂(α)2 denotes the Fourier
weight on α, and the collection {f̂(α)} is the Fourier spectrum of f . We use the following standard
facts:

• Parseval’s identity: ∥f∥22 =
∑

α f̂(α)2.

• Plancherel’s theorem: ⟨f, g⟩ =
∑

α f̂(α)ĝ(α).
• Character multiplication: χα+β = χαχβ .
• Poisson summation: For any subspace H ⊆ Fn

2 ,∑
x∈H

χα(x) =

{
|H|, α ∈ H⊥,

0, otherwise.

For our lower bound theorem, we will require the following definitions and results from communica-
tion complexity.
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In the randomized communication model, Alice and Bob compute a function f : X × Y → {0, 1}
using shared randomness. The randomized communication complexity R1/3(f) is the minimum
number of bits exchanged to compute f(x, y) correctly with probability at least 2/3.

In the Approximate Matrix Rank problem, Alice holds A ∈ Fr×r
2 and Bob holds B ∈ Fr×r

2 ; they must
distinguish whether rank(A+B) = r or r

4 . The following lower bound is known [26, Theorem 1.1]:

R1/3

(
RANK

r, r4
F2,r,r

)
= Ω(r2).

3 Improved upper bound for testing Fourier sparsity

Our analysis centers on restricting the function f to random affine subspaces of Fn
2 . We study how

the individual Fourier coefficients behave under such restrictions, comparing it to that of the original
function. Table 1 summarises the notations used in this section.

3.1 Fourier analysis under affine restrictions

We consider a function f : Fn
2 → R. Let H ⊆ Fn

2 be a subspace and α ∈ Fn
2 . Define the restricted

function fA : H → R by
fA(x) = f(x+ α), ∀x ∈ H.

We will briefly recall some standard facts about the Fourier spectrum of fA. Let H⊥ ⊆ Fn
2 be the

annihilator1 of H , that is, the set of vectors orthogonal to every element of H , and let W ⊆ Fn
2 be a

complementary subspace to H⊥, so that

Fn
2 = W ⊕H⊥ and W ∩H⊥ = {0n}.

The Fourier coefficients of fA are naturally indexed by γ ∈ W , and the Fourier expansion of fA is

fA(x) =
∑
γ∈W

f̂A(γ)χγ(x), x ∈ H,

where
f̂A(γ) =

∑
β∈γ+H⊥

f̂(β)χβ(α),

and f̂(β) are the Fourier coefficients of f on Fn
2 . Observe that there is another way to write the

Fourier expansion of fA in the following way:

fA(x) =
∑

β̃∈Fn
2 /H

⊥

f̂A(β̃)χγ(x), x ∈ H,

where
f̂A(β̃) =

∑
β∈β̃

f̂(β)χβ(α).

Recall that β̃ is a coset of H⊥ and therefore a subset of Fn
2 .

Remark 3.1. By abuse of notation, for a γ ∈ Fn
2 , f̂A(γ) denotes the Fourier coefficient f̂A(γ̃)

corresponding to the coset γ̃ = γ +H⊥ of H⊥ containing γ.

The following identity will be used by our tester, given in Section 3.3, for estimating Fourier
coefficients of functions restricted to a affine subspace.
Theorem 3.2. Let A = H + α, where H be a subspace of Fn

2 and α ∈ Fn
2 . Then, for all γ in the

complementary subspace W of H⊥,

f̂A(γ) = E
x∈H

[fAχγ ] :=
1

|H|
∑
x∈H

fA(x)χγ(x).

1H⊥; = {x ∈ Fn
2 : ⟨x, h⟩ = 0, ∀h ∈ H}
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Table 1: Summary of Notation

Notation Meaning

⟨α, β⟩ Inner product of α, β ∈ Fn
2 , defined as ⟨α, β⟩ :=

∑n
i=1 αiβi (over F2).

Ex∈Fn
2
[f ] Expectation of f : Fn

2 → R, Ex∈Fn
2
[f ] := 1

2n

∑
x∈Fn

2
f(x).

⟨f, g⟩ Inner product of f, g : Fn
2 → R, ⟨f, g⟩ := Ex∈Fn

2
[f(x)g(x)] =

1
2n

∑
x f(x)g(x).

H A (randomly chosen) linear subspace of Fn
2 .

H⊥ Given a subspace H ⊆ Fn
2 , H⊥ denotes the annihilator of H , that is,

H⊥ := {x ∈ Fn
2 : ⟨x, h⟩, h ∈ H}.

A An affine subspace of the form α+H , where α ∈ Fn
2 .

fA Restriction of f to the affine subspace A.

f̂A(γ) Fourier coefficient of fA at γ ∈ H .

γ∗ Element γ∗ := argmaxβ∈γ+H⊥ |f̂(β)|.

3.2 Concentration of the Fourier spectrum under random affine restrictions

In Algorithm 1, the function f is restricted to a uniformly random affine subspace A = α+H . This
affine subspace is constructed as follows: we first select t vectors h1, h2, . . . , ht independently and
uniformly at random from Fn

2 , and define the linear subspace

H = span{h1, h2, . . . , ht}.

Next, to introduce a random shift of H , we choose α ∈ Fn
2 uniformly at random and independently

of H , and define the affine subspace as

A = α+H.

Observe that the collection of cosets {γ + H⊥ : γ ∈ H} forms a partition of the space Fn
2 .

Interestingly, the following lemma shows that this random coset partition behaves like a pairwise
independent hash family over Fn

2 .
Lemma 3.3 (Coset Hashing via Random Subspaces). Let H ⊆ Fn

2 be a uniformly random linear
subspace constructed by taking span of t random vectors from Fn

2 sampled independently and
uniformly from Fn

2 . Then the following hold:

1. For any distinct α, β ∈ Fn
2 ,

Pr
H

[
α, β lie in the same coset of H⊥ ]

= Pr
H
[α− β ∈ H⊥ ] = 2−t.

2. For any subset S ⊆ Fn
2 with |S| ≤ s, if t ≥ 2 log s+ log 100, then

Pr
H

[
all elements of S lie in distinct cosets of H⊥ ]

≥ 0.99.

This lemma is a slight restatement of Proposition 3 from [15], modified to suit the specific needs
of our proof. While the full proof is deferred to the appendix, we will assume it for the time being.
We now show that, for a uniform random choice of affine subspace A, the magnitude of the Fourier
coefficients of the restricted function f̂A(γ) is tightly concentrated around the magnitude of the
largest Fourier coefficient of f within the coset γ +H⊥. Specifically, we define the leader of the
coset as γ∗ = argmaxβ∈γ+H⊥ |f̂(β)|. From this point on, we refer to γ∗ as the leader of the coset.
We now formally state the following concentration result.
Lemma 3.4. Let A = α+H be a random affine subspace of Fn

2 , where H is obtained as the span of
t vectors sampled independently and uniformly from Fn

2 , and α ∈ Fn
2 is an independent uniformly
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random shift. Consider a function f : Fn
2 → R with ∥f∥22 = 1. If t ≥ log 1

η4 , then for every γ ∈ H

and every τ > 0,

Pr
[ ∣∣f̂A(γ)− f̂(γ∗)χγ∗(α)

∣∣ > η + τ
]
≤ η4

τ2
. (1)

Proof. Fix γ ∈ Fn
2 . Recall, from Section 3.1, the Fourier coefficients of the restriction fA satisfies

f̂A(γ) =
∑

β∈γ+H⊥

f̂(β)χβ(α).

Consider the following random variable:

X := f̂A(γ)− f̂(γ∗)χγ∗(α) =
∑

β∈γ+H⊥

β ̸=γ∗

f̂(β)χβ(α),

and let Y := |X|. All probabilities/expectations below are over the joint randomness of H and α; for
fixed H we write Eα[· | H].

First moment bound. For fixed H , using linearity of expectation, we have

E
α
[X | H] = E

α

[ ∑
β∈γ+H⊥

β ̸=γ∗

f̂(β)χβ(α)

]
=

∑
β∈γ+H⊥

β ̸=γ∗

f̂(β)Eα[χβ(α)].

Now, observe that Eα[χβ(α)] = 0 for all β ̸= 0 and equals 1 for β = 0. Therefore,

Eα[X | H] =

{
f̂(0), if 0 ∈ γ +H⊥ and γ∗ ̸= 0

0, otherwise

This implies that the expression of Eα[X | H] can be rewritten in the following form:

Eα[X | H] = f̂(0)1{0∈γ+H⊥ and γ∗ ̸=0}.

Using the fact that EH [Eα[X | H]] = EH,α[X], we get

EH,α[X] = f̂(0) · Pr
H

[
0 ∈ γ +H⊥ and γ∗ ̸= 0

]
Using the fact that PrH

[
0 ∈ γ +H⊥ and γ∗ ̸= 0

]
≤ PrH

[
0 ∈ γ +H⊥], we get

|EH,α[X]| = |f̂(0)| · Pr
H

[
0 ∈ γ +H⊥ and γ∗ ̸= 0

]
≤ |f̂(0)| · Pr

H

[
0 ∈ γ +H⊥]

Observe that
Pr
H
[ 0 ∈ γ +H⊥ ] = Pr

H
[γ ∈ H⊥] = 2−t ≤ η4.

The last inequality follows from the fact that t ≥ log(1/η4). Using the above bound on PrH [ 0 ∈
γ +H⊥ ] and the fact that |f̂(0)| ≤ 1 (from Parseval identity), we get

|EH,α[X]| ≤ η4 ≤ η.

Second moment bound. Observe that

X2 =
∑

β,β′∈γ+H⊥

β,β′ ̸=γ∗

f̂(β)f̂(β′)χβ(α)χβ′(α) =
∑

β,β′∈γ+H⊥

β,β′ ̸=γ∗

f̂(β)f̂(β′)χβ+β′(α),

since χβχβ′ = χβ+β′ .

Taking expectation over α uniformly from Fn
2 , we use

Eα[χδ(α)] =

{
1 if δ = 0,

0 if δ ̸= 0.
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Hence only terms with β + β′ = 0 contribute. Over Fn
2 this means β′ = β, so we obtain

Eα[X
2 | H] =

∑
β,β′∈γ+H⊥

β,β′ ̸=γ∗

f̂(β)f̂(β′)Eα[χβ+β′(α)] =
∑

β∈γ+H⊥

β ̸=γ∗

f̂(β)2.

Like in the case with “first moment calculation”, we need to rewrite the expression of Eα[X
2 | H] in

terms of indicator random variables:

Eα[X
2 | H] =

∑
β∈Fn

2

f̂(β)1{β∈γ+H⊥ and β ̸=γ∗}

Taking expectation over H , we get

EH,α[X
2] ≤

∑
β∈Fn

2

f̂(β)2 · Pr
H
[β ∈ γ +H⊥].

For any fixed β, PrH [β ∈ γ +H⊥] = PrH [β + γ ∈ H⊥] = 2−t. By Parseval
∑

β f̂(β)
2 = 1, so

EH,α[X
2] ≤ 2−t ≤ η4.

Thus VarH,α(X) ≤ η4.

Applying Chebyshev inequality. Since |EH,α[X]| ≤ η, the event {|X| > η + τ} implies {|X −
EH,α[X]| > τ}. Hence

Pr
H,α

[
|X| > η + τ

]
≤ Pr

H,α

[
|X − EH,α[X]| > τ

]
≤ VarH,α(X)

τ2
≤ η4

τ2
.

Since X = f̂A(γ)− f̂(γ∗)χγ∗(α), this proves the theorem.

Algorithm 1: FOURIER-SPARSITY-TESTER

Input: Tolerance Parameter δ, Proximity parameter ϵ, Sparsity parameter s, and Oracle access to
a function f : Fn

2 → R, with ||f ||22 = 1

Output: YES, if f is δ-close to some s-Fourier-sparse function;
NO, if f is δ + ϵ-far from every s-Fourier-sparse function

Procedure:
1: Choose a random affine subspace A = α+H ⊆ Fn

2 , with dim(H) = Θ
(
log

(
s2

ϵ2

))
2: Let fA denote the restriction of f to A, and compute an estimate µ̃ of the sum of squares of top s

Fourier coefficients of fA in terms of their absolute values

3: Set ξ̃ := 1− µ̃

4: If ξ̃ ≤ δ + ϵ
2 then NO, else YES.

3.3 Proof of Theorem 1.2

In this section, we present our algorithm (Algorithm 1). While the analysis of its theoretical guarantees
is deferred to the appendix, we provide an intuitive explanation below.

The main idea is that our algorithm estimates the squared sum of the top s Fourier coefficients of the
given function up to an additive error. Such an approximation is sufficient to distinguish whether the
function is δ-close or (δ + ϵ)-far from being s-Fourier sparse in Euclidean distance.

In our tester, this estimation is made possible by the concentration phenomenon of the Fourier
coefficients under random restriction of the function, as formalized in Lemma 3.4. Specifically,
Lemma 3.4 shows that when the function is restricted to a random affine subspace, each Fourier
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coefficient of the restricted function approximates its counterpart in the original function up to an
additive error. Consequently, the squared sum of these coefficients is preserved up to additive error.

Finally, we note that the query complexity of our tester is determined by the dimension of the
random affine subspace used in the restriction. Notably, this dimension and hence the overall query
complexity, depends only on the approximation parameter ϵ and the sparsity parameter s, yielding
the required query complexity.

4 Improved lower bound for testing Fourier sparsity

In this section, we prove Theorem 1.3, establishing a lower bound that is quadratically stronger than
the previously known result from [30]. We begin by reviewing Maiorana–McFarland functions and
key properties needed for our argument.

4.1 Spectral structure of Maiorana-McFarland functions

Variants of Maiorana–McFarland functions have found widespread use in theoretical computer science,
particularly in proving circuit lower bounds and studying structural properties of Boolean functions
relevant to complexity theory. They also play an important role in symmetric-key cryptography,
especially in the design of stream ciphers, due to their desirable spectral characteristics that contribute
to strong confusion (via Fourier or Walsh spectra) and diffusion (via autocorrelation spectra). Below,
we define them in their most general form.

Given positive integers n and r with r ≤ n, the Maiorana–McFarland family MMr,n [22] consists of
n-variable Boolean functions f : Fn

2 → F2 of the form:

f(x, y) = x · φ(y), (x, y) ∈ Fr
2 × Fn−r

2 ,

where φ : Fn−r
2 → Fr

2 is an arbitrary function. Here, for a, b ∈ Fr
2, a · b denotes the standard inner

product over Fr
2. In this work, we focus on signed variants of Maiorana–McFarland functions, i.e.,

functions of the form
g(x) = (−1)f(x) for some f ∈ MMr,n.

We now describe the spectral structure of these functions.
Lemma 4.1. Let n = r + log r, and suppose φ is a mapping whose image has cardinality r and
whose elements are linearly independent in Fr

2. Let

gL(x, y) = (−1)Lx·φ(y)

be a function, where L ∈ Fr×r
2 is a linear transformation. Then, the Fourier sparsity of gL is at most

rank(L) · r.

The proof of the lemma is deferred to the appendix.

4.2 Proof of Theorem 1.3

We prove the lower bound in Theorem 1.3 via a reduction from a variant of the Approximate Matrix
Rank problem in randomized communication complexity. In this problem, Alice and Bob each hold a
matrix in Fr×r

2 , denoted by A and B, respectively. They are promised that the matrix C = A+B has
rank either r or r

4 , and their task is to determine the correct case while minimizing communication.
Both parties have access to a public random string.

Suppose, for the sake of contradiction, that there exists a tester T which, for any function f : Fn
2 →

{−1, 1}, distinguishes whether f is s-Fourier sparse or ϵ-far from every such function using only
q(s, ϵ) queries. We show that such a tester can be used to solve the matrix rank problem with low
communication.

Alice and Bob independently construct Boolean functions gA, gB : Fn
2 → {−1,+1} from their

matrices A and B using the construction in Lemma 4.1. Define the target function as gC : Fn
2 →

{−1, 1} in similar way. By Lemma 4.1, the Fourier sparsity of gC depends on the rank of C = A+B.
Specifically, if rank(C) = r, then the Fourier sparsity of gC is exactly r2. If rank(C) = r

4 , the
Fourier sparsity is at most r2

4 . Now we show that, in the full-rank case, gC is 1
4 -far from any Boolean

function with Fourier sparsity at most r2

4 .
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Lemma 4.2. If the matrix C ∈ Fr×r
2 has rank r, then the function gC defined in Corollary 4.1 is at

least 1
4 -far from any Boolean function with Fourier sparsity at most r2

4 .

The proof of the lemma is deferred to the appendix. We will assume it and continue with the proof.
To simulate the tester T for gC , Alice and Bob evaluate any query (x, y) ∈ Fn

2 as follows: Alice
computes gA(x, y), Bob computes gB(x, y), and they exchange their values. They then compute
gC(x, y) = gA(x, y) · gB(x, y). Since

gC(x, y) = (−1)(A+B)x·φ(y)

= (−1)Ax·φ(y) · (−1)Bx·φ(y)

= gA(x, y) · gB(x, y).

Each query requires 2 bits of communication. Consequently, if T uses q(s, 1
4 ) queries, Alice and

Bob can simulate it using at most 2q(s, 1
4 ) bits of communication. Setting s = r2

4 , and recalling that
distinguishing whether rank(C) = r or r

4 requires Ω(r2) bits of communication (Theorem 1.1, [26]),
we deduce

2q

(
r2

4
,
1

4

)
= Ω(r2) ⇒ q

(
r2

4
,
1

4

)
= Ω(r2).

Thus, any tester distinguishing s-Fourier sparse functions from those 1
4 -far from such functions must

make at least Ω(s) queries, establishing the lower bound.

5 Conclusion

An intriguing direction is whether similar testers can be obtained in other bases, such as the wavelet
basis. Sparsity testing in more general bases has been considered in prior work [5], where the goal is
to test whether a vector (or collection of vectors) can be expressed as a sparse linear combination over
known or unknown bases. However, the query complexity of these algorithms depends on the ambient
dimension, making them less suitable for very high-dimensional regimes. In contrast, our focus is on
testing problems where the query complexity is completely independent of the ambient dimension.
Understanding precisely which classes of functions and bases admit such dimension-independent
testing remains an intriguing and fundamental open question.

We would like to highlight a subtle aspect of our work. Our upper bound is established in the tolerant
setting, where the goal is to distinguish functions that are δ-close to being s-Fourier sparse from those
that are (δ + ϵ)-far from every s-Fourier sparse function. In contrast, our lower bound is proved in
the non-tolerant setting, where the function is either exactly s-Fourier sparse or at least 1/4-far from
every such function. Clearly, the tolerant model is stronger, as it requires accepting all functions that
are close to being s-Fourier sparse, not just those that are exactly s-Fourier sparse. By definition, a
non-tolerant tester is not required to behave in any particular way on functions that are close but not
exactly sparse. It is worth noting that, in the property testing literature, logarithmic or even larger
gaps between tolerant and non-tolerant complexities have been observed for several problems. On the
other hand, our tester is non-adaptive, whereas the lower bound is proved for adaptive algorithms. In
this work, we close the gap between the upper and lower bounds up to a logarithmic factor. We view
this as an interesting open question toward better understanding the complexity of Fourier sparsity
testing across all settings.

Finally, we note that our lower bound argument applies only for constant ε. An important direction
for future work is to extend this argument to hold for any nonzero ε.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes. Theorem 1.1 and 1.2 constitute the main contributions of the paper and
have been rigorously proved in Sections 2 and 3.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification: Although we did not include a dedicated limitations section, the scope for
further improvement is minimal as we provide both an algorithm and a lower bound that are
optimal up to logarithmic factors for the considered class of functions, a significant result in
computational learning theory.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, each theorem and lemma is accompanied by a complete set of assumptions
and detailed, correct proofs.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: No experimental results were included in the paper; hence, this question is not
applicable.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Our work does not involve data collection or code execution; hence, this
question is not applicable.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: No experimental setup was used in this work; therefore, this item is not
applicable.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: As no experiments were conducted, questions of statistical significance or
error bars do not arise.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: This work does not involve any experiments requiring computational resources;
thus, the question is not applicable.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our work
conforms to it in all respects, wherever applicable.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a theoretical paper, and to the best of our understanding, it does not
have direct societal implications.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As no data or models were released in this work, this question does not apply.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Although no experimental assets were used, all prior work has been appropri-
ately cited to the best of our ability.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: While our work does not introduce experimental assets, we have clearly defined
the theoretical model proposed.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No experiments involving human subjects or crowdsourcing were conducted;
thus, this question is not applicable.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: No human subjects were involved in this study; therefore, IRB approval was
not required.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We have used large language models solely for editorial purposes and not in
any aspect of the methodology or technical contribution.
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Appendix

A Missing Proofs of Section 3

A.1 Proof of Lemma 3.3

Proof. For part (1), recall that two elements α, β ∈ Fn
2 belong to the same coset of H⊥ if and only if

α− β ∈ H⊥. Fix any nonzero v = α− β ∈ Fn
2 . For a uniformly random subspace H of dimension

t, the event v ∈ H⊥ is equivalent to the event that v is orthogonal to all basis vectors of H . Since
each of the t basis vectors is drawn uniformly and independently from Fn

2 , we have

Pr
H
[v ∈ H⊥] = (1/2)t = 2−t.

Hence, PrH [α, β lie in the same coset ] = 2−t.

For part (2), apply the union bound over all unordered pairs {α, β} ⊆ S:

Pr
H

[
∃α ̸= β ∈ S : α− β ∈ H⊥] ≤ (

s

2

)
· 2−t ≤ s2 · 2−t.

If t ≥ 2 log2 s+log2 100, then s2 ·2−t ≤ 1/100. Thus, with probability at least 99/100, all elements
of S lie in distinct cosets of H⊥.

A.2 Proof of Theorem 1.2

We now prove Theorem 1.2. The main idea behind the tester and its analysis is captured by a simple
structural observation: the squared ℓ2-distance of a function from the class Fs is exactly the Fourier
mass lying outside its top s coefficients.

Lemma A.1 (Structural Observation). Let f : Fn
2 → R with ∥f∥2 = 1. Then

dist22(f,Fs) = 1− max
T⊆Fn

2 : |T |≤s

∑
β∈T

f̂(β)2

 .

Proof. Fix any T ⊆ Fn
2 with |T | ≤ s. Let VT := span {χβ : β ∈ T} denote the family of all

real-valued functions on Fn
2 whose Fourier spectrum is supported on the set T . The orthogonal

projection of f onto VT is

PT f :=
∑
β∈T

f̂(β)χβ .

For any g ∈ VT , using Parseval identity, we get

∥f − g∥22 = ∥f − PT f∥22 + ∥PT f − g∥22 ≥ ∥f − PT f∥22,

so the best approximation to f supported on T is g⋆ = PT f . Using Parseval identity and the fact that
∥f∥2 = 1,

∥f − PT f∥22 =
∥∥∥∑

β/∈T

f̂(β)χβ

∥∥∥2
2
=

∑
β/∈T

f̂(β)2 = 1−
∑
β∈T

f̂(β)2.

Minimizing over all supports of size at most s (that is, over all T with |T | ≤ s) yields

dist22(f,Fs) = min
|T |≤s

(
1−

∑
β∈T

f̂(β)2
)
= 1− max

|T |≤s

∑
β∈T

f̂(β)2,

as claimed.
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The Tester

Let H be a random subspace of Fn
2 , obtained as the span of t vectors sampled independently and

uniformly from Fn
2 . Let α ∈ Fn

2 be an independent uniform vector, and define the affine subspace
A = α+H .

The tester applies Lemma A.1 to the restriction fA of f on A, defining

ξ∗A = 1− max
|S|=s

∑
γ∈S

f̂A(γ)
2

 .

If we had exact access to all Fourier coefficients of fA, we could compute ξ∗A and solve the testing
problem by checking whether ξ∗A ≤ δ+ ε/2. In practice, since only estimates are available, the tester
instead computes an approximation ξ̃∗A and applies the same decision rule:

ξ̃∗A ≤ δ + ε/2 ⇒ Accept, else Reject.

The tester fixes the following parameters:

η = τ =
ε

16
√
s
, e = η + τ =

ε

8
√
s
, t ≥ max

{
2 log2 s+ log2 100, log2(1/η

4)
}
.

Finally, recall from Section 3.1 that H⊥ denotes the annihilator of H , and W its complementary
subspace.

Analysis with exact coefficients

Let T = {β1, . . . , βs} denote the set of the top s Fourier coefficients of f in terms of their absolute
value. Using Lemma 3.3, we get the following corollaries.

Corollary A.2 (Event E1: Coset separation). With probability at least 0.99, the elements in T fall
into distinct cosets of H⊥.

Proof. For distinct α, β ∈ T , the probability that they fall in the same coset of H⊥ is 2−t

(Lemma 3.3). Applying the union bound, the probability that every element of T falls into dis-
tinct cosets of H⊥ is at least 1−

(
s
2

)
· 2−t. As t ≥ 2 log2 s+ log2 100, 1−

(
s
2

)
· 2−t ≥ 0.99.

Corollary A.3 (Event E2: Leader concentration). For all γ ∈ T , define Eγ denotes the following
event: ∣∣∣f̂A(γ)− f̂(γ⋆)χγ⋆(α)

∣∣∣ ≤ e =
ε

8
√
s
.

Then

Pr
H,α

[ ⋂
γ∈T

Eγ

]
≥ 1− ϵ2

162
.

Proof. Recall that η = τ = ϵ
16

√
s

and e = η + τ . Given γ ∈ T , from Lemma 3.4, we have

Pr
H,α

[∣∣f̂A(γ)− f̂(γ⋆)χγ⋆(α)
∣∣ > e

]
≤ ϵ2

162s
.

Using the union bound over all γ ∈ T with the above inequality gives PrH,α

[⋂
γ∈T Eγ

]
≥

1− ϵ2

162 .

Completeness. Assume that we are in the conditional space E1 ∩ E2. Note that
PrH,α [E1 ∩E2] > 0.985. Suppose dist22(f,Fs) ≤ δ. Then, by Lemma A.1,

s∑
i=1

f̂(βi)
2 ≥ 1− δ.
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Under E1, each βi ∈ T occupy distinct cosets of H⊥. By E2, for each βi ∈ T ,

|f̂A(βi)| ≥ max{0, |f̂(βi)| − e}.
Observe that, for all a ≥ 0 and c ≥ 0, we have

(max {0, a− c})2 ≥ a2 − 2ac.

Therefore
f̂A(βi)

2 ≥ f̂(βi)
2 − 2e|f̂(βi)|,

so that
s∑

i=1

f̂A(γi)
2 ≥

s∑
i=1

f̂(βi)
2 − 2e

s∑
i=1

|f̂(βi)|.

From Cauchy–Schwarz inequality,
∑s

i=1 |f̂(βi)| ≤
√
s. Thus

s∑
i=1

f̂A(γi)
2 ≥ 1− δ − ϵ

4
.

Hence
ξ∗A ≤ 1− (1− δ − ε

4 ) = δ +
ϵ

4
.

Therefore, the tester Accepts in the completeness case.

Soundness. As in the analysis of the completeness case, we assume that we are working in the
conditional space E1 ∩E2. Suppose dist22(f,Fs) ≥ δ + ε. Then by Lemma A.1,

s∑
i=1

f̂(βi)
2 ≤ 1− (δ + ε).

Let S ⊆ W with |S| = s be arbitrary. For each γ ∈ S, let γ⋆ be the leader given by E2, and set
bγ = |f̂(γ⋆)|. E2 ensures

|f̂A(γ)| ≤ bγ + e =⇒ f̂A(γ)
2 ≤ b2γ + 2ebγ + e2.

Summing over γ ∈ S, ∑
γ∈S

f̂A(γ)
2 ≤

∑
γ∈S

b2γ + 2e
∑
γ∈S

bγ + se2.

Since {bγ}γ∈S are at most s Fourier magnitudes of f ,∑
γ∈S

b2γ ≤
s∑

i=1

f̂(βi)
2 ≤ 1− (δ + ε),

and by Cauchy–Schwarz inequality,
∑

γ∈S bγ ≤
√
s. Thus∑

γ∈S

f̂A(γ)
2 ≤ 1− (δ + ε) + 2e

√
s+ se2.

With e = ε/(8
√
s), we compute 2e

√
s = ε/4 and se2 = ε2/64. Therefore∑

γ∈S

f̂A(γ)
2 ≤ 1− (δ + ε) +

ε

4
+

ε2

64
.

Taking the maximum over all S,

max
|S|=s

∑
γ∈S

f̂A(γ)
2 ≤ 1− (δ + ε) +

ε

4
+

ε2

64
,

and hence

ξ∗A ≥ δ + ε− ε

4
− ε2

64
.

Since ε ∈ (0, 1], ξ∗A > δ + ϵ/2. Thus, the tester Rejects in the soundness case.
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Estimating restricted Fourier coefficients

We now present the estimation step used by the tester. Recall (see Theorem 3.2) that for all γ ∈ W ,
we have

f̂A(γ) = E
x∈H

[fAχγ ] =
1

|H|
∑
x∈H

fA(x)χγ(x).

Note that W is a complementary subspace of H⊥.

For all γ ∈ W , we compute an estimate f̃a(γ) for f̂A(γ). Let S∗ ⊆ W top s elements of W with
respect to the absolute values of our computed estimates

{
f̃A(γ)

}
γ∈W

. The main goal is to show

that for all S ⊆ W with |S| ≤ we have, with probability “close" to 1, the following:∣∣∣∑
γ∈S

f̃A(γ)
2 −

∑
γ∈S

f̂A(γ)
2
∣∣∣ < ϵ/8. (2)

Define

ξ̃∗A = 1− max
S⊆W :|S|=s

∑
γ∈S

f̃A(γ)
2

 .

Using Equation (2) together with our discussion on the case when we have access to the exact Fourier
coefficients

{
f̂A(γ)

}
γ∈W

of fA that comparing ξ̃∗A against the threshold δ + ε/2 would solve the

testing problem, that is, if ξ̃∗A ≤ δ + ϵ/2 then the tester Accepts, otherwise Rejects.

Working in the good conditional space G to control variance. Fix a subspace H ⊆ Fn
2 of

dimension at most t. Since
Eα

[
∥fA∥22

]
= 1,

Markov’s inequality implies that

Pr
α
[∥fA∥2 ≤ 10 | H] ≥ 0.99.

We define the good conditional space as

G = {α ∈ Fn
2 | ∥fA∥2 ≤ 10} ,

and from now on we restrict our analysis to G.

Using median-of-means (MoM) approach. Assume H is a fixed subspace of dimension at most t
and we will be wroking in the good conditional space G. We will sample m uniformly random and
independent samples x(1), . . . , x(m) from H . Partition m into K blocks of equal size B = m/K.
Note that we will set the values of m, K, and B later.

For each γ ∈ W and block k, compute the block mean

Y
(γ)
k :=

1

B

∑
xi∈block k

fA(x
(i))χγ(x

(i)),

and define the MoM estimator

f̃A(γ) := median
{
Y

(γ)
1 , . . . , Y

(γ)
K

}
.

Also, consider the random variable Y (γ)(x) := fA(x)χγ(x) where x is uniformly random sample
from H and γ ∈ W . Observe the following facts:

Fact-1: Ex∈H

[
Y γ(x) | G, H

]
= f̂A(γ) and Ex∈H

[
(Y γ(x))

2 | H,G
]
= ∥fA∥22 ≤ 100

Fact-2: For all k and γ ∈ W , E
[
Y

(γ)
k | H,G

]
= f̂A(γ) and

Var
[
Y

(γ)
k | H,G

]
≤ E

x∈H

[(
Y (γ)k

)2

| H,G
]
≤ 100

B
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Let ηsel =
ϵ

1000
√
s

be another parameter to be set later. Using Chebyshev’s inequality we have

Pr
[∣∣Y (γ)

k − f̂A(γ)
∣∣ ≥ ηsel | H,G

]
≤ 100

Bη2sel
.

Setting B =
400

η2sel
, therefore the above probability is at most 1/4. Using standard Chernoff bounds

(see [23, Theorem 4.5]), for all γ ∈ W , we have

Pr
[ ∣∣f̃A(γ)− f̂A(γ)

∣∣ ≥ ηsel | H,G
]
≤ exp(−K/24).

By a union bound over |W | ≤ 2t coefficients, the uniform deviation is at most ηsel for all γ ∈ W
simultaneously with probability at least 0.99, provided K = 24 log(2t/ρ1) where ρ1 = 1/100. Thus

m1 = K ·B = Θ

(
1

η2sel
log

2t

ρ1

)
= Θ

( s

ϵ2
log s

)
= Θ̃

( s

ϵ2

)
.

Unconditioning G, we get that

Pr

[
max
γ∈W

∣∣f̃A(γ)− f̂A(γ)
∣∣ ≤ ηsel | H

]
≥ (0.99)2 (3)

Guarantees on the estimators of the restricted Fourier coefficients. Assume that for all γ ∈ W ,
we have ∣∣f̃A(γ)− f̂A(γ)

∣∣ ≤ ηsel.

Therefore, for all γ ∈ W ,

|f̂A(γ)| − ηsel ≤ |f̃A(γ)| ≤ |f̂A(γ)|+ ηsel

For any subset S ⊆ W with |S| ≤ s, we have∑
γ∈S

f̃A(γ)
2 ≤

∑
γ∈S

f̂A(γ)
2 + 2 ηsel

∑
γ∈S

|f̂A(γ)|+ |S|η2sel

≤
∑
γ∈S

f̂A(γ)
2 + 2 ηsel

∑
γ∈S

|f̂A(γ)|+
ϵ2

106

≤
∑
γ∈S

f̂A(γ)
2 + 2 ηsel

√∑
γ∈S

f̂A(γ)2

 ·
√

|S|+ ϵ2

106
by Cauchy-Schwartz’s inequality

≤
∑
γ∈S

f̂A(γ)
2 + 2s · ηsel

√∑
γ∈S

f̂A(γ)2 +
ϵ2

106
as |S| ≤ s

≤
∑
γ∈S

f̂A(γ)
2 +

ϵ

50
+

ϵ2

106
(4)

The last inequality follows from Parseval’s inequality for the restricted function fA

∥fA∥22 :=
1

|H|
∑
x∈H

fA(x)
2 =

∑
γ∈W

f̂A(γ)
2, (5)

∑
γ∈W f̂A(γ)

2 ≤
∑

γ∈S f̂A(γ)
2, and the fact that ∥fA∥2 ≤ 10 (as we are working in the conditional

space G).

Before deriving the lower bound, we want to recall a fact that will be again used max {0, a− c}2 ≥
a2 − 2ac for all a ≥ 0 and c ≥ 0. Similarly,∑

γ∈S

f̃A(γ)
2 ≥

∑
γ∈S

max
{
0, |f̂A(γ)| − ηsel

}2

≥
∑
γ∈S

f̂A(γ)
2 − 2ηsel

∑
γ∈S

|f̂A(γ)|

≥
∑
γ∈S

f̂A(γ)
2 − ϵ

50
(6)
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Last inequality again follows from the observation that
∑

γ∈S |f̂A(γ)| ≤ 10
√
s and ηsel =

ϵ
1000

√
s
.

Combining Equations (4) and (6), we get that, for all S ⊆ W with |S| ≤ s,∣∣∣∑
γ∈S

f̃A(γ)
2 −

∑
γ∈S

f̂A(γ)
2
∣∣∣ < ϵ/8.

Overall success probability

The completeness and soundness guarantees established above hold under the intersection of three
events:

(i) coset separation E1 (Corollary A.2),

(ii) leader concentration E2 (Corollary A.3), and

(iii) accurate estimation of all restricted Fourier coefficients via the MoM estimator (Equation (3)).

These events occur with probabilities at least 0.99, 1 − ϵ2/162, and (0.99)2, respectively. First
observe that, probability of the event E1 ∩ E2 is

Pr
H,α

[E1 ∩ E2] ≥ Pr
H,α

[E1] + Pr
H,α

[E2]− 1

= 0.99 +

(
(1− ϵ2

162

)
− 1 ≥ 0.99− 1

162

≥ 0.98

Note that event E1 ∩ E2 and the success of MoM estimator are independent events. Hence, with
probability at least 0.96, all three events hold simultaneously, in which case the tester behaves
correctly. Therefore, the tester succeeds with probability at least 0.96. Finally, standard repetition
and majority decoding amplify the success probability to 1− δ for any desired constant δ ∈ (0, 1).

B Missing Proofs of Section 4

B.1 Proof of Lemma 4.1

Proof. For (u, v) ∈ Fr
2 × Fn−r

2 , the Fourier coefficient of gL is

ĝL(u, v) = Ex∈Fr
2,y∈Fn−r

2

[
(−1)Lx·φ(y)+u·x+v·y].

Rewriting the expectation yields

ĝL(u, v) = Ey∈Fn−r
2

[
(−1)v·y · Ex∈Fr

2
(−1)(L

Tφ(y)+u)·x
]
.

Observe that

Ex∈Fr
2
(−1)(L

Tφ(y)+u)·x = 0 whenever LTφ(y) ̸= u.

Hence,

ĝL(u, v) =
1

2n−r

∑
y∈(LTφ)−1(u)

(−1)v·y.

By construction, |(LTφ)−1(u)| ≤ 1, and the cardinality of the image of LTφ is at most rank(L).
Therefore, the Fourier support of gL has size at most rank(L) · r. Moreover, by symmetry, all
non-zero Fourier coefficients have the same magnitude.

21



B.2 Proof of Lemma 4.2

Proof. Let h : Fn
2 → {±1} be a r2

4 -Fourier sparse function. Then,

Pr
x
[h(x) ̸= f(x)] =

1

2
− 1

2
Ex[h(x)f(x)]

=
1

2
− 1

2

∑
α∈Fn

2

ĥ(α)f̂(α)

=
1

2
− 1

2

∑
α∈supp(h)

ĥ(α)f̂(α). (7)

Applying the Cauchy-Schwarz inequality gives∣∣∣∣∣∣
∑

α∈supp(h)

ĥ(α)f̂(α)

∣∣∣∣∣∣ ≤
√ ∑

α∈supp(h)

ĥ2(α) ·
∑

α∈supp(h)

f̂2(α)

=

√ ∑
α∈supp(h)

f̂2(α). (8)

Since h is r2

4 -Fourier sparse, |supp(ĥ)| ≤ r2

4 . By the construction of f , all non-zero Fourier
coefficients have equal magnitude and |supp(f̂)| = r2. Using Parseval’s identity, we get√ ∑

α∈supp(h)

f̂2(α) ≤ 1

2
. (9)

Substituting this bound into Equation (7) yields

Pr
x
[h(x) ̸= f(x)] ≥ 1

2
− 1

2
· 1
2
=

1

4
,

completing the proof.
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