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Abstract

A function f : F§ — R is said to be s-Fourier sparse if its Fourier expansion
contains at most s nonzero coefficients. In general, the existence of a sparse
representation in the Fourier basis serves as a key enabler for the design of efficient
learning algorithms. However, most existing techniques assume prior knowledge
of the function’s Fourier sparsity, with algorithmic parameters carefully tuned to
this value. This motivates the following decision problem: given s > 0, determine
whether a function is s-Fourier sparse.

In this work, we study the problem of tolerant testing of Fourier Sparsity for
real-valued functions over [F5, accessed via oracle queries. The goal is to decide
whether a given function is close to being s-Fourier sparse or far from every s-
Fourier sparse function. Our algorithm provides an estimator that, given oracle
access to the function, estimates its distance to the nearest s-Fourier sparse function
with query complexity O(s), for constant accuracy and confidence parameters.

A key structural ingredient in our analysis is a new spectral concentration result for
real-valued functions over F;; when restricted to small-dimensional random affine
subspaces. We further complement our upper bound with a matching lower bound
of Q(s), establishing that our tester is optimal up to logarithmic factors. The lower
bound exploits spectral properties of a class of cryptographically hard functions,
namely, the Maiorana—McFarland family, in a novel way.

1 Introduction

Sparsity is one of the most powerful ideas connecting modern machine learning and theoretical
computer science. It captures the intuition that, even in high-dimensional settings, many natural
functions or signals depend only on a small number of relevant components. This assumption
underlies algorithms that are both sample- and time-efficient, forming the basis of techniques such as
sparse linear regression, decision tree learning, and compressed sensing. Across these frameworks,
the common principle is simple yet profound: if a function admits a sparse representation in a suitable
basis, such as Fourier, wavelet, polynomial, or a learned dictionary, then learning and inference can
be made dramatically more efficient.

A particularly elegant setting where sparsity plays a central role is that of real-valued functions over
the Boolean hypercube 5. Fourier analysis provides a natural orthonormal basis for such functions.
Every function f : F§ — R can be expressed as

fl@) =" fla) (=)™,
acFy

where f(«) denotes the Fourier coefficient at frequency «. The Fourier sparsity of f, the number of
nonzero coefficients in this expansion quantifies how succinctly the function can be represented in
the Fourier basis.
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Fourier sparsity is a recurring theme across many areas of theoretical computer science. In complexity
theory, it lies at the heart of problems involving communication complexity and parity decision trees
for Boolean functions f : F§ — {41, —1} 3132129, 27, 10]. In learning theory, it has become a
central tool for designing algorithms that efficiently learn functions with low-degree or low-support
Fourier spectra. Many natural Boolean functions exhibit this property: graph and hypergraph cut
functions, as well as decision trees of bounded depth, are inherently Fourier sparse because their
spectra are concentrated on low-degree coefficients [28,[21]. For example, the cut function of a graph
corresponds to a degree-2 polynomial in the Fourier basis, while a degree-d hypergraph cut function
has degree at most d. Similarly, a Boolean decision tree of depth d has its spectrum supported entirely
on coefficients of degree at most d.

Beyond these classical examples, Fourier-sparse models have found renewed relevance in modern
machine learning. They appear in settings such as neural network hyperparameter optimization [19]
and the learning of structured set functions [4]. The impact of Fourier sparsity extends even further,
into cryptography, where the celebrated Goldreich-Levin theorem [12] established a deep connection
between identifying large Fourier coefficients and constructing hardcore predicates for one-way
functions.

Algorithmically, two main approaches have emerged for learning or recovering Fourier-sparse
functions: Sparse Hadamard Transform methods [16L25120] and Compressed Sensing techniques [24,
18]]. Both families of algorithms, however, rely critically on prior knowledge of the function’s sparsity
level. This partcular gap motivates our work, which focuses on efficiently estimating the Fourier
sparsity, up to a desired approximation in {5 distance. Such an estimator can serve as a useful
preprocessing step in learning pipelines, both for verifying whether sparsity-based assumptions hold
and for guiding the initialization of sparsity parameters in downstream algorithms.

To formalize this setting, we first introduce some basic definitions. We measure distances between
functions using the squared ¢5-norm:
1
.2
dist3(f,9) = If = gll3 = 5= Y _ (f(z) — g())*.

on
z€Fy

For a function f and a class of functions P, the distance of f from P is defined as
dist2(f,P) := mi — g3
ist3(f, P) min If—gll2
We also recall the standard definition of the ¢o-norm. For any function f : F§ — R,
1
178 i= 50 D f(@)*
zeFy

Let F denote the class of all s-Fourier sparse functions, that is, functions f : F5 — R whose Fourier
spectrum has at most s nonzero coefficients. We are interested in determining how close a given
function f is to this class.

Problem 1.1. Given query access to a function f : F% — R with || f||3 = 1, and parameters s > 0,
€ € (0,1], and 6 € [0, 1], the task is to design a randomized algorithm that distinguishes between the
following two cases:

* (Close): There exists g € F, such that || f — g3 < 6.

s (Far): Forevery g € Fs, ||f —gll3 >0 +e

The goal is to construct such an algorithm using as few queries to f as possible, while ensuring that
it distinguishes the two cases with high probability.

Our main contribution in this paper is the design of a simple, nonadaptive and almost optimal query
algorithm for testing Fourier sparsity.

Theorem 1.2. Let s > 0, € € (0,1], and 6 € [0,1]. Let f : F} — R be an unknown function with
[ fll2 = 1, accessible only via query access. Then, there exists a nonadaptive algorithm that, with
success probability at least 2/3, distinguishes between the following two cases:

* fis d-close to being s-Fourier sparse,



o [ is (8 + €)-far from every s-Fourier sparse function,

using at most O(s/€2) queries to f, where the O(-) notation hides factors polynomial in log s and
log(1/e).

Theorem [I.2)is proved in Section[3] Although stated under the assumption that the function has unit
£2-norm, the result extends to any nonzero function f : F5 — R via normalization.

We also show that the query complexity of our algorithm is tight up to logarithmic factors by proving
a matching lower bound.

Theorem 1.3. Let s > 0. Any randomized algorithm that decides whether a function f : Fy —
{=1,+1}, is s-Fourier sparse or (1/4)-far from every s-Fourier sparse function over FY3, must make
Q(s) queries to f to succeed with probability at least 2/3.

The reader may note that any Boolean function f : F3 — {—1,+1} satisfies || f||3 = 1. The proof of
Theorem [I.3]is presented in Section 4]

1.1 Related works

Testing Fourier sparsity was first studied by Gopalan et al. [15], who focused on Boolean functions
and used the Hamming distance as a measure of proximity. (The Hamming distance between two
functions f,g : F3 — {0, 1} is the fraction of inputs on which they differ.) Their algorithm has
query complexity O(s'#), which quickly becomes impractical for even moderately large values of s.
Similarly, the regularity framework of Hatami and Lovett [17] provides a general-purpose, black-box
reduction for testing Fourier sparsity under Hamming distance, but this approach suffers from a query
complexity that grows as a tower function in s.

In the real-valued setting, Yaroslavtsev and Zhou [30] considered testing Fourier sparsity with

respect to the squared ¢>-distance. They designed an algorithm with query complexity 5(5 /e*) and
established a lower bound of Q(,/s). In comparison, our algorithm improves the dependence on

the proximity parameter ¢, requiring only O(s/€?) queries, and is conceptually simpler. We further
establish a nearly tight lower bound of €(s), quadratically improving the current state of art [30]],
showing that our algorithm is optimal up to logarithmic factors.

It is important to note that testing Fourier sparsity in the random example model is significantly more
challenging. As shown in [13]], even for linearity testing, where the target functions are 1-Fourier
sparse, it is not known how to design a tester whose sample complexity is independent of the ambient
dimension n. In contrast, in the query access model, linearity testing can be performed efficiently
using the well-known 3-query BLR test. Our work aims to estimate the Fourier sparsity level of a
function in a way that depends only on the sparsity s and the proximity parameter €, while remaining
independent of the ambient dimension n.

1.2 Proof Sketch of Theorem 1.2}

The design of our tester is inspired by the well-established framework for testing hereditary graph
properties. A canonical tester for such a property P samples a small random subset of vertices,
queries all induced edges, and checks whether the resulting subgraph satisfies P. For hereditary
properties, those preserved under taking induced subgraphs, this approach guarantees only a modest
(quadratic) overhead in query complexity [2} 14, [1]]. Indeed, for several natural properties, such as
bipartiteness, the canonical tester achieves optimal performance up to constant factors.

A similar idea has been successfully adapted to Boolean functions, particularly for testing affine-
invariant properties [8l 16]. In this setting, the canonical approach restricts the function to random
low-dimensional affine subspaces and tests the property on these restrictions. While this strategy
enjoys strong generality and theoretical support, e.g., via regularity-like lemmas, it often suffers from
impractical query complexity, including tower-type dependencies [17]. Nonetheless, specialized
testers exploiting finer structural properties have been developed for specific cases, such as low
algebraic degree [3]] and odd-cycle-freeness [7]]. Surprisingly, despite being a natural and central
affine-invariant property, Fourier sparsity has largely resisted similar progress.

Prior works in Fourier sparsity testing typically project the Fourier spectrum into randomly chosen
cosets of sufficiently large codimension, a process commonly referred to as Fourier hashing, which



was originally introduced in [11]]. Analytical or combinatorial tools are then applied to extract sparsity
information. For example, Gopalan et al. [L5] presents a granularity theorem for Fourier-sparse
functions, showing that individual coefficients cannot be too small and reducing the problem to
counting large-weight cosets. Similarly, Yaroslavtsev et al. [30] certain concentration of the ¢5-norm
of heavy buckets to design their tester.

In contrast, our approach analyzes the function restricted to a randomly chosen subspace. We
approximately recover the Fourier spectrum of this restricted function and use it to infer the sparsity
of the original function. A new structural relationship between the Fourier coefficients of the restricted
and original functions shows that, under suitable subspace choices, their magnitudes closely match.
This relationship is central to our analysis. Instead of explicitly defining a hashing process, restricting
the function to a subspace implicitly induces a hashing, allowing us to derive a concentration bound
in terms of the #1-norm of bucketed Fourier coefficients, which constitutes our main technical
contribution.

1.3 Proof Sketch of Theorem 1.3l

We prove a lower bound for testing Fourier sparsity via a reduction from randomized communication
complexity, following the approach introduced by Blais, Brody, and Matulef [9]. Our reduction builds
on the structure of Maiorana—McFarland functions and their connection to the Approximate Matrix
Rank problem. Maiorana—McFarland functions are widely used in theoretical computer science,
especially for circuit lower bounds and structural analysis of Boolean functions. They also play a
central role in symmetric-key cryptography, thanks to their spectral properties that support strong
confusion and diffusion.

Consider a communication problem where Alice and Bob receive matrices A, B € IE‘Q”X", and their
goal is to determine whether the sum C = A + B has rank at least R, or at most cR, for some fixed
constant ¢ < 1. We encode this instance into the Fourier domain by composing Maiorana—McFarland
functions with linear transformations derived from the input matrices. A central property of this
construction is that the Fourier sparsity of the resulting function is closely tied to the rank of the
matrix C'. Thus, distinguishing high-rank from low-rank instances in the matrix problem reduces to
distinguishing functions that are close to being Fourier sparse from those that are far.

To complete the reduction, we use a result of Sherstov and Storozhenko [26], which shows that any
randomized protocol for the Approximate Matrix Rank problem must communicate at least Q(R?)
bits. Since our reduction incurs only a constant overhead, we conclude that any nonadaptive algorithm
for testing Fourier sparsity must make 2(R?) queries in the worst case. This matches our upper
bound up to logarithmic factors and establishes the optimality of our tester.

2 Background

Any function f : F§ — R can be uniquely expressed as

f@)=">" fle)xal@),
a€F}

where xo(z) = (=1)(*% and f(a) = E,[f(z)xa(z)]. The quantity f(a)? denotes the Fourier

weight on a, and the collection { f(«)} is the Fourier spectrum of f. We use the following standard
facts:

« Parseval’s identity: || f|2 = 3, ()2

* Plancherel’s theorem: (f,g) = >"_ f(a)g(a).
* Character multiplication: x 13 = XaX3-
* Poisson summation: For any subspace H C FZ,

a 1
5 o= {1 22

0, otherwise.
rEH

For our lower bound theorem, we will require the following definitions and results from communica-
tion complexity.



In the randomized communication model, Alice and Bob compute a function f : X x Y — {0,1}
using shared randomness. The randomized communication complexity Ry /3(f) is the minimum
number of bits exchanged to compute f(x,y) correctly with probability at least 2/3.

In the Approximate Matrix Rank problem, Alice holds A € F5*" and Bob holds B € F5*"; they must
distinguish whether rank(A + B) = r or . The following lower bound is known [26} Theorem 1.1]:

Ryjs (RANK{F’EM) = Q(r?).

3 Improved upper bound for testing Fourier sparsity

Our analysis centers on restricting the function f to random affine subspaces of 5. We study how
the individual Fourier coefficients behave under such restrictions, comparing it to that of the original
function. Table [Tl summarises the notations used in this section.

3.1 Fourier analysis under affine restrictions

We consider a function f : Fy — R. Let H C I} be a subspace and - € Fy. Define the restricted
function f4 : H — R by
falz)=f(z+a), VreH.

We will briefly recall some standard facts about the Fourier spectrum of f4. Let H C F} be the
annihilato of H, that is, the set of vectors orthogonal to every element of H, and let W C [F3 be a
complementary subspace to H, so that

F =W @ HYand WN H = {0"}.
The Fourier coefficients of f4 are naturally indexed by v € W, and the Fourier expansion of f4 is
falw) =3 fa() xy(@), w € H,
yeW

where R R
fay = > FB)xs(),
Bey+H:

~

and f(3) are the Fourier coefficients of f on F}. Observe that there is another way to write the
Fourier expansion of f4 in the following way:

fA(m): Z fA(E)X“/(x>7 T € H,
BeFy /HL
where o N
fa(8) =3 _ J(8) xs().
BeB
Recall that E is a coset of H+ and therefore a subset of F.

Remark 3.1. By abuse of notation, for a v € F%, fA('y) denotes the Fourier coefficient fa )
corresponding to the cosety =~ + H* of H* containing .

The following identity will be used by our tester, given in Section [3.3] for estimating Fourier
coefficients of functions restricted to a affine subspace.

Theorem 3.2. Let A = H + o, where H be a subspace of F§ and o € F%. Then, for all y in the
complementary subspace W of H+,

Fat) = B, axs) = o 3 Sala)s @)

reH

'"HY:={z €F} : (z,h) =0, Vh € H}



Table 1: Summary of Notation

Notation | Meaning

(a, B) Inner product of «, § € FY, defined as (o, ) := Y ;" | a;3; (over Fy).
E,ery[f] | Expectation of f : Fy — R, B epp [f] := 2% I f(z).

(f,g) | Inner product of f,g : Fy — R, (f,g) = Eserp[f(z)g(z)] =

37 2, f2)g(2).
H A (randomly chosen) linear subspace of 5.
at Given a subspace H C F%, H' denotes the annihilator of H, that is,

Ht :={x€F} : (x,h), he H}.

A An affine subspace of the form o + H, where o € F5.
fa Restriction of f to the affine subspace A.

~

fa(v) | Fourier coefficient of f4 aty € H.

*

~

Element v* := arg maxge,+ g+ | f(8)]-

3.2 Concentration of the Fourier spectrum under random affine restrictions

In Algorithm [I] the function f is restricted to a uniformly random affine subspace A = o + H. This
affine subspace is constructed as follows: we first select ¢ vectors hy, ho, ..., h; independently and
uniformly at random from 5, and define the linear subspace

H = span{hy, ha, ..., hi}.

Next, to introduce a random shift of H, we choose o € F3 uniformly at random and independently
of H, and define the affine subspace as

A=a+ H.

Observe that the collection of cosets {y + H+ : v € H} forms a partition of the space F3.
Interestingly, the following lemma shows that this random coset partition behaves like a pairwise
independent hash family over 5.

Lemma 3.3 (Coset Hashing via Random Subspaces). Let H C Fy be a uniformly random linear
subspace constructed by taking span of t random vectors from F5 sampled independently and
uniformly from F5. Then the following hold:

1. For any distinct o, 5 € 3,

PI’{r [, B lie in the same coset of H* | = PI’{r[a—b’ cHY)=2""

2. For any subset S C F3 with |S| < s, ift > 2log s + log 100, then

PHr [all elements of S lie in distinct cosets of H* ] > 0.99.

This lemma is a slight restatement of Proposition 3 from [15]], modified to suit the specific needs
of our proof. While the full proof is deferred to the appendix, we will assume it for the time being.

We now show that, for a uniform random choice of affine subspace A, the magnitude of the Fourier
coefficients of the restricted function f;(q/) is tightly concentrated around the magnitude of the
largest Fourier coefficient of f within the coset v + H. Specifically, we define the leader of the
coset as 7* = argmaxge. 4L |f(6)\ From this point on, we refer to v* as the leader of the coset.
We now formally state the following concentration result.

Lemma 3.4. Let A = o+ H be a random affine subspace of ¥y, where H is obtained as the span of
t vectors sampled independently and uniformly from Iy, and o € 3 is an independent uniformly



random shift. Consider a function f : T} — R with ||f||3 = 1. Ift > log ni‘*’ then for every v € H
and every T > 0,

Pr“fAA(v) — F()xa- ()] > n+r} < L. (1)

Proof. Fix v € F}. Recall, from Section @ the Fourier coefficients of the restriction f 4 satisfies

~

Fa) = Y F(B)xsla).

Bey+H*:

Consider the following random variable:

X = fa) = FO (@) = > f(B)xs(a),

pey+H*
B#y*

and let Y := | X|. All probabilities/expectations below are over the joint randomness of H and «; for
fixed H we write E,[- | H].

First moment bound. For fixed H, using linearity of expectation, we have

s -z| Y for|- ¥ inmbol
Bey+H* Bey+H*
B#Y™ B#Y"

Now, observe that E [xs(a)] = 0 for all 8 # 0 and equals 1 for § = 0. Therefore,

E, (X | H] F(0), if0€y+ H:andy* #0
¢ ~]o, otherwise

This implies that the expression of E, [X | H] can be rewritten in the following form:

o~

Eo[X [ H] = f(O)L0eq s i+ and 4+0-

Using the fact that Ey [Eo[X | H]] = Eg o[ X], we get

o~

Eyo[X] = f(0)- %r[o €v+H" andy* #0]

Using the fact that PrH[O €+ Ht andy* # O] < PrH[O €y+ Hl], we get
[Er.alX]| = f(O)] - Pr[0 €y +H" and* # 0] <|F(0)] - Pr[0 € v+ H']
Observe that
I;{r[O eEy+H = I;Jr[’y e HY) =27t <q
The last inequality follows from the fact that ¢ > log(1/n?). Using the above bound on Pry [0 €
v + H~] and the fact that | f(0)| < 1 (from Parseval identity), we get
[EralX]| <u* <.

Second moment bound. Observe that

X2 = 3N fBFB) xs@xa@) = D> FBFB) xses (@),

BB ex+H* BB ex+H™*
B,B #v* B,B #v*

since XpXp = Xp+p-
Taking expectation over « uniformly from F%, we use
1 ifd =0,

Ealxa(a)] = {0 if 5 # 0.



Hence only terms with 8 + 3’ = 0 contribute. Over F% this means 8’ = 3, so we obtain

EX?[Hl= Y JBFB)EBalxsrp(@]= > f(B
BB’ ey+H* Bey+H™*
B,B #v* BFAY*

Like in the case with “first moment calculation”, we need to rewrite the expression of E,[X? | H] in
terms of indicator random variables:

2
o[ XT[H] = 15 Liger+r+ and g2y}

BeFy
Taking expectation over H, we get
EnalX? < > F(B) - PrlB € v+ H].
BE]F"

For any fixed 3, Pry[8 € v+ H*] = Pry[8 +~ € H'] = 27¢. By Parseval PP f(ﬂ)Q =1,s0
Ego[X? <27 <nt
Thus Vary (X) < n*.

Applying Chebyshev inequality. Since |Ey o[X]| < 7, the event {|X| > n + 7} implies {| X —
Eg,o[X]| > 7}. Hence

=~

Varg, o (X)

<
T2 -

53[\X|>n+7] §PPI’71;{\X7EH,Q[X}|>T <

ﬂw‘:

~

Since X = fa(y) — (7*) X+ (v), this proves the theorem. O

Algorithm 1: FOURIER-SPARSITY-TESTER

Input: Tolerance Parameter d, Proximity parameter €, Sparsity parameter s, and Oracle access to
a function f : F — R, with ||f|]3 =1

Output: YES, if f is d-close to some s-Fourier-sparse function;
NQ, if f is § 4 e-far from every s-Fourier-sparse function

Procedure: )
1: Choose a random affine subspace A = o + H C F%, with dim(H) = © (log (2—2))

2: Let f4 denote the restriction of f to A, and compute an estimate 1z of the sum of squares of top s
Fourier coefficients of f4 in terms of their absolute values

3: Setgzzl—ﬁ

4: If € < & + & then NO, else YES.

3.3 Proof of Theorem[1.2]

In this section, we present our algorithm (Algorithm(I)). While the analysis of its theoretical guarantees
is deferred to the appendix, we provide an intuitive explanation below.

The main idea is that our algorithm estimates the squared sum of the top s Fourier coefficients of the
given function up to an additive error. Such an approximation is sufficient to distinguish whether the
function is d-close or (J + €)-far from being s-Fourier sparse in Euclidean distance.

In our tester, this estimation is made possible by the concentration phenomenon of the Fourier
coefficients under random restriction of the function, as formalized in Lemma @} Specifically,
Lemma shows that when the function is restricted to a random affine subspace, each Fourier



coefficient of the restricted function approximates its counterpart in the original function up to an
additive error. Consequently, the squared sum of these coefficients is preserved up to additive error.

Finally, we note that the query complexity of our tester is determined by the dimension of the
random affine subspace used in the restriction. Notably, this dimension and hence the overall query
complexity, depends only on the approximation parameter € and the sparsity parameter s, yielding
the required query complexity.

4 Improved lower bound for testing Fourier sparsity

In this section, we prove Theorem|I.3] establishing a lower bound that is quadratically stronger than
the previously known result from [30]. We begin by reviewing Maiorana—McFarland functions and
key properties needed for our argument.

4.1 Spectral structure of Maiorana-McFarland functions

Variants of Maiorana—McFarland functions have found widespread use in theoretical computer science,
particularly in proving circuit lower bounds and studying structural properties of Boolean functions
relevant to complexity theory. They also play an important role in symmetric-key cryptography,
especially in the design of stream ciphers, due to their desirable spectral characteristics that contribute
to strong confusion (via Fourier or Walsh spectra) and diffusion (via autocorrelation spectra). Below,
we define them in their most general form.

Given positive integers n and r with r < n, the Maiorana—McFarland family MM, ,, [22] consists of
n-variable Boolean functions f : ; — Fy of the form:

fl,y)=z-¢(y), (z,y) eFyxFy™",
where ¢ : F5 ™" — F% is an arbitrary function. Here, for a,b € F%, a - b denotes the standard inner
product over F5. In this work, we focus on signed variants of Maiorana—McFarland functions, i.e.,
functions of the form

g(z) = (=1)@  for some f € MM,.,,.
We now describe the spectral structure of these functions.

Lemma 4.1. Let n = r + logr, and suppose o is a mapping whose image has cardinality r and
whose elements are linearly independent in [F%,. Let

gr(z,y) = (—1)Lee)

be a function, where L € F3*" is a linear transformation. Then, the Fourier sparsity of gy, is at most
rank(L) - r.

The proof of the lemma is deferred to the appendix.

4.2 Proof of Theorem 1.3

We prove the lower bound in Theorem[I.3] via a reduction from a variant of the Approximate Matrix
Rank problem in randomized communication complexity. In this problem, Alice and Bob each hold a
matrix in F5 ™", denoted by A and B, respectively. They are promised that the matrix C = A + B has
rank either r or g, and their task is to determine the correct case while minimizing communication.
Both parties have access to a public random string.

Suppose, for the sake of contradiction, that there exists a tester T which, for any function f : Fy —
{—1, 1}, distinguishes whether f is s-Fourier sparse or e-far from every such function using only
q(s, €) queries. We show that such a tester can be used to solve the matrix rank problem with low
communication.

Alice and Bob independently construct Boolean functions ga,gp : F3 — {—1,+1} from their
matrices A and B using the construction in Lemma .1 Define the target function as g¢ : F§ —
{—1, 1} in similar way. By Lemma the Fourier sparsity of go depends on the rank of C = A+ B.
Specifically, if rank(C') = r, then the Fourier sparsity of g¢ is exactly r2. If rank(C') = %, the

. . . 2 . .
Fourier sparsity is at most “-. Now we show that, in the full-rank case, gc is i—far from any Boolean

. . . . 2
function with Fourier sparsity at most “-.



Lemma 4.2. [f the matrix C' € F3*" has rank r, then the function gc defined in Corollary.ts at

least 1 3-far from any Boolean function with Fourier sparsity at most

The proof of the lemma is deferred to the appendix. We will assume it and continue with the proof.
To simulate the tester T for go, Alice and Bob evaluate any query (z,y) € FJ as follows: Alice
computes g4 (z,y), Bob computes gg(z,y), and they exchange their values. They then compute

gc(z,y) = galz,y) - gp(x,y). Since

go(z,y) = (_1)(A+B)w-so(y)
- (fl)Ar-w(y) . (fl)Bw-w(y)

=ga(z,y) - gB(z,y).

Each query requires 2 bits of communication. Consequently, if T uses ¢(s, i) queries, Alice and

Bob can simulate it using at most 2¢(s, i) bits of communication. Setting s = %, and recalling that
distinguishing whether rank(C') = r or % requires £(r?) bits of communication (Theorem 1.1, [26])),

we deduce ) )
re 1 9 re 1 _ 9
2q ( 1 4> Qrs) = ¢ <474) = Q(r7).

Thus, any tester distinguishing s-Fourier sparse functions from those %-far from such functions must
make at least 2(s) queries, establishing the lower bound.

5 Conclusion

An intriguing direction is whether similar testers can be obtained in other bases, such as the wavelet
basis. Sparsity testing in more general bases has been considered in prior work [5]], where the goal is
to test whether a vector (or collection of vectors) can be expressed as a sparse linear combination over
known or unknown bases. However, the query complexity of these algorithms depends on the ambient
dimension, making them less suitable for very high-dimensional regimes. In contrast, our focus is on
testing problems where the query complexity is completely independent of the ambient dimension.
Understanding precisely which classes of functions and bases admit such dimension-independent
testing remains an intriguing and fundamental open question.

We would like to highlight a subtle aspect of our work. Our upper bound is established in the tolerant
setting, where the goal is to distinguish functions that are d-close to being s-Fourier sparse from those
that are (6 + €)-far from every s-Fourier sparse function. In contrast, our lower bound is proved in
the non-tolerant setting, where the function is either exactly s-Fourier sparse or at least 1/4-far from
every such function. Clearly, the tolerant model is stronger, as it requires accepting all functions that
are close to being s-Fourier sparse, not just those that are exactly s-Fourier sparse. By definition, a
non-tolerant tester is not required to behave in any particular way on functions that are close but not
exactly sparse. It is worth noting that, in the property testing literature, logarithmic or even larger
gaps between tolerant and non-tolerant complexities have been observed for several problems. On the
other hand, our tester is non-adaptive, whereas the lower bound is proved for adaptive algorithms. In
this work, we close the gap between the upper and lower bounds up to a logarithmic factor. We view
this as an interesting open question toward better understanding the complexity of Fourier sparsity
testing across all settings.

Finally, we note that our lower bound argument applies only for constant €. An important direction
for future work is to extend this argument to hold for any nonzero ¢.
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1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes. Theorem 1.1 and 1.2 constitute the main contributions of the paper and
have been rigorously proved in Sections 2 and 3.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:

Justification: Although we did not include a dedicated limitations section, the scope for
further improvement is minimal as we provide both an algorithm and a lower bound that are
optimal up to logarithmic factors for the considered class of functions, a significant result in
computational learning theory.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, each theorem and lemma is accompanied by a complete set of assumptions
and detailed, correct proofs.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: No experimental results were included in the paper; hence, this question is not
applicable.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Our work does not involve data collection or code execution; hence, this
question is not applicable.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: No experimental setup was used in this work; therefore, this item is not
applicable.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: As no experiments were conducted, questions of statistical significance or
error bars do not arise.

. Experiments compute resources
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15.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This work does not involve any experiments requiring computational resources;
thus, the question is not applicable.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our work
conforms to it in all respects, wherever applicable.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical paper, and to the best of our understanding, it does not
have direct societal implications.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: As no data or models were released in this work, this question does not apply.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Although no experimental assets were used, all prior work has been appropri-
ately cited to the best of our ability.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: While our work does not introduce experimental assets, we have clearly defined
the theoretical model proposed.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No experiments involving human subjects or crowdsourcing were conducted;
thus, this question is not applicable.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]

Justification: No human subjects were involved in this study; therefore, IRB approval was
not required.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We have used large language models solely for editorial purposes and not in
any aspect of the methodology or technical contribution.
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Appendix

A Missing Proofs of Section [3|

A.1 Proof of Lemma[3.3

Proof. For part (1), recall that two elements «, 3 € F% belong to the same coset of H = if and only if
a — B € H*. Fix any nonzero v = a — 3 € F%. For a uniformly random subspace H of dimension
t, the event v € H is equivalent to the event that v is orthogonal to all basis vectors of H. Since
each of the ¢ basis vectors is drawn uniformly and independently from F5, we have

Prlv € H*) = (1/2)' =27

Hence, Pry[ o, 8 lie in the same coset ] = 27¢.

For part (2), apply the union bound over all unordered pairs {«, 5} C S:
Lo — < (?) 2t <s? 0,
E’{r[ﬂa#ﬁeSa ﬂGH](2> 27" <52

Ift > 2log, s+1log, 100, then s2.27t < 1/100. Thus, with probability at least 99/100, all elements
of S lie in distinct cosets of H L. O

A.2 Proof of Theorem

We now prove Theorem [I.2] The main idea behind the tester and its analysis is captured by a simple
structural observation: the squared ¢5-distance of a function from the class F; is exactly the Fourier
mass lying outside its top s coefficients.

Lemma A.1 (Structural Observation). Let f : FY — R with || f||2 = 1. Then

.2 =1- 3
disty(f, Fs) = 1 TQJP%‘I:&I%SS Bze;f(m

Proof. Fix any T C Fy with |[T'| < s. Let Vp := span{xg : § € T} denote the family of all
real-valued functions on F; whose Fourier spectrum is supported on the set 7. The orthogonal
projection of f onto V7 is

Prf:=>_ F(B)xs-

BET

For any g € Vr, using Parseval identity, we get

If = gll3 = 1If = Prfli3 + I1Prf —gl3 > If = Prfll3,

so the best approximation to f supported on 7" is g* = Pr f. Using Parseval identity and the fact that

7] = 1.
15 = Perl = | 32 Fos, = 3 Floy =1- 3 Fior
BET BET

BET

Minimizing over all supports of size at most s (that is, over all T’ with |T'| < s) yields

dis(f, F) = min (1= 3 F(8)?) =1- max 3 f(8)%,
BeET

IT|<s = IT/<s

as claimed. O
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The Tester

Let H be a random subspace of [F}, obtained as the span of ¢ vectors sampled independently and
uniformly from [F5. Let o € 5 be an independent uniform vector, and define the affine subspace
A=a+ H.

The tester applies Lemma[A.T]to the restriction f4 of f on A, defining

If we had exact access to all Fourier coefficients of f4, we could compute £% and solve the testing
problem by checking whether £% < ¢ + ¢/2. In practice, since only estimates are available, the tester

instead computes an approximation £’ and applies the same decision rule:

Z*,} <d+¢/2 = Accept, else Reject.
The tester fixes the following parameters:

n=1= %\/g, e=n+71= 8%/? t > max{210g2 s + log, 100, 10g2(1/774)}.
Finally, recall from Section that H+ denotes the annihilator of H, and W its complementary
subspace.

Analysis with exact coefficients

Let T = {fi,...,Bs} denote the set of the top s Fourier coefficients of f in terms of their absolute
value. Using Lemma|[3.3] we get the following corollaries.

Corollary A.2 (Event E1: Coset separation). With probability at least 0.99, the elements in T fall
into distinct cosets of H.

Proof. For distinct r, 3 € T, the probability that they fall in the same coset of H+ is 27
(Lemma [3.3). Applying the union bound, the probability that every element of 7" falls into dis-
tinct cosets of H is at least 1 — (;) <27 Ast > 2log, s + log, 100, 1 — (;) 227t>0.99. O

Corollary A.3 (Event E2: Leader concentration). For all v € T, define E., denotes the following

event:
3

‘E(V) - J?(v*)xv*(a)’ <e= 87\/5

Then
2

€
plOe]=-
yeT

Proof. Recall thatn =71 = ?i/g and e = n + 7. Given v € T, from Lemma we have

€2

162s

e [|f/2(”r) P ()] > e} <

Using the union bound over all v € T with the above inequality gives Pry o [mweT Ev} >

2

1- 5. O

Completeness. Assume that we are in the conditional space E1 N E2. Note that
Pry.o [E1 N E2] > 0.985. Suppose dist3( f, Fs) < d. Then, by Lemma

Zf(ﬁi)z > 1-6.
i=1
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Under E1, each 3; € T occupy distinct cosets of H L. By E2, for each 5; € T,
F4(8:)] > max{0,|£(8:)| — e}.

Observe that, for all @ > 0 and ¢ > 0, we have
(max {0,a — ¢})? > a® — 2ac.

Therefore

-~

Fa(B:)? = F(B:)? — 2¢|F(B:)],

so that .
S Fat)? > J?ﬁz —2eZ|f Bi)l-
i=1 i=1

From Cauchy-Schwarz inequality, > 0, | f ( | < /s. Thus

> it >1-6-7.
=1

Hence c
€as1-(1-0-9) =0+

Therefore, the tester Accepts in the completeness case.

Soundness. As in the analysis of the completeness case, we assume that we are working in the
conditional space E1 N E2. Suppose dist3(f, Fs) > § + . Then by Lemma

Zf(@»)? < 1—(0+¢).

Let S C W with |S| = s be arbitrary. For each v € S, let v* be the leader given by E2, and set
= |f(v*)|- E2 ensures

|fA(’Y)| < by+e = ?Z(W)Q < b3+26b7+e2.

Summing over y € S,
Z J/‘;(fy)Q < Z b,QY + 26231»Y + se?.
yES yES YeS

Since {by } ¢ are at most s Fourier magnitudes of f,

Yo <D f(B) < 1-(0+e),
i=1

~ES

and by Cauchy-Schwarz inequality, > ©_ 5 b, < v/s. Thus
Z?E(’y)2 < 1—(6+¢)+2e/s+ se’.

~yeS
With e = £/(8+/s), we compute 2e,/s = £/4 and se? = 2 /64. Therefore
2
S Ta)? < 1-(4e)+ 4o
~YES
Taking the maximum over all S,

2

fay)? < 1-( -
lrglzg;;ffx(v) (6+2)+ 5+

and hence

62

3
> _s_ =
§A d+¢ 1 64

Since € € (0, 1], &% > J + €/2. Thus, the tester Rejects in the soundness case.
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Estimating restricted Fourier coefficients

We now present the estimation step used by the tester. Recall (see Theorem [3.2)) that for all v € W,
we have

Fat) = B 1) = g7 3 fa@n @)

zxcH
Note that W is a complementary subspace of H .

For all v € W, we compute an estimate f;('y) for fA(’y). Let S* C W top s elements of W with
respect to the absolute values of our computed estimates { f A(*y)} W The main goal is to show
€

.
that for all S C W with |S| < we have, with probability “close" to 1, the following:
| R =3 Fat?| < ess. )
V€S V€S
Define

G=1-_max |3 fa(y)
yeES

SCW:|S|=s

Using Equation (2) together with our discussion on the case when we have access to the exact Fourier

coefficients {fA(v)} W of f4 that comparing Ej against the threshold § + /2 would solve the
YE

testing problem, that is, if EI*; < 0 + €/2 then the tester Accepts, otherwise Rejects.

Working in the good conditional space G to control variance. Fix a subspace H C FJ of
dimension at most ¢. Since
2
Ea[llfall2] =1,

Markov’s inequality implies that

Pr(|[fa]l> < 10 | H] > 0.99.

We define the good conditional space as
G = {aeFy|[[fal2 <10},

and from now on we restrict our analysis to G.

Using median-of-means (MoM) approach. Assume H is a fixed subspace of dimension at most ¢
and we will be wroking in the good conditional space G. We will sample m uniformly random and
independent samples (1), ..., z("™) from H. Partition m into K blocks of equal size B = m/K.
Note that we will set the values of m, K, and B later.

For each v € W and block k, compute the block mean
1 . )
=g 3 ) E?),
x;€block k

and define the MoM estimator
};(7) := median {Yl(W), cey YI((V)} .

Also, consider the random variable Y (") (z) := fa(z)x (z) where z is uniformly random sample
from H and v € W. Observe the following facts:

Fact-1: Eycp [Y7(2) |G, H] = Fa(7) and Bpeqr [(YV(»T))Q | H,G] = || fall3 < 100
Fact-2: Forallkandy € W, E [Yk("’) | H, g} = fa(y) and

Var {Y,j” | H, g} <E [(Y”)’v)z | H, g] < %
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Let 1)l = —°_ be another parameter to be set later. Using Chebyshev’s inequality we have
1000+/s
N 100
Pr(vi) = Fa()] 2 ma | H,G] < 2
anel

400
Setting B = ——, therefore the above probability is at most 1/4. Using standard Chernoff bounds
sel
(see [23, TheorZeem 4.5]), for all vy € W, we have
Pr[|fat) = Fa()| = ma | H,G] < exp(~K/24).

By a union bound over |W| < 2t coefficients, the uniform deviation is at most 7, for all v € W
simultaneously with probability at least 0.99, provided K = 241og(2¢/p;) where p; = 1/100. Thus
¢

my :K~B:@(n§ellogil> :@(glogs> :é(e%)

Unconditioning G, we get that
Pr {%%!E(v)—ffx(vﬂ < Nt | H] > (0.99)> 3)

Guarantees on the estimators of the restricted Fourier coefficients. Assume that for all v € W,
we have

|fa(y) = fa()] < Na-
Therefore, for all v € W,

|fA)] = nset < [fa(V)] < [fa(V)] + Nsel
For any subset S C W with |S| < s, we have

S R0 < 3 Fa)? 4 2ma S 1Fa()] + ST

yES yeES yES
2
~ -~ €
< Z fA(7)2 +2 Tsel Z ‘fA(’Y)‘ + W
yeES yES

— 2
< Z fa()? + 2 nga /Z fam? ] VIS + ;F by Cauchy-Schwartz’s inequality
vES yES

<Y Faly)? 425 na ZfA('Y)z'i‘W as[S] <
YES yeS

-~ € €

< 24—+ — 4

<D Fa) + 5+ 15 )

vES
The last inequality follows from Parseval’s inequality for the restricted function f 4
1 —~
| £all3 == ] > fa@)? =" Fav)?, ®)
reH yeWw

D oew fa ()% < > es fa ()2, and the fact that || f||2 < 10 (as we are working in the conditional
space G).

Before deriving the lower bound, we want to recall a fact that will be again used max {0, a — 0}2 >
a? — 2ac forall a > 0 and ¢ > 0. Similarly,

> fa()? = Y max {0, | fa(y)] — nsel}2

yES yES
>3 fay)? =2 > |Fa()]
yES yeS
>3 faly)? - 50 (6)
~YES
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Last inequality again follows from the observation that > °_ 5 |fA(7)| < 104/s and 7 = W.
Combining Equations @) and (), we get that, for all S C W with |S| < s,

[ Fal)? = 30 Fatn?| < e/,

yeS yeS

Opverall success probability

The completeness and soundness guarantees established above hold under the intersection of three
events:

(i) coset separation £y (Corollary[A.7),
(i) leader concentration E5 (Corollary[A.3)), and

(iii) accurate estimation of all restricted Fourier coefficients via the MoM estimator (Equation (3)).

These events occur with probabilities at least 0.99, 1 — €2/162, and (0.99)?, respectively. First
observe that, probability of the event £y N Ej is

Pr [E, N Ey] > Pr [By] + Pr [Es] — 1
H,a H.,« H,«
2

= 0.99 + <(1 -

1
—1>0. -
162) 12099 -

62
> 0.98

Note that event E; N E, and the success of MoM estimator are independent events. Hence, with

probability at least 0.96, all three events hold simultaneously, in which case the tester behaves

correctly. Therefore, the tester succeeds with probability at least 0.96. Finally, standard repetition
and majority decoding amplify the success probability to 1 — ¢ for any desired constant § € (0, 1).

B Missing Proofs of Section 4]

B.1 Proof of Lemma[d.1]
Proof. For (u,v) € F§ x F§~", the Fourier coefficient of gy, is

/g\L (U, U) =K [(_1)LI'W(y)+u-z+v-y] )

z€F5,yefy ™"

Rewriting the expectation yields
9r(u,v) = Eycpnr [(—l)v'y -Exemg(—l)(LT“a(yH“)'w].

Observe that
Ewepg(—l)(LT“yH“)'”’ =0 whenever LT p(y) # u.

Hence,

§L(U,’U) = infr Z (_1>Uy

yE(LT )~ (u)

By construction, |(LT¢)~!(u)| < 1, and the cardinality of the image of L ¢ is at most rank(L).
Therefore, the Fourier support of g;, has size at most rank(L) - . Moreover, by symmetry, all
non-zero Fourier coefficients have the same magnitude.
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B.2 Proof of Lemma

Proof. Leth :Fy — {£1}bea %-Fourier sparse function. Then,

Prih(z) # f(2)] = 5 = 5Ea[h(x)f(2)]
—5-3 3 h@)fie)
a€cly
_ % _ % () fla). (7)
a€supp(h)

Applying the Cauchy-Schwarz inequality gives

3 M@ﬂm:§¢ S R Y P
a€supp(h)

a€supp(h) a€esupp(h)
- [ P ®)
a€supp(h)
Since h is ﬁ-Fourier sparse, |supp(A)| < % the construction of f, all non-zero Fourier
coefficients have equal magnitude and |supp(f 2. Using Parseval’s identity, we get

Y Pa g%. ©)
acsupp(h)

Substituting this bound into Equation (7)) yields

f;r[h(x)7éf($)]25*§'§:17

completing the proof. O
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