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Abstract

Counterfactual inference aims to estimate the counterfactual outcome at the indi-
vidual level given knowledge of an observed treatment and the factual outcome,
with broad applications in fields such as epidemiology, econometrics, and manage-
ment science. Previous methods rely on a known structural causal model (SCM)
or assume the homogeneity of the exogenous variable and strict monotonicity
between the outcome and exogenous variable. In this paper, we propose a prin-
cipled approach for identifying and estimating the counterfactual outcome. We
first introduce a simple and intuitive rank preservation assumption to identify the
counterfactual outcome without relying on a known structural causal model. Build-
ing on this, we propose a novel ideal loss for theoretically unbiased learning of
the counterfactual outcome and further develop a kernel-based estimator for its
empirical estimation. Our theoretical analysis shows that the rank preservation
assumption is not stronger than the homogeneity and strict monotonicity assump-
tions, and shows that the proposed ideal loss is convex, and the proposed estimator
is unbiased. Extensive semi-synthetic and real-world experiments are conducted to
demonstrate the effectiveness of the proposed method.

1 Introduction

Understanding causal relationships is a fundamental goal across various domains, such as epidemi-
ology [1], econometrics [2], and management science [3]. Pearl and Mackenzie [4] define the
three-layer causal hierarchy—association, intervention, and counterfactuals—to distinguish three
types of queries with increasing complexity and difficulty [5]. Counterfactual inference, the most
challenging level, aims to explore the impact of a treatment on an outcome given knowledge about a
different observed treatment and the factual outcome. For example, given a patient who has not taken
medication before and now suffers from a headache, we want to know whether the headache would
have occurred if the patient had taken the medication initially. Answering such counterfactual queries
can provide valuable instructions in scenarios such as credit assignment [6], root-causal analysis [7],
attribution [8, 9, 10, 11], as well as fair and safe decision-making [12, 13, 14, 15, 16].

Different from interventional queries, which are prospective and estimate the counterfactual out-
come in a hypothetical world via only the observations obtained before treatment (as pre-treatment
variables), counterfactual inference is retrospective and further incorporates the factual outcome (as
a post-treatment variable) in the observed world. This inherent conflict between the hypothetical
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and the observed world poses a unique challenge and makes the counterfactual outcome generally
unidentifiable, even in randomized controlled experiments (RCTs) [5, 8, 13, 17].

For counterfactual inference, Pearl et al. [8] proposed a three-step procedure (abduction, action, and
prediction) to estimate counterfactual outcomes. However, it relies on the availability of structural
causal models (SCMs) that fully describe the data-generating process [18, 19]. In real-world applica-
tions, the ground-truth SCM is likely to be unknown, and estimating it requires additional assumptions
to ensure identifiability, such as linearity [20] and additive noise [21, 22, 23]. Unfortunately, these
assumptions are hard to satisfy in practice and restrict the applicability.

To tackle the above problems, several counterfactual learning approaches have been proposed with
respect to different identifiability assumptions. For example, Lu et al. [24], Nasr-Esfahany et al. [25],
and Xie et al. [19] established the identifiability of counterfactual outcomes based on homogeneity
and strict monotonicity assumptions [23, 26]. The homogeneity assumption posits that the exogenous
variable for each individual remains constant across different interventional environments, and
the strict monotonicity assumption asserts that the outcome is a strictly monotone function of the
exogenous variable given the features. In terms of counterfactual learning, [24] and [25] adopted
Pearl’s three-step procedure that needs to estimate the SCM initially. In addition, [19] proposed using
quantile regression to estimate counterfactual outcomes that effectively avoid the estimation of SCM.
Nevertheless, it relies on a stringent assumption that the conditional quantile functions for different
counterfactual outcomes come from the same model and it requires estimating a different quantile
value for each individual, leading to a challenging bi-level optimization problem [27].

In this work, we propose a principled counterfactual learning approach with intuitive identifiability
assumptions and theoretically guaranteed estimation methods. On one hand, we introduce the
simple and intuitive rank preservation assumption, positing that an individual’s factual and counter-
factual outcomes have the same rank in the corresponding distributions of factual and counterfactual
outcomes for all individuals. We establish the identifiability of counterfactual outcomes under the
rank preservation assumption and show that it is slightly less restrictive than the homogeneity and
monotonicity assumptions used in previous studies.

On the other hand, we further propose a theoretically guaranteed method for unbiased estimation
of counterfactual outcomes. The proposed estimation method has several desirable merits. First,
unlike Pearl’s three-step procedure, it does not necessitate a prior estimation of SCMs and thus
relies on fewer assumptions than that in [24] and [25]. Second, in contrast to the quantile regression
method proposed by [19], our approach neither restricts conditional quantile functions for different
counterfactual outcomes to originate from the same model, nor does it require estimating a different
quantile value for each unit. Third, we improve the previous learning approaches by adopting a
convex loss for estimating counterfactual outcomes, which leads to a unique solution.

In summary, the main contributions are as follows: (1) We introduce the intuitive rank preservation
assumption to identify the counterfactual outcomes with unknown SCM; (2) We propose a novel ideal
loss for unbiased learning of the counterfactual outcome and further develop a kernel-based estimator
for the ideal loss. In addition, we provide a comprehensive theoretical analysis for the proposed
learning approach; (3) We conduct extensive experiments on both semi-synthetic and real-world
datasets to demonstrate the effectiveness of the proposed method.

2 Problem Formulation

Throughout, capital letters represent random variables and lowercase letters denote their realizations.

Structural Causal Model (SCM, [28]). An SCM M consists of a causal graph G and a set of
structure equation models F = {f1, ..., fp}. The nodes in G are divided into two categories: (a)
exogenous variables U = (U1, ..., Up), which represent the environment during data generation,
assumed to be mutually independent; (b) endogenous variables V = {V1, ..., Vp}, which denote
the relevant features that we need to model in a question of interest. For variable Vj , its value is
determined by a structure equation Vj = fj(PAj , Uj), j = 1, ..., p, where PAj stands for the set of
parents of Vj . SCM provides a formal language for describing how the variables interact and how the
resulting distribution would change in response to certain interventions. Based on SCM, we introduce
the counterfactual inference problem in the following.
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Counterfactual Inference. Suppose that we have three sets of variables denoted by X,Y,E ⊆ V,
counterfactual inference revolves around the question, “given evidence E = e, what would have
happened if we had set X to a different value x′?". Pearl et al. [8] propose using the three-step
procedure to answer the problem: (a) Abduction: determine the value of U according to the evidence
E = e; (b) Action: modify the model M by removing the structural equations for X and replacing
them with X = x′, yielding the modified model Mx′ ; (c) Prediction: Use Mx′ and the value of U
to calculate the counterfactual outcome of Y . In this paper, we focus on estimating the counterfactual
outcome for each individual. To illustrate the main ideas, we formulate the common counterfactual
inference problem within the context of the backdoor criterion.

Problem Formulation. Let V = (Z,X, Y ), where X causes Y , Z affects both X and Y , and the
structure equation of Y is given as

Y = fY (X,Z,UX). (1)

Let Yx′ denotes the potential outcome if we had set X = x′. The counterfactual question, “given
evidence (X = x, Z = z, Y = y) of an individual, what would have happened had we set X = x′

for this individual", is formally expressed as estimating yx′ , the realization of Yx′ for the individual.
Here, we adhere to the deterministic viewpoint of [28] and [8], treating the value of Yx′ for each
individual as a fixed constant. According to Pearl’s three-step procedure, given the evidence (X =
x, Z = z, Y = y) for an individual, the identifiability of its counterfactual value yx′ can be achieved
by determining the structural equation fY and the value of UX for this individual. This is the key
idea underlying most of the existing methods.

For clarity, we use yx′ to denote the realization of the counterfactual outcome Yx′ for a specific
individual with observed evidence (X = x, Z = z, Y = y).

3 Analysis of Existing Methods

In this section, we elucidate the challenges of counterfactual inference. Subsequently, we summarize
the existing methods and shed light on their limitations.

3.1 Challenges in Counterfactual Inference

The main challenge lies in that the counterfactual value yx′ is generally not identifiable, even in
randomized controlled experiments (RCTs). By definition, yx′ is a quantity involving two “different
worlds" at the same time: the observed world with (X = x, Z = z, Y = y) and the hypothetical world
where X = x′. We only observe the factual outcome Yx = y but never observe the counterfactual
outcome Yx′ , which is the fundamental problem in causal inference [29, 30]. This inherent conflict
prevents us from simplifying the expression of yx′ to a do-calculus expression, making it generally
unidentifiable, even in RCTs [8]. Therefore, in addition to the widely used assumptions such as
conditional exchangeability, overlapping, and consistency [1], counterfactual inference requires
extra assumptions to ensure identifiability. Essentially, estimating yx′ is equivalent to estimating
the individual treatment effect yx′ − yx, while the conditional average treatment effect (CATE)
E[Yx′ − Yx|Z = z] represents the ATE for a subpopulation with Z = z, overlooking the inherent
heterogeneity in this subpopulation caused by the noise terms such as UX [13, 31, 32, 33, 34, 35, 36].

3.2 Summary of Existing Methods

We summarize the existing methods in terms of identifiability assumptions and estimation strategies.

We first present an equivalent expression of Eq. (1) using (Yx, Yx′). Eq. (1) be reformulated as the
following system

Yx = fY (x, Z, Ux), Yx′ = fY (x
′, Z, Ux′),

where Ux and Ux′ denote the values of UX given X = x and X = x′, respectively. The exogenous
variable UX denotes the background and environment information induced by many unmeasured
factors [8], and thus Ux and Ux′ account for the heterogeneity of Yx and Yx′ in the observed and
hypothetical worlds, respectively. These two worlds may exhibit different levels of noise due to
unmeasured factors [32, 34, 37]. For identification, previous work [19, 24, 25] relies on the key
homogeneity and strict monotonicity assumptions.
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Assumption 3.1 (Homogeneity). Ux = Ux′ .
Assumption 3.2 (Strict Monotonicity). For any given (x, z), Yx = fY (x, z, Ux) is a smooth and
strictly monotonic function of Ux; or it is a bijective mapping from Ux to Yx.

Assumption 3.1 implies that the value of UX for each individual remains unchanged across x.
Assumption 3.2 implies that Yx is a strict monotonic function of Ux in the subpopulation of (X =
x, Z = z). In Assumption 3.2, the smoothness and strict monotonicity of fY (x, z, Ux) are akin to a
bijective mapping of Yx and Ux and serve the same purpose, so we don’t distinguish them in detail.
Lemma 3.3. Under Assumptions 3.1-3.2, yx′ is identifiable.

For estimation of yx′ , following Pearl’s three-step procedure, [24] and [25] initially estimate fY
and UX for each individual. However, estimating fY and UX needs to impose extra assumptions,
such as linearity [20] and additive noise [22]. In addition, [19] demonstrate that yx′ corresponds
to the τ∗-th quantile of the distribution P(Y |X = x′, Z = z), where τ∗ is the quantile of y in
P(Y |X = x, Z = z) (See the proof of Lemma 3.3 or Section 4.1 for more details). Based on it, the
authors uses quantile regression to estimate yx′ , which avoids the problem of estimating fY and UX .
Nevertheless, this method fits a single model to obtain the conditional quantile functions for both the
counterfactual and factual outcomes. Thus, its validity relies on the underlying assumption that the
conditional quantile functions of outcomes for different treatment groups stem from the same model.
In addition, it involves estimating a distinct quantile value for each individual before deriving the
counterfactual outcomes, posing a challenging bi-level optimization problem.

4 Identification through Rank Preservation

We introduce the rank preservation assumption for identifying yx′ . From a high-level perspec-
tive, identifying yx′ essentially involves establishing the relationship between Yx and Yx′ for each
individual. Pearl’s three-step procedure achieves this by estimating fY and UX .

4.1 Rank Preservation Assumption

Our identifiability assumption is based on Kendall’s rank correlation coefficient defined below.
Definition 4.1 (Kendall [38]). Let (x1, y1), ..., (xn, yn) be a set of observations of two random
variables (X,Y ), such that all the values of xi and yi are unique (ties are neglected for simplicity).
Any pair of (xi, yi) and (xj , yj), if (xj − xi)(yj − yi) > 0, they are said to be concordant; otherwise
they are discordant. The sample Kendall rank correlation coefficient is defined as

ρn(X,Y ) =
2

n(n− 1)

∑
1≤i<j≤n

sign((xi − xj)(yi − yj)),

where sign(t) = −1, 0, 1 for t < 0, t = 0, t > 0, respectively. For any two random variables (X,Y ),
we define ρ(X,Y ) = 1, if ρn(X,Y ) = 1 for all integers n ≥ 2.

The ρn(X,Y ) also can be written as 2(Nc −Nd)/n(n− 1), where Nc is the number of concordant
pairs, Nd is the number of discordant pairs. It is easy to see that −1 ≤ ρn(X,Y ) ≤ 1 and if the
agreement between the two rankings is perfect (i.e., perfect concordance), ρn(X,Y ) = 1.
Assumption 4.2 (Rank Preservation). ρ(Yx, Yx′ |Z) = 1.

Assumption 4.2 is a high-level condition that establishes a connection between Yx and Yx′ . This
assumption is satisfied in many common scenarios, as illustrated below.

• Causal models with additive noise: Y = g(X,Z) + U for an arbitrary function g.
• Heteroscedastic noise models: Y = g(X,Z) + h(X,Z)U for arbitrary functions g and h,

with h(X,Z) > 0 denoting the conditional standard deviation of Y given (X,Z).

For the individual with observation (X = x, Z = z, Y = y), we denote (yx = y, yx′) as its true
values of (Yx, Yx′ ). Assumption 4.2 implies that for this individual, its rankings of yx and yx′ are the
same in the distributions of P(Yx|Z = z) and P(Yx′ |Z = z), respectively. Therefore, we have

P(Yx ≤ yx|Z = z) = P(Yx′ ≤ yx′ |Z = z). (2)
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Since yx = y is observed and the distributions P(Yx|Z = z) and P(Yx′ |Z = z) can be identified
as P(Y |X = x,Z = z) and P(Y |X = x′, Z = z), respectively, by the backdoor criterion (i.e.,
(Yx, Yx′) ⊥⊥ X|Z). Therefore, we have the following Proposition 4.3 (see Appendix A for proofs).
Proposition 4.3. Under Assumption 4.2, yx′ is identified as the τ∗-th quantile of P(Y |X = x′, Z =
z), where τ∗ is the quantile of y in the distribution of P(Y |X = x, Z = z).

Proposition 4.3 shows that Assumption 4.2 can serve as a substitute for Assumptions 3.1-3.2 in
identifying yx′ . Unlike Assumptions 3.1-3.2, Assumption 4.2 is simple and intuitive, as it directly
links Yx and Yx′ for each individual. To clarify the relationship between Assumption 4.2 introduced
by this work and Assumptions 3.1-3.2 from previous work, we present Proposition 4.4 below.
Proposition 4.4. The proposed Assumption 4.2 is strictly weaker than Assumptions 3.1-3.2.

Proposition 4.4 is intuitive, as correlation (Assumption 4.2) does not necessarily imply identity
(Assumption 3.1). To illustrate, consider a SCM with X ∈ {0, 1}, Y1 = Z + U1, Y0 = Z/2 + U0,
U1 = U3

0 . In this case, ρ(Y0, Y1|Z) = 1, but U1 ̸= U0. Nevertheless, Assumption 4.2 is only slightly
weaker than Assumptions 3.1-3.2 by allowing Ux′ ̸= Ux. Specifically, we can show that if Ux is a
strictly monotone increasing function of Ux′ , Assumption 4.2 is equivalent to Assumption 3.2, see
Appendix A for proofs.

4.2 Further Relaxation of Strict Monotonicity

In Definition 4.1, we ignore ties for simplicity. However, when the outcome Y is discrete or
continuous variables with tied observations, ρ(Yx, Yx′) will always be less than 1. To accommodate
such cases, we introduce a modified version of the Kendall rank correlation coefficient given below.
Definition 4.5 (Kendall [39]). Let (x1, y1), ..., (xn, yn) be the observations of two random variables
(X,Y ), the modified Kendall rank correlation coefficient is define as

ρ̃n(X,Y ) =
∑

1≤i<j≤n

sign((xi − xj)(yi − yj))√
n(n− 1)/2− Tx ·

√
n(n− 1)/2− Ty

,

where Tx is the number of tied pairs in {x1, ..., xn} and Ty is the number of tied pairs in {y1, ..., yn}.
We define ρ̃(X,Y ) = 1, if ρ̃n(X,Y ) = 1 for all integers n ≥ 2.

Compared with Definition 4.1, one can see that ρ̃(X,Y ) adjusts ρ(X,Y ) by eliminating the ties in
the denominator, and ρ̃(X,Y ) reduces to ρ(X,Y ) if there are no ties.
Assumption 4.6 (Rank Preservation). ρ̃(Yx, Yx′ |Z) = 1.

Assumption 4.6 is less restrictive than Assumption 4.2 as it accommodates broader data types of
Y . To illustrate, consider a dataset with four individuals where the true values of (Yx, Yx′) are
(1, 1), (2, 1.5), (2, 1.5), (3, 2.5). In this scenario,

∑
1≤i<j≤n sign((yi,x − yj,x)(yi,x′ − yj,x′) = 5,

TYx
= 1, TYx′ = 1, resulting in ρ(Yx, Yx′) = 5/6 and ρ̃(Yx, Yx′) = 5/(

√
6− 1 ·

√
6− 1) = 1.

Assumption 4.6 also guarantees the identifiability of yx′ .
Proposition 4.7. Under Assumption 4.6, the conclusion in Proposition 4.3 also holds.

5 Counterfactual Learning

We propose a novel estimation method for counterfactual inference. Suppose that {(xk, zk, yk) : k =
1, ..., N} is a sample consisting of N realizations of random variables (X,Z, Y ). For an individual,
given its evidence (X = x,Z = z, Y = y), we aim to estimate its counterfactual outcome yx′ , i.e.,
the realization of Yx′ for this individual.

5.1 Rationale and Limitations of Quantile Regression

For estimating yx′ , Xie et al. [19] formulate it as the following bi-level optimization problem

τ∗ = argmin
τ

|fτ (x, z)− y|, f∗
τ = argmin

f

1

N

N∑
k=1

lτ (yk − f(xk, zk)),
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where lτ (ξ) = τξ · I(ξ ≥ 0) + (τ − 1)ξ · I(ξ < 0) is the check function [40], the upper level
optimization is to estimate τ∗, the quantile of y in the distribution P(Y |X = x, Z = z), and the
lower level optimization is to estimate the conditional quantile function q(x, z; τ) ≜ infy{y : P(Y ≤
y|X = x,Z = z) ≥ τ} for a given τ . Then yx′ can be estimated using q(x′, z; τ∗).

We define two conditional quantile regression functions,

qx(z; τ) ≜ inf
y
{y : P(Yx ≤ y|Z = z) ≥ τ}, qx′(z; τ) ≜ inf

y
{y : P(Yx′ ≤ y|Z = z) ≥ τ}.

By Eq. (2), yx′ can be expressed as qx′(z; τ∗) with τ∗ being the quantile of y in the distribution of
P(Yx|Z = z), i.e., P(Yx ≤ y|Z = z) = τ∗. Lemma 5.1 (see Appendix B for proofs) shows the
rationale behind employing the check function as the loss to estimate conditional quantiles.
Lemma 5.1. We have that
(i) qx(Z; τ) = argminf E[lτ (Yx − f(Z))] for any given x;
(ii) q(X,Z; τ) = argminf E[lτ (Y − f(X,Z))].

There are two major concerns with the estimation method of [19]. First, it only fits a single quantile
regression model for q(X,Z; τ) to obtain estimates of qx(Z; τ) and qx′(Z; τ). When the two
conditional quantile functions qx(Z; τ) and qx′(Z; τ) originate from different models, this method
may yield inaccurate estimates. Second, it explicitly requires estimating the quantile τ∗ for each
individual before estimating the counterfactual outcome yx′ .

Inspired by [41], a simple improvement is to estimate qx(z; τ) and qx′(z; τ) separately. For example,
for estimating qx(z; τ), the associated loss function is given as

Rx(f, τ) =
1

N

N∑
k=1

I(xk = x) · lτ (yk − f(zk))

p̂x(zk)
,

where px(z) = P(X = x|Z = z) is the propensity score, p̂x(z) is its estimate. Likewise, we could
define Rx′(f, τ) by replacing x with x′. Then the estimation procedure for yx′ involves four steps:
(1) estimating px(z); (2) estimating qx(z; τ) by minimizing Rx(f, τ) for a range of candidate values
of τ ; (3) identifying the τ∗ in the candidate set of τ , that corresponds to the quantile of y in the
distribution P(Y |X = x, Z = z); (4) estimating yx′ using qx′(z; τ∗), where qx′(z; τ∗) is obtained by
minimizing Rx′(f, τ∗). Despite this four-step estimation method that allows qx(Z; τ) and qx′(Z; τ)
to come from different models, it still needs to estimate a different τ∗ for each individual.

5.2 Enhanced Counterfactual Learning Method

To address the limitations mentioned above in directly applying quantile regression and improve
estimation accuracy, we propose a novel loss that produces an unbiased estimator of yx′ for the
individual with evidence (X = x, Z = z, Y = y). The proposed ideal loss is constructed as

Rx′(t|x, z,y) = E
[
|Yx′ − t|

∣∣ Z = z
]
+ E

[
sign(Yx − y)

∣∣ Z = z
]
· t,

which is a function of t and the expectation operator is taken on the random variable of (Yx, Yx′)
given Z = z. The proposed estimation method is based on Theorem 5.2.
Theorem 5.2 (Validity of the Proposed Ideal Loss). The loss Rx′(t|x, z, y) is convex with respect to
t and is minimized uniquely at t∗, where t∗ is the solution satisfying

P(Yx′ ≤ t∗|Z = z) = P(Yx ≤ y|Z = z).

Theorem 5.2 (see Appendix B for proofs) implies that given the evidence (X = x, Z = z, Y = y)
for an individual, the counterfactual outcome yx′ satisfies yx′ = argmint Rx′(t|x, z, y) under
Assumption 4.6. Importantly, the loss Rx′(t|x, z, y) neither estimates the SCM a priori, nor
restricts qx(z; τ) and qx′(z; τ) stem from the same model, and it does not need to estimate a different
quantile value for each individual explicitly.

To optimize the ideal loss Rx′(t;x, z, y), we first need to estimate it, which presents two significant
challenges: (1) Rx′(t|x, z, y) involves both Yx and Yx′ , but for each unit, we only observe one of them;
(2) The terms E

[
|Yx′ − t|

∣∣ Z = z
]

and E
[
sign(Yx − y)

∣∣ Z = z
]

in Rx′(t|x, z, y) is conditioned
on Z = z, and when Z is a continuous variable with infinite possible values, it cannot be estimated
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Table 1:
√
ϵPEHE of individual treatment effect estimation on the simulated Sim-m dataset, where m

is the dimension of Z.

Sim-5 Sim-10 Sim-20 Sim-40

Methods In-sample Out-sample In-sample Out-sample In-sample Out-sample In-sample Out-sample

T-learner 2.95 ± 0.02 2.66 ± 0.01 2.99 ± 0.01 3.17 ± 0.01 3.36 ± 0.02 3.19 ± 0.03 5.12 ± 0.02 4.74 ± 0.04
X-learner 2.94 ± 0.01 2.66 ± 0.01 2.98 ± 0.02 3.19 ± 0.02 3.31 ± 0.02 3.21 ± 0.02 5.08 ± 0.04 4.77 ± 0.03
BNN 2.91 ± 0.08 2.64 ± 0.07 2.90 ± 0.11 3.08 ± 0.12 3.21 ± 0.13 3.13 ± 0.16 4.81 ± 0.10 4.54 ± 0.09
TARNet 2.89 ± 0.07 2.64 ± 0.06 2.94 ± 0.07 3.16 ± 0.08 3.18 ± 0.07 3.11 ± 0.07 4.82 ± 0.07 4.56 ± 0.07
CFRNet 2.88 ± 0.07 2.62 ± 0.06 2.94 ± 0.07 3.15 ± 0.08 3.15 ± 0.07 3.08 ± 0.07 4.71 ± 0.12 4.45 ± 0.11
CEVAE 2.92 ± 0.27 2.65 ± 0.21 3.04 ± 0.27 3.11 ± 0.18 3.16 ± 0.17 3.11 ± 0.17 4.88 ± 0.23 4.53 ± 0.20
DragonNet 2.90 ± 0.08 2.63 ± 0.08 3.02 ± 0.07 3.25 ± 0.08 3.16 ± 0.11 3.09 ± 0.10 4.78 ± 0.11 4.50 ± 0.12
DeRCFR 2.88 ± 0.06 2.61 ± 0.06 2.87 ± 0.05 3.07 ± 0.06 3.11 ± 0.07 3.04 ± 0.06 4.77 ± 0.11 4.50 ± 0.10
DESCN 2.93 ± 0.11 2.66 ± 0.09 3.27 ± 0.81 3.46 ± 0.79 3.12 ± 0.20 3.06 ± 0.20 4.91 ± 0.37 4.59 ± 0.35
ESCFR 2.87 ± 0.08 2.62 ± 0.07 2.94 ± 0.08 3.15 ± 0.09 3.03 ± 0.09 3.06 ± 0.09 4.71 ± 0.15 4.43 ± 0.15
CFQP 2.91 ± 0.09 2.67 ± 0.11 3.14 ± 0.30 3.40 ± 0.37 3.21 ± 0.12 3.18 ± 0.11 4.93 ± 0.14 4.55 ± 0.13
Quantile-Reg 2.80 ± 0.06 2.54 ± 0.05 2.78 ± 0.08 3.05 ± 0.09 2.92 ± 0.07 3.01 ± 0.08 4.39 ± 0.13 4.12 ± 0.10
Ours 2.45 ± 0.17 2.28 ± 0.23 2.25 ± 0.07 2.33 ± 0.07 2.51 ± 0.07 2.46 ± 0.06 3.74 ± 0.26 3.66 ± 0.21

Table 2:
√
ϵPEHE of individual treatment effect estimation on the simulated Sim-m dataset, where m

is the dimension of Z.

Sim-80 (ρ = 0.3) Sim-80 (ρ = 0.5) Sim-40 (ρ = 0.3) Sim-40 (ρ = 0.5)

Methods In-sample Out-sample In-sample Out-sample In-sample Out-sample In-sample Out-sample

TARNet 12.63 ± 0.93 12.51 ± 0.90 12.35 ± 1.24 12.68 ± 1.51 8.91 ± 0.97 8.78 ± 0.74 8.76 ± 0.76 8.51 ± 0.68
DragonNet 12.50 ± 0.75 12.36 ± 0.80 12.71 ± 1.29 13.02 ± 1.54 8.83 ± 0.90 8.73 ± 0.72 8.62 ± 0.70 8.39 ± 0.53
ESCFR 12.61 ± 1.09 12.53 ± 1.09 12.56 ± 1.36 12.87 ± 1.64 8.76 ± 1.03 8.65 ± 0.79 8.76 ± 0.78 8.50 ± 0.48
X_learner 12.82 ± 0.91 12.68 ± 0.95 12.74 ± 1.22 12.99 ± 1.43 8.97 ± 0.87 8.81 ± 0.64 8.91 ± 0.75 8.61 ± 0.58
Quantile-Reg 11.59 ± 0.94 11.57 ± 0.97 11.59 ± 1.26 11.91 ± 1.47 8.05 ± 0.73 8.08 ± 0.75 7.74 ± 0.73 7.58 ± 0.73
Ours 9.28 ± 0.72 9.28 ± 0.72 9.03 ± 1.09 9.27 ± 0.97 7.07 ± 0.39 7.05 ± 0.41 7.07 ± 1.23 6.98 ± 1.08

by simply splitting the data based on Z. We employ inverse propensity score and kernel smoothing
techniques to overcome these two challenges. Specifically, we propose a kernel-smoothing-based
estimator for the ideal loss, which is given as

R̂x′(t|x,z, y) =
∑N

k=1 Kh(zk − z) I(xk=x′)
p̂x′ (zk)

|yk − t|∑N
k=1 Kh(zk − z)

+

∑N
k=1 Kh(zk − z) I(xk=x)

p̂x(zk)
· sign(yk − y)∑N

k=1 Kh(zk − z)
· t,

where h is a bandwidth/smoothing parameter, Kh(u) = K(u/h)/h, and K(·) is a symmetric kernel
function [42, 43, 44] that satisfies

∫
K(u)du = 1 and

∫
uK(u)du = 1, such as Epanechnikov kernel

K(u) = 3(1− u2) · I(|u| ≤ 1)/4 and Gaussian kernel K(u) = exp(−u2/2)/
√
2π for u ∈ R. Then

we can estimate yx′ by minimizing R̂x′(t;x, z, y) directly.
Proposition 5.3 (Consistency). If h → 0 as N → ∞, p̂x(z) and p̂x′(z) are consistent estimates
of px(z) and px′(z), and the density function of Z is differentiable, then R̂x′(t|x, z, y) converges to
Rx′(t|x, z, y) in probability.

Proposition 5.3 (see Appendix B for proofs) indicates that R̂x′(t|x, z, y) is a consistent estimator
of Rx′(t|x, z, y), demonstrating the validity of the estimated ideal loss. The loss R̂x′(t|x, z, y) is
applicable only for discrete treatments due to the terms I(xk = x′) and I(xk = x). However, it can
be easily extended to continuous treatments, as detailed in Appendix C.

It is well known that kernel-smoothing-based estimators suffer from scalability issues in high-
dimensional settings (i.e., the high-dimensional covariates) [42]. Therefore, for implementation,
we avoid applying kernel functions directly to the original covariates. Instead, we first learn a low-
dimensional representation of the covariates, and then apply the kernel-smoothing-based estimator to
this representation to learn the counterfactual outcomes.

6 Experiments

6.1 Synthetic Experiment

Simulation Process. We generate the synthetic dataset by the following process. First, we sample
the covariate Z ∼ N (0, Im) and the treatment X ∼ Bern(π(Z)), where Bern(·) is the Bernoulli
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(a) Sim-10 (In-sample) (b) Sim-10 (Out-sample) (c) Sim-40 (In-sample) (d) Sim-40 (Out-sample)

Figure 1: Estimation performance of individual treatment effects under varying heterogeneity degrees.

(a) Sim-10 (In-sample) (b) Sim-10 (Out-sample) (c) Sim-40 (In-sample) (d) Sim-40 (Out-sample)

Figure 2: The estimation performance with different kernels and bandwidths.

distribution with probability π(Z) = P(X = 1 | Z) = σ(Wx · Z), σ(·) is the sigmoid function,
and Wx ∼ Unif(−1, 1)m, Unif(·) is the uniform distribution. Then, we sample the noise U0 ∼
N (0, 1) and U1 = α · U0 to consider the heterogeneity of the exogenous variables, where α is
the hyper-parameter to control the heterogeneity degree. Finally, we simulate Y1 = Wy · Z + U1

and Y0 = Wy · Z/α + U0 with Wy ∼ N (0, Im). We generate 10,000 samples with 63/27/10
train/validation/test split and vary m ∈ {5, 10, 20, 40} in our synthetic experiment.

Baselines and Evaluation Metrics. The competing baselines includes: T-learner [45], X-learner [45],
BNN [46], TARNet [47], CFRNet [47], CEVAE [48], DragonNet [49], DeRCFR [50], DESCN [51],
ESCFR [52], CFQP [18], and Quantile-Reg [19]. We evaluate the individual treatment effect
estimation using the individual level Precision in Estimation of Heterogeneous Effects (PEHE):

ϵPEHE =
1

N

N∑
i=1

[(Ŷi(1)− Ŷi(0))− (Yi(1)− Yi(0))]
2,

where Ŷi(1) and Ŷi(0) are the predicted values for the corresponding true potential outcomes of
unit i. It is noteworthy that ϵPEHE is tailored for individual-level evaluation and counterfactual
estimation, which is different from the common metric [47] given by 1

N

∑N
i=1[(µ̂1(Xi)− µ̂0(Xi))−

(µ1(Xi) − µ0(Xi))]
2, where µ1(Xi) − µ0(Xi) := E[Y (1)|X] − E[Y (0)|X] are the true CATE,

and µ̂1(Xi)− µ̂0(Xi) is its estimate. Both in-sample and out-of-sample performances are reported
in our experiments. In addition, we run all experiments on the Google Colab platform. For the
representation model, we use the MLP for the base model and tune the layers in {1, 2, 3}. In
addition, we adopt the logistic regression model as the propensity model. We tune the learning
rate in {0.001, 0.005, 0.01, 0.05, 0.1}. For the kernel choice, we select the kernel function between
the Gaussian kernel function and the Epanechnikov kernel function, and tune the bandwidth in
{1, 3, 5, 7, 9}.

Performance Analysis. The results of estimation performance are shown in Table 1. Our method
stably outperforms all baselines with varying covariate dimensions m, demonstrating the effectiveness
of the proposed method. In addition, we investigate our method performance with violated assump-
tions on rank and uncorrelated covariates. Specifically, we modified the data generation process
to explore the performance of our method under correlated covariates by sampling the covariate
Z ∼ N (0,Σm), where the ρij in Σm is max(0.01, ρ|i−j|). The results are shown in Table 2. The
results show that our method still outperforms the baseline methods. Moreover, we further explore
the effect of heterogeneity degrees on the performance of the proposed method, as shown in Figure
1, where one can see that as the heterogeneity degree increases, our method stably outperforms the
Quantile-Reg in terms of PEHE. Finally, we examine the effect of different kernels and bandwidths,
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Table 3: The experiment results on the IHDP dataset and JOBS dataset. The best result is bolded.
IHDP JOBS

In-sample Out-sample In-sample Out-sample

Methods
√
ϵPEHE ϵATE

√
ϵPEHE ϵATE RPol ϵATT RPol ϵATT

T-learner 1.49 ± 0.03 0.37 ± 0.05 1.81 ± 0.04 0.49 ± 0.04 0.31 ± 0.06 0.16 ± 0.10 0.27 ± 0.08 0.20 ± 0.07
X-learner 1.50 ± 0.02 0.21 ± 0.05 1.73 ± 0.03 0.36 ± 0.07 0.16 ± 0.04 0.07 ± 0.05 0.16 ± 0.03 0.10 ± 0.09
BNN 2.09 ± 0.16 1.00 ± 0.23 2.37 ± 0.15 1.18 ± 0.19 0.15 ± 0.01 0.08 ± 0.03 0.16 ± 0.02 0.13 ± 0.07
TARNet 1.52 ± 0.07 0.22 ± 0.13 1.78 ± 0.07 0.34 ± 0.18 0.17 ± 0.06 0.06 ± 0.08 0.18 ± 0.09 0.10 ± 0.06
CFRNet 1.46 ± 0.06 0.17 ± 0.15 1.77 ± 0.06 0.32 ± 0.20 0.17 ± 0.03 0.05 ± 0.03 0.19 ± 0.07 0.10 ± 0.04
CEVAE 4.08 ± 0.88 3.67 ± 1.23 4.12 ± 0.91 3.75 ± 1.23 0.18 ± 0.05 0.09 ± 0.03 0.22 ± 0.08 0.10 ± 0.09
DragonNet 1.49 ± 0.08 0.22 ± 0.14 1.80 ± 0.06 0.29 ± 0.19 0.17 ± 0.06 0.07 ± 0.07 0.20 ± 0.08 0.11 ± 0.09
DeRCFR 1.48 ± 0.06 0.25 ± 0.14 1.69 ± 0.06 0.25 ± 0.14 0.15 ± 0.02 0.14 ± 0.04 0.16 ± 0.04 0.15 ± 0.11
DESCN 2.08 ± 0.98 0.74 ± 1.00 2.67 ± 1.45 1.04 ± 1.46 0.15 ± 0.02 0.21 ± 0.14 0.22 ± 0.16 0.16 ± 0.04
ESCFR 1.46 ± 0.09 0.16 ± 0.16 1.73 ± 0.08 0.27 ± 0.16 0.14 ± 0.02 0.10 ± 0.03 0.15 ± 0.02 0.10 ± 0.08
Quantile-Reg 1.43 ± 0.05 0.14 ± 0.09 1.56 ± 0.03 0.18 ± 0.09 0.14 ± 0.01 0.06 ± 0.01 0.15 ± 0.01 0.07 ± 0.04
CFQP 1.47 ± 0.10 0.18 ± 0.17 1.48 ± 0.05 0.15 ± 0.08 0.15 ± 0.02 0.23 ± 0.15 0.16 ± 0.03 0.15 ± 0.07
Ours 1.41 ± 0.02 0.11 ± 0.10 1.50 ± 0.06 0.13 ± 0.08 0.08 ± 0.04 0.06 ± 0.02 0.11 ± 0.05 0.05 ± 0.05

as shown in Figure 2, our method stably outperforms the Quantile-Reg and ESCFR methods with
different kernels and bandwidths.

6.2 Real-World Experiment

Dataset and Preprocessing. Following previous studies [47, 48, 53, 54], we conduct experiments on
semi-synthetic dataset IHDP and real-world dataset JOBS. The IHDP dataset [55] is constructed
from the Infant Health and Development Program (IHDP) with 747 individuals and 25 covariates.
The JOBS dataset [56] is based on the National Supported Work program with 3,212 individuals and
17 covariates. We follow [47] to split the data into training/validation/testing set with ratios 63/27/10
and 56/24/20 with 100 and 10 repeated times on the IHDP and the JOBS datasets, respectively.

Evaluation Metrics. Following previous studies [47, 48, 54], besides ϵPEHE, we also use the absolute
error in Average Treatment Effect (ATE) for evaluation, which is defined as ϵATE = 1

N |
∑N

i=1((Ŷi(1)−
Ŷi(0))−(Yi(1)−Yi(0)))|. We use

√
ϵPEHE and ϵATE to evaluate performance on the IHDP dataset. For

the JOBS dataset, since one of the potential outcomes is not available, we evaluate the performance
using the absolute error in Average Treatment effect on the Treated (ATT) as ϵATT = |ATT −
1
|T |

∑
i∈T (Ŷi(1)− Ŷi(0)| with ATT = | 1

|T |
∑

i∈T Yi − 1
|C∩E|

∑
i∈C∩E Yi|. We also use the policy

risk RPol = 1−(E[Y (1) | Ŷ (1)−Ŷ (0) > 0, X = 1]·P(Ŷ (1)−Ŷ (0) > 0)+E[Y (0) | Ŷ (1)−Ŷ (0) ≤
0, X = 0] · P(Ŷ (1)− Ŷ (0) ≤ 0)), where T,C,E are the indexes of treatment sample set, control
sample set, and randomized sample set, respectively.

Performance Comparison. The experiment results are shown in Table 3. Similar to the synthetic
experiment, the Quantile-Reg method still achieves the most competitive performance compared
to the other baselines. Our method stably outperforms all the baselines on both the semi-synthetic
dataset IHDP and the real-world dataset JOBS, especially in the out-sample scenario. This provides
the empirical evidence of the effectiveness of our method.

7 Related Work

Conditional Average Treatment Effect (CATE). CATE also referred to as heterogeneous treatment
effect, represents the average treatment effects on subgroups categorized by covariate values, and
plays a central role in areas such as precision medicine [57, 58, 59, 60], policy learning [61, 62],
and recommender systems [63, 64, 65]. Benefiting from recent advances in machine learning, many
methods have been proposed for estimating CATE, including matching methods [66, 67, 54, 68],
tree-based methods [69, 70], representation learning methods [46, 47, 49, 50, 52], and generative
methods [48, 53]. Unlike the existing work devoted to estimating CATE at the intervention level for
subgroups, our work focuses on counterfactual inference at the more challenging and fine-grained
individual level.

Counterfactual Inference. Counterfactual inference involves the identification and estimation of
counterfactual outcomes. For identification, [71] provided an algorithm leveraging counterfactual
graphs to identify counterfactual queries. In addition, [72] discussed the identifiability of nested
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counterfactuals within a given causal graph. More relevant to our work, [19] and [24] studied
the identifiability assumptions in the setting of backdoor criterion under homogeneity and strict
monotonicity assumptions. Several methods focus on determining its bounds with less stringent
assumptions, such as [10, 13, 73, 74]. In addition, [11] proposed a method for identifying the joint
distribution of potential outcomes using multiple experimental datasets.

For estimation, [8] introduced a three-step procedure for counterfactual inference. Many machine
learning methods estimate counterfactual outcomes in this framework, such as [6, 18, 24, 25, 75, 76,
77]. Recently, [19] employed quantile regression to estimate the counterfactual outcomes, effectively
circumventing the need for SCM estimation. In our work, we extend the above methods in both
identification and estimation. Recently, counterfactual inference methods have been extensively
applied across various application scenarios, such as counterfactual fairness [78, 79, 80, 81, 82,
83], policy evaluation and improvement [14, 84, 85, 86], reinforcement learning [24, 87, 88, 89,
90, 91, 92], imitation learning [93, 94], counterfactual generation [76, 95, 96, 97], counterfactual
explanation [98, 99, 100, 101, 102], counterfactual harm [13, 14, 103, 15], physical audiovisual
commonsense reasoning [104], interpretable time series prediction [105], classification and detection
in medical imaging [106], data valuation [107], etc. Therefore, developing novel counterfactual
inference methods holds significant practical implications.

8 Conclusion

This work addresses the fundamental challenge of counterfactual inference in the absence of a known
SCM and under heterogeneous endogenous variables. We first introduce the rank preservation as-
sumption to identify counterfactual outcomes, showing that it is slightly weaker than the homogeneity
and monotonicity assumptions. Then, we propose a novel ideal loss for unbiased learning of counter-
factual outcomes and develop a kernel-based estimator for practical implementation. The convexity
of the ideal loss and the unbiased nature of the proposed estimator contribute to the robustness and
reliability of our method. A potential limitation arises when the propensity score is extremely small
in certain data sparsity scenarios, which may cause instability in the estimation method. Further
investigation is warranted to address and overcome this challenge.
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• The conference expects that many papers will be foundational research and not tied
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research does not have such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets used have been properly noted and credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are being released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not have any studies or results regarding crowdsourcing experiments
and human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: We do not have any studies or results including study participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
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• For initial submissions, do not include any information that would break anonymity (if
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: The core methodological development in this research does not involve large
language models (LLMs) as essential, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs in Sections 3 and 4

One can show Lemma 3.3 by a similar argument of the proof of Theorem 1 in [19]. For the sake of
self-containedness, we provide a novel proof of it.

Lemma 3.3 Under Assumptions 3.1-3.2, yx′ is identifiable.

Proof of Lemma 3.3. First, the distributions P(Yx|Z = z) and P(Yx′ |Z = z) can be identified as
P(Y |X = x, Z = z) and P(Y |X = x′, Z = z), respectively, by the backdoor criterion (i.e.,
(Yx, Yx′) ⊥⊥ X|Z) of the setting.

Then, according to the model (1), we can equivalently write

Yx = fY (x, z, Ux), Yx′ = fY (x
′, z, Ux′),

and Y and UX in model (1) can be expressed as Y =
∑

x∈X I(X = x) ·Yx and UX =
∑

x∈X I(X =
x) · Ux, where X is the support set of X and I(·) is an indicator function. Assumption 3.1 implies
that UX = Ux = Ux′ conditional on Z, i.e., Yx = fY (x, z, UX), Yx′ = fY (x

′, z, UX).

Finally, for the individual with observation (X = x, Z = z, Y = y), we denote (yx, yx′) as the true
values of (Yx, Yx′) for this individual. For this individual, we can identify the quantile of yx in the
distribution of P(Yx|Z = z) = P(Y |X = x,Z = z), denoted by τ∗. Let uτ∗ be the true value of
UX for this individual, it is the τ∗-quantile in the distribution P(UX |Z = z), then we have

τ∗ = P(Yx ≤ yx|Z = z) (by the definition of τ )
= P(Ux ≤ uτ |Z = z) (by Assumption 3.2)
= P(Ux′ ≤ uτ |Z = z) (by Assumption 3.1)

= P(Yx′ ≤ fY (x
′, z, uτ∗)|Z = z) (by Assumption 3.2)

= P(Yx′ ≤ yx′ |Z = z) (by the definition of yx′ ),

which implies that for this individual, its rankings of yx and yx′ are the same in the distributions
of P(Yx|Z = z) and P(Yx′ |Z = z), resepcctively. Thus, yx′ is identified as the τ∗-quantile of the
distribution P(Yx′ |Z = z) = P(Y |X = x′, Z = z).

Proposition 4.3 Under Assumption 4.2, yx′ is identified as the τ∗-th quantile of P(Y |X = x′, Z = z),
where τ∗ is the quantile of y in the distribution of P(Y |X = x, Z = z).

Proof of Proposition 4.3. For the individual with observation (X = x,Z = z, Y = y), we denote
(yx, yx′) as the true values of (Yx, Yx′ ). Assumption 4.2 implies that for this individual, its rankings
of yx and yx′ are the same in the distributions of P(Yx|Z = z) and P(Yx′ |Z = z), respectively.
Therefore,

P(Yx ≤ yx|Z = z) = P(Yx′ ≤ yx′ |Z = z). (3)

Since yx = y is observed and the distributions P(Yx|Z = z) and P(Yx′ |Z = z) can be identified
as P(Y |X = x,Z = z) and P(Y |X = x′, Z = z), respectively, by the backdoor criterion (i.e.,
(Yx, Yx′) ⊥⊥ X|Z), we can identify the quantile of yx in the distribution of P(Y |X = x,Z = z),
denoted by τ∗. Then

P(Yx′ ≤ yx′ |Z = z) = τ∗,

which yields that θ is identified as the τ∗-quantile of P(Y |X = x′, Z = z).

The following Proposition 4.4∗ serves as a complement to Proposition 4.4.

Proposition 4.4∗ Under Assumption 3.1, or more generally, if Ux is a strictly monotone increasing
function of Ux′ , Assumption 4.2 is equivalent to Assumption 3.2.

Proof of Proposition 4.4. According to the model (1), we can equivalently write

Yx = fY (x, z, Ux), Yx′ = fY (x
′, z, Ux′).
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Suppose that Ux is a strictly monotone increasing function of Ux′ (Assumption 3.1, i.e., Ux = Ux′ , is
a special case of it). Under this condition, we next prove sufficiency and necessity, respectively.

First, we show that Assumption 3.2 implies Assumption 4.2. If Assumption 3.2 holds, then Yx is
a strictly monotonic function of Ux, and Yx′ is a strictly monotonic function of Ux′ . Since Ux is a
strictly monotone increasing function of Ux′ , then Yx is a strictly increasing monotonic function of
Yx′ , which leads to Assumption 4.2.

Second, we show that Assumption 4.2 implies Assumption 3.2. If Assumption 4.2 holds, then given
Z = z, Yx is a strictly increasing function of Yx′ . When Ux is a strictly monotone increasing function
of Ux′ and note that

Yx = fY (x, z, UX), Yx′ = fY (x
′, z, UX),

which implies that fY is a strictly monotonic function of UX , i.e., Assumption 3.2 holds.

This finishes the proof.

Proposition 4.7 Under Assumption 4.6, the conclusion in Proposition 4.3 also holds.

Proof of Proposition 4.7. This can be shown through a proof analogous to that of Proposition 4.3.

B Proofs in Section 5

Recall that lτ (ξ) = τξ · I(ξ ≥ 0) + (τ − 1)ξ · I(ξ < 0), and

q(x, z; τ) ≜ inf
y
{y : P(Y ≤ y|X = x, Z = z) ≥ τ}

q0(z; τ) ≜ inf
y
{y : P(Y0 ≤ y|Z = z) ≥ τ}

q1(z; τ) ≜ inf
y
{y : P(Y1 ≤ y|Z = z) ≥ τ}.

Lemma 5.1 We have that

(i) qx(Z; τ) = argminf E[lτ (Yx − f(Z))] for any given x;

(ii) q(X,Z; τ) = argminf E[lτ (Y − f(X,Z))].

Proof of Lemma 5.1. We prove qx(Z; τ) = argminf E[lτ (Yx − f(Z))], and q(X,Z; τ) =
argminf E[lτ (Y − f(X,Z))] can be derived by an exactly similar manner. We write

E[lτ (Yx − f(Z))] = E[E{lτ (Yx − f(Z)) | Z}].

To obtain the conclusion, note that lτ (Yx − f(Z)) is always positive, it suffices to show that

qx(z; τ) = argmin
f

E[lτ (Yx − f(Z)) | Z = z] (4)

for any given Z = z. Next, we focus on analyzing the term E[lτ (Yx− f(Z)) | Z = z]. Given Z = z,
f(Z) is a constant and we denote it by c, then

E[lτ (Yx − f(Z)) | Z = z]

= E[lτ (Yx − c) | Z = z]

= E
[
τ(Yx − c)I(Yx ≥ c) + (τ − 1)(Yx − c)I(Yx < c) | Z = z

]
= τ

∫ ∞

c

(yx − c)g(yx|z)dyx + (τ − 1)

∫ c

−∞
(yx − c)g(yx|z)dyx,

where g(yx|z) denotes the probability density function of Yx given Z = z.
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Since the check function is a convex function, differentiating E[lτ (Yx − c) | Z = z] with respect to c
and setting the derivative to zero will yield the solution for the minimum

∂

∂c
E[lτ (Yx − c) | Z = z]

= τ

∫ ∞

c

∂

∂c
[(yx − c)g(yx|z)]dyx + (τ − 1)

∫ c

−∞

∂

∂c
[(yx − c)g(yx|z)]dyx

= − τ
(
1−

∫ c

−∞
g(yx|z)dyx

)
+ (1− τ)

∫ c

−∞
g(yx|z)dyx.

Then let ∂
∂cE[lτ (Yx − c) | Z = z] = 0 leads to that∫ c

−∞
g(yx|z)dyx = τ,

that is, c = qx(z; τ). This completes the proof of Proposition 5.1.

Theorem 5.2 (Validity of the Proposed Ideal Loss). The loss Rx′(t;x, z, y) is minimized uniquely
at t∗, where t∗ is the solution satisfying

P(Yx′ ≤ t∗|Z = z) = P(Yx ≤ y|Z = z).

Proof of Theorem 5.2. Recall that

Rx′(t|x, z, y) = E
[
|Yx′ − t|

∣∣∣ Z = z
]
+ E

[
sign(Yx − y)

∣∣∣ Z = z
]
· t.

Let g(yx|z) be the probability density function of Yx given Z = z. By calculation,

E
[
|Yx′ − t|

∣∣∣ Z = z
]
=

∫ ∞

t

(yx′ − t)g(yx′ |z)dyx′ +

∫ t

−∞
(t− yx′)g(yx′ |z)dyx′ ,

∂

∂t
E
[
|Yx′ − t|

∣∣∣ Z = z
]
= −

(
1−

∫ t

−∞
g(yx′ |z)dyx′

)
+

∫ t

−∞
g(yx′ |z)dyx′ = 2P(Yx′ ≤ t|Z = z)− 1,

and

E
[
sign(Yx − y)

∣∣∣ Z = z
]
= E

[
−2I(Yx ≤ y) + 1

∣∣∣ Z = z
]
= −2P(Yx ≤ y|Z = z) + 1,

we have

∂

∂t
Rx′(t|x, z, y) = 2P(Yx′ ≤ t|Z = z)− 1 + E

[
sign(Y − y)

∣∣∣ Z = z
]

= 2P(Yx′ ≤ t|Z = z)− 1− 2P(Yx ≤ y|Z = z) + 1

= 2
{
P(Yx′ ≤ t|z)− P(Yx ≤ y|z)

}
.

Since

∂2

∂t2
Rx′(t|x, z, y) = 2∂P(Yx′ ≤ t|z)/∂t = 2g(yx′ = t|z) ≥ 0,

Rx′(t|x, z, y) is a convex function with respect to t. Letting ∂
∂tRx′(t|x, z, y) = 0 yields that

P(Yx′ ≤ t|z)− P(Yx ≤ y|z) = 0.

That is, Rx′(t|x, z, y) attains its minimum at t = qx′(z; τ∗), where τ∗ is the quantile of y in the
distribution P(Yx|Z = z).
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Proposition 5.3. If h → 0 as N → ∞, p̂x(z) and p̂x′(z) are consistent estimates of px(z) and
px′(z), and the density function of Z is differentiable, then

R̂x′(t;x, z, y)
P−→ Rx′(t;x, z, y),

where P−→ means convergence in probability.

Proof of Proposition 5.3. For analyzing the theoretical properties of R̂x′(t;x, z, y), we rewritten
R̂x′(t;x, z, y) as

R̂x′(t;x, z, y) =

∑N
k=1 Kh(Zk − z) I(Xk=x′)

p̂x′ (Zk)
|Yk − t|∑N

k=1 Kh(Zk − z)
+

∑N
k=1 Kh(Zk − z) I(Xk=x)

p̂x(Zk)
· sign(Yk − y)∑N

i=1 Kh(Zk − z)
· t,

where the capital letters denote random variables and lowercase letters denote their realizations. This
is slightly different from that used in the main text.

When p̂x(z) and p̂x′(z) are consistent estimates of px(z) and px′(z), to show the conclusion, it is
sufficient to prove that∑N

k=1 Kh(Zk − z) I(Xk=x′)
px′ (Zk)

|Yk − t|∑N
k=1 Kh(Zk − z)

P−→ E
[
I(X = x′)

px′(z)
|Y − t|

∣∣∣ Z = z

]
= E

[
|Yx′ − t|

∣∣∣ Z = z
]
,

(5)∑N
k=1 Kh(Zk − z) I(Xk=x)

px(Zk)
· sign(Yk − y)∑N

i=1 Kh(Zk − z)

P−→ E
[
I(X = x)

px(z)
· sign(Y − y)

∣∣∣ Z = z

]
= E

[
sign(Yx − y)

∣∣∣ Z = z
]
.

(6)
We prove equation (5) only, as equation (6) can be addressed similarly.

Note that∑N
k=1 Kh(Zk − z) I(Xk=x′)

px′ (Zk)
|Yk − t|∑N

k=1 Kh(Zk − z)
=

1
N

∑N
k=1 Kh(Zk − z) I(Xk=x′)

px′ (Zk)
|Yk − t|

1
N

∑N
k=1 Kh(Zk − z)

,

we analyze the denominator and numerator on the right side of the equation separately. For the
denominator, it is an average of N independent random variables and converges to its expectation
E[Kh(Zk − z)] almost surely. Let g(zk) be the probability density function of Zk, and g(1)(zk) is its
first derivative. Since

E[Kh(Zk − z)] =

∫
1

h
K(

zk − z

h
)g(zk)dzk

=

∫
K(u)g(z + hu)du (let zk = z + hu)

=

∫
K(u) · {g(z) + g(1)(z)hu+ o(h)}du (by Taylor Expansion)

= g(z)

∫
K(u)du+ g(1)(z)h

∫
K(u)udu+ o(h)

= g(z) + o(h) (by the definition of kernel function), (7)
when h → 0 as N → ∞, the denominator converges to g(z) in probability.

Next, we focus on dealing with the numerator, which also converges to its expectation.

E[Kh(Zk − z)
I(Xk = x′)

px′(Zk)
|Yk − t|]

= E
[
Kh(Zk − z)E

{ I(Xk = x′)

px′(Zk)
|Yk − t|

∣∣∣Zk

}]
(by the law of iterated expectations)

= E
[
Kh(Zk − z)E

{ I(Xk = x′)

px′(Zk)
|Yx′,k − t|

∣∣∣Zk

}]
(write Yk as the form of potential outcome)

= E
[
Kh(Zk − z)E

{
|Yx′,k − t|

∣∣∣Zk

}]
(by backdoor criterion Yx′,k ⊥⊥ Xk|Zk). (8)
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Define m(Z) = E[|Yx′ − t|
∣∣Z] and m(1)(Z) is its first derivative, then the right side of equation (5)

is m(z), and

E
[
Kh(Zk − z) · E

{
|Yx′,k − t|

∣∣∣Zk

}]
= E

[
Kh(Zk − z) ·m(Zk)

]
=

∫
1

h
K(

zk − z

h
) ·m(zk) · g(zk)dzk

=

∫
K(u) ·m(z + hu) · g(z + hu)du (let zk = z + hu)

=

∫
K(u) · {m(z) +m(1)(z)hu+ o(h)} · {g(z) + g(1)(z)hu+ o(h)}du (by Taylor Expansion)

= m(z)g(z) + o(h). (9)

Thus, when h → 0 as N → ∞, the numerator converges to g(z) in probability.

Combining equations (7), (8), and (9) yields the equality (5). This completes the proof.

C Extension to Continuous Outcome

When the treatment is continuous, we can estimate the ideal loss with the following estimator

R̃x′(t|x, z, y) =
∑N

k=1 Kh(zk − z)Kh(xk−x′)
px′ (zk)

|yk − t|∑N
k=1 Kh(zk − z)

+

∑N
k=1 Kh(zk − z)Kh(xk−x)

px(zk)
· sign(yk − y)∑N

k=1 Kh(zk − z)
·t,

which is a smoothed version of the estimator

R̂x′(t|x,z, y) =
∑N

k=1 Kh(zk − z) I(xk=x′)
px′ (zk)

|yk − t|∑N
k=1 Kh(zk − z)

+

∑N
k=1 Kh(zk − z) I(xk=x)

px(zk)
· sign(yk − y)∑N

k=1 Kh(zk − z)
· t,

defined in Section 5. In addition, by a proof similar to that of Proposition 5.3, we also can show that
R̃x′(t;x, z, y)

P−→ Rx′(t;x, z, y).
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