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ABSTRACT

Automatically fixing syntax errors in programs is a key challenge in Software
Engineering community. Although, there are millions of programs on the web,
both syntactically correct and incorrect, finding a large number of paired examples
of 〈correct, incorrect〉 programs is difficult. This makes training a program fixer
using supervised learning difficult. Recently, BIFI, an unsupervised approach
for learning a syntax fixer was proposed, in which an additional model (Breaker
model) is used to augment data in each learning iteration to match real-world error
distribution. In this paper, we propose a novel approach, FILI (Fix-It-Learn-It)
for learning a syntax fixer without having to train any additional models for data
augmentation. In each iteration, FILI carefully selects examples from the fixer’s
own predictions, both correct and incorrect, and uses those to fine-tune the fixer.
We also show that gradually increasing the complexity of the examples during
training leads to a more accurate fixer. Our evaluation on the Github-Python dataset
shows that FILI outperforms BIFI by 1% while being significantly easier to train.
Moreover, FILI avoids training the breaker model in each iteration, which can take
about 2 days on a modest DNN accelerator.

1 INTRODUCTION

Automated program repair has long been a challenging problem in software development (Goues
et al., 2021). One particular class of problem in program repair is the task of fixing syntax errors. A
syntax error in a program occurs when a user attempts to compile a program that does not conform
to the grammar of the programming language. When a syntax error occurs, the compiler halts the
compilation and throws an error message, which may include the line number and offset of the error
depending on the language. Often, these error messages are not very informative, and they may
also point to a location other than the one where the error occurred, making these errors difficult
to fix. This whole cycle of finding errors, fixing them, and re-compiling has a negative impact on
programmer’s productivity, especially for beginner programmers.

One of the simplest approaches to fixing syntax errors is to define rules for each class of errors and
use them to automatically fix the errors. However, this rule-based approach is challenging because it
neccessitates comprehensive knowledge of programming language’s grammar and, often multiple
possible fixes exists for the same incorrect program. As a result, manually writing rules for each
error case becomes impractical. To address this, several approaches, both symbolic (constraint-
based) (Singh et al., 2013) and learning-based (Bhatia et al., 2018; Gupta et al., 2017; Yasunaga and
Liang, 2021; 2020; Pu et al., 2016), have been proposed for automatically fixing the syntax errors in a
program. Learning-based approaches have shown promise, as they leverage data to learn patterns and
automatically generate fixes. This approach offers several advantages, such as suggesting likely fixes
based on prior examples and not requiring explicit domain knowledge of the programming language.

Learning-based approaches formulate the syntax fixing problem as machine translation problem to
translate an incorrect program to a correct one, and various encoder-decoder architectures have been
used in supervised settings to perform this translation. Because of the unavailability of large number of
paired examples 〈incorrect program, correct program〉 for supervised training, recently, Break-It-Fix-
It (BIFI), an unsupervised learning algorithm (Yasunaga and Liang, 2021) was proposed to overcome
the lack of quality paired examples. BIFI uses two trained models: a) Fixer - which attempts to
generate a syntactically correct program given an incorrect program as input, and b) Breaker - which
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attempts to generate a syntactically incorrect program given a correct program as input. Starting
from a fixer trained on synthetic data and real-world unpaired good (syntactically correct) and bad
(syntactically incorrect) programs, BIFI improves the fixer by performing the following four steps
in each iteration: 1) Applies the fixer on the bad programs (B) to generate the corresponding good
programs (G′), 2) Trains the breaker using 〈G′, B〉, 3) Applies the breaker on good programs (G) to
generate the corresponding bad programs (B′), and 4) Trains the fixer with data 〈B,G′〉 from step 1
and 〈B′, G〉 from step 3. This cycle of self-learning and data augmentation leads to the improvement
of fixer’s ability to solve previously unseen problems. Moreover, the breaker model, also learns to
better match the distribution of real-world syntax errors in each iteration.

While BIFI requires training an additional breaker model in each iteration for data augmentation, in
this paper, we propose Fix-it-Learn-it (FILI), a new self-learning approach in the context of syntax fix-
ing. FILI is inspired by how programmers learn to fix errors in the real world. Programmers typically
improve their skills by recognizing their own mistakes, gaining insights from them, and developing a
deeper understanding of the programming language. Gradually, they accumulate knowledge, enabling
them to identify and fix more complex errors with greater accuracy and confidence.

Similar to BIFI, FILI improves the fixer with each iteration by training on examples it can already fix.
In addition, FILI improves the fixer by learning from its own mistakes. These examples are generated
using beam search which maintains a set of the most likely hypotheses at each step of the decoding
process. We identify the fixer’s predictions from the beam that do not parse and pair them with the
programs from the beam that are fixed. FILI starts from a fixer trained on synthetic data and in each
iteration performs the following steps 1) Applies the fixer on the bad programs (B) to generate a
beam consisting of most likely predictions, 2) Identifies using a parser the good programs (G) and
the bad programs (B′) from the beam, 3) Trains the fixer on the paired data 〈B,G〉 and 〈B′, G〉.
In contrast to BIFI, FILI does not require training an additional breaker model to augment data at
each iteration. We hypothesize that it is not necessary to precisely match the distribution of the
real-world errors as long as the fixer improves its ability to fix different classes of errors with each
iteration. While BIFI explored using a separate breaker model to augment data to improve its fixer’s
performance, in this paper, we propose sampling examples from the fixer’s beam predictions which
empirically turns out be simpler and more efficient than training a separate breaker model. We believe
that this is effective because these negative programs are akin to sampling data from the decision
boundary of the model. Training the fixer with these programs improves its confidence in handling
these errors, effectively pushing them further down in the beam predictions.

In addition to learning from its own mistakes, FILI also adopts the curriculum learning style for
fixing errors from real-world programmers. During training, we gradually increase the complexity of
the examples used to train the fixer. The complexity of the examples is defined by the Levenshtein
edit-distance between the bad and good programs. We begin by training with smaller edit-distances
and gradually add examples with larger edit-distances. This eases the learning process as the fixer
a) learns to fix errors incrementally, mimicking the cycle of identifying, fixing, and re-compiling, and
b) generates programs by making minimum number of changes to the bad code.

We evaluate FILI on the open-source GitHub-Python dataset (Yasunaga and Liang, 2021). Our
approach improves the accuracy of the fixer by ∼ 4% when compared to the fixer trained using
self-learning alone and by ∼ 1% when compared to the state-of-the-art fixer that is trained using a
breaker. A key contribution of our work is to significantly simplify the process of training a syntax
fixer of (slightly) higher quality than prior work (viz., BIFI).

In summary, this paper makes the following contributions:

• We present a new approach in Section 4.2, FILI, for learning a fixer for syntax error correction
in an unsupervised setting by augmenting examples from the fixer’s own prediction where it
makes a mistake.

• We develop a curriculum in Section 4.3 i.e, by starting out with simpler examples (fewer
program edits) and gradually increasing the complexity (more program edits) that results in
a fixer which is more accurate in fixing errors .

• We evaluate FILI on real-world syntax correction tasks in Section 5, and show that while
being simpler and computationally more efficient to train than previous approaches such as
BIFI, it still outperforms them.
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2 RELATED WORK

Automated Program Repair (Goues et al., 2021) is the task of automatically repairing an incorrect
program given some correctness specification and is an active research area where several different
techniques have been proposed ranging from constraint-based (Singh et al., 2013), genetic program-
ming (Le Goues et al., 2012), and learning-based (Bhatia et al., 2018; Gupta et al., 2017; Yasunaga
and Liang, 2021; 2020; Pu et al., 2016). These approaches aim to tackle different class of program
errors such as syntax errors, semantic errors, logical errors, runtime errors, race conditions, etc.

In this paper, we focus on syntax errors only. BIFI (Yasunaga and Liang, 2021) is the closest work to
ours and is also an unsupervised self-learning approach. The key difference between FILI and BIFI
is that FILI does not require training a separate breaker model and iteratively learns from its own
mistakes. SynFix (Bhatia et al., 2018) present an approach to train an RNN-based language model
over a corpus of syntactically correct programs and uses the language model to generate potential
corrections for errors identified by a parser. DeepFix (Gupta et al., 2017) trains an attention-based
encoder-decoder model, where the encoder encodes an incorrect program token sequence, and the
decoder generates the correction as a line number together with the fixed line. Unlike SynFix and
DeepFix, FILI uses self-supervised learning to iteratively improve the fixer performance.

The use of negative samples from beam predictions to supplement training data has been explored
recently by (Cao et al., 2021) for the grammatical error correction problem. Their approach pairs
source sentences with beam predictions that are dissimilar to the target sentence, creating negative
pairs alongside the ground-truth sentence pairs. In contrast, our approach differs in two key ways: 1)
we do not rely on ground-truth sentence pairs to generate additional data from model’s predictions,
and 2) we do not use an additional contrastive loss to train with these additional examples.

Recently, there has been significant advancements in utilizing large language models for code-related
tasks. These models with billions of parameters require massive compute for fine-tuning on new
datasets. One challenge with these models is their tendency to hallucinate outputs if they are not
confident about the given task. Some of the recent works (Chen et al., 2023; Shinn et al., 2023) have
explored approaches to teach these models to self-debug, enabling them to identify their own mistakes
and fix it. These approaches involve explaining the generated text in natural language or teaching
the models to self-reflect when hallucinations are detected. These approaches share a similar goal of
learning to correct their own mistakes, which is similar to our approach in this work. However, we
focus on smaller models that are more accessible, as they can be trained and deployed on commodity
hardware.

In unsupervised learning, pseudo-labelling (Lee et al., 2013), is used for augmenting training data. It
involves initially training a model using labelled data and subsequently utilizing the trained model
to label the unlabelled data based on probabilities. In contrast, in FILI we can assign real labels to
unlabeled data using the compiler.

3 PROBLEM FORMULATION

In this section, we provide an overview of the problem formulation. Given a set X of programs and a
compiler C to check whether or not the program parses i.e., throws a syntax error or not. We use X+

to represent the set of programs that parse (good programs) and X− the set of programs that have
syntax errors (bad programs). The compiler is represented as C: X → {0, 1}, where the indicator
function C{x} of program x maps to 1 if the program compiles and to 0 if it throws an error. Our
goal is to train a fixer F which takes a bad program as input and generates the corresponding good
program. This can be expressed as F (x+ | x−) which represents the conditional probability of the
fixer generating the good program x+ given the bad program x−. F is a probabilistic model and we
sample programs using beam search from this model. It should be noted that we do not have access
to paired 〈X−, X+〉 for training the fixer in supervised setting. Instead, we have access to a large
collection of unpaired bad and good programs.

The fixer can potentially correct a program by deleting the entire line that contains the error or by
deleting the entire program. We use the Levenshtein edit-distance δ metric between the bad and good
programs to ensure that the model does not learn to make arbitrary large changes to the program.
Given a program x, the sequence 〈x1, ..., xn〉 represents the tokenized program. We compute the
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edit-distance δ at the program’s token level. For instance, given two simple expressions c = a+ b
and c = var + b, the edit-distance δ at the program string level is 2, whereas the tokenized programs
〈c,=, a,+, b〉 and 〈c,=, var,+, b〉 have a edit-distance δ of 1.

Evaluating a fixer’s performance in an unsupervised setting is challenging as there are no ground
truth programs to compare the output with. Ideally, the fixer should generate a program that is consis-
tent with the user’s specifications, but such specifications are not always available. Consequently,
heuristics are used to evaluate the effectiveness of fixers. For instance, BIFI (Yasunaga and Liang,
2021) uses a combination of the number of bad examples that it can fix while being constrained by
some edit-distance δ as the evaluation metric. In our experiments (Section 5), we demonstrate how
the choice of the evaluation metric can impact the measurement of fixer’s performance.

4 APPROACH

In this section we first briefly describe the unsupervised learning approach from BIFI (Yasunaga
and Liang, 2021) to solve the syntax correction problem. We then present an overview of our new
approach FILI and show how learning from the fixer’s own mistakes and curriculum learning can be
used to improve the fixer.

4.1 BREAK-IT-FIX-IT (BIFI)

BIFI iteratively trains two encoder-decoder models, the breaker B and the fixer F . It begins with
real-world unpaired bad X− and good X+ programs. In the first iteration since there is no paired
data to train the breaker and the fixer models, BIFI uses synthetic data generated by heuristically
perturbing the programs in X+. These heuristics include randomly a) inserting/deleting punctuation,
b) inserting/deleting parentheses, c) inserting/deleting indentations, d) deleting keywords (def, if,
else, elif, as, return) etc.

To generate the paired synthetic data 〈X−synth, X+〉, BIFI selects a combination of heuristics and
applies them to good programs. The resulting synthetic data is used to train the initial breaker B0,
which maps a good program to a bad program B0(X

− | X+
synth) , and the fixer F0, which maps a

bad program to a good program F0(X
+
synth | X−), in a supervised setting.

BIFI improves B0 and F0 through multiple rounds of the following four steps:

1. Apply the Fixer. F0 is applied to real-world bad programs and all the programs in the
predictions that parse are selected for the subsequent steps. This step generates paired
real-world examples which were not available in the initial round.

2. Fine-tune the Breaker. B0 is now fine-tuned using the paired real-world examples gen-
erated in the previous step to obtain B1. This fine-tuning allows the breaker to gradually
learn the real-world error distribution and generate programs that resemble real-world bad
programs.

3. Apply the Breaker. In this step, the fine-tuned B1 model is applied to real-world good
programs and all the examples in the predictions that do not parse are selected for the final
step. This step generates additional paired real-world-resembling examples and is used for
augmenting the data generated in step 1.

4. Fine-tune the Fixer. Finally, F0 model is fine-tuned on the paired real-world examples
generated in step 1 and 3 to obtain F1. This fine-tuning results in fixer trained on synthetic
data to gradually learn to fix real-world bad programs. The breaker’s and fixer’s cyclic
interaction results in both models gradually adapting to the real-world error distribution. With
each iteration the performance of these models improve as they are trained on increasingly
larger and more diverse datasets.

4.2 LEARNING FROM OWN MISTAKES (FILI)

The main distinction between BIFI and FILI lies in the breaker model and the way data is augmented
in each successive round. In FILI, a single encoder-decoder model, the fixer F , is trained, and no
additional breaker model training is required. In the initial step, BIFI only selects programs from the
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Figure 1: An illustration of how FILI’s approach differs from that of BIFI. BIFI leverages only
the correct programs in the beam to fine-tune the fixer (and breaker) model. In contrast, FILI in
addition uses bad programs from the beam and does not require any additional breaker model for data
augmentation. FILI also uses a edit-distance δ based curriculum, selecting easier pairs for training in
the initial rounds and gradually introducing harder examples in the subsequent rounds.

model’s predictions1 that parse and pairs them with the incorrect source program to fine-tune the
breaker and fixer models as shown in a in Figure 1. It completely ignores the predictions of the
fixer that do not parse. In the initial rounds, these predictions account for a significant portion of the
fixer’s predictions as the fixer is still learning and may not have seen all the classes of errors. We
observe that these incorrect programs are important, particularly those that appear higher in the beam
of fixer’s prediction because the fixer generates them with high confidence. As a result, there is a
high likelihood that the fixer might introduce similar errors for other programs, and these programs
should ideally be pushed further down in the fixer’s prediction. In contrast, FILI carefully selects
these programs from fixer’s predictions that do not parse and pairs them with fixer’s predictions that
do parse to fine-tune the fixer model as shown below a in Figure 1.

FILI starts with the same initial fixer F0 training as BIFI using heuristically generated paired synthetic
data 〈X−synth, X+〉 to train F0 in a supervised setting. FILI improves F0 through multiple rounds of
the following steps:

1. Apply the Fixer. F0 is applied to real-world bad programs and all the programs in the
fixer’s predictions that parse are selected for the subsequent steps. This step generates paired
real-world examples. Additionally, the fixer’s predictions that do no parse are selected and
paired with those predictions that do parse. This results in paired examples that correspond
to the fixer’s own mistakes.

2. Fine-tune the Fixer. F0 in now fine-tuned on both the set of examples generated in the
previous step. This fine-tuning results in a fixer that becomes more confident in fixing
programs with various syntax errors over time. The negative program pairing prevents the
model from generating high-scoring programs that do not parse, allowing it to effectively
learn how to fix syntax errors. Essentially, the fixer is able to improve its decision boundary
by decreasing the likelihood of these incorrect programs on the decision boundary, thereby
improving its ability to handle various types of syntax errors with each iteration.

Our approach simplifies the data augmentation approach used in BIFI and, in essence, provides an
efficient algorithm for unsupervised training of a fixer for syntax error correction. Our approach
also does not require training with any additional loss functions, such as the ones used in supervised
contrastive learning (Cao et al., 2021) or training a separate model to re-rank the predictions in the
beam (Lee et al., 2021). As a result, FILI solves an optimization problem that is much simpler than
these techniques.

1Note that when we refer to predictions, we are referring to a fixed-width beam size.
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4.3 CURRICULUM LEARNING

Beam prediction will include many good and bad programs at varying edit-distance δ from the input
incorrect source program. This provides several options to create pairs of incorrect source and good
programs, as well as pairs of bad and good programs, which can be used to fine-tune the fixer. For
instance, BIFI pairs good programs from the beam that are at an edit-distance of 4 from the incorrect
source program. In syntax error correction, edit-distance δ can be used as a proxy to describe the
complexity of the task. For example, fixing a program with only one syntax error is much easier than
fixing a program with four syntax errors. BIFI’s fine-tuning process requires the fixer to learn to fix
all errors in a single iteration. Typically, programmers fix multiple errors iteratively by compiling,
identifying, and then correcting the error. This iterative error correction resembles the curriculum
learning techniques (Bengio et al., 2009), where model training is performed in a structured manner
by gradually increasing the complexity of the examples, i.e., introducing easier tasks first followed by
more difficult tasks.

Inspired by programmers’ iterative error fixing style, FILI uses curriculum learning to improve the
learning process. In Figure 1, we illustrate the process of pairing programs in each round of the
FILI algorithm. In each round, we gradually increase the edit-distance of the pair of examples we
use to fine-tune the fixer, where edit-distance δ denotes the number of changes the fixer makes to
the incorrect program. By using edit-distance δ as a measure of complexity, we improve the fixer’s
ability to fix more errors in each round. The edit-distance δ criteria is used to pair both the incorrect
source and good programs from the beam, as well as the bad programs and good programs from the
beam (fixer’s own errors). We provide details of our algorithm in Appendix A.2.

Our experiments (Section 5) indicate that curriculum learning helps improve the fixer and generates
more parsable (correct) programs in the beam predictions. Our simple edit-distance δ based criteria
gives insights into how neural models can be improved on programming related tasks.

5 EXPERIMENTS

Our approach builds over BIFI’s framework (Yasunaga and Liang, 2021) and we evaluate our method
on the Github-Python dataset collected for BIFI’s evaluation.

5.1 MODEL AND DATASET

We use BIFI’s encoder-decoder transformer architecture with 4 layers, 8 attention heads, and a hidden
state size of 256 as the fixer. To ensure a fair comparison, we use the same initial fixer as BIFI. The
initial fixer is trained on synthetic data generated by perturbing syntactically correct programs in
order to introduce syntax errors (more details in Appendix A.1). We train the models on Google’s
TPU (v3-8). Training fixer for two rounds on TPU takes ≈ 20 hours.

We evaluate our approach on the Github-Python dataset2. The dataset consists of 38K bad programs
and 3M good programs. We use the same held-out test set as BIFI i.e, from the 38k bad examples,
15k are used as the test set while the remaining 23K are available as real-world bad examples for
training. Fixer’s accuracy is measured by parse rate and edit-distance δ. An incorrect program is
considered to be fixed if the fixer’s prediction parses and the edit-distance δ between the incorrect
source program and the prediction is ≤ 4 tokens. All the numbers reported are fixer’s top-1 accuracy.
BIFI uses beam width of 10 to generate paired data for fine-tuning the fixer and the breaker, while
FILI uses beam width of 30 (unless otherwise stated) to generate fine-tuning data for the fixer. For
evaluating, a beam width of 10 is used for all the models.

5.2 RESULTS

The initial fixer (Round0) trained on synthetic data has an accuracy of 62% on the held-out set. Since
BIFI and FILI are both iterative approaches, we run two rounds for each and report the results on the
held-out set in Table 1. We do not see any improvements in further rounds. All the numbers reported

2We also wanted to evaluate FILI on the DeepFix dataset, but BIFI unfortunately has not made their evaluation
setup (C++ synthetic data generation, training/test splits, evaluation hyper parameters etc.) on the DeepFix
dataset publicly available.
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Method Round1 Round2
BIFI FixerOnly 86.8% 88.6%
BIFI FixerOnly? 85.1% ± 0.09% 87.1% ± 0.45%
BIFI 88.0% 90.5%
FILI Curriculum 89.3% ± 0.19% 91.2% ± 0.13%
FILI 89.3% ± 0.19% 91.6% ± 0.05%

Table 1: Comparison of accuracy on the Github-
Python dataset. Our approach FILI, utilizing fixer’s
own mistakes for fine-tuning, outperforms BIFI Fixe-
rOnly, which relies on beam predictions but only in-
cludes programs that parse, and BIFI with the breaker
model for data augmentation.

Method Accuracy Accuracy (edit)
PaLM-2 78.2% 54%
GPT-3.5-turbo 98.6% 60%
BIFI FixerOnly? 93.1% 87.1%
BIFI 95.5% 90.5%
FILI Curriculum 95.2% 91.1%
FILI 96.1% 91.6%

Table 2: Comparison of performance on
the Github-Python dataset. Our approach
FILI, outperforms over LLMs in accuracy
when evaluating based on edit-distance δ,
and achieves comparable results when evalu-
ating the generation of parsable programs as
the evaluation metric.

in Table 1 are averaged over 5 runs. We use the following 2 configurations of BIFI and FILI for our
evaluation:

1. BIFI FixerOnly. This configuration only fine-tunes the fixer on the bad programs it can fix
in each iteration without using the the dataset generated by the breaker. It is similar to FILI
as only beam predictions are used to augment data, and no breaker model is used to generate
additional data.

2. BIFI. This configuration fine-tunes the fixer with both the bad programs it can fix and the
paired examples generated by the breaker in each iteration.

3. FILI Curriculum. In this configuration the fixer is trained using a combination of learning
from own mistakes and curriculum learning. During Round1, we use a threshold of edit-
distance δ ≤ 2 to generate the paired data. During Round2, the paired data is generated
using a threshold of edit-distance δ ≤ 4. Note that this is in contrast with BIFI, which uses
edit-distance δ ≤ 4 in both rounds.

4. FILI. This configuration only uses learning from own mistakes to train the fixer. We use
edit-distance δ ≤ 2 in both rounds in this configuration to generate both incorrect source and
correct beam paired examples, as well as correct beam and incorrect beam paired examples.

Note: To eliminate the possibility that the gains observed in our results were due to changes in
accelerator, we ran the BIFI FixerOnly (BIFI FixerOnly? in Table 1) on TPU. The numbers reported
in other two rows of BIFI correspond to those reported in the paper (Yasunaga and Liang, 2021).

We also compare BIFI and FILI against two LLMs, PaLM-2 (text-bison) (Anil et al., 2023) and
GPT-3.5-turbo and report the accuracies in Table 2. We use these models in a zero-shot setting, i.e.,
we prompt the model with the incorrect program and ask the model to generate the corresponding
correct program. The prompts used for this experiment are listed in Appendix A.6.

Discussion. FILI outperforms both configurations of BIFI. Compared to the FixerOnly configuration,
FILI shows an improvement of 4% in both the rounds, demonstrating that augmenting with negative
examples in addition to the positive examples from the beam helps to improve fixer’s performance.
Moreover, FILI also outperforms the full BIFI model, which uses an additional model, breaker, to
augment data in each iteration. We see an improvement of more than 1% in both rounds. In addition
to a slight improvement in performance, FILI provides a dramatically simplified training procedure
as it does not require any additional model training or specialized loss functions. The breaker model
in BIFI is 13 million parameter model, and training this model requires ≈ 2days on a modest DNN
accelerator. In addition to the time required for training the breaker model, the inference time for
running it on the 3 million good examples also needs to be considered for each iteration. This makes
BIFI’s approach computationally expensive and time-consuming. In contrast, FILI only uses fixer’s
predictions to generate paired data leading to a much faster and more efficient training process.
In relation to the overlap in problems that BIFI and FILI are capable of solving, there are certain
variations. BIFI cannot solve 1263, while BIFI cannot solve 1428. Notably, there are 897 instances
which both the approaches cannot solve. In terms of the unique problems that each approach can
solve, FILI solves 531 unique problems, whereas BIFI solves 366 unique instances.
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While our curriculum learning configuration also outperforms BIFI, we observed a slight drop in
accuracy (0.5%) compared to our FILI model without the curriculum learning. Upon further analysis,
we found that no curriculum learning fixer training aligns with the BIFI’s evaluation metric (parsable
and edit-distance δ ≤ 4) i.e. generate parsabale programs with the least number of changes to the
incorrect source program. When fine-tuning the fixer with only edit-distance δ ≤ 2 the fixer has fewer
degrees of freedom to modify the incorrect program when compared to fine-tuning with edit-distance
δ ≤ 4. To verify this hypothesis, we relaxed the edit distance criteria for the accuracy metric while
keeping the beam width fixed. Interestingly, our curriculum learning fixer generated more parsable
programs than any other fixer. Therefore, if the objective is to train a fixer that can generate more
parsable predictions in the beam, the FILI curriculum is a better configuration. We provide more
details on this experiment in our ablation study (Section 5.3).

FILI (and BIFI) outperform LLMs when assessed using BIFI’s evaluation metric (parsable and edit-
distance δ ≤ 4). These models, when instructed to generate the correct program, tend to introduce
modifications to other sections of the erroneous program, resulting in a higher edit-distance δ count
with the incorrect program. This behavior may not be desirable for developers in real-world scenarios.
When we relax the edit-distance δ criterion within the evaluation metric, we observe that GPT-3.5-
turbo achieves the highest accuracy at 98.6%. However, it’s worth noting that these models are
trained on significantly larger datasets and possess a much higher parameter count (on the order of
billions), rendering them challenging to train using commodity hardware resources. We provide
detailed analysis of these experiments in Appendix A.6.

Figure 2: Comparison of parse rates for different FILI and BIFI configurations across various edit-
distance δ thresholds. The line x = 4 represents BIFI’s evaluation metric. FILI (2,2) achieves the
best parse rate under this criteria as the fixer, indicating limited freedom for modifying the incorrect
program. As the edit-distance δ threshold increase (line x = 12), FILI curriculum configurations
((2,3), (2,4)) show better parse rates, indicating that gradual learning improves fixer’s capability to
generate more parsable programs.

5.3 ABLATION STUDY

In Section 5.2, we show that FILI outperforms all configurations of BIFI. In our ablation study, we
try to answer the following questions about FILI:

1. Does curriculum learning generate more parsable programs?
In this experiment, we test our hypothesis that incorporating curriculum in fixer training can
lead to higher percentage of parsable programs as the top prediction in the beam. We relax
edit-distance δ criteria used for evaluation by BIFI and analyze how the accuracy of different
configurations change accordingly. In Figure 2, we plot the cumulative parse rate of different
configurations against the edit-distance δ. The line x = 4 in Figure 2 represents the case
where the edit-distance δ is 4, which aligns with the BIFI’s evaluation metric. We observe
that the FILI configurations with no curriculum (FILI (2,2)) performs the best under this
criteria. However, as we move towards the right on the edit-distance δ scale (line x = 12),
we observe that FILI configurations with curriculum generates more parsable programs
compared to other configurations confirming our hypothesis. As discussed in Section 3,
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Round1
edit-distance

Round 1 Round2
edit-distance

Round 2

1 85.5% 4 91.3%
2 89.2% 3 91.5%
2 89.2% 4 91.1%
2 89.2% 5 90.8%
2 89.2% 6 90.6%
4 89.0% 4 90.0%
2 89.3% 2 91.6%

Table 3: Performance comparison of FILI models with
varying curricula. The fixer is trained with different
edit-distance δ thresholds in each round.

Method Round1 Round2
BIFI FixerOnly? 85.1% 87.1%
BIFI FixerOnly Cur-
riculum

86.0% 89%

FILI Curriculum
(2,4)

89.3% 91.2%

Table 4: Comparison of perfor-
mance between BIFI FixerOnly
models trained with and without
curriculum learning. Our cur-
riculum learning approach demon-
strates improved performance over
the standard BIFI FixerOnly model,
indicating the effectiveness of our
curriculum in the training of fixer.

evaluating syntax fixers in unsupervised setting is challenging and the performance of the
fixers can vary depending on the evaluation metric. Nonetheless, FILI models consistently
outperform BIFI models across different evaluation criteria, demonstrating the effectiveness
of our approach. See Appendix A.5 and Appendix A.7 for a qualitative analysis of the fixes
by both the models.

2. How does the accuracy of FILI vary with different curricula?
In this experiment, we test how the accuracy of FILI varies with different curricula. We
train FILI with different edit-distance δ thresholds in each round and evaluate the model’s
performance using BIFI’s evaluation metric (parsable and edit-distance δ ≤ 4). The results in
Table 3 show that FILI with curriculum (2,3) performs the best amongst all the configurations.
This configuration restricts the fixer the most in terms of the number of changes the fixer
can make which aligns with the evaluation metric that looks for a parsable program with the
minimum changes as the top prediction. As edit-distance δ threshold increases, fixer has
more freedom to modify the incorrect program resulting in top programs in the beam being
parsable but at a higher edit-distance δ than BIFI’s evaluation metric.

3. Does curriculum learning help BIFI as well?
Next, we test whether curriculum learning can also benefit BIFI’s FixerOnly configuration.
We train the FixerOnly model with our curriculum (2,4) and evaluate it’s performance using
BIFI’s evaluation metric. As shown in Table 4, we observe a 1% improvement in round1
and a 2% improvement in round2 compared to the original FixerOnly model. These reuslts
indicate that incorporating curriculum learning can indeed improve the learning process for
BIFI as well. This experiment demonstrates the effectiveness of our curriculum learning
approach in improving the performance of not only the FILI model but also the BIFI model.
Furthermore, since the FixerOnly configuration is similar to FILI without the negative
programs pairing, these results indicate the importance of incorporating negative programs
from the beam in the training process. The inclusion of these programs allows the model to
improve it’s ability to fix different classes of errors.

6 CONCLUSION

In this paper, we presented FILI, a new approach for automatically learning a syntax-error fixer in
an unsupervised setting. In contrast to prior approaches (Yasunaga and Liang, 2021) that rely on
separate models to augment data in each iteration, our method simplifies this step significantly. We
leverage the model’s own mistakes in its predictions to augment data and we do this in a curriculum
style approach by gradually increasing the complexity of these examples in each iteration. Our
evaluation demonstrates that our approach results in a fixer that outperforms the prior approaches
while significantly reducing the training time. Our approach opens up new research directions in
unsupervised training of models for programming-related tasks.
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