© © N O O~ W N =

24
25
26
27
28
29

30
31
32
33
34

GAP: Graph-based Agent Planning with Parallel Tool
Use and Reinforcement Learning

Jiaqi Wu!, Qinlao Zhao?, Zefeng Chen®, Kai Qin',
Yifei Zhao!, Xueqian Wang!, Yuhang Yao*

Tsinghua University ~ ?Huazhong University of Science and Technology
3National University of Singapore ~ *Carnegie Mellon University
wu-jgq240@mails.tsinghua.edu.cn
yuhangya@alumni.cmu.edu

Abstract

Autonomous agents powered by large language models (LLMs) have shown impres-
sive capabilities in tool manipulation for complex task-solving. However, existing
paradigms such as ReAct rely on sequential reasoning and execution, failing to
exploit the inherent parallelism among independent sub-tasks. This sequential
bottleneck leads to inefficient tool utilization and suboptimal performance in multi-
step reasoning scenarios. We introduce Graph-based Agent Planning (GAP), a
novel framework that explicitly models inter-task dependencies through graph-
based planning to enable adaptive parallel and serial tool execution. Our approach
trains agent foundation models to decompose complex tasks into dependency-
aware sub-task graphs, autonomously determining which tools can be executed in
parallel and which must follow sequential dependencies. This dependency-aware
orchestration achieves substantial improvements in both execution efficiency and
task accuracy. To train GAP, we construct a high-quality dataset of graph-based
planning traces derived from the Multi-Hop Question Answering (MHQA) bench-
mark. We employ a two-stage training strategy: supervised fine-tuning (SFT) on
the curated dataset, followed by reinforcement learning (RL) with a correctness-
based reward function on strategically sampled queries where tool-based reasoning
provides maximum value. Experimental results on MHQA datasets demonstrate
that GAP significantly outperforms traditional ReAct baselines, particularly on
multi-step retrieval tasks, while achieving dramatic improvements in tool invoca-
tion efficiency through intelligent parallelization. The project page is available at:
https://github.com/WJQ7777/Graph-Agent-Planning.

1 Introduction

Recent advances in large language model (LLM)-based autonomous agents have demonstrated
remarkable capabilities in complex problem-solving tasks[1H6], ranging from scientific research and
code generation to interactive web navigation and data analysis. A key enabler of these capabilities is
tool-augmented reasoning, where agents leverage external tools such as search engines, calculators,
code interpreters, and APIs to extend their problem-solving capacity beyond the inherent limitations
of parametric knowledge.

Current approaches to tool-augmented reasoning can be broadly categorized into two paradigms:
multi-agent systems (MAS) and tool-integrated reasoning (TIR) models. Multi-agent frameworks or-
chestrate multiple specialized agents with distinct roles and tool sets to collaboratively solve complex
tasks. These systems have shown impressive performance on benchmarks requiring sophisticated
workflows, such as software development and scientific research. However, they suffer from criti-

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

35
36
37
38

39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54

55
56
57
58

59
60
61
62

63
64
65
66
67

68
69
70
71

72

73
74

75
76
77
78
79

80

81
82
83
84

cal limitations: (1) high computational overhead due to redundant inter-agent communication and
complex orchestration mechanisms; (2) inability to learn from data, as the underlying LLMs are not
specifically trained for multi-agent coordination; and (3) reliance on prompt engineering rather than
native model capabilities to achieve multi-turn, multi-tool workflows.

In contrast, Tool-Integrated Reasoning (TIR) models represent an emerging paradigm that explicitly
trains LLMs to incorporate tool usage into their reasoning process. Recent work such as Search-
R1[7] and WebThinker[S] has demonstrated that end-to-end training of models to invoke tools (e.g.,
<search> functions) at appropriate reasoning steps significantly outperforms prompt-engineered
approaches. The TIR framework naturally aligns with the ReAct paradigm[4], enabling models to
follow a “think-act-observe” pipeline in an end-to-end manner. However, existing TIR methods are
fundamentally limited to sequential reasoning trajectories. They execute one action at a time and thus
fail to exploit opportunities for parallel tool execution when sub-tasks are independent.

To address these limitations, we introduce Graph-based Agent Planning Paradigm (GAP), a novel
training paradigm that enables LLM-based agents to perform dependency-aware planning through
explicit graph-based reasoning. Our key insight is that by training models to construct and reason over
task dependency graphs, they acquire the capability to autonomously determine optimal execution
strategies, thereby executing independent tools in parallel when possible and sequential ones when
necessary. This approach combines the efficiency and learnability of TIR models with the expressive
power of multi-agent coordination, without the overhead of actual multi-agent orchestration. Our
main contributions are:

* We introduce GAP, a novel training paradigm for agent foundation models that incorporates
dependency-aware task planning, enabling dynamic parallel and serial tool execution. To
our knowledge, this is the first work to explicitly train LLMs for graph-based reasoning over
task dependencies in tool-augmented settings.

* We design and curate a high-quality dataset of 7,000 graph-based planning traces from
the Multi-Hop Question Answering (MHQA) benchmark, using GPT-40 to synthesize
dependency-aware reasoning trajectories. We apply a rigorous filter mechanism, ensuring
that training data emphasize dependency modeling.

» We demonstrate through extensive experiments across seven question-answering benchmarks
that GAP achieves a 0.9% average performance improvement on multi-hop reasoning tasks
over state-of-the-art baselines. Moreover, our method significantly enhances efficiency by
reducing interaction turns by up to 33.4%, while decreasing response length by 24.9% and
maintaining robust generalization to out-of-domain datasets.

Our work establishes graph-based dependency modeling as a critical direction for developing more
efficient autonomous agents, bridging the gap between sequential TIR models and complex multi-
agent coordination. Through extensive experiments on MHQA, we demonstrate that GAP achieves
significant improvements over traditional ReAct baselines in both accuracy and efficiency.

2 Background

Complex task reasoning often requires structured decomposition, specialized capabilities, and external
tool integration. We review two prominent paradigms that used in single agent:

ReAct-style Tool-Using The ReAct-style approach, exemplified by ReAct[4]], leveraged few-shot
exemplars to guide an LLM to interleave reasoning traces and actions within a "Thought-Action-
Observation" cycle. This framework augments LLMs with structured reasoning by interleaving
thought steps 1, € T for planning, action steps a; € A for tool use, and observation steps o, € O for
outcome processing. The reasoning trajectory follows:

(7'1,&1,01,7—2,@2,027.--77-T) (1)
where each thought 7 conditions on the history hy = [71.4—1,@1:t—1, 01:¢—1] to determine next action.

Tool-Integrated Reasoning Tool-Integrated Reasoning (TIR) enhances LLMs’ code reasoning ca-
pabilities by tightly coupling natural language reasoning with external tool execution environments|[|8-
10]. This approach enables a single agent to leverage external tools 7 = {t1, 2, ..., tas } by main-
taining a global state Sy and selecting tools via policy 7 (¢ | S¢). After executing tool ¢, the agent

85

86
87

88

89
90
91
92
93
94

95

96
97
98

99
100
101

102
103
104

105
106
107

108

109
110
111

observes outcome o; ~ O(ty, S) and updates its state:
St = f(Stflat]w Otfl) (2)

where S; denotes the reasoning state, ¢; represents the selected tool, and o; captures tool execution
outcomes.

Task Graph-Based Planning Subtask Execution
) s ~N pTTTTT T .
\ original text
S Subtask 1: Search for the correct paper h> Al regulation ... </search
@ ‘ 36}, s D [,
O - -
4

G)F| Societyarticle ..

Asyne Rollout Worker
Depend On: None. ’g

o=\ Concurrent
ENES
\

I
'
'
'
'
'
'
'
'
'
'
'
'
- '
i By Subtask 3: Compare the label words :
: 00[from the Al regulation ... ' n
=) Depend On: Task1&2. \ <
'
'
'
'
'
'
'
f
'
'
'
'
'
'

Subtask 2: Search for the Physics and ’

(&)

Concurrent
S

task 2

il

EY.

Result 1 Result 2
{

o ﬂ-@ Results Aggregation
/ EO) \ .

ToDo subtask 1 @

query \ =] / subtask 3 answer

subtask 2

[Parallel Tool&Agent Calling }ﬂg
- J . !

Figure 1: Illustration of Graph-based Agent Planning paradigm. GAP decomposes tasks into
dependency-aware subtasks in the planning stage, enabling identification of parallelizable tool
operations. The system supports parallel tool and agent calling for enhanced computational efficiency.

3 Graph-based Agent Planning Paradigm

In this section, we introduce the Graph-based Agent Planning (GAP) paradigm, a novel framework
that enables LLM-based agents to perform dependency-aware reasoning and adaptive tool execution.
We first formalize the problem setting (§3.1)), then describe the core components of GAP including
graph-based task decomposition (§3.2)) and the dependency-aware execution strategies (§3.3). Figure[I]
presents the complete GAP reasoning workflow, integrating task decomposition, graph construction,
and adaptive execution.

3.1 Problem Formulation

We consider a task-solving scenario where an agent must answer a complex query g by leveraging
a set of external tools 7 = {¢1,ta,...,t,}. Each tool ¢; represents a specific capability, such as
information retrieval (search), numerical computation (calculator), or code execution (python).

Task Decomposition. Given a complex query ¢, the agent must decompose it into a sequence of
sub-tasks S = {s1, s2, ..., Sm }, where each sub-task s; requires invoking one or more tools from 7.
The goal is to determine both which tools to invoke and when to invoke them.

Dependency Graph. We model task dependencies as a directed acyclic graph (DAG): G = (V, E),
where each vertex v; € V represents a sub-task s, and each directed edge (v;, v;) € E indicates that
sub-task s; depends on the output of sub-task s;.

The absence of an edge between two vertices indicates independence, meaning those sub-tasks can
be executed in parallel. The agent’s objective is to construct this dependency graph and execute tools
accordingly to maximize both efficiency and correctness.

3.2 Graph-based Task Decomposition

Unlike traditional sequential reasoning approaches (e.g., ReAct) that generate one action at a time,
GAP explicitly constructs a task dependency graph during the planning phase. This process consists
of three steps:

112
113
114
115
116

117
118
119
120
121
122

123
124

125
126
127
128

129
130

131
132
133
134
135

137

138
139
140

141
142

143

144

145
146

147
148

149
150
151

152

153

154
155

Sub-task Identification. The model first analyzes the input query ¢ and identifies the atomic
sub-tasks required to solve it. For example, given the query “What are the populations of the capitals
of France and Germany?”, the model identifies four sub-tasks: s; retrieves the capital of France,
so retrieves the capital of Germany, s3 retrieves the population of s;’s result, and s4 retrieves the
population of s5’s result.

Dependency Analysis. The model then reasons about dependencies between sub-tasks by analyzing
their input-output relationships. A sub-task s; depends on s; if and only if s; requires the output
of s; as input. In the example above, s3 depends on s; as it needs to know Paris before querying
its population, and similarly s, depends on s as it needs to know Berlin. However, s; and s; are
independent and can be executed in parallel, as are s3 and s4 given their respective dependencies are
satisfied.

Graph Construction. Based on the dependency analysis, the model constructs the dependency
graph GG. We represent this graph using an adjacency structure that explicitly encodes:

Graph G:
Nodes: [s1, s2, s3, s4]
Edges: [(s1, s3), (82, s4)]
Parallel Groups: [{sl, s2}, {s3, s4}]

The model outputs this graph structure in a structured format that enables downstream execution
planning. We train the model to generate this representation using a special token sequence:

<graph>

<node id="sl1">search("capital of France")</node>

<node id="s2">search("capital of Germany")</node>

<node id="s3" depends="s1">search("population of {s1}")</node>
<node id="s4" depends="s2">search("population of {s2}")</node>
</graph>

3.3 Dependency-Aware Execution Strategies

Given the constructed dependency graph G, GAP determines an optimal execution strategy that
balances parallelization opportunities with dependency constraints. We formalize this as a scheduling
problem.

Execution Levels. We partition the graph G into execution levels Lo, L1, . .., Lj, using topological
sorting, where:

* Level L contains all nodes with no incoming edges (independent initial tasks)

* Level L; (for ¢ > 0) contains nodes whose dependencies are all in levels Lg, ..., L;_1

All sub-tasks within the same level L; can be executed in parallel, as they have no dependencies on
each other.

Parallel Execution. For sub-tasks in the same execution level, the model generates a parallel tool
call batch:

Batch; = {(t;,args;) | s; € Li}
where t; is the tool selected for sub-task s; and args; are its arguments. All tools in Batch; are
invoked simultaneously, and the model waits for all results before proceeding to the next level. In
Algorithm [T} we demonstrate the reasoning process of our proposed method.

4 Training Pipeline
4.1 Data Synthesis

During the Supervised Fine-Tuning (SFT) stage, we generate Graph-based Action Planning (GAP)
trajectories using our proprietary multi-agent system. This approach is inspired by the multi-agent

156
157
158

159
160
161

162
163
164

165
166

167
168
169
170
171

172
173

174

175
176
177

178
179

Algorithm 1 Graph-based Agent Planning with Parallel Tool Execution

Require: Input query x, policy model 7y, tool set 7, maximum turns B
Ensure: Final answer y
1: Initialize rollout y < (), turn count b < 0
2. // Phase 1: Planning
3: Generate Ypan ~ To(- | 2, y) until </plan>
4: Parse dependency graph G = (V, E) < ParseGraph(ypian)
5: Compute execution levels { Lo, ..., L} < TopologicalSort(G)
6
7
8

DY = Y+ Yplan

: // Phase 2: Level-wise Execution

: for each level L; and b < B do
9: Generate y;, ~ (- | x,y) until </tool>
10: y<y+u
11: if <tool> detected in y; then

12: Extract queries {g; }‘jil‘ + Parse(ys)

13: Execute in parallel: {o; = T(qj)}‘]i’l‘

14: y < y + <observation>[oi,...,0|,||</observation>
15: b—b+1

16: end if

17: end for

18: // Phase 3: Synthesis
19: Generate Yans ~ 7o (- | =, y) until </answer>
20: return y + yups =0

distillation framework proposed by Chain-of-Agents[[11]]. Starting with the Natural Questions (NQ)
[12]] and HotpotQA [13]] datasets, we employ GPT-40 as the backend model to simulate the graph-
based planning process. The prompt template refers to Section [B]

To ensure the quality of the GAP training, we implemented a filtering process to select only high-
quality, non-trivial trajectories from the varied data sources. We apply three key filtering criteria to
curate the training data:

(1) Complexity threshold: We remove samples that can be completed with fewer than 3 search
operations, as such trajectories are overly simplistic and do not benefit from parallel retrieval
strategies.

(2) Task diversity: We maintain a 6:4 ratio between samples utilizing parallel retrieval and those using
sequential retrieval, ensuring the model’s generalization capability across different retrieval patterns.

(3) Length constraint: We filter out excessively long samples, retaining only those within approx-
imately 2000 tokens. Overlong samples typically indicate missing relevant content in the offline
dataset rather than genuine retrieval difficulty, and such redundant samples are detrimental to training
efficiency, particularly given our objective of minimizing redundancy and maximizing retrieval
efficiency.

Following this pipeline, approximately 7,000 high-quality training trajectories were generated through
trajectory synthesis and quality filtering.

4.2 Supervised Fine-tuning for Cold Start

We fine-tuned the Qwen2.5-3B-Instruct model on our filtered dataset. The model learns to internalize
graph-based planning strategies, enabling it to solve tasks by leveraging graph representations. The
training objective minimizes:

Lspr = — Zlogm(n\ki,(ﬁ
i¢O

with observation masking (O) to prevent environmental noise propagation. This establishes robust
cold start for downstream RL.

180

181
182
183
184
185
186
187
188

190
191
192
193
194

195

197

198

199
200
201
202

204

205

207
208
209

210

211
212
213

214
215
216

217
218
219

4.3 End-to-End Agentic Reinforcement Learning

While supervised training establishes a baseline understanding of parallel execution, it merely guides
the model to imitate the provided demonstrations, and does not optimize computational efficiency or
reasoning effectiveness. We further fine-tune the language model with fully end-to-end reinforcement
learning. During RL-based finetuning, we iteratively sample reasoning traces from our current policy,
assign them a reward according to the correctness of the proposed solution, and optimize policy
parameters with DAPO[14]. In this stage, the model learns to strategically determine when, how, and
how broadly to invoke child threads, maximizing performance by balancing the trade-offs between
parallel exploration and the context window constraint. We use the VeRL framework][/15]] for DAPO
training.

Reward function Reward signals are critical for shaping RL dynamics in open-ended web agent
tasks. Our framework adopts a graph-based design, built on two key considerations: Format con-
sistency is inherently ensured through high-quality supervised fine-tuning and effective cold-start,
obviating the need for explicit format validation rewards. For evaluating answer correctness, we use
rule-based metrics to provide binary assessments. Our reward function is:

Racc (T) = SCOT €answer (10)

where scoreaswer € {0,1} is 1 if the final prediction is correct. Future work could productively
explore multi-objective reward formulations that incorporate auxiliary signals.

S Experiments

5.1 Setup

Datasets We select seven benchmark datasets that encompass a diverse range of search with
reasoning challenges by following the setup of [7]. These datasets are categorized as follows: (1)
General Question Answering: NQ[12], TriviaQA[16[, and PopQA[17]. (2) Multi-Hop Question
Answering: HotpotQA[13], 2WikiMultiHopQA 18], Musique[19], and Bamboogle[20]]. Following
[7], we merge the training sets of NQ and HotpotQA as the training data and conduct evaluations on
the validation or test sets.

Metrics We use Exact Match (EM) as the evaluation metric to assess both in-domain and out-of-
domain performance. In Figure 2] we follow [21] and adopt the cost-of-pass metric to quantify model
efficiency. The cost-of-pass metric, denoted as v(m, p), represents the expected monetary cost of
using a model m to generate a correct solution for a problem p. It is computed as the ratio of the cost
of a single inference attempt, C,, (p), to the success rate, R, (p):

Here, the cost of a single inference attempt, C,,, (p), is defined as:

Cm(p) = nin(m, p) + nou(m, p)

where n;, (m, p) and noy(m, p) are the number of input and output tokens for model m on problem
p, respectively. The success rate R,,(p) is estimated by the proportion of correct responses. This
metric represents the expected cost of using a model to generate a correct solution for a problem.

Baseline We conduct comprehensive comparisons against state-of-the-art methods to evaluate our
approach across MHQA datasets. We systematically evaluate a suite of tool-augmented methods,
including Search-R1[7], ZeroSearch[22], StepSearch[23]] and Chain of Agents[11].

Implementation Details We conduct experiments using Qwen2.5-3B models (Yang et al., 2024) as
the backbone of the agent, E5[24]] as the embedding model, and 2018 Wikipedia dump[25] as the
corpus. All experiments are conducted on 8 NVIDIA A100 GPUs.

220

221
222
223
224
225
226
227

228
229
230
231
232
233
234

244

Table 1: Performance comparison on various QA datasets, with Qwen2.5-3B-Instruct serving as the
foundation model. Bold indicates best results among all methods. {/* denote in-domain/out-ofdomain
datasets respectively.

Methods Single-Hop QA Multi-Hop QA
NQ" TriviaQA® PopQA”" HotpotQA™ 2wiki® Musique® Bamboogle”
Qwen2.5-3B-Instruct 10.5 13.2 18.8 9.9 20.2 4.7 1.2
Search-R1 383 59.3 43.5 37.6 31.7 15.1 37.1
ZeroSearch 43.3 61.6 414 274 30.0 9.8 11.1
StepSearch - - - 34.5 32.0 17.4 34.4
AFM-RL-3B 39.3 58.2 424 41.1 39.8 19.0 432
GAP-3B (Ours) 39.6 59.1 40.1 42.5 41.7 18.7 43.8
50
~— 40
@ Y¢ GAP-3B(ours) @ AFM-RL-3B
@
2 30
p
g @ Search-R1
Q\O
< 20
>
Q
g
§ 10 © Qwen2.5-38
<
0
1.0 1.5 2.0 2.5 3.0

Cost of Pass (! better)

Figure 2: Performance-cost trade-off comparison across different models on HotpotQA. GAP-3B
achieves the best balance with highest accuracy at lowest cost.

5.2 Results and Efficiency Analysis

Table (1| presents comprehensive results comparing GAP against baseline methods across seven
benchmarks using four model configurations. Beyond accuracy improvements, GAP demonstrates
significant efficiency gains on multi-hop reasoning tasks through parallel decomposition of inde-
pendent sub-queries. As shown in Table [2and Figure 3] our method achieves superior performance
across multiple efficiency metrics compared to sequential baselines. Figure [2|further illustrates this
advantage through a performance-cost trade-off analysis on HotpotQA. Our analysis reveals several
key findings:

Superior performance on complex multi-hop reasoning. Our method demonstrates particular
strength on multi-hop benchmarks, outperforming the best baseline by 0.9% on average across four
multi-hop datasets (HotpotQA, 2Wiki, Musique, Bamboogle). This indicates that GAP successfully
learns strategies for decomposing and parallelizing complex queries. On single-hop questions, GAP
achieves comparable performance to ZeroSearch, which trains an LLM to simulate search engines
and generate pseudo-context. Compared to Search-R1, our method shows a substantial 3.95%
improvement.

Reduced interaction turns and faster execution. Compared to Search-R1, which retrieves infor-
mation via sequential query generation, GAP significantly reduces the number of LLLM interaction
turns. On HotpotQA, GAP requires only 1.78 turns compared to Search-R1’s 2.27 turns (21.6%
reduction), while on 2Wiki, the reduction is even more pronounced (2.03 vs. 3.05 turns, 33.4%
reduction). The cumulative distribution functions in Figure 3 further illustrate this advantage: our
method efficiently responds to questions within 2 turns in most cases, whereas Search-R1 typically
requires 3-6 turns. This reduction in interaction turns directly translates to faster execution times,
with GAP achieving 32.3% and 21.4% time cost reductions on HotpotQA (168 vs. 248s) and 2Wiki
(206s vs. 262s), respectively. Notably, the model autonomously determines parallelizability based on
learned patterns during inference, demonstrating strong generalization ability.

245
246
247
248
249
250
251
252
253
254

255

257
258
259
260
261
262
263
264

Shorter response length and lower deployment cost. GAP also significantly reduces response
length compared to baselines. As shown in Figure[3] Search-R1 generates substantially more tokens
to support reasoning over retrieved documents, while GAP learns efficient reasoning strategies that
reduce response length by 24.9% on HotpotQA (416 vs. 554 tokens) and 20.3% on 2Wiki (452 vs.
567 tokens). This reduction in generated tokens directly decreases deployment costs and increases
throughput, which are critical factors for real-world applications. Furthermore, these efficiency
gains generalize across domains: while HotpotQA is an in-domain dataset, similar improvements
are observed on out-of-domain benchmarks, demonstrating that the learned parallel decomposition
patterns transfer effectively to new scenarios. These results validate that GAP not only improves
accuracy but also makes multi-hop reasoning more practical and cost-effective for deployment.

Table 2: Efficiency comparison on HotpotQA and 2wiki, with Qwen2.5-3B-Instruct serving as the
backbone. Time cost refers to the time required to infer a batch of data. Bold indicates best results
among all methods. {/* denote in-domain/out-ofdomain datasets respectively.

HotpotQA AcctT Length] Time Cost(s)] # Turns]
Owen2.5-3B-Instruct 9.9 256 114 1.11
Search-R1 25.3 584 221 2.69
AFM-RL-3B 35.7 554 248 2.27
GAP-3B (Ours) 36.7 416 168 1.78
2wiki* Accl? Length| Time Cost(s)| # Turns]
QOwen2.5-3B-Instruct 10.5 277 121 1.12
Search-R1 31.7 651 254 3.05
AFM-RL-3B 39.8 567 262 2.64
GAP-3B (Ours) 41.7 452 206 2.03
1000 HotpotQA 2WikiMultiHopQA HotpotQA ikil il QA
100% '/:;E 7?0 ./.;:/: .

Response Length
2
3
8
Cumulative Percentage

800
400 3 25%
200 0%
GAP-3B Search-R1 AFM-3B-RL GAP-38 Search-R1 AFM-3B-RL 1 2 3 4
Turns

Figure 3: Illustration of total turns and response length on HotpotQA and 2WikiMultiHopQA datasets.
Left panels show response length distribution, right panels show cumulative percentage of problems
solved within different numbers of turns.

6 Conclusion

In this paper, we introduced GAP (Graph-based Agent Planning), a novel paradigm that enables
LLM-based agents to perform dependency-aware reasoning and adaptive tool execution. By explicitly
modeling task dependencies through graph-based planning, GAP addresses the fundamental limitation
of sequential execution in existing approaches like ReAct, achieving significant improvements in both
efficiency and accuracy. Our key contribution lies in training agent foundation models to decompose
complex queries into dependency graphs, autonomously determining which tools can be executed in
parallel and which must follow sequential dependencies. Through a carefully designed two-stage
training strategy, we demonstrate that GAP substantially outperforms traditional sequential baselines,
particularly on multi-step retrieval tasks requiring sophisticated reasoning.

265

266
267
268

270
271
272
273
274

275
276
277
278

279

281

282
283
284

285
286
287

288
289
290

291
292

293
294
295

304

306
307
308

309
310
311

References

[1] Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye,
Zhaoxuan Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Bernard
Ghanem, Ping Luo, and Guohao Li. Owl: Optimized workforce learning for general multi-agent
assistance in real-world task automation, 2025. URL https://arxiv.org/abs/2505.23885,

[2] Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang,
Zixin Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan
Huang, Shilong Liu, Hongru Wang, and Mengdi Wang. Alita: Generalist agent enabling
scalable agentic reasoning with minimal predefinition and maximal self-evolution, 2025. URL
https://arxiv.org/abs/2505.20286

[3] Chengyue Yu, Siyuan Lu, Chenyi Zhuang, Dong Wang, Qintong Wu, Zongyue Li, Runsheng
Gan, Chunfeng Wang, Siqi Hou, Gaochi Huang, Wenlong Yan, Lifeng Hong, Aohui Xue,
Yanfeng Wang, Jinjie Gu, David Tsai, and Tao Lin. Aworld: Orchestrating the training recipe
for agentic ai, 2025. URL https://arxiv.org/abs/2508.20404.

[4] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models, 2023. URL https:
//arxiv.org/abs/2210.03629,

[5] Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yongkang Wu, Ji-Rong Wen, Yutao Zhu,
and Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research
capability, 2025. URL https://arxiv.org/abs/2504.21776.

[6] 5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, and
Cunxiang Wang. GIm-4.5: Agentic, reasoning, and coding (arc) foundation models, 2025. URL
https://arxiv.org/abs/2508.06471.

[7] Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Za-
mani, and Jiawei Han. Search-rl: Training llms to reason and leverage search engines with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.09516.

[8] Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl, 2025. URL
https://arxiv.org/abs/2503.23383|

[9] Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An.
Simpletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning, 2025.
URL https://arxiv.org/abs/2509.02479.

[10] Heng Lin and Zhongwen Xu. Understanding tool-integrated reasoning, 2025. URL https:
//arxiv.org/abs/2508.19201,

[11] Weizhen Li, Jianbo Lin, Zhuosong Jiang, Jingyi Cao, Xinpeng Liu, Jiayu Zhang, Zhengiang
Huang, Qianben Chen, Weichen Sun, Qiexiang Wang, et al. Chain-of-agents: End-to-end agent
foundation models via multi-agent distillation and agentic 1. arXiv preprint arXiv:2508.13167,
2025.

[12] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453-466, 2019.

[13] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhut-
dinov, and Christopher D Manning. Hotpotga: A dataset for diverse, explainable multi-hop
question answering. arXiv preprint arXiv:1809.09600, 2018.

[14] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning
system at scale, 2025. URL https://arxiv. org/abs/2503.14476, 2025.

https://arxiv.org/abs/2505.23885
https://arxiv.org/abs/2505.20286
https://arxiv.org/abs/2508.20404
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2504.21776
https://arxiv.org/abs/2508.06471
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2503.23383
https://arxiv.org/abs/2509.02479
https://arxiv.org/abs/2508.19201
https://arxiv.org/abs/2508.19201
https://arxiv.org/abs/2508.19201

312
313
314
315

316
317
318

319
320
321

322
323
324

325
326
327

328
329
330

331
332
333

334
335
336

337
338
339

340
341
342

344
345

347
348

349
350

352

353
354
355
356

357
358

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua
Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In
Proceedings of the Twentieth European Conference on Computer Systems, pages 1279-1297,
2025.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Ha-
jishirzi. When not to trust language models: Investigating effectiveness of parametric and
non-parametric memories. arXiv preprint arXiv:2212.10511, 2022.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing
a multi-hop qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint
arXiv:2011.01060, 2020.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving
retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509, 2022.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis.
Measuring and narrowing the compositionality gap in language models. arXiv preprint
arXiv:2210.03350, 2022.

Mehmet Hamza Erol, Batu El, Mirac Suzgun, Mert Yuksekgonul, and James Zou. Cost-of-pass:
An economic framework for evaluating language models. arXiv preprint arXiv:2504.13359,
2025.

Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan
Zhang, Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of 1lms
without searching. arXiv preprint arXiv:2505.04588, 2025.

Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, and Yichao
Wau. Stepsearch: Igniting llms search ability via step-wise proximal policy optimization. arXiv
preprint arXiv:2505.15107, 2025.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan
Majumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training.
arXiv preprint arXiv:2212.03533, 2022.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov,
Dangi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering.
In EMNLP (1), pages 6769-6781, 2020.

Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia
Chen, Jiazhen Du, Huiyang Wang, Fuzheng Zhang, et al. Agentic reinforced policy optimization.
arXiv preprint arXiv:2507.19849, 2025.

OpenAl. Introducing deep research, 2025. URL https://openai.com/index/
introducing-deep-research/|

Kimi. Kimi-researcher: End-to-end rl training for emerging agentic capabilities, 2025. URL
https://moonshotai.github.io/Kimi-Researcher/,

Ning Shang, Yifei Liu, Yi Zhu, Li Lyna Zhang, Weijiang Xu, Xinyu Guan, Buze Zhang,
Bingcheng Dong, Xudong Zhou, Bowen Zhang, Ying Xin, Ziming Miao, Scarlett Li, Fan
Yang, and Mao Yang. rstar2-agent: Agentic reasoning technical report, 2025. URL https:
//arxiv.org/abs/2508.20722,

Meituan. meituan-longcat/longcat-flash-chat, 2025. URL https://huggingface.co/
meituan-longcat/LongCat-Flash-Chat. Hugging Face.

10

https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://moonshotai.github.io/Kimi-Researcher/
https://arxiv.org/abs/2508.20722
https://arxiv.org/abs/2508.20722
https://arxiv.org/abs/2508.20722
https://huggingface.co/meituan-longcat/LongCat-Flash-Chat
https://huggingface.co/meituan-longcat/LongCat-Flash-Chat
https://huggingface.co/meituan-longcat/LongCat-Flash-Chat

359
360
361
362

363

365

366
367
368

369

370

371
372
373
374
375
376

377
378
379
380

382
383

384

385
386
387
388
389
390

391
392
393

395
396

398
399
400
401
402

403

404
405

[31] Tianqing Fang, Zhisong Zhang, Xiaoyang Wang, Rui Wang, Can Qin, Yuxuan Wan, Jun-Yu
Ma, Ce Zhang, Jiaqi Chen, Xiyun Li, Hongming Zhang, Haitao Mi, and Dong Yu. Cognitive
kernel-pro: A framework for deep research agents and agent foundation models training, 2025.
URL https://arxiv.org/abs/2508.00414.

[32] Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/abs/
2311.12983.

[33] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for
building autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

A Related Work

A.1 Tool-Integrated Reasoning Method

Training Large Language Models for multi-turn Tool-Integrated Reasoning (TIR) represents a promis-
ing frontier in Reinforcement Learning. Representative works such as ARPO[26], SimpleTIR[9],
and ToRL[8] adopt similar strategies: models are post-trained with SFT or RL, and outputs are struc-
tured (e.g., <code>...</code>) to trigger tool execution, feeding results back into the reasoning loop.
Some extend RL-based Tool-Integrated Reasoning by improving small LLMs’ tool-use capability,
stabilizing multi-turn reasoning, and rewarding tool-use sequences independent of final answers.

Today, such tool-integrated reasoning is no longer a niche capability but a baseline feature of advanced
agentic models. Mature commercial and open-source systems, such as OpenAl’s DeepResearch
and 03[27]], Kimi K2[28]], Microsoft rStar2-Agent[29] and Meituan LongCat[30], routinely incor-
porate these RL-honed strategies, underscoring the centrality of outcomedriven optimization in
tool-augmented intelligence. Recent work theoretically proves that TIR fundamentally expands LLM
capabilities beyond the “invisible leash” of pure-text RL by introducing deterministic tool-driven
state transitions, establishes token-efficiency arguments for feasibility under finite budget.

A.2 Agent Foundation Model

The development of Agent Foundation Models (AFMs) marks a pivotal shift towards building
models with innate reasoning and tool-use capabilities. A significant insight driving this field is that
exceptional agentic performance is not solely dependent on model scale. Recent pioneering works,
notably Chain-of-Agents[11]] and Cognitive Kernel-Pro[31]], have demonstrated that even models at
smaller scales can achieve state-of-the-art agentic abilities when trained with rigorous, purpose-built
paradigms.

These approaches address the limitations of scale-dependent capabilities through two key innovations:
sophisticated data synthesis and specialized agent-centric training. The Chain-of-Agents framework
employs a process of multi-agent knowledge distillation and outcome-driven reinforcement learning.
This teaches a single, smaller model to internally simulate the collaborative roles of a multi-agent
team, enabling it to rival the performance of much larger models or complex systems on benchmarks
like GATA[32]] and WebArena[33]], but with dramatically improved inference efficiency.

Similarly, Cognitive Kernel-Pro demonstrates that a meticulously designed open-source framework,
combined with a systematic methodology for generating high-quality, verifiable training data across
various domains (web, file, code), can produce smaller models that compete with systems relying on
massive proprietary APIs. Collectively, these works prove that the strategic focus on training quality
and architectural innovation is a viable path to creating highly capable and practical agents, making
advanced agentic intelligence more accessible and efficient.

B Case Study

We conduct case studies to gain a deeper understanding of the behavior and capabilities of our GAP
framework. The results are shown in the following tables.

11

https://arxiv.org/abs/2508.00414
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983

Table 3: Template of GAP framework on MHQA benchmark. question will be replaced with the
specific question during training and inference.

You can respond to questions using the following 6 functions: think, plan, search, observation,
reflection and answer. Function Descriptions:

1. think: Provide reasoning, justification, and synthesis of information before using other
functions. Begin with <think> and end with </think>.

2. plan: Break down the question into sub-tasks with explicit dependencies. Format each task
as - Task ID: unique identifier (Taskl, Task2, etc.), Description: what to search/investigate,
Dependencies: which tasks must complete first (use "none" if independent). Begin with

and end with

3. search: Execute search queries. For parallel searches, separate multiple queries with |. For
single search, use one query. Begin with <search> and end with </search>.

4. observation: Results from search functions. Begin with <observation> and end with
</observation>.

5. reflection: Evaluate progress and suggest plan modifications if needed. Begin with <reflec-
tion> and end with </reflection>.

6. answer: Final confident answer. Begin with <answer> and end with </answer>.
Execution Rules:

1. Always use think before other functions.

2. Use <plan> to create a task dependency graph.

3. Execute independent tasks in parallel by using | separator in <search>.

4. Use think to synthesize and analyze results from multiple searches.

5. Tasks with dependencies execute only after prerequisites complete.

6. Use reflection if the plan needs major adjustment.

7. Multiple final answers should be separated by .

Question: question.

Table 4: Case trajectory of GAP framework on MHQA benchmark. We select a typical case of
parallelizable multi-hop execution for reference.

Question: What occupation was shared by both John Frankenheimer and Tiffanie DeBartolo?
<think>This question requires finding information about two different people and identifying
their shared occupation. I need to search for each person’s career information and then compare
them to find commonalities.</think>

Task 1: Search for John Frankenheimer’s occupations and career

- Dependencies: none

Task 2: Search for Tiffanie DeBartolo’s occupations and career

- Dependencies: none

Task 3: Compare their occupations to identify shared ones

- Dependencies: Task 1, Task 2

<think>Tasks T1 and T2 are independent and can be executed in parallel using the | separator in
search. After getting both results, I'll analyze them to find the shared occupation.</think>
<search>John Frankenheimer occupation career director | Tiffanie DeBartolo occupation career
director novelist</search>

<observation> Doc 1 - John Frankenheimer: John Frankenheimer (1930-2002) was an Ameri-
can film and television director. He was known for directing films such as "The Manchurian
Candidate" (1962), "Seven Days in May" (1964), and "The French Connection II" (1975). He
was primarily recognized as a director in both film and television industries.

Doc 2 - Tiffanie DeBartolo: Tiffanie DeBartolo is an American novelist and film director. She
is the author of novels including "God-Shaped Hole" and "How to Kill a Rock Star." She also
directed the independent film "Dream for an Insomniac" (1996). She works as both a writer and
director. </observation>

<think>Now I can synthesize the results from both parallel searches: - John Frankenheimer:
Film and television director - Tiffanie DeBartolo: Novelist and film director

The shared occupation between them is "director" - both have worked as film directors. John
Frankenheimer was primarily known as a director, while Tiffanie DeBartolo works as both a
novelist and director.</think>

<answer>director</answer>

12

	Introduction
	Background
	Graph-based Agent Planning Paradigm
	Problem Formulation
	Graph-based Task Decomposition
	Dependency-Aware Execution Strategies

	Training Pipeline
	Data Synthesis
	Supervised Fine-tuning for Cold Start
	End-to-End Agentic Reinforcement Learning

	Experiments
	Setup
	Results and Efficiency Analysis

	Conclusion
	Related Work
	Tool-Integrated Reasoning Method
	Agent Foundation Model

	Case Study

