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Abstract

Autonomous agents powered by large language models (LLMs) have shown impres-1

sive capabilities in tool manipulation for complex task-solving. However, existing2

paradigms such as ReAct rely on sequential reasoning and execution, failing to3

exploit the inherent parallelism among independent sub-tasks. This sequential4

bottleneck leads to inefficient tool utilization and suboptimal performance in multi-5

step reasoning scenarios. We introduce Graph-based Agent Planning (GAP), a6

novel framework that explicitly models inter-task dependencies through graph-7

based planning to enable adaptive parallel and serial tool execution. Our approach8

trains agent foundation models to decompose complex tasks into dependency-9

aware sub-task graphs, autonomously determining which tools can be executed in10

parallel and which must follow sequential dependencies. This dependency-aware11

orchestration achieves substantial improvements in both execution efficiency and12

task accuracy. To train GAP, we construct a high-quality dataset of graph-based13

planning traces derived from the Multi-Hop Question Answering (MHQA) bench-14

mark. We employ a two-stage training strategy: supervised fine-tuning (SFT) on15

the curated dataset, followed by reinforcement learning (RL) with a correctness-16

based reward function on strategically sampled queries where tool-based reasoning17

provides maximum value. Experimental results on MHQA datasets demonstrate18

that GAP significantly outperforms traditional ReAct baselines, particularly on19

multi-step retrieval tasks, while achieving dramatic improvements in tool invoca-20

tion efficiency through intelligent parallelization. The project page is available at:21

https://github.com/WJQ7777/Graph-Agent-Planning.22

1 Introduction23

Recent advances in large language model (LLM)-based autonomous agents have demonstrated24

remarkable capabilities in complex problem-solving tasks[1–6], ranging from scientific research and25

code generation to interactive web navigation and data analysis. A key enabler of these capabilities is26

tool-augmented reasoning, where agents leverage external tools such as search engines, calculators,27

code interpreters, and APIs to extend their problem-solving capacity beyond the inherent limitations28

of parametric knowledge.29

Current approaches to tool-augmented reasoning can be broadly categorized into two paradigms:30

multi-agent systems (MAS) and tool-integrated reasoning (TIR) models. Multi-agent frameworks or-31

chestrate multiple specialized agents with distinct roles and tool sets to collaboratively solve complex32

tasks. These systems have shown impressive performance on benchmarks requiring sophisticated33

workflows, such as software development and scientific research. However, they suffer from criti-34
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cal limitations: (1) high computational overhead due to redundant inter-agent communication and35

complex orchestration mechanisms; (2) inability to learn from data, as the underlying LLMs are not36

specifically trained for multi-agent coordination; and (3) reliance on prompt engineering rather than37

native model capabilities to achieve multi-turn, multi-tool workflows.38

In contrast, Tool-Integrated Reasoning (TIR) models represent an emerging paradigm that explicitly39

trains LLMs to incorporate tool usage into their reasoning process. Recent work such as Search-40

R1[7] and WebThinker[5] has demonstrated that end-to-end training of models to invoke tools (e.g.,41

<search> functions) at appropriate reasoning steps significantly outperforms prompt-engineered42

approaches. The TIR framework naturally aligns with the ReAct paradigm[4], enabling models to43

follow a “think-act-observe” pipeline in an end-to-end manner. However, existing TIR methods are44

fundamentally limited to sequential reasoning trajectories. They execute one action at a time and thus45

fail to exploit opportunities for parallel tool execution when sub-tasks are independent.46

To address these limitations, we introduce Graph-based Agent Planning Paradigm (GAP), a novel47

training paradigm that enables LLM-based agents to perform dependency-aware planning through48

explicit graph-based reasoning. Our key insight is that by training models to construct and reason over49

task dependency graphs, they acquire the capability to autonomously determine optimal execution50

strategies, thereby executing independent tools in parallel when possible and sequential ones when51

necessary. This approach combines the efficiency and learnability of TIR models with the expressive52

power of multi-agent coordination, without the overhead of actual multi-agent orchestration. Our53

main contributions are:54

• We introduce GAP, a novel training paradigm for agent foundation models that incorporates55

dependency-aware task planning, enabling dynamic parallel and serial tool execution. To56

our knowledge, this is the first work to explicitly train LLMs for graph-based reasoning over57

task dependencies in tool-augmented settings.58

• We design and curate a high-quality dataset of 7,000 graph-based planning traces from59

the Multi-Hop Question Answering (MHQA) benchmark, using GPT-4o to synthesize60

dependency-aware reasoning trajectories. We apply a rigorous filter mechanism, ensuring61

that training data emphasize dependency modeling.62

• We demonstrate through extensive experiments across seven question-answering benchmarks63

that GAP achieves a 0.9% average performance improvement on multi-hop reasoning tasks64

over state-of-the-art baselines. Moreover, our method significantly enhances efficiency by65

reducing interaction turns by up to 33.4%, while decreasing response length by 24.9% and66

maintaining robust generalization to out-of-domain datasets.67

Our work establishes graph-based dependency modeling as a critical direction for developing more68

efficient autonomous agents, bridging the gap between sequential TIR models and complex multi-69

agent coordination. Through extensive experiments on MHQA, we demonstrate that GAP achieves70

significant improvements over traditional ReAct baselines in both accuracy and efficiency.71

2 Background72

Complex task reasoning often requires structured decomposition, specialized capabilities, and external73

tool integration. We review two prominent paradigms that used in single agent:74

ReAct-style Tool-Using The ReAct-style approach, exemplified by ReAct[4], leveraged few-shot75

exemplars to guide an LLM to interleave reasoning traces and actions within a "Thought-Action-76

Observation" cycle. This framework augments LLMs with structured reasoning by interleaving77

thought steps τt ∈ T for planning, action steps at ∈ A for tool use, and observation steps ot ∈ O for78

outcome processing. The reasoning trajectory follows:79

(τ1, a1, o1, τ2, a2, o2, ..., τT ) (1)
where each thought τt conditions on the history ht = [τ1:t−1, a1:t−1, o1:t−1] to determine next action.80

Tool-Integrated Reasoning Tool-Integrated Reasoning (TIR) enhances LLMs’ code reasoning ca-81

pabilities by tightly coupling natural language reasoning with external tool execution environments[8–82

10]. This approach enables a single agent to leverage external tools T = {t1, t2, ..., tM} by main-83

taining a global state St and selecting tools via policy π(tk | St). After executing tool tk, the agent84
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observes outcome ot ∼ O(tk, St) and updates its state:85

St = f(St−1, tk, ot−1) (2)

where St denotes the reasoning state, tk represents the selected tool, and ot captures tool execution86

outcomes.87

Task Graph-Based Planning

Subtask 1:  Search for the correct paper
about AI regulation...
Depend On:  None.

Subtask 2:  Search for the Physics and
Society article ...
Depend On:  None.

Subtask 3:  Compare the label words
from the AI regulation ...
Depend On:  Task 1 & 2.

query

subtask 1

subtask 2

subtask 3 answer

Parallel Tool&Agent Calling

Subtask Execution

Results Aggregation

Result 1 Result 2
{
"title": "AI regulation ...",
"content": "Phase transition from
egalitarian to hierarchical ...",
"date": "11 Aug, 2016"
""
}

{
"title": "Physics and Society ...",
"content": "The advance of social
science no less than ...",
"date": "11 September, 1937"
""
}

original text

<search> AI regulation ... </search>
<search> Physics and Society ... </search>

Async Rollout Worker

Concurrent 
task 1

Concurrent 
task 2

Figure 1: Illustration of Graph-based Agent Planning paradigm. GAP decomposes tasks into
dependency-aware subtasks in the planning stage, enabling identification of parallelizable tool
operations. The system supports parallel tool and agent calling for enhanced computational efficiency.

3 Graph-based Agent Planning Paradigm88

In this section, we introduce the Graph-based Agent Planning (GAP) paradigm, a novel framework89

that enables LLM-based agents to perform dependency-aware reasoning and adaptive tool execution.90

We first formalize the problem setting (§3.1), then describe the core components of GAP including91

graph-based task decomposition (§3.2) and the dependency-aware execution strategies (§3.3). Figure 192

presents the complete GAP reasoning workflow, integrating task decomposition, graph construction,93

and adaptive execution.94

3.1 Problem Formulation95

We consider a task-solving scenario where an agent must answer a complex query q by leveraging96

a set of external tools T = {t1, t2, . . . , tn}. Each tool ti represents a specific capability, such as97

information retrieval (search), numerical computation (calculator), or code execution (python).98

Task Decomposition. Given a complex query q, the agent must decompose it into a sequence of99

sub-tasks S = {s1, s2, . . . , sm}, where each sub-task si requires invoking one or more tools from T .100

The goal is to determine both which tools to invoke and when to invoke them.101

Dependency Graph. We model task dependencies as a directed acyclic graph (DAG): G = (V,E),102

where each vertex vi ∈ V represents a sub-task si and each directed edge (vi, vj) ∈ E indicates that103

sub-task sj depends on the output of sub-task si.104

The absence of an edge between two vertices indicates independence, meaning those sub-tasks can105

be executed in parallel. The agent’s objective is to construct this dependency graph and execute tools106

accordingly to maximize both efficiency and correctness.107

3.2 Graph-based Task Decomposition108

Unlike traditional sequential reasoning approaches (e.g., ReAct) that generate one action at a time,109

GAP explicitly constructs a task dependency graph during the planning phase. This process consists110

of three steps:111
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Sub-task Identification. The model first analyzes the input query q and identifies the atomic112

sub-tasks required to solve it. For example, given the query “What are the populations of the capitals113

of France and Germany?”, the model identifies four sub-tasks: s1 retrieves the capital of France,114

s2 retrieves the capital of Germany, s3 retrieves the population of s1’s result, and s4 retrieves the115

population of s2’s result.116

Dependency Analysis. The model then reasons about dependencies between sub-tasks by analyzing117

their input-output relationships. A sub-task sj depends on si if and only if sj requires the output118

of si as input. In the example above, s3 depends on s1 as it needs to know Paris before querying119

its population, and similarly s4 depends on s2 as it needs to know Berlin. However, s1 and s2 are120

independent and can be executed in parallel, as are s3 and s4 given their respective dependencies are121

satisfied.122

Graph Construction. Based on the dependency analysis, the model constructs the dependency123

graph G. We represent this graph using an adjacency structure that explicitly encodes:124

Graph G:125

Nodes: [s1, s2, s3, s4]126

Edges: [(s1, s3), (s2, s4)]127

Parallel Groups: [{s1, s2}, {s3, s4}]128

The model outputs this graph structure in a structured format that enables downstream execution129

planning. We train the model to generate this representation using a special token sequence:130

<graph>131

<node id="s1">search("capital of France")</node>132

<node id="s2">search("capital of Germany")</node>133

<node id="s3" depends="s1">search("population of {s1}")</node>134

<node id="s4" depends="s2">search("population of {s2}")</node>135

</graph>136

3.3 Dependency-Aware Execution Strategies137

Given the constructed dependency graph G, GAP determines an optimal execution strategy that138

balances parallelization opportunities with dependency constraints. We formalize this as a scheduling139

problem.140

Execution Levels. We partition the graph G into execution levels L0, L1, . . . , Lk using topological141

sorting, where:142

• Level L0 contains all nodes with no incoming edges (independent initial tasks)143

• Level Li (for i > 0) contains nodes whose dependencies are all in levels L0, . . . , Li−1144

All sub-tasks within the same level Li can be executed in parallel, as they have no dependencies on145

each other.146

Parallel Execution. For sub-tasks in the same execution level, the model generates a parallel tool147

call batch:148

Batchi = {(tj , argsj) | sj ∈ Li}
where tj is the tool selected for sub-task sj and argsj are its arguments. All tools in Batchi are149

invoked simultaneously, and the model waits for all results before proceeding to the next level. In150

Algorithm 1, we demonstrate the reasoning process of our proposed method.151

4 Training Pipeline152

4.1 Data Synthesis153

During the Supervised Fine-Tuning (SFT) stage, we generate Graph-based Action Planning (GAP)154

trajectories using our proprietary multi-agent system. This approach is inspired by the multi-agent155
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Algorithm 1 Graph-based Agent Planning with Parallel Tool Execution
Require: Input query x, policy model πθ, tool set T , maximum turns B
Ensure: Final answer y

1: Initialize rollout y ← ∅, turn count b← 0
2: // Phase 1: Planning
3: Generate yplan ∼ πθ(· | x, y) until </plan>
4: Parse dependency graph G = (V,E)← ParseGraph(yplan)
5: Compute execution levels {L0, . . . , Lk} ← TopologicalSort(G)
6: y ← y + yplan
7: // Phase 2: Level-wise Execution
8: for each level Li and b < B do
9: Generate yb ∼ πθ(· | x, y) until </tool>

10: y ← y + yb
11: if <tool> detected in yb then
12: Extract queries {qj}|Li|

j=1 ← Parse(yb)

13: Execute in parallel: {oj = T (qj)}|Li|
j=1

14: y ← y + <observation>[o1, . . . , o|Li|]</observation>
15: b← b+ 1
16: end if
17: end for
18: // Phase 3: Synthesis
19: Generate yans ∼ πθ(· | x, y) until </answer>
20: return y + yans =0

distillation framework proposed by Chain-of-Agents[11]. Starting with the Natural Questions (NQ)156

[12] and HotpotQA [13] datasets, we employ GPT-4o as the backend model to simulate the graph-157

based planning process. The prompt template refers to Section B.158

To ensure the quality of the GAP training, we implemented a filtering process to select only high-159

quality, non-trivial trajectories from the varied data sources. We apply three key filtering criteria to160

curate the training data:161

(1) Complexity threshold: We remove samples that can be completed with fewer than 3 search162

operations, as such trajectories are overly simplistic and do not benefit from parallel retrieval163

strategies.164

(2) Task diversity: We maintain a 6:4 ratio between samples utilizing parallel retrieval and those using165

sequential retrieval, ensuring the model’s generalization capability across different retrieval patterns.166

(3) Length constraint: We filter out excessively long samples, retaining only those within approx-167

imately 2000 tokens. Overlong samples typically indicate missing relevant content in the offline168

dataset rather than genuine retrieval difficulty, and such redundant samples are detrimental to training169

efficiency, particularly given our objective of minimizing redundancy and maximizing retrieval170

efficiency.171

Following this pipeline, approximately 7,000 high-quality training trajectories were generated through172

trajectory synthesis and quality filtering.173

4.2 Supervised Fine-tuning for Cold Start174

We fine-tuned the Qwen2.5-3B-Instruct model on our filtered dataset. The model learns to internalize175

graph-based planning strategies, enabling it to solve tasks by leveraging graph representations. The176

training objective minimizes:177

LSFT = −
∑
i/∈O

log πθ(τi|τ<i,q)

with observation masking (O) to prevent environmental noise propagation. This establishes robust178

cold start for downstream RL.179
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4.3 End-to-End Agentic Reinforcement Learning180

While supervised training establishes a baseline understanding of parallel execution, it merely guides181

the model to imitate the provided demonstrations, and does not optimize computational efficiency or182

reasoning effectiveness. We further fine-tune the language model with fully end-to-end reinforcement183

learning. During RL-based finetuning, we iteratively sample reasoning traces from our current policy,184

assign them a reward according to the correctness of the proposed solution, and optimize policy185

parameters with DAPO[14]. In this stage, the model learns to strategically determine when, how, and186

how broadly to invoke child threads, maximizing performance by balancing the trade-offs between187

parallel exploration and the context window constraint. We use the VeRL framework[15] for DAPO188

training.189

Reward function Reward signals are critical for shaping RL dynamics in open-ended web agent190

tasks. Our framework adopts a graph-based design, built on two key considerations: Format con-191

sistency is inherently ensured through high-quality supervised fine-tuning and effective cold-start,192

obviating the need for explicit format validation rewards. For evaluating answer correctness, we use193

rule-based metrics to provide binary assessments. Our reward function is:194

Racc(τ) = scoreanswer (10)

where scoreanswer ∈ {0, 1} is 1 if the final prediction is correct. Future work could productively195

explore multi-objective reward formulations that incorporate auxiliary signals.196

5 Experiments197

5.1 Setup198

Datasets We select seven benchmark datasets that encompass a diverse range of search with199

reasoning challenges by following the setup of [7]. These datasets are categorized as follows: (1)200

General Question Answering: NQ[12], TriviaQA[16], and PopQA[17]. (2) Multi-Hop Question201

Answering: HotpotQA[13], 2WikiMultiHopQA[18], Musique[19], and Bamboogle[20]. Following202

[7], we merge the training sets of NQ and HotpotQA as the training data and conduct evaluations on203

the validation or test sets.204

Metrics We use Exact Match (EM) as the evaluation metric to assess both in-domain and out-of-205

domain performance. In Figure 2, we follow [21] and adopt the cost-of-pass metric to quantify model206

efficiency. The cost-of-pass metric, denoted as v(m, p), represents the expected monetary cost of207

using a model m to generate a correct solution for a problem p. It is computed as the ratio of the cost208

of a single inference attempt, Cm(p), to the success rate, Rm(p):209

v(m, p) =
Cm(p)

Rm(p)

Here, the cost of a single inference attempt, Cm(p), is defined as:210

Cm(p) = nin(m, p) + nout(m, p)

where nin(m, p) and nout(m, p) are the number of input and output tokens for model m on problem211

p, respectively. The success rate Rm(p) is estimated by the proportion of correct responses. This212

metric represents the expected cost of using a model to generate a correct solution for a problem.213

Baseline We conduct comprehensive comparisons against state-of-the-art methods to evaluate our214

approach across MHQA datasets. We systematically evaluate a suite of tool-augmented methods,215

including Search-R1[7], ZeroSearch[22], StepSearch[23] and Chain of Agents[11].216

Implementation Details We conduct experiments using Qwen2.5-3B models (Yang et al., 2024) as217

the backbone of the agent, E5[24] as the embedding model, and 2018 Wikipedia dump[25] as the218

corpus. All experiments are conducted on 8 NVIDIA A100 GPUs.219

6



Table 1: Performance comparison on various QA datasets, with Qwen2.5-3B-Instruct serving as the
foundation model. Bold indicates best results among all methods. †/* denote in-domain/out-ofdomain
datasets respectively.

Methods Single-Hop QA Multi-Hop QA

NQ† TriviaQA* PopQA* HotpotQA† 2wiki* Musique* Bamboogle*

Qwen2.5-3B-Instruct 10.5 13.2 18.8 9.9 20.2 4.7 1.2
Search-R1 38.3 59.3 43.5 37.6 31.7 15.1 37.1
ZeroSearch 43.3 61.6 41.4 27.4 30.0 9.8 11.1
StepSearch - - - 34.5 32.0 17.4 34.4
AFM-RL-3B 39.3 58.2 42.4 41.1 39.8 19.0 43.2
GAP-3B (Ours) 39.6 59.1 40.1 42.5 41.7 18.7 43.8

GAP-3B(ours) AFM-RL-3B

Search-R1

Qwen2.5-3B

A
c
c
u
ra

c
y
 (

%
) 

( ↑
 b

e
tt

e
r)

Cost of Pass (↓ better)

Figure 2: Performance-cost trade-off comparison across different models on HotpotQA. GAP-3B
achieves the best balance with highest accuracy at lowest cost.

5.2 Results and Efficiency Analysis220

Table 1 presents comprehensive results comparing GAP against baseline methods across seven221

benchmarks using four model configurations. Beyond accuracy improvements, GAP demonstrates222

significant efficiency gains on multi-hop reasoning tasks through parallel decomposition of inde-223

pendent sub-queries. As shown in Table 2 and Figure 3, our method achieves superior performance224

across multiple efficiency metrics compared to sequential baselines. Figure 2 further illustrates this225

advantage through a performance-cost trade-off analysis on HotpotQA. Our analysis reveals several226

key findings:227

Superior performance on complex multi-hop reasoning. Our method demonstrates particular228

strength on multi-hop benchmarks, outperforming the best baseline by 0.9% on average across four229

multi-hop datasets (HotpotQA, 2Wiki, Musique, Bamboogle). This indicates that GAP successfully230

learns strategies for decomposing and parallelizing complex queries. On single-hop questions, GAP231

achieves comparable performance to ZeroSearch, which trains an LLM to simulate search engines232

and generate pseudo-context. Compared to Search-R1, our method shows a substantial 3.95%233

improvement.234

Reduced interaction turns and faster execution. Compared to Search-R1, which retrieves infor-235

mation via sequential query generation, GAP significantly reduces the number of LLM interaction236

turns. On HotpotQA, GAP requires only 1.78 turns compared to Search-R1’s 2.27 turns (21.6%237

reduction), while on 2Wiki, the reduction is even more pronounced (2.03 vs. 3.05 turns, 33.4%238

reduction). The cumulative distribution functions in Figure 3 further illustrate this advantage: our239

method efficiently responds to questions within 2 turns in most cases, whereas Search-R1 typically240

requires 3-6 turns. This reduction in interaction turns directly translates to faster execution times,241

with GAP achieving 32.3% and 21.4% time cost reductions on HotpotQA (168 vs. 248s) and 2Wiki242

(206s vs. 262s), respectively. Notably, the model autonomously determines parallelizability based on243

learned patterns during inference, demonstrating strong generalization ability.244
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Shorter response length and lower deployment cost. GAP also significantly reduces response245

length compared to baselines. As shown in Figure 3, Search-R1 generates substantially more tokens246

to support reasoning over retrieved documents, while GAP learns efficient reasoning strategies that247

reduce response length by 24.9% on HotpotQA (416 vs. 554 tokens) and 20.3% on 2Wiki (452 vs.248

567 tokens). This reduction in generated tokens directly decreases deployment costs and increases249

throughput, which are critical factors for real-world applications. Furthermore, these efficiency250

gains generalize across domains: while HotpotQA is an in-domain dataset, similar improvements251

are observed on out-of-domain benchmarks, demonstrating that the learned parallel decomposition252

patterns transfer effectively to new scenarios. These results validate that GAP not only improves253

accuracy but also makes multi-hop reasoning more practical and cost-effective for deployment.254

Table 2: Efficiency comparison on HotpotQA and 2wiki, with Qwen2.5-3B-Instruct serving as the
backbone. Time cost refers to the time required to infer a batch of data. Bold indicates best results
among all methods. †/* denote in-domain/out-ofdomain datasets respectively.

HotpotQA† Acc↑ Length↓ Time Cost(s)↓ # Turns↓
Qwen2.5-3B-Instruct 9.9 256 114 1.11

Search-R1 25.3 584 221 2.69
AFM-RL-3B 35.7 554 248 2.27
GAP-3B (Ours) 36.7 416 168 1.78

2wiki* Acc↑ Length↓ Time Cost(s)↓ # Turns↓
Qwen2.5-3B-Instruct 10.5 277 121 1.12

Search-R1 31.7 651 254 3.05
AFM-RL-3B 39.8 567 262 2.64
GAP-3B (Ours) 41.7 452 206 2.03

Figure 3: Illustration of total turns and response length on HotpotQA and 2WikiMultiHopQA datasets.
Left panels show response length distribution, right panels show cumulative percentage of problems
solved within different numbers of turns.

6 Conclusion255

In this paper, we introduced GAP (Graph-based Agent Planning), a novel paradigm that enables256

LLM-based agents to perform dependency-aware reasoning and adaptive tool execution. By explicitly257

modeling task dependencies through graph-based planning, GAP addresses the fundamental limitation258

of sequential execution in existing approaches like ReAct, achieving significant improvements in both259

efficiency and accuracy. Our key contribution lies in training agent foundation models to decompose260

complex queries into dependency graphs, autonomously determining which tools can be executed in261

parallel and which must follow sequential dependencies. Through a carefully designed two-stage262

training strategy, we demonstrate that GAP substantially outperforms traditional sequential baselines,263

particularly on multi-step retrieval tasks requiring sophisticated reasoning.264
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A Related Work369

A.1 Tool-Integrated Reasoning Method370

Training Large Language Models for multi-turn Tool-Integrated Reasoning (TIR) represents a promis-371

ing frontier in Reinforcement Learning. Representative works such as ARPO[26], SimpleTIR[9],372

and ToRL[8] adopt similar strategies: models are post-trained with SFT or RL, and outputs are struc-373

tured (e.g., <code>...</code>) to trigger tool execution, feeding results back into the reasoning loop.374

Some extend RL-based Tool-Integrated Reasoning by improving small LLMs’ tool-use capability,375

stabilizing multi-turn reasoning, and rewarding tool-use sequences independent of final answers.376

Today, such tool-integrated reasoning is no longer a niche capability but a baseline feature of advanced377

agentic models. Mature commercial and open-source systems, such as OpenAI’s DeepResearch378

and o3[27], Kimi K2[28], Microsoft rStar2-Agent[29] and Meituan LongCat[30], routinely incor-379

porate these RL-honed strategies, underscoring the centrality of outcomedriven optimization in380

tool-augmented intelligence. Recent work theoretically proves that TIR fundamentally expands LLM381

capabilities beyond the “invisible leash” of pure-text RL by introducing deterministic tool-driven382

state transitions, establishes token-efficiency arguments for feasibility under finite budget.383

A.2 Agent Foundation Model384

The development of Agent Foundation Models (AFMs) marks a pivotal shift towards building385

models with innate reasoning and tool-use capabilities. A significant insight driving this field is that386

exceptional agentic performance is not solely dependent on model scale. Recent pioneering works,387

notably Chain-of-Agents[11] and Cognitive Kernel-Pro[31], have demonstrated that even models at388

smaller scales can achieve state-of-the-art agentic abilities when trained with rigorous, purpose-built389

paradigms.390

These approaches address the limitations of scale-dependent capabilities through two key innovations:391

sophisticated data synthesis and specialized agent-centric training. The Chain-of-Agents framework392

employs a process of multi-agent knowledge distillation and outcome-driven reinforcement learning.393

This teaches a single, smaller model to internally simulate the collaborative roles of a multi-agent394

team, enabling it to rival the performance of much larger models or complex systems on benchmarks395

like GAIA[32] and WebArena[33], but with dramatically improved inference efficiency.396

Similarly, Cognitive Kernel-Pro demonstrates that a meticulously designed open-source framework,397

combined with a systematic methodology for generating high-quality, verifiable training data across398

various domains (web, file, code), can produce smaller models that compete with systems relying on399

massive proprietary APIs. Collectively, these works prove that the strategic focus on training quality400

and architectural innovation is a viable path to creating highly capable and practical agents, making401

advanced agentic intelligence more accessible and efficient.402

B Case Study403

We conduct case studies to gain a deeper understanding of the behavior and capabilities of our GAP404

framework. The results are shown in the following tables.405
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Table 3: Template of GAP framework on MHQA benchmark. question will be replaced with the
specific question during training and inference.

You can respond to questions using the following 6 functions: think, plan, search, observation,
reflection and answer. Function Descriptions:
1. think: Provide reasoning, justification, and synthesis of information before using other
functions. Begin with <think> and end with </think>.
2. plan: Break down the question into sub-tasks with explicit dependencies. Format each task
as - Task ID: unique identifier (Task1, Task2, etc.), Description: what to search/investigate,
Dependencies: which tasks must complete first (use "none" if independent). Begin with <plan>
and end with </plan>.
3. search: Execute search queries. For parallel searches, separate multiple queries with |. For
single search, use one query. Begin with <search> and end with </search>.
4. observation: Results from search functions. Begin with <observation> and end with
</observation>.
5. reflection: Evaluate progress and suggest plan modifications if needed. Begin with <reflec-
tion> and end with </reflection>.
6. answer: Final confident answer. Begin with <answer> and end with </answer>.
Execution Rules:
1. Always use think before other functions.
2. Use <plan> to create a task dependency graph.
3. Execute independent tasks in parallel by using | separator in <search>.
4. Use think to synthesize and analyze results from multiple searches.
5. Tasks with dependencies execute only after prerequisites complete.
6. Use reflection if the plan needs major adjustment.
7. Multiple final answers should be separated by |.
Question: question.

Table 4: Case trajectory of GAP framework on MHQA benchmark. We select a typical case of
parallelizable multi-hop execution for reference.

Question: What occupation was shared by both John Frankenheimer and Tiffanie DeBartolo?
<think>This question requires finding information about two different people and identifying
their shared occupation. I need to search for each person’s career information and then compare
them to find commonalities.</think>
<plan>
Task 1: Search for John Frankenheimer’s occupations and career
- Dependencies: none
Task 2: Search for Tiffanie DeBartolo’s occupations and career
- Dependencies: none
Task 3: Compare their occupations to identify shared ones
- Dependencies: Task 1, Task 2 </plan>
<think>Tasks T1 and T2 are independent and can be executed in parallel using the | separator in
search. After getting both results, I’ll analyze them to find the shared occupation.</think>
<search>John Frankenheimer occupation career director | Tiffanie DeBartolo occupation career
director novelist</search>
<observation> Doc 1 - John Frankenheimer: John Frankenheimer (1930-2002) was an Ameri-
can film and television director. He was known for directing films such as "The Manchurian
Candidate" (1962), "Seven Days in May" (1964), and "The French Connection II" (1975). He
was primarily recognized as a director in both film and television industries.
Doc 2 - Tiffanie DeBartolo: Tiffanie DeBartolo is an American novelist and film director. She
is the author of novels including "God-Shaped Hole" and "How to Kill a Rock Star." She also
directed the independent film "Dream for an Insomniac" (1996). She works as both a writer and
director. </observation>
<think>Now I can synthesize the results from both parallel searches: - John Frankenheimer:
Film and television director - Tiffanie DeBartolo: Novelist and film director
The shared occupation between them is "director" - both have worked as film directors. John
Frankenheimer was primarily known as a director, while Tiffanie DeBartolo works as both a
novelist and director.</think>
<answer>director</answer>
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