
On Faithfulness Disparity between Multilingual and Monolingual Models

Anonymous EMNLP submission

Abstract

In many application scenarios, practitioners not001
only aim to maximize predictive performance002
but also seek faithful explanations for the pre-003
dictions. Rationales selected by faithful feature004
attribution methods provide insights into how005
different parts of the input contribute to the006
model prediction. Previous studies have ex-007
plored how different factors affect faithfulness,008
however, these studies are mainly in the con-009
text of monolingual English models. On the010
other hand, the differences in explanation faith-011
fulness between multilingual and monolingual012
models have yet to be explored. In this paper,013
we provide a comprehensive study on compar-014
ing the faithfulness between these two types of015
models. Our extensive experiments covering016
five languages and five popular feature attribu-017
tion methods, showing that faithfulness varies018
between multilingual and monolingual mod-019
els. For example, multilingual mBERT is more020
faithful than monolingual BERT, while multi-021
lingual RoBERTa is less faithful than monolin-022
gual RoBERTa. We show that the larger the023
multilingual model, the less faithful its ratio-024
nales are compared to its counterpart mono-025
lingual model. Finally, we find that the faith-026
fulness disparity is related to differences be-027
tween multilingual and monolingual tokenizers,028
that when the tokenizers of multilingual models029
split words more aggressively, their faithfulness030
is closer to their monolingual counterparts.1031

1 Introduction032

Feature attribution methods (FAs) are commonly033

used to rank input features (i.e. tokens) according034

to their importance to a model’s prediction (Kin-035

dermans et al., 2016; Sundararajan et al., 2017;036

DeYoung et al., 2020). Subsequently, the top-k037

ranked tokens are selected to form a rationale. The038

faithfulness of a FA method refers to what extent039

its selected rationales actually reflect the model’s040

1Our code will be publicly released for reproducibility.

Model Rationales (highlighted)

FR XLM-R

“ bonjour je n ’ ai pas recu l ’ article commande,

car jai commande couleur bois et jai recu noir!

je n” ai pas du tout recu celui desire!!!”

RoBERTa

“ bonjour je n ’ ai pas recu l ’ article commande,

car jai commande couleur bois et jai recu noir !

je n ’ ai pas du tout recu celui desire !!!"

Table 1: Rationales extracted for multilingual (XLM-R)
and monolingual (French RoBERTa) models using the
same FA and input for the same task (sentiment analysis
in FR; prediction ‘negative’).

inner reasoning mechanism (Jacovi and Goldberg, 041

2020). 042

Previous work has mainly studied faithfulness 043

in the context of monolingual models, i.e. espe- 044

cially English (Atanasova et al., 2020; Bastings 045

and Filippova, 2020; Chan et al., 2022b). Further- 046

more, monolingual studies have investigated the 047

impact of out-of-domain data (Chrysostomou and 048

Aletras, 2022a), adversarial attacks (Sinha et al., 049

2021; Zhao et al., 2022a) and temporal shifts (Zhao 050

et al., 2022b) on the faithfulness of FAs. Moreover, 051

existing studies on interpreting multilingual mod- 052

els’ behavior and their representations (Rama et al., 053

2020; Serikov et al., 2022; Gonen et al., 2022) have 054

not focused on the faithfulness of FAs. 055

As shown in Table 1, even for the same input, 056

prediction, and FA, the rationales selected are dif- 057

ferent between multi- and monolingual models. 058

This indicates that they follow different inner pro- 059

cesses for making predictions. It is unclear whether 060

this difference is generally shared among input ex- 061

amples or even across other languages and models. 062

Given that the performance of multilingual mod- 063

els might be on par with monolingual counterparts 064

in various languages (Rust et al., 2021; Su et al., 065

2022), this leaves practitioners in a dilemma be- 066

tween choosing multilingual or monolingual mod- 067

els when the application scenario requires extract- 068
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ing faithful explanations for the model predictions.069

Therefore, we seek to answer if there is a faith-070

fulness disparity between multi- and monolingual071

models.072

Our main contributions are as follows:073

• We perform a large empirical study across074

tasks in five languages, five popular FAs, and075

two types of monolingual and multilingual076

models;077

• Our results reveal that the degree of faithful-078

ness disparity can be attributed to the size of079

the models, i.e. larger multilingual models080

tend to have less faithful rationales compared081

to their monolingual counterparts;082

• Our analysis shows that multilingual tokeniz-083

ers split words into subwords more aggres-084

sively than monolingual models do. The085

more aggressively the multilingual models086

split words, their faithfulness is closer to their087

monolingual counterparts.088

2 Related Work089

2.1 Faithfulness of monolingual models090

Feature attribution methods are commonly used to091

extract the importance degree of each token to the092

model prediction (Kindermans et al., 2016; Sun-093

dararajan et al., 2017; Belinkov et al., 2020; Ker-094

sten et al., 2021). The top-ranked tokens are con-095

sidered as the rationales and their quality can be096

assessed in terms of plausibility and faithfulness097

(DeYoung et al., 2020; Jacovi and Goldberg, 2020).098

Faithfulness measures to what extent the rationales099

accurately reflect the model’s internal reasoning100

process (Ribeiro et al., 2016; Zaidan et al., 2007;101

DeYoung et al., 2020; Jacovi and Goldberg, 2020;102

Pezeshkpour et al., 2021).2103

Existing faithfulness studies on monolingual104

models mainly focus on English. Sinha et al. (2021)105

and Zhao et al. (2022a) explored how adversarial106

attacks affect the faithfulness of FAs by swapping107

tokens to create new inputs with the same seman-108

tics. Bastings et al. (2022) introduced ground truth,109

i.e. fully faithful rationales, with specific but mean-110

ingless tokens, to evaluate faithfulness. Chrysosto-111

mou and Aletras (2022a) investigated the impact112

of out-of-domain data on the model faithfulness,113

2Plausibility evaluates the extent to which the rationale
aligns with human understanding (Jacovi and Goldberg, 2020;
Chan et al., 2022a) and it is out of the scope of our study.

while Zhao et al. (2022b) studied the faithfulness 114

on data from different time periods. 115

On the other hand, an increasing number of pre- 116

trained language models are made available for dif- 117

ferent languages (Antoun et al., 2020; Chan et al., 118

2020; Cañete et al., 2020; Le et al., 2020), there is 119

no empirical evidence that non-English monolin- 120

gual models are as faithful as English models. 121

2.2 Interpretability of multilingual models 122

Previous studies on the behavior of multilingual 123

models focus on probing or analyzing the hidden 124

representations, which are not directly related to 125

the faithfulness of model explanations. 126

Santy et al. (2021) monitored the changes of 127

attention heads in multilingual models when the 128

model is further fine-tuned on monolingual and 129

bilingual corpora. Rama et al. (2020) probed the 130

representations of mBERT (multilingual BERT) be- 131

tween languages and they found that their distances 132

correlate most with phylogenetic and geographical 133

distances between languages. Gonen et al. (2022) 134

analyzed the gender representations of multilingual 135

models. Rust et al. (2021) studied the difference 136

of multilingual models in processing different lan- 137

guages. They found that languages adequately rep- 138

resented in the multilingual model’s vocabulary 139

exhibit negligible performance decreases over their 140

monolingual counterparts. Morger et al. (2022) ex- 141

amined the correlation between the human focus 142

(eye-tracking) and model relative word importance 143

on monolingual and multilingual language models. 144

Rather than studying the faithfulness of multilin- 145

gual models, Zaman and Belinkov (2022) proposed 146

a faithfulness evaluation method which they vali- 147

dated on multilingual models. They assume that an 148

interpretation system is unfaithful if it provides dif- 149

ferent interpretations for similar inputs and outputs 150

where the similar inputs have the same meaning 151

in different languages.3 While this work is rele- 152

vant, it does not provide a comparison between 153

monolingual and multilingual models. 154

2.3 Performance comparison of monolingual 155

and multilingual models 156

Previous work has been conducted to compare 157

the performance of monolingual and multilingual 158

language models across languages. Nozza et al. 159

3The assumption that sentences in different languages are
taken as “similar inputs” by the model has not been validated.
It is unknown if models process similar yet different inputs in
a similar manner (Jacovi and Goldberg, 2020; Ju et al., 2022).
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Language Model Pre-training Corpus #Tokens Vocab Params
mBERT Wiki-100 3.3B 106K 167MMulti
XLM-R CC-100 167B 250K 278M
BERT Wikipedia, BookCorpus 3.3B 30K 109M

English (EN)
RoBERTa

BookCorpus, cc
news,
Openwebtext,
STORIES

40B 50K 125M

BERT Wikipedia 0.4B 21K 103MChinese (ZH)
RoBERTa Wikipedia 0.4B 21K 102M
BERT Wikipedia, OPUS 3B 31K 110MSpanish (ES)
RoBERTa Web crawl 135B 50K 125M
BERT Europeana 11B 32K 111MFrench (FR)
RoBERTa Wikipedia, CC-100 59B 50K 124M
BERT L3Cube 0.3B 52K 126MHindi (HI)
RoBERTa mc4, oscar, indic-nlp 1.5B 52K 83M

Table 2: Models’ summary.

(2020) compared the performance between mono-160

lingual BERT variants and mBERT. Rönnqvist et al.161

(2019), Vulić et al. (2020) and Rust et al. (2021)162

conducted experiments with mBERT and mono-163

lingual BERT models with different selections of164

languages and testing tasks. Vulić et al. (2020) and165

Rust et al. (2021) further investigated the impact166

of lexical semantics and tokenizers on the perfor-167

mance differences respectively. A general obser-168

vation drawn from these studies is that when the169

mono- and multilingual models have similar ar-170

chitectures and training objectives, their predictive171

performance is comparable regardless of the diffi-172

culty of the task.173

Multilingual models’ performance is often con-174

sidered to suffer from the “curse of multilinguality”175

(Conneau et al., 2020; Pfeiffer et al., 2022), i.e. the176

inadequate capacity to represent all languages. To177

the best of our knowledge, no empirical study has178

validated this claim, let alone investigated how the179

curse of multilinguality impacts the faithfulness of180

multilingual models.181

3 Experiments182

Our aim is to compare the faithfulness between183

mono- and multilingual models across tasks and184

languages. For this purpose, we experiment with185

models of similar architectures and pre-training186

objectives following Rust et al. (2021). The main187

difference between them is the supported vocabu-188

laries. We evaluate models in various downstream189

tasks across a spectrum of typologically diverse190

and widely spoken languages.191

3.1 Multilingual models192

mBERT: A multilingual version of BERT (De-193

vlin et al., 2019) following the same architecture194

and training objective of BERT. The primary differ-195

ence is the training set that mBERT is trained on196

up to 104 languages from Wikipedia. 197

XLM-R: A multlingual version of RoBERTa 198

(Conneau et al., 2020). The main difference is 199

that XLM-R uses monolingual data from different 200

languages and sample streams of text from each 201

language. The training data includes 100 languages 202

from Common Crawl. 203

3.2 Monolingual models 204

For each language, we include its monolingual 205

BERT and RoBERTa as counterparts to mBERT 206

and XLM-R respectively. We exclude monolingual 207

models that are fine-tuned on bilingual or multilin- 208

gual data. Table 2 in Appendix gives an overview 209

of all models we experiment with across languages. 210

We fine-tune each model following the hyper- 211

parameter settings reported in the original papers 212

describing the corresponding models and tasks. If 213

not applicable, we use a batch size of 16, a learning 214

rate of 1e-5 (1e-4 for the linear output layer), and 215

an early stopping on 5 epochs. In all cases, our re- 216

sults are higher or comparable to the reported ones 217

in previous studies. Further implementation details 218

are given in the Appendix B. The predictive perfor- 219

mance for each model on each task is reported in 220

accuracy and F1 (Appendix D). 221

3.3 Datasets 222

Due to the lack of available data, it is impossible to 223

use the exact same datasets in multiple languages. 224

Therefore, we include a variety of tasks that are sim- 225

ilar across languages. For example, we include sen- 226

timent analysis and language understanding tasks 227

for each language. Details of datasets and their 228

pre-processing are presented in Appendix C. 229

3.4 Feature attribution methods 230

We experiment with five popular FAs since 231

there is no single best FA across models and 232

tasks (Atanasova et al., 2020). Our aim is not to 233

exhaustively benchmark various FAs but to explore 234

faithfulness between mono- and multilingual mod- 235

els across different languages and tasks. 236

• Attention (α): Importance is computed using 237

the corresponding normalized attention score 238

(Jain et al., 2020). 239

• Scaled attention (α∇α): Attention scores 240

scaled by their corresponding gradients (Ser- 241

rano and Smith, 2019). 242
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• InputXGrad (x∇x): It attributes importance243

by multiplying the input with its gradient com-244

puted with respect to the predicted class (Kin-245

dermans et al., 2016; Atanasova et al., 2020).246

• Integrated Gradients (IG): This FA ranks247

input tokens by computing the integral of the248

gradients taken along a straight path from a249

baseline input (i.e. zero embedding vector) to250

the original input (Sundararajan et al., 2017).251

• DeepLift (DL): It computes token importance252

according to the difference between the acti-253

vation of each neuron and a reference zero254

embedding vector (Shrikumar et al., 2017).255

Additionally, we include a random baseline that256

randomly assigns importance scores to each token.257

3.5 Faithfulness evaluation258

Sufficiency and comprehensiveness are two259

commonly-used metrics for evaluation faithful-260

ness (DeYoung et al., 2020). Their normalized261

versions allow for a fairer comparison across mod-262

els and tasks (Carton et al., 2020).263

Normalized Sufficiency (Suff): Sufficiency cap-264

tures the difference in predictive likelihood be-265

tween retaining only the rationale p(ŷ|R) and the266

full-text p(ŷ|X):267

S(X, ŷ,R) = 1−max(0, p(ŷ|X)− p(ŷ|R))

Normalized S(X, ŷ,R) =
S(X, ŷ,R)− S(X, ŷ, 0)

1− S(X, ŷ, 0)

(1)268

where S(x, ŷ, 0) is the sufficiency of a baseline269

input (zeroed out sequence) and ŷ is the model270

predicted class using the full text x as input.271

Normalized Comprehensiveness (Comp): It as-272

sesses how much information the rationale holds by273

measuring changes in predictive likelihoods when274

removing the rationale p(ŷ|X\R):275

C(X, ŷ,R) = max(0, p(ŷ|X)− p(ŷ|X\R))

Normalized C(X, ŷ,R) =
C(X, ŷ,R)

1− S(X, ŷ, 0)

(2)276

Following DeYoung et al. (2020), we use the277

Area Over the Perturbation Curve (AOPC) for nor-278

malized sufficiency and comprehensiveness across279

different rationale lengths. We evaluate three differ-280

ent rationale ratios (10%, 20%, and 50%) and take281

the average value, similar to DeYoung et al. (2020)282

and Chan et al. (2022b).4 The final sufficiency and 283

comprehensiveness scores are computed after be- 284

ing divided by their corresponding random baseline 285

(positive values of these ratios denote higher than 286

random faithfulness, the higher the more faithful). 287

4 Results 288

Our experiments include two multilingual and ten 289

monolingual models, five FAs, and 15 tasks. Specif- 290

ically, we test four models (two multilingual and 291

two monolingual), three tasks, and five FAs for 292

each language, measuring sufficiency and compre- 293

hensiveness. This results in 120 faithfulness eval- 294

uation cases for each language, 600 cases in total. 295

All sufficiency, comprehensiveness, and predictive 296

performance (accuracy and F1) for each model and 297

task can be found in Appendix D. 298

4.1 Faithfulness between monolingual and 299

multilingual models 300

Model
BERT RoBERTa

Language Accuracy Suff Comp Accuracy Suff Comp

English
Mono 0.847 1.146 1.525 0.852 1.306 1.588
Multi 0.837 1.224 1.604 0.841 1.163 1.210

Chinese
Mono 0.833 1.101 1.142 0.816 1.093 1.156
Multi 0.819 1.137 1.271 0.825 1.088 1.000

French
Mono 0.825 1.047 1.057 0.822 1.242 1.510
Multi 0.844 1.130 1.259 0.851 1.049 1.055

Spanish
Mono 0.849 1.024 1.046 0.857 1.235 1.176
Multi 0.852 1.146 1.214 0.849 1.082 1.055

Hindi
Mono 0.716 1.162 1.177 0.693 1.094 1.097
Multi 0.685 1.202 1.157 0.718 1.086 1.084

Table 3: Predictive performance (“Accuracy”) and faith-
fulness (“Suff” and “Comp”) of mono- and multilingual
models. For all values, the higher the better (F1 for
prediction performance is available in Appendix D).

Table 3 overviews the predictive performance 301

and faithfulness (sufficiency and comprehensive- 302

ness) of models, averaged on the three tasks and 303

FAs for each language. 304

We first observe that the performance of mono- 305

and multilingual models is comparable to each 306

other. For instance, the difference between Spanish 307

BERT and mBERT is merely 0.003. The largest 308

gap is found between Hindi BERT (0.716) and 309

mBERT (0.685), exhibiting a difference of 0.031. 310

Our results are also in line with results reported 311

by Rust et al. (2021), which tested BERT with a 312

different language set, including Arabic, Finnish, 313

4For tasks of average length over 200, we evaluate rationale
ratios of 1%, 5%, and 10% instead, to extract rationales in
reasonable lengths.
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Indonesian, Japanese, Korean, Russian, and Turk-314

ish (presented in Table 9 in Appendix).5315

Second, we note that the faithfulness disparity316

of mono- and multilingual models is consistent317

and follows different directions between BERT318

and RoBERTa. Specifically, XML-R consistently319

obtains lower faithfulness (both sufficiency and320

comprehensiveness) than monolingual RoBERTas,321

whereas mBERT gains higher faithfulness than322

its monolingual BERTs (except for sufficiency in323

Hindi). Additionally, the faithfulness disparity of324

RoBERTa is more noticeable as half of the cases325

have a faithfulness difference greater than 0.1. For326

example, the comprehensiveness in French is 1.510327

for French RoBERTa but only 1.055 for XLM-R,328

differing by 0.475. We further explore this differ-329

ences between BERT and RoBERTa in Section 5.330

4.2 Faithfulness disparity across FAs331

Sufficiency

α α∇α x∇x IG DL Avg Diff P value

English -0.082 -0.086 -0.097 -0.131 -0.319 -0.143 0.258
Chinese 0.065 0.056 -0.085 -0.040 -0.018 -0.005 0.946
Spanish -0.070 -0.138 -0.336 -0.107 -0.111 -0.153 0.053
French -0.206 -0.218 -0.133 -0.217 -0.188 -0.193 0.007
Hindi -0.054 -0.047 0.045 -0.068 0.081 -0.009 0.888

Avg Diff -0.070 -0.086 -0.121 -0.113 -0.111 -0.100 -
P value 0.535 0.462 0.041 0.033 0.076 - 0.006

Comprehensiveness

α α∇α x∇x IG DL Avg Diff P value

English -0.465 -0.436 -0.327 -0.333 -0.330 -0.378 0.000
Chinese -0.230 -0.224 -0.111 -0.156 -0.062 -0.157 0.010
Spanish -0.197 -0.116 -0.105 0.032 -0.218 -0.121 0.076
French -0.486 -0.482 -0.232 -0.598 -0.475 -0.455 0.004
Hindi 0.071 0.062 -0.036 -0.268 0.082 -0.018 0.831

Avg Diff -0.261 -0.239 -0.162 -0.265 -0.201 -0.226 -
P value 0.027 0.034 0.004 0.015 0.070 - 0.000

Table 4: Faithfulness difference between multilin-
gual RoBERTa (XLM-R) and counterpart monolingual
RoBERTa (plum indicates monolingual models are more
faithful than multilingual models.)

Tables 4 and 5 delve deeper into the faithfulness332

disparity between mono- and multilingual mod-333

els, presenting the results for RoBERTa and BERT334

models per FA. Disparity is computed as the multi-335

lingual faithfulness (sufficiency or comprehensive-336

ness) score minus its monolingual counterpart.337

Looking into individual FAs, IG shows a greater338

faithfulness disparity than other FAs. For example,339

it obtains the greatest disparity in comprehensive-340

ness averaged over languages for both RoBERTa341

and BERT; and the greatest and the second great-342

est in sufficiency over languages for BERT and343

5We do not include these languages as they do not have
RoBERTa monolingual models.

Sufficiency

α α∇α x∇x IG DL Avg Diff P value

English 0.086 0.093 -0.024 0.187 0.048 0.078 0.292
Chinese -0.018 -0.037 0.043 0.176 0.016 0.036 0.454
Spanish 0.200 0.202 0.006 0.190 0.015 0.123 0.049
French 0.184 0.173 -0.028 0.063 0.025 0.083 0.066
Hindi -0.041 -0.035 0.010 0.266 -0.003 0.039 0.510

Avg Diff 0.082 0.079 0.001 0.176 0.020 0.072 -
P value 0.264 0.298 0.966 0.003 0.527 - 0.005

Comprehensiveness

α α∇α x∇x IG DL Avg Diff P value

English 0.122 0.106 0.075 0.078 0.015 0.079 0.323
Chinese 0.211 0.213 0.028 0.176 0.016 0.129 0.053
Spanish 0.268 0.268 0.040 0.160 0.105 0.168 0.048
French 0.294 0.299 0.046 0.217 0.156 0.202 0.049
Hindi -0.232 -0.234 -0.128 0.138 0.057 -0.080 0.307

Avg Diff 0.133 0.130 0.012 0.154 0.070 0.100 -
P value 0.258 0.263 0.758 0.040 0.081 - 0.007

Table 5: Faithfulness difference between multilingual
BERT (mBERT) and counterpart monolingual BERT.

RoBERTa. IG computes the integral of gradients 344

of each input element, compared to a blank input, 345

modeling the absence of the feature/token (Sun- 346

dararajan et al., 2017). According to Sundararajan 347

et al. (2017), compared to x∇x, IG is less sensitive 348

to unimportant features. This is because x∇x is 349

over-sensitive to all features, e.g. blank input which 350

is supposed to be the most unimportant one. This 351

still leads to a gradient value that is closer to non- 352

blank inputs (Shrikumar et al., 2016). The large 353

faithfulness disparity of IG intuitively indicates 354

that multilingual and monolingual models consider 355

different tokens as unimportant during inference. 356

The disparities of Attention-based FAs, i.e. α 357

and α∇α, are consistently on par with each other. 358

This indicates the attention values, scaled or not 359

scaled by gradients, are unlikely to introduce big 360

changes to the attention values as the attention be- 361

ing with greater magnitudes compared to the cor- 362

responding gradients values (Serrano and Smith, 363

2019; Jain et al., 2020). 364

Overall, attention-based FAs demonstrate great 365

disparities. These are larger than x∇x and DL in 366

most cases of comprehensiveness in RoBERTa and 367

BERT, and sufficiency in BERT. It is, therefore, 368

likely that mono- and multilingual models reach 369

similar predictions by attending to different tokens. 370

5 Analysis 371

5.1 RoBERTa vs. BERT 372

Figure 1 compares the overall faithfulness between 373

mBERT and XLM-R.6 Each point represents a 374

6The figures for monolingual models are presented in Ap-
pendix D.
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Figure 1: Faithfulness of the two multilingual models
across languages. The dark grey area (bottom left) indi-
cates unfaithfulness (low Suff and Comp).

FA’s sufficiency (x-axis) and comprehensiveness375

(y-axis), on a given task (not specify the task but its376

language by color). XLM-R shows lower variance377

among languages, indicated by a more dispersed378

distribution of data points than mBERT. One po-379

tential explanation for this is that English has the380

overwhelmingly largest portion in the pre-training381

corpus for mBERT, while XLM-R increases the382

portion of corpora in non-English languages. We383

include Figure 3 in Appendix E.1, which compares384

the pre-training corpus size of different languages385

for XLM-R and mBERT (Conneau et al., 2020).386

It shows the amount of data for languages such as387

French (FR) and Chinese (ZH) has increased by388

several orders of magnitude.389

In Section 4.2, we observed contrasting direc-390

tions of faithfulness disparities. XLM-R exhib-391

ited lower faithfulness compared to monolingual392

RoBERTa, whereas mBERT demonstrated higher393

faithfulness than monolingual BERT. We hypoth-394

esize that this phenomenon is linked to the gap in395

model size between mono- and multilingual mod-396

els. Specifically, mBERT has at least 1.5 times397

more parameters than monolingual BERT models,398

while XLM-R has at least 2.2 times more param-399

eters than monolingual RoBERTa models. The400

difference in model size may account for the oppo-401

site directions of faithfulness disparities between402

RoBERTa and BERT. If this holds true, we an-403

ticipate that when the model size gap increases,404

XLM-R will still provide less faithful rationales405

than monolingual RoBERTa while their disparity406

degree will increase.407

5.2 Impact of model size408

To further investigate the impact of the model409

size, we repeat all experiments with XLM-R large410

and compare its faithfulness with monolingual411

Sufficiency

α α∇α x∇x IG DL Avg Diff P value

English -0.360 -0.354 -0.124 -0.445 -0.214 -0.300 0.001
Chinese -0.143 -0.133 -0.042 -0.220 -0.044 -0.116 0.157
Spanish -0.172 -0.240 -0.352 -0.278 -0.160 -0.240 0.001
French -0.309 -0.314 -0.120 -0.248 -0.188 -0.236 0.000
Hindi 0.010 0.012 0.039 -0.239 0.001 -0.035 0.711

Avg Diff -0.195 -0.206 -0.120 -0.286 -0.121 -0.186 -
P value 0.057 0.050 0.045 0.000 0.035 - 0.000

Comprehensiveness

α α∇α x∇x IG DL Avg Diff P value

English -0.201 -0.314 -0.366 0.078 -0.448 -0.250 0.204
Chinese -0.266 -0.254 -0.047 -0.303 -0.048 -0.183 0.055
Spanish -0.184 -0.102 -0.003 -0.029 -0.177 -0.099 0.060
French -0.484 -0.484 -0.124 -0.627 -0.449 -0.434 0.005
Hindi 0.103 0.091 -0.022 -0.364 0.101 -0.018 0.868

Avg Diff -0.206 -0.212 -0.112 -0.249 -0.204 -0.197 -
P value 0.147 0.119 0.088 0.169 0.088 - 0.001

Table 6: Faithfulness difference between multilingual
RoBERTa Large (XLM-R Large) and counterpart mono-
lingual RoBERTa.

RoBERTa. In this case, the size difference be- 412

tween multi- and monolingual models is bigger 413

than XLM-R base v.s. monolingual RoBERTa. 414

XLM-R base and XLM-R large use the same pre- 415

training corpus, pre-training objective, and similar 416

model architectures, but differ in model parameter 417

numbers7 (Conneau et al., 2020). XLM-R large 418

(550M parameters) is at least 4.7 times larger than 419

monolingual RoBERTa models. 420

Table 6 shows the faithfulness disparity of multi- 421

lingual RoBERTa large and monolingual RoBERTa. 422

Full results of faithfulness are in Appendix E.2. 423

First, we see that the faithfulness disparity direction 424

remains the same as XLM-R base and monolingual 425

RoBERTa. That is, monolingual RoBERTa is more 426

faithful than XLM-R large. 427

Second, the overall sufficiency disparity in- 428

creases from -0.100 to -0.186. It also increases 429

for each individual FA and language, with IG being 430

the only exception to remain almost the same (- 431

0.120 and -0.121). For example, the average dispar- 432

ity in English increases from -0.143 to -0.300 and 433

the average disparity for attention increases from 434

-0.070 to -0.195. The overall comprehensiveness 435

disparity of XLM-R large is on par with XLM-R 436

base (-0.226 v.s. -0.197). Also, the changes of 437

faithfulness disparity fluctuate on each FA and lan- 438

guage that XLM-R large increases in some cases 439

(e.g. Chinese and IG) and decreases in others (e.g. 440

Spanish and attention). 441

Overall, the results confirm our assumption that 442

the difference in model size is related to the faithful- 443

7Both are transformer-based, XLM-R base: L = 12, H =
768, A = 12; XLM-R large: L = 24, H = 1024, A = 16)
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ness disparity. The larger the multilingual model,444

the less faithful its rationales are compared to its445

monolingual counterpart. One intuitive interpreta-446

tion behind this is that when the model gets larger,447

it becomes intrinsically complex and therefore, it448

is harder to faithfully explain its predictions with449

FA methods. To summarize, the more parame-450

ters the multilingual model has, the less faithful its451

rationales are compared to its monolingual coun-452

terparts. Therefore, we suggest using monolingual453

models for faithful rationales when the multilin-454

gual model is much larger than the monolingual455

counterpart.456

We acknowledge that our findings might not gen-457

eralize to BERT because mBERT large (or differ-458

ent sizes) are not available to experiment with. To459

overcome this, we repeat all experiments on BERT-460

large and compare its faithfulness with BERT-base,461

to investigate the impact of model size from a dif-462

ferent perspective. To keep the focus of the paper463

on the faithfulness disparity between mono- and464

multilingual models, we present the results and465

analysis in Table 14 in the Appendix.466

5.3 Impact of tokenization467

Previous research has shown the essential impact of468

the tokenizer on multilingual models (Ruan et al.,469

2021; Zhang et al., 2022). Intuitively, multilingual470

tokenizers are less specialized than their counter-471

part monolingual tokenizers for the specific lan-472

guage. For example, as shown in Table 2, the mul-473

tilingual BERT tokenizer has a vocabulary size474

of 105K covering 104 languages, while the five475

monolingual BERT tokenizers cover a vocabulary476

of 167k tokens already. Therefore, we investigate477

the impact of tokenizers on the faithfulness dispar-478

ity. BERT-based models use WordPiece as their to-479

kenizers (Wu et al., 2016). Monolingual RoBERTa-480

based models use BytePair-Encoding (BPE) (Sen-481

nrich et al., 2016), and multilingual XLM-R uses482

SentencePiece (Kudo and Richardson, 2018). We483

do not compare their splitting mechanisms but their484

splitting results, especially how aggressively they485

split words into subwords. The superficial splitting486

of a tokenizer intuitively reflects how many unique487

tokens it knows for the language, i.e. how well the488

tokenizer knows the language. Following Rust et al.489

(2021), we examine two metrics across tokenizers,490

fertility and splitting ratio.491

• Fertility measures the average number of sub-492

words produced per tokenized word, a.k.a sub-493

word fertility (Rust et al., 2021). The mini- 494

mum fertility value is 1 when the tokenizer’s 495

vocabulary contains every word in the text. 496

The higher the fertility, the larger the number 497

of subwords generated when splitting words. 498

• Splitting ratio calculates the proportion of 499

words split during tokenization (Rust et al., 500

2021).8 The maximum splitting ratio is 1 501

when the tokenizer splits each word into sub- 502

words. The higher the splitting ratio, the more 503

words are split during tokenization. 504

Fertility indicates how many subwords a tok- 505

enizer splits a word into, the splitting ratio shows 506

how often a tokenizer splits words. Intuitively, low 507

scores are preferable for both metrics as they indi- 508

cate that the tokenizer is well-suited to the language 509

(Rust et al., 2021). 510

Table 7 shows the fertility and splitting ratio 511

difference between monolingual and multilingual 512

models (i.e. multilingual score minus its counter- 513

part monolingual).9 Faithfulness disparity values 514

are taken from Tables 4 and 5. 515

First, for both RoBERTa and BERT, the positive 516

values of fertility and splitting ratio difference indi- 517

cates that multilingual models tend to be more ag- 518

gressive in splitting words than monolingual ones. 519

For example, as shown in Table 15 in Appendix, 520

26.1% English words (underlined in table) are split 521

by multilingual RoBERTa tokenizer but only 7.6% 522

(underlined in table) by monolingual RoBERTa 523

tokenizer. 524

Second, RoBERTa has larger gaps in both fertil- 525

ity and splitting ratio than BERT for all languages. 526

For all three languages, the fertility and the splitting 527

ratio differences are greater than 0.1 for RoBERTa, 528

but less than 0.1 for BERT. This is because Sen- 529

tencePiece (multilingual XLM-R’s tokenizer) is 530

generally more aggressive in splitting words. Tak- 531

ing English as an example, the fertility gap among 532

monolingual RoBERTa (BPE), monolingual BERT 533

(WordPiece) tokenizers, and multilingual BERT 534

(WordPiece) is relatively smaller, 1.125, 1.115, and 535

1.179 respectively, while the fertility of XLM-R 536

(SentencePiece) is 1.319. However, this is coun- 537

terintuitive given the much larger vocabulary size 538

8Different tokenizers present subwords and non-subwords
differently. Details can be found in Appendix G.

9Hindi and Chinese are excluded from this analysis be-
cause Hindi does not show a significant difference between
mono- and multilingual in either sufficiency or comprehen-
siveness for RoBERTa and BERT; Chinese is a logographic
language without white spaces.
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RoBERTa
Multi Fertility Mono Fertility Fertility Diff Multi Splitting Mono Splitting Splitting Diff Suff Diff Comp Diff

English 1.319 1.125 0.195 0.261 0.076 0.185 -0.300 -0.250
Spanish 1.409 1.290 0.119 0.299 0.195 0.104 -0.240 -0.099
French 1.531 1.345 0.186 0.325 0.211 0.114 -0.236 -0.434
Avg 1.420 1.253 0.167 0.312 0.203 0.134 -0.259 -0.261

BERT
Multi Fertility Mono Fertility Fertility Diff Multi Splitting Mono Splitting Split ratio Diff Suff Diff Comp Diff

English 1.179 1.115 0.064 0.111 0.059 0.052 0.078 0.079
Spanish 1.369 1.283 0.086 0.152 0.090 0.062 0.123 0.168
French 1.461 1.456 0.005 0.139 0.134 0.005 0.083 0.202
Avg 1.336 1.285 0.052 0.134 0.094 0.040 0.095 0.150

Table 7: Fertility, splitting ratio, sufficiency, and comprehensiveness difference between multilingual and monolin-
gual models (positive values indicate multilingual is more faithful). Full results of fertility and splitting ratio for
each dataset can be found in Table 15 in Appendix H.

of multilingual RoBERTa (over two times bigger539

than multilingual BERT, see Figure 2). One poten-540

tial explanation is that XLM-R saves capacity for541

representing the vocabulary for other low-resource542

languages. On the other hand, the greater aggres-543

siveness in tokenization of multilingual RoBERTa544

potentially explains the different disparity direction545

to BERT models. That is, only when the fertility546

difference is greater than 0.1, do multilingual mod-547

els gain higher faithfulness than their monolingual548

counterparts.10 An intuitive reason might be that549

more fine-grained tokenization breaks the balance550

of keeping certain linguistic units together during551

faithfulness evaluation.552

Last, the differences in sufficiency and compre-553

hensiveness demonstrate a high negative relation-554

ship to the fertility difference (Table 8). That is, the555

larger the fertility difference between mono- and556

multilingual models, the smaller the faithfulness557

disparity. Particularly, the fertility and the compre-558

hensiveness difference show a very high negative559

correlation (-0.91).560

ρ Suff Diff Comp Diff

Splitting Diff -0.86 -0.79
Fertility Diff -0.86 -0.91

Table 8: Pearson correlation coefficient between fertility,
splitting ratio, and faithfulness disparity.

To sum up, multilingual tokenizers split words561

into subwords more aggressively than monolingual562

tokenizers. The degree of splitting difference is563

strongly correlated with the faithfulness disparity564

between models. The aggressive tokenization of565

multilingual models might result in lower faithful-566

ness, particularly when the fertility and splitting567

differences are greater than 0.1, compared to their568

monolingual counterparts.569

10We demonstrate this pattern in Figure 4, Appendix I.

5.4 Qualitative analysis 570

For a qualitative evaluation, we examine the ratio- 571

nales extracted by the same faithful FAs for both 572

types of models. We observe that rationales of 573

multilingual models more often contain pronouns, 574

prepositions, postpositions, conjunction, and arti- 575

cle words, while monolingual models’ prefer nouns 576

and adjectives. We suspect the different prefer- 577

ences in parts of speech are due to monolingual 578

models being more specialized for the language 579

so that its rationales contain more specific nouns 580

and adjectives rather than general functional words 581

such as pronouns, prepositions, postpositions, and 582

conjunctions. We also observe examples where 583

multilingual tokenizers tokenize more aggressively, 584

e.g. the word “defectos” in Spanish (“defects” 585

in English) is not split into subwords by Span- 586

ish BERT, but split into “’def’, ’##ecto’, ’##s’ by 587

mBERT; “desagradable” in Spanish (“unpleasant”) 588

is not split by Spanish BERT but split into ’desa’, 589

’##grada’, ’##ble’ by mBERT, echoing observa- 590

tions in Section 5.3. 591

6 Conclusion 592

To the best of our knowledge, our study is the first 593

to investigate the faithfulness disparity between 594

monolingual and multilingual models. We have 595

conducted a comprehensive empirical study and 596

found that faithfulness gaps exist across languages, 597

models, and FAs. Our study further reveals that the 598

larger the multilingual model, the less faithful its 599

rationales are compared to its monolingual coun- 600

terpart models. Finally, we found that the disparity 601

is highly correlated to the gap between mono- and 602

multilingual tokenizers on how aggressively they 603

split words. Future work includes exploring mod- 604

els for low-resource languages and other language 605

families, such as Austronesian and Afroasiatic. 606
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Limitations607

As outlined in the paper, one significant challenge608

we encountered during our research was the ab-609

sence of monolingual models in various languages.610

First, monolingual models are only available in a611

few languages, such as monolingual BERT and612

RoBERTa models used in this paper. Second, more613

recent decoder-based models, such as T5, Llama,614

and GPT2, are multilingual by default.615

Furthermore, it would be intriguing to explore616

the faithfulness disparity and behavior of feature at-617

tributions for low-resource languages, particularly618

given their limited corpus during pre-training.619

An additional uncontrolled factor is the impact620

of the different pre-training corpora between mono-621

lingual and multilingual models (see Table 2).622

However, it is not feasible to disentangle this factor623

in our experiments since we would need to obtain624

comparable corpora in various languages and pre-625

train from scratch all models.626

Last, it is important to acknowledge that mul-627

tilingual studies focusing on Indo-European and628

Sino-Tibetan languages may not necessarily apply629

to languages outside these language families. We630

hope future work can contribute resources to facil-631

itate the development of a more diverse range of632

monolingual language models.633
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A Comparison of predictive performance1026

NER SA QA UDP POS
Lg Model

Test F1 Test Acc Dev EM / F1 Test UAS/LAS Test Acc

Arabic Monolingual 91.1 95.9 68.3/82.4 90.1/85.6 96.8
AR mBERT 90 95.4 66.1/80.6 88.8/83.8 96.8

Monolingual 91.5 91.6 80.5/88.0 92.1/89.7 97
English

mBERT 91.2 89.8 80.9/88.4 91.6/89.1 96.9

Monolingual 92 - 69.9/81.6 95.9/94.4 98.4
Finnish

mBERT 88.2 - 66.6/77.6 91.9/88.7 96.2

Monolingual 91 96 66.8/78.1 85.3/78.1 92.1
Indonesian

mBERT 93.5 91.4 71.2/82.1 85.9/79.3 93.5

Monolingual 72.4 88 - 94.7/93.0 98.1
Japanese

mBERT 73.4 87.8 - 94.0/92.3 97.8

Monolingual 88.8 89.7 74.2/91.1 90.3/87.2 97
Korean

mBERT 86.6 86.7 69.7/89.5 89.2/85.7 96

Monolingual 91 95.2 64.3/83.7 93.1/89.9 98.4
Russian

mBERT 90 95 63.3/82.6 91.9/88.5 98.2

Monolingual 92.8 88.8 60.6/78.1 79.8/73.2 96.9
Turkish

mBERT 93.8 86.4 57.9/76.4 74.5/67.4 95.7

Monolingual 76.5 95.3 82.3/89.3 88.6/85.6 97.2
Chinese

mBERT 76.1 93.8 82.0/89.3 88.1/85.0 96.7

Monolingual 87.4 92.4 70.8/84.0 90.0/86.3 96.9
AVG

mBERT 87 91 69.7/83.3 88.4/84.4 96.4

Table 9: Comparison of predictive performance between
mBERT and monolingual BERT across languages and
tasks. Results are drawn from Rust et al. (2021)

As shown in Table 9, the predictive performance1027

of mBERT is comparable with monolingual BERT1028

in most cases. Particularly, on Russian and Chinese,1029

the difference between monolingual and multilin-1030

gual models is not greater than 1.2 and 1.5 across1031

each task, respectively.1032

B Model Implementation Details1033

Language Models Huggingface ID

Multilingual mBERT bert-base-multilingual-uncased Devlin et al. (2019)
XLM-R xlm-roberta-base Conneau et al. (2020)
XLM-R large xlm-roberta-large Conneau et al. (2020)

English BERT bert-base-uncased Devlin et al. (2019)
RoBERTa roberta-base Liu et al. (2019)

Chinese BERT bert-base-chinese Devlin et al. (2019)
RoBERTa hfl/chinese-roberta-wwm-ext Cui et al. (2021)

Spanish BERT dccuchile/bert-base-spanish-wwm-uncased Cañete et al. (2020)
RoBERTa PlanTL-GOB-ES/roberta-base-bne Fandiño et al. (2022)

French BERT dbmdz/bert-base-french-europeana-cased Schweter (2020)
RoBERTa ClassCat/roberta-base-french n/a

Hindi BERT l3cube-pune/hindi-bert-scratch Joshi (2022)
RoBERTa flax-community/roberta-hindi n/a

Table 10: Model references

We use pre-trained models from the Hugging-1034

face library (Wolf et al., 2020). We use the AdamW1035

optimizer (Loshchilov and Hutter, 2019) with a1036

learning rate of 1e−5 for fine-tuning ( 1e−4 for the1037

linear output layer). We fine-tune all models for 51038

epochs using a linear scheduler, with 10% of the1039

data in the first epoch as warming up. We also use1040

a grad-norm of 1.0. The model with the lowest loss1041

on the development set is selected. All models are1042

trained across 3 random seeds, and we report the1043

average prediction performance. The best model1044

among the 3 runs is used to extract rationales. Ex- 1045

periments are run on a single NVIDIA A100 GPU. 1046

C Datasets 1047

Table 11 on page 14 gives details of each task. Fol- 1048

lowing Su et al. (2022), we use the small version 1049

of ChnSentiCorp data. Following (Le et al., 2020), 1050

we sample 2000 data from the original French CSL 1051

dataset as the training set and also 2000 for the 1052

testing and development set separately. We do the 1053

same for Hindi CSL and Spanish CSL. Further, 1054

for tasks without a published testing set and a pub- 1055

lished development set, we split the original set into 1056

an 8:1:1 training:testing:development split with the 1057

same label distribution. 1058

D Full Results of Faithfulness 1059

D.1 Faithfulness full results 1060

Table 12 on page 14 shows the sufficiency and com- 1061

prehensiveness of each feature attribution method 1062

on each dataset. “Suff” is short for sufficiency, 1063

“comp” for comprehensiveness. All faithfulness 1064

results are presented as the ratio after being divided 1065

by the random baseline (i.e. assigning a random 1066

importance distribution to the token sequence and 1067

then computing the sufficiency and the comprehen- 1068

siveness). The predictive results, F1 and accuracy, 1069

are the average over three runs. The best model 1070

from the three runs is taken to extract and evaluate 1071

the rationales with each feature attribution method 1072

separately. 1073

D.2 Faithfulness overview of monolingual 1074

models 1075

Figure 2 on page 15 is the monolingual counterpart 1076

figure for Figure 1 on page 6. It overviews the 1077

faithfulness of monolingual BERT and RoBERTa, 1078

regardless of noticing the feature attribution used. 1079

The points in the grey area (left bottom) are un- 1080

faithful in both sufficiency and comprehensiveness. 1081

As shown in the figure, most cases are faithful on 1082

at least one of sufficiency or comprehensiveness. 1083

This validates our comparison of faithfulness and 1084

faithfulness disparity. Otherwise, it is not reason- 1085

able to say one is more faithful than the other if 1086

both are unfaithful. 1087
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Language Language Family Dataset Task Training set size Avg length Metrics Papers

SST Sentiment analysis 6,920 / 872 / 1,821 17 F1 Chrysostomou and Aletras (2022b)
Agnews Topic classification 102,000 / 18,000 / 7,600 36 F1 Chrysostomou and Aletras (2022b)English Indo-European
MultiRC Multi-Sentence Reading Comprehension 24,029 / 3,214 / 4,848 290/17 F1 Chrysostomou and Aletras (2022b)

Ant Financial Question Matching 30,018 / 4,316 / 4,316 13/13 Accuracy Su et al. (2022)
KR Keyword Recognition 17,000 / 3,000 / 3,000 266/29 Accuracy Su et al. (2022)Chinese Sino-Tibetan
ChnSentiCorp Sentiment analysis 2,000 / 1,200 / 1,200 107 Accuracy Su et al. (2022)

CSL Sentiment analysis 2,000 / 1,200 / 1,200 27 Accuracy Keung et al. (2020)
PAWS-X Paraphrase Identification 49,400 / 2,000 / 2,000 20/20 Accuracy Yang et al. (2019)Spanish Indo-European
XNLI Natural Language Inference 393,000 / 5,010 / 2,490 19/9 Accuracy Conneau et al. (2020), Conneau et al. (2020)

CSL Sentiment analysis 2,000 / 1,200 / 1,200 28 Accuracy Le et al. (2020),keung-etal-2020-multilingual
PAWS-X Paraphrase Identification 49,400 / 2,000 / 2,000 20/20 Accuracy Yang et al. (2019),Le et al. (2020),Cañete et al. (2022)French Indo-European
XNLI Natural Language Inference 393,000 / 5,010 / 2,490 20/10 Accuracy Le et al. (2020), Conneau et al. (2020),Cañete et al. (2022)

BBC NLI Natural Language Inference 15,552 / 2,580 / 2,592 7/5 Accuracy Uppal et al. (2020)
News Topic Topic classification 15,552 / 2,580 / 2,592 13 F1 Uppal et al. (2020)Hindi Indo-Aryan
XNLI Natural Language Inference 392,702 / 2,490 / 5,010 21/10 Accuracy Conneau et al. (2020)

Table 11: Datasets summary. For tasks of two inputs, e.g. paraphrase identification tasks and inference tasks, their
average text lengths are shown separately for the first input and the second input as length 1 / length 2

Dataset Model α Suff α∇α Suff x∇x Suff IG Suff DL Suff α Comp α∇α Comp x∇x Comp IG Comp DL Comp F1 Accuracy

SST mBERT 1.2063 1.205 0.9991 1.3995 1.2594 1.2576 1.2643 1.0433 1.4835 1.3135 0.8627 0.8627
SST XLM-R 1.0914 1.0976 1.0329 1.1125 1.0558 0.9242 0.9244 0.9537 1.0787 0.9878 0.8718 0.8719
SST BERT 1.174 1.1771 1.0207 1.1636 1.0726 1.5571 1.5597 1.1582 1.6837 1.1955 0.9156 0.9156
SST RoBERTa 1.2623 1.2693 1.3215 1.4922 1.1866 1.6021 1.6144 1.2723 1.438 1.3409 0.8893 0.8898
Agnews mBERT 1.7087 1.712 0.9817 1.4523 1.0573 3.2063 3.203 1.8811 2.8304 1.5659 0.9303 0.9304
Agnews XLM-R 2.0947 2.105 0.9287 1.4987 0.8806 2.0106 2.0107 1.2924 1.9369 1.1211 0.9261 0.9264
Agnews BERT 1.1553 1.1266 0.9105 1.0425 1.0719 2.5436 2.5968 1.5426 2.4037 1.6445 0.9357 0.9357
Agnews RoBERTa 1.3137 1.3242 0.8989 1.452 1.4351 2.1323 2.1408 1.66 1.9998 1.0854 0.9347 0.9346
MultiRC mBERT 1.1821 1.177 0.9611 1.0904 0.9612 1.0 1.0011 1.0004 1.0031 1.0065 0.7081 0.7186
MultiRC XLM-R 0.7907 0.829 0.9001 0.9677 1.0648 0.9247 0.9204 1.0124 1.0424 1.0109 0.718 0.7245
MultiRC BERT 1.5089 1.512 1.0829 1.1752 0.9888 0.9959 0.9948 0.9978 0.9942 1.0022 0.6815 0.6896
MultiRC RoBERTa 1.648 1.6946 0.9313 1.0268 1.3368 1.5195 1.4091 1.3068 1.6189 1.6841 0.7295 0.7317
KR mBERT 1.1229 1.0541 1.1878 1.3514 1.1128 1.0077 1.0082 0.9979 0.9989 0.9966 0.842 0.8424
KR XLM-R 1.4342 1.4154 0.8885 1.0773 0.938 0.9022 0.9014 1.0259 1.0089 1.0307 0.8401 0.8403
KR BERT (zh) 1.239 1.2241 1.0296 1.0242 0.9226 1.0105 1.0157 0.996 0.9907 1.0165 0.8399 0.84
KR RoBERTa (zh) 0.8657 0.8376 1.0082 0.9963 0.9782 0.9912 0.9932 0.9882 0.9901 0.9989 0.8443 0.8446
ANT mBERT 1.0425 1.0471 0.9258 0.9767 0.8555 1.049 1.0455 1.0228 1.0208 1.0915 0.6282 0.703
ANT XLM-R 1.0033 0.991 0.948 1.0205 1.0631 0.953 0.9601 0.9287 0.9879 1.0229 0.6588 0.7139
ANT BERT (zh) 1.2248 1.2319 0.9675 1.0107 0.9884 1.0216 1.0212 1.0032 1.0105 1.0051 0.6738 0.7237
ANT RoBERTa (zh) 1.0773 1.0945 1.0446 1.1371 1.1157 1.0063 1.0033 1.0057 1.0261 1.0252 0.5241 0.6601
ChnSentiCorp mBERT 1.4906 1.4942 1.0566 1.325 1.0146 2.1555 2.1608 1.324 2.0856 1.0983 0.9119 0.9119
ChnSentiCorp XLM-R 1.2483 1.2368 1.0077 1.055 0.9944 1.0723 1.0738 0.9931 1.1389 0.9942 0.9217 0.9217
ChnSentiCorp BERT (zh) 1.2466 1.2516 1.0455 1.09 1.0243 1.548 1.5388 1.2609 1.5762 1.1181 0.9355 0.9356
ChnSentiCorp RoBERTa (zh) 1.5482 1.5435 1.0476 1.1406 0.9543 1.6196 1.6116 1.2854 1.5884 1.2097 0.9428 0.9428
Spanish CSL mBERT 1.5244 1.5274 1.0999 1.6256 1.1076 1.898 1.8972 1.2135 1.9047 1.2905 0.886 0.8862
Spanish CSL XLM-R 1.1065 1.0896 0.9543 1.1994 1.0514 0.986 0.9887 0.9715 1.1801 0.9913 0.878 0.8782
Spanish CSL BERT (es) 0.9975 0.976 0.9957 1.1277 1.0645 1.0698 1.0788 1.0955 1.4271 1.0004 0.9062 0.9063
Spanish CSL RoBERTa (es) 1.2901 1.4932 1.5522 1.5633 1.5125 1.5761 1.3826 1.3995 1.0484 1.5366 0.8914 0.8917
Spanish XNLI mBERT 1.0031 1.0043 1.0258 1.0382 1.0331 1.0165 1.0164 0.9964 1.0028 0.9872 0.7877 0.7875
Spanish XNLI XLM-R 1.0314 1.0457 1.0887 1.0738 1.0521 1.0485 1.0479 1.0285 1.0469 0.9918 0.7958 0.7956
Spanish XNLI BERT (es) 1.0791 1.0922 1.037 1.0228 1.0331 1.0327 1.03 0.9938 1.0017 0.9721 0.7847 0.7842
Spanish XNLI RoBERTa (es) 1.3083 1.3127 1.5799 1.1294 0.9508 1.102 1.1 1.0525 1.0146 1.0096 0.7958 0.7956
Spanish Paws mBERT 1.1325 1.1348 0.9959 0.9616 0.9826 0.994 0.9952 0.9968 0.9999 1.0062 0.8811 0.8823
Spanish Paws XLM-R 1.1797 1.1944 1.0948 1.0857 0.9884 1.2369 1.2376 1.0415 1.0452 0.987 0.8703 0.872
Spanish Paws BERT (es) 0.9825 0.9919 1.0713 0.9047 0.9792 1.0016 0.997 0.9985 0.9988 0.9965 0.8555 0.8565
Spanish Paws RoBERTa (es) 0.9294 0.9379 1.0151 0.9883 0.9621 1.1832 1.1391 0.9047 1.1132 1.0781 0.8823 0.883
French CSL mBERT 1.4165 1.413 0.9956 1.4875 1.1035 2.1526 2.1624 1.1415 2.0983 1.3063 0.8772 0.8773
French CSL XLM-R 1.1488 1.16 0.9952 1.0022 1.0042 0.9769 0.9721 1.0087 1.1822 0.9862 0.8863 0.8865
French CSL BERT (fr) 1.0753 1.0857 0.9524 1.2311 0.8271 1.2186 1.211 0.9881 1.4274 0.852 0.8824 0.8825
French CSL RoBERTa (fr) 1.3471 1.3482 1.1526 1.4631 1.4639 2.0347 2.0311 1.4313 2.5163 2.3467 0.8663 0.8668
French XNLI mBERT 1.0997 1.0732 1.0201 1.1127 1.0719 1.0147 1.0175 0.9985 1.0194 1.0179 0.7748 0.7746
French XNLI XLM-R 1.0058 0.9517 1.1456 1.0234 1.0441 1.0544 1.0577 1.0324 1.027 0.9889 0.789 0.7885
French XNLI BERT (fr) 0.9795 0.9862 1.0337 1.0762 1.0819 1.0503 1.0484 1.0077 1.0389 0.9974 0.7643 0.7638
French XNLI RoBERTa (fr) 1.5508 1.5543 1.4092 1.183 1.1098 1.527 1.5246 1.2518 1.0796 0.9975 0.7326 0.7323
French Paws mBERT 1.1789 1.1849 0.9801 0.9469 0.8695 0.9808 0.9798 0.9963 0.998 1.0062 0.8781 0.8788
French Paws XLM-R 1.087 1.1021 1.0529 1.0192 0.9929 1.2295 1.2255 1.0622 0.997 1.0263 0.8774 0.8778
French Paws BERT (fr) 1.0875 1.0796 1.0948 1.0518 1.0596 0.9987 1.0022 1.0028 0.9994 1.0144 0.8274 0.8297
French Paws RoBERTa (fr) 0.9629 0.9655 1.0318 1.0507 1.0304 1.1575 1.1452 1.1168 1.4052 1.0831 0.7729 0.8678
Hindi BBC Nli mBERT 1.1255 1.1278 1.1362 1.175 1.0102 1.0044 1.0039 1.003 0.998 1.005 0.7862 0.7864
Hindi BBC Nli XLM-R 1.1809 1.1789 1.0289 1.0762 1.0578 1.18 1.19 1.0317 1.0842 1.0125 0.7887 0.7888
Hindi BBC Nli BERT (hi) 0.9799 0.9779 1.0385 1.0574 1.0385 1.0122 1.016 0.9989 1.0046 1.0045 0.8124 0.8128
Hindi BBC Nli RoBERTa (hi) 1.0349 1.0225 0.9337 0.9863 0.9436 0.6561 0.6876 1.1159 1.0714 0.9546 0.7953 0.8094
Hindi BBC Topic mBERT 1.4883 1.4913 1.2533 1.3573 0.984 1.4896 1.4907 1.2431 1.2887 1.0935 0.5123 0.5918
Hindi BBC Topic XLM-R 1.1243 1.1513 1.0942 1.2419 1.1083 1.1409 1.1413 1.0351 1.1042 1.0049 0.5606 0.6425
Hindi BBC Topic BERT (hi) 1.8746 1.8729 1.498 0.9446 1.0336 2.1692 2.1703 1.6329 0.8877 0.8943 0.617 0.6753
Hindi BBC Topic RoBERTa (hi) 0.9569 0.9527 0.9921 1.2189 0.9464 0.9823 0.9841 1.04 1.4999 0.9481 0.5268 0.6395
Hindi XNLI mBERT 1.1363 1.1501 1.2088 1.3084 1.071 1.0187 1.0159 1.0147 1.0359 0.9775 0.6754 0.676
Hindi XNLI XLM-R 1.0099 0.9844 0.985 1.0652 0.9954 1.1142 1.1161 1.0214 1.0578 1.0056 0.7235 0.7237
Hindi XNLI BERT (hi) 1.0199 1.0234 1.0304 1.0419 1.0032 1.0266 1.0248 1.0126 1.0165 1.0048 0.6607 0.6607
Hindi XNLI RoBERTa (hi) 1.4853 1.4795 1.0466 1.3833 1.0287 1.5834 1.589 1.0399 1.4781 0.8741 0.6316 0.6314
Average faithfulness across datasets and models 1.210 1.213 1.062 1.155 1.049 1.299 1.295 1.115 1.284 1.097

Table 12: Full results of faithfulness and prediction performance. All faithfulness results are presented by being
divided by the random baseline.
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Figure 2: Faithfulness results for different languages on
monolingual models.

E RoBERT v.s. BERT 1088

E.1 The language distribution comparison of 1089

the pre-training corpus between mBERT 1090

and XLM-R 1091

Figure 3 on page 16 compares the data amount 1092

and distribution in different languages between 1093

multilingual BERT (mBERT) and multilingual 1094

RoBERTa (XLM-R). As shown in the figure, XLM- 1095

R has significantly increased the pre-training data 1096

amount by several orders of magnitude in all lan- 1097

guages. It has also increased the percentages of 1098

non-English data. 1099

E.2 Full results of faithfulness for XLM-R 1100

large 1101

Table 13 on page 16 presents the original suffi- 1102

ciency and comprehensiveness results of each fea- 1103

ture attribution method on each task for XLM-R 1104

large. It was used in Section 5 to investigate the 1105

impact of the model size gap on the faithfulness 1106

disparity. 1107

F Exploring the impact of model size on 1108

BERT 1109

The results indicate a lower faithfulness on the 1110

larger BERT model across FAs and tasks. Specifi- 1111

cally, the sufficiency and comprehensiveness of the 1112

monolingual English BERT-large are higher than 1113

its counterpart BERT-base (13 out of 16 compar- 1114

ison pairs as shown in Table 1), except for cases 1115

of sufficiency and comprehensiveness on IG and 1116

the comprehensiveness on MultiRC (where both 1117

base and large BERTs’ faithfulness are on par with 1118

the random baseline, values close to one). This 1119

observation agrees with our assumption above that 1120

model sizes might impact faithfulness disparity. 1121

Given that our focus is on faithfulness disparity, 1122

we leave a more in-depth and comprehensive study 1123

with specifically designed methods in the future for 1124

the impact of model size on faithfulness. 1125

G The tokenization for different 1126

languages 1127

All monolingual and multilingual BERT tokenizers 1128

in this paper use “##” to indicate the second and 1129

the rest subwords of a split word, i.e. non-first 1130

subword of a split word. For example, “sdfnsksi 1131

cklx” will be tokenize to ‘sd’, ‘##fn’, ‘##sk’, ‘##si’, 1132

‘ck’, ‘##l’, ‘##x’. 1133
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Figure 3: Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-100 corpus (used
for multilingual BERT) and the CC-100 (multilingual RoBERTa). CC-100 increases the amount of data by several
orders of magnitude, in particular for low-resource languages (Conneau et al., 2020).

Dataset Model α Suff α∇α Suff x∇x Suff IG Suff DL Suff α Comp α∇α Comp x∇x Comp IG Comp DL Comp

SST XLM-R large 0.9555 0.9547 1.0189 0.7746 1.0062 0.9437 0.9382 1.1265 0.6697 1.0576
Agnews XLM-R large 1.1866 1.2698 0.7601 0.8642 0.9089 2.8766 2.6539 1.3965 1.3442 1.0955
MultiRC XLM-R large 1.0007 1.0004 1.0007 0.9967 1.4006 0.8311 0.6314 0.6188 3.2761 0.6126
KR XLM-R large 1.1857 1.1985 1.0159 0.9569 0.9741 1.0487 1.0408 1.0543 1.1403 1.0179
ANT XLM-R large 1.0355 1.0395 0.9159 0.7393 1.0027 1.0278 1.0178 0.887 0.6333 1.0025
ChnSentiCorp XLM-R large 0.8405 0.8372 1.044 0.918 0.9405 0.7424 0.7871 1.1985 0.9229 1.0699
Spanish CSL XLM-R large 1.2667 1.2688 0.9961 0.9862 1.0137 1.2989 1.304 1.0417 1.0722 1.0519
Spanish XNLI XLM-R large 0.8986 0.8959 1.0609 0.9614 0.9873 0.8655 0.8668 1.1609 1.0007 1.0213
Spanish Paws XLM-R large 0.8478 0.8579 1.0342 0.9004 0.9432 1.1443 1.1448 1.1444 1.0152 1.0204
French CSL XLM-R large 1.0388 1.0278 1.1031 1.0849 1.0313 1.0364 1.0361 1.0631 1.1244 1.0435
French XNLI XLM-R large 1.0388 1.0403 1.079 0.9644 0.9943 1.0899 1.085 1.1397 1.0307 1.0227
French Paws XLM-R large 0.8575 0.8583 1.051 0.9031 1.0132 1.1394 1.1289 1.2237 0.9642 1.0129
Hindi BBC Nli XLM-R large 0.8731 0.8478 1.0379 1.0646 0.9734 0.7646 0.7796 1.0062 1.0786 1.0222
Hindi BBC Topic XLM-R large 1.6458 1.6491 0.9722 0.8833 1.0009 1.7309 1.7246 0.9697 0.9469 1.0661
Hindi XNLI XLM-R large 0.9875 0.995 1.0806 0.9227 0.947 1.0358 1.0309 1.1539 0.9326 0.9913

Table 13: Full results of faithfulness for XLM-R large. All faithfulness results are presented by being divided by the
random baseline.

Sufficiency

α α∇α x∇x IG DL SST Agnews MultiRC

BERT base (109M) 1.279 1.272 1.005 1.127 1.044 1.122 1.061 1.253
BERT large (340M) 1.045 1.037 1.005 1.158 1.025 1.017 1.041 1.105

Comprehensiveness

α α∇α x∇x IG DL SST Agnews MultiRC

BERT base (109M) 1.699 1.717 1.233 1.694 1.281 1.431 2.146 0.997
BERT large (340M) 1.564 1.581 1.134 1.731 1.053 1.270 1.963 1.005

Table 14: Sufficiency and comprehensiveness of BERT-
base and BERT-large models averaged on each FA (the
first two to seven columns from left) and each task (the
last three columns from right).

Monolingual RoBERTa indicates a space and1134

its following word with ’ă’. Therefore, except for1135

the first token, tokens without ’ă’ are subwords.1136

Multilingual RoBERTa uses “_” to indicate the1137

start of a whole word.1138

H Full results for fertility and splitting1139

ratio1140

Table 15 includes the full results of fertility and1141

splitting ratio for each model. The results here1142

are used for calculating the average values demon-1143

strated in Table 7.1144

I Disparity in tokenization aggressiveness 1145

Figure 4: The impact of tokenization aggressiveness
("Fertility Diff" and "Splitting Diff") on faithfulness
disparity (“Suff Diff” and “Comp Diff”).

Figure 4 demonstrates the difference between 1146

multi- and monolingual models in terms of tok- 1147

enization aggressiveness and faithfulness. Both are 1148

calculated as: the score of the multilingual model 1149

minus the corresponding score of the monolingual 1150

counterpart model. We observe that multilingual 1151

models consistently tokenize more aggressively 1152
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RoBERTa BERT RoBERTa BERT

Dataset Multi Fertility Mono Fertility Fertility Diff Multi Fertility Mono Fertility Fertility Diff Multi Splitting Ratio Mono Splitting Ratio Splitting Diff Multi Splitting Ratio Mono Splitting Ratio Splitting Diff

SST 1.2941 1.1327 0.1615 1.2229 1.1237 0.0992 0.2358 0.0893 0.1466 0.1674 0.0863 0.0811
Agnews 1.3392 1.1519 0.1873 1.1780 1.1325 0.0455 0.2724 0.0765 0.1959 0.0884 0.0504 0.0380
MultiRC 1.3250 1.0901 0.2350 1.1365 1.0890 0.0475 0.2734 0.0618 0.2116 0.0768 0.0397 0.0371
Spanish CSL 1.3418 1.2018 0.1399 1.3796 1.2138 0.1658 0.2587 0.1596 0.0991 0.1716 0.0618 0.1098
Spanish PAWS-X 1.4706 1.4286 0.0419 1.3605 1.4034 -0.0429 0.3203 0.2441 0.0762 0.1303 0.1406 -0.0103
Spanish XNLI 1.4134 1.2387 0.1747 1.3679 1.2317 0.1362 0.3173 0.1819 0.1355 0.1543 0.0675 0.0868
French CSL 1.4511 1.3134 0.1377 1.4668 1.3768 0.0900 0.2921 0.1904 0.1016 0.1553 0.1091 0.0462
French PAWS-X 1.5818 1.3652 0.2166 1.4257 1.5555 -0.1298 0.3511 0.2195 0.1316 0.1257 0.1921 -0.0664
French XNLI 1.5598 1.3557 0.2041 1.4912 1.4353 0.0558 0.3307 0.2233 0.1074 0.1358 0.1011 0.0347

Table 15: Fertility and splitting ratio of multilingual and monolingual RoBERTa and BERT on tasks.

than their monolingual counterparts. When the1153

fertility of the multilingual model is higher than1154

its monolingual by more than 0.1, the multilingual1155

model gains lower faithfulness than its monolin-1156

gual counterpart model.1157
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