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ABSTRACT

Unlearning seeks to remove specific knowledge from large language models
(LLMs), but its effectiveness remains contested. On one side, “forgotten” knowl-
edge can often be recovered through interventions such as light fine-tuning; on the
other side, unlearning may induce catastrophic forgetting that degrades general
capabilities. Despite active exploration of unlearning methods, interpretability
analyses of the mechanism are scarce due to the difficulty of tracing knowledge
in LLMs’ complex architectures. We address this gap by proposing UNPACT,
an interpretable framework for unlearning via prompt attribution and contribution
tracking. Typically, it quantifies each prompt token’s influence on outputs, en-
abling pre- and post-unlearning comparisons to reveal what changes. Across six
mainstream unlearning methods, three LLMs, and three benchmarks, we find that:
(1) Unlearning appears to be effective by disrupting focus on keywords in prompt;
(2) Much of the knowledge is not truly erased and can be recovered by simply
emphasizing these keywords in prompts, without modifying the model’s weights;
(3) Catastrophic forgetting arises from indiscriminate penalization of all tokens.
Together, our results suggest an unlearning dilemma: existing methods tend either
to be insufficient - knowledge remains recoverable by keyword emphasis, or de-
structive - general performance collapses due to catastrophic forgetting, leaving a
gap to reliable unlearning. We open-source at https://unpact.site.

1 INTRODUCTION

Figure 1: Dilemma of unlearn-
ing: either recoverable by key-
word emphasis, or destructive to
catastrophic forgetting.

Unlearning aims to remove or suppress specific data or knowl-
edge from a trained model (Thaker et al., 2025; Jia et al., 2024;
Yuan et al., 2024). Yet the effectiveness on large language mod-
els (LLMs) remains contested, presenting a dilemma: on one
side, purportedly “forgotten” knowledge can be recovered by
sophisticated interventions such as model weight editing (Patil
et al., 2023) or additional fine-tuning (Hu et al., 2025; Lynch
et al., 2024); on the other side, aggressive unlearning may in-
duce catastrophic forgetting, degrading performance on capabil-
ities beyond the intended targets (Li et al., 2024a; Luo et al.,
2023). This tension motivates a deeper understanding of how
unlearning actually operates in LLMs.

Despite active progress on unlearning algorithms, there is a
shortage of interpretability analyses. The primary challenge
arises from the inherent difficulty of tracking the specific knowl-
edge during unlearning within LLMs’ complex architecture
(Hakimi et al., 2025; Wang et al., 2025; Li et al., 2024b). For open-sourced LLMs where internal
weights are accessible, interpreting how knowledge is stored and removed is hard due to intricate
weight interactions (Zhao et al., 2024). And for closed-source LLMs, interpretability is harder as
it must rely solely on inputs and outputs of models, limiting access to internals that many classic
interpretability tools require (Mumuni & Mumuni, 2025; Zhao et al., 2024; Dwivedi et al., 2023).

Building on this limitation, we address the gap by interpreting unlearning from the prompt perspec-
tive, which directly affects the output and is agnostic to whether the LLM is open- or closed-source.
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We first propose UNPACT, an interpretable framework for unlearning through prompt attribution and
contribution tracking. UNPACT quantifies each prompt token’s influence on the produced answer,
enabling contrasts between pre– and post–unlearning that reveal what changes exactly.

Then, we experiment with six unlearning methods, three LLMs, and three unlearning benchmarks,
aiming to answer three questions closely associated to unlearning:

• Why unlearning can work?
It primarily disrupts LLMs’ focus on keywords which support the correct answer.

• Is knowledge really unlearned?
The target knowledge is often not truly erased. Only by explicitly emphasizing relevant keywords
in prompt, much of the supposedly “unlearned” knowledge can be recovered.

• Why catastrophic forgetting happens?
It arises from indiscriminate penalization of all tokens during unlearning, including common
words that are essential for general performance.

Taken together, our results articulate an unlearning dilemma (shown in Figure 1): existing unlearn-
ing methods tend to be either recoverable – keyword emphasis revives the “forgotten” knowledge,
or overly destructive – disruption over all prompt tokens induces catastrophic forgetting. A reliable
unlearning sits in a narrow and unstable middle ground, challenging the feasibility of achieving it.

2 PRELIMINARIES

Unlearning methods. We consider the following advanced unlearning methods:

• Gradient Ascent (GA) (Jang et al., 2022) reverses the conventional gradient descent optimiza-
tion by maximizing the loss function. This approach represents the most direct unlearning strat-
egy, where the model explicitly increases prediction loss on the data intended to be forgotten.

• Negative Preference Optimization (NPO) (Zhang et al., 2024b) extends the Direct Preference
Optimization (DPO) framework (Rafailov et al., 2023) by treating forgetting data as negative
preferences. It reduces the likelihood of generating forgotten content while maintaining proxim-
ity to the original model by omitting positive preference terms from the DPO objective.

• Task Vector (TV) (Ilharco et al., 2022) manipulates model weights by subtracting the portion
related to the forgetting set. It first overtrains the learned model parameterized by θl on the for-
getting set to obtain the parameters θover, then computes the task vector θover − θl and subtracts
it from the original model. Then we get unlearned model with parameters θu = θl− (θover−θl).

• Representation Misdirection for Unlearning (RMU) (Li et al., 2024c) employs a dual loss
mechanism: the forget loss steers activation vectors of hazardous data toward random directions
to disrupt internal representations, while the retain loss maintains activation patterns of benign
data through regularization to preserve general capabilities.

Also, we consider the following two regularization loss to maintain performance:

• Gradient Descent (GD) (Maini et al., 2024; Zhang et al., 2024b) simply use the prediction loss
during training on the retain set, with a standard gradient descent learning objective.

• KL Divergence Minimization (KL) (Maini et al., 2024; Zhang et al., 2024b) minimizes the KL
divergence of the prediction distribution between pre- and post-unlearning models.

Since TV and RMU is incompatible with regularizing (Shi et al., 2024), we combine GA and NPO
with GD and KL, yielding four new combinations. Hence, we end up with a total of six unlearning
methods: GAGD, GAKL, NPOGD, NPOKL, TV, and RMU (see details in Appendix A).

Models. We choose three LLMs with different architectures and sizes:

• Llama-2-7B (Touvron et al., 2023) is a foundational language model developed by Meta, de-
signed for general-purpose natural language understanding and generation tasks.

• Llama-3.1-8B-Instruct (Grattafiori et al., 2024) is Meta’s instruction-tuned model optimized for
conversational interactions, with enhanced performance on general capabilities.

• Qwen3-14B (Yang et al., 2025) is developed by Alibaba Cloud, featuring strong capabilities in
various tasks including text generation and question answering with enhanced reasoning abilities.
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Figure 2: Overview of UNPACT. It first measures each token’s contribution to LLMs’ final answers,
then gives the KEYTOKENS with the most contributions. Notably, UNPACT does not require LLMs’
internal states and can therefore interpret both open-sourced and closed-sourced models.

Datasets. We consider three types of textual data in unlearning scenario:

• News (Li et al., 2023) consists of BBC news articles collected after August 2023.
• Books (Eldan & Russinovich) consists of the Harry Potter book series.
• WMDP (Li et al., 2024c) consists of multiple-choice questions covering hazardous biosecurity,

cybersecurity and chemistry. For this corpus, we focus on biosecurity domains.

Notably, unlearning is performed on the text corpus, and evaluation is done on question-answer
pairs from the corpus (see details in Appendix A). This enables to quantify LLMs’ knowledge
memorization (Shi et al., 2024).

LLM-as-a-judge. Instead of the widely used automatic metric ROUGE-L (Lin, 2004), we employ
GPT-4o-mini (Hurst et al., 2024) as a judge to evaluate whether a model’s response matches the
ground truth answer (Gu et al., 2024; Wei et al., 2024). We adopt this approach because we observe
that ROUGE-L frequently misjudges semantic equivalence (see Appendix C for details).

3 UNPACT: AN INTERPRETABLE FRAMEWORK

Prompts directly affect LLM outputs and are accessible in both open- and closed-source settings,
different to internal activations or weight states which are only accessible in open-source settings.
This motivates us to design our interpretable framework for unlearning from the prompt perspective.
Inspired by recent advances in prompt interpretability (Cui et al., 2025; Zhang et al., 2024a; Miglani
et al., 2023), we propose UNPACT, an interpretable framework for unlearning through prompt attri-
bution and contribution tracking.

The goal of UNPACT is to characterize how unlearning reshapes an LLM’s reliance on prompt to-
kens, thereby revealing what is actually altered by unlearning methods. An overview is shown in
Figure 2. UNPACT first measures each token’s contribution to LLMs’ final answers, then gives the
KEYTOKENS with the most contributions.

3.1 PROMPT TOKENS CONTRIBUTION

The main idea is straightforward: to measure how much a token in the input prompt influences
the final output, we perturb the prompt by masking or removing that token and then re-prompt the
model. The change in output distribution directly reflects the contribution of the removed token.

Formally, given an input prompt x = [x1, x2, . . . , xn] and a generated output sequence y, the con-
tribution of a token xi is defined as:

C(xi, y) = LP (x, y)− LP (x \ {xi}, y), (1)

where LP (·, ·) denotes the log probability of generating y conditioned on the input. A positive
C(xi, y) indicates that the token promotes the model’s generation of y, while a negative value sug-
gests that the token suppresses it. Thus, C(·, ·) quantifies the causal influence of each prompt token
on the model’s response.

3
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Since outputs typically contain multiple tokens y = [y1, y2, . . . , yT ], we extend the definition of LP
to sequences as:

LP (x, y) =
1

T

T∑
k=1

LP (x+ y1:k−1, yk), (2)

where x + y1:k−1 denotes appending the already generated subsequence y1:k−1 to the prompt x,
separated by a special [SEP] token. This formulation allows us to measure the contribution of
prompt tokens across the entire generation trajectory, rather than only the first output token.

Notably, UNPACT does not rely on internal model states, and can therefore be applied to both
open-source and closed-source LLMs.

3.2 KEYTOKENS

Once the contribution of each prompt token has been computed, we can identify the KEYTOKENS,
the subset of tokens that play the most decisive role in determining the model’s output. KEYTO-
KENS reflects the focus of LLMs when generating responses. This intuition is supported by find-
ings in cognitive science, where humans naturally rely on salient words or phrases when processing
and recalling information (Weingarten et al., 2016; Ellis, 2016). Analogously, in LLM prompting,
KEYTOKENS highlights the tokens that the model relies on most heavily to produce the final answer.

Formally, we define KEYTOKENS as the set of tokens with the strongest positive contributions to
the answer of LLMs:

K(x, y) =

{
{xi | C(xi, y) > 0}, if |{xi | C(xi, y) > 0}| < β

{xi | N(C(xi, y)) > α}, otherwise
(3)

where C(xi, y) denotes the contribution of token xi for answer y, and N(·) normalizes positive con-
tributions across the prompt tokens. In practice, the number of tokens with positive contributions
can be small. To handle such cases robustly, when fewer than a predefined proportion β of tokens
have positive contributions, we take all of them as KEYTOKENS. Otherwise, we apply the normal-
ized threshold α to select only the strongest contributors. Both α and β are tuned via grid search for
stability and generality (see Appendix B).

In short, KEYTOKENS is the most influential prompt tokens, serving as a compact lens to reveal
how unlearning shifts LLMs’ focus within prompt.

4 WHY UNLEARNING CAN WORK?

Since unlearning has been reported as effective in many prior studies (Yamashita et al., 2025; Yuan
et al., 2024; Ji et al., 2024), we investigate why pre- and post-unlearning models respond differently
to questions involving the target knowledge in this section.

4.1 EXPERIMENTAL DESIGN

It is worth noting that unlearning is sensitive to hyperparameters (Zhong et al., 2025; Kim et al.,
2024). We therefore carefully select configurations that achieve both a high forgetting rate on the
forget set and strong utility preservation on the retain set, following the recommendations of (Shi
et al., 2024; Li et al., 2024c) (e.g., training epochs, regularization strength). This ensures that our
analysis reflects representative and reasonably optimized unlearning behavior, rather than artifacts
of poor parameter tuning.

For each prompt, we leverage UNPACT to identify the KEYTOKENS corresponding to the model’s
predicted answer. By examining how these influential tokens shift before and after unlearning, we
gain an interpretable prompt perspective on what unlearning actually changes inside the model.

Specifically, we compare the KEYTOKENS across cases where the target knowledge is either
retained or forgotten. Before unlearning, we apply UNPACT to the pre-unlearning model to extract
the KEYTOKENS Kpre associated with the correct answer. After unlearning, we apply UNPACT

to the post-unlearning model and distinguish two scenarios: KR
post, the KEYTOKENS for cases

4
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When Knowledge is Forgotten

Answer before unlearning: 6.5%

Answer after unlearning: 7%

When Knowledge is Retained

Answer before unlearning: 100 gigabytes

Answer after unlearning: 100 gigabytes

Lose focus on 
KeyTokens

Still focus on 
KeyTokensUnlearning Unlearning

Figure 3: When target knowledge is forgotten, LLMs lose focus on KEYTOKENS ; When target
knowledge is retained, LLMs still focus on KEYTOKENS (see more examples in Appendix G).
Redder token means more positive contribution; Bluer token means more negative contribution.

where the model still produces the correct answer (i.e., target knowledge is retained), and KF
post,

the KEYTOKENS for cases where the model produces an incorrect answer (i.e., target knowledge
is forgotten). By contrasting Kpre with KR

post and KF
post, we can directly observe how unlearning

shifts the model’s focus and thereby reveal what unlearning actually changes inside the model.

4.2 RESULTS

Figure 3 shows that when the target knowledge is forgotten, LLMs lose focus on the KEYTOKENS
identified in the pre-unlearning model (e.g., “What”, “rise”, “n”, “Scotland”). In contrast, when the
knowledge is retained, the post-unlearning model continues to attend to the same KEYTOKENS as
before (e.g., “data”). This pattern suggests that unlearning disrupts the association between certain
salient keywords and the correct answer, mirroring cognitive processes in humans where attention
to key information strongly shapes recall and reasoning (Tsvilodub et al., 2023; Singer et al., 1988).

To statistically capture shifts in model focus within the prompt, we adapt cosine similarity (de-
noted as CS(·, ·)) (Xia et al., 2015) to compare the KEYTOKENS pre- and post- unlearning. Since
KEYTOKENS is represented as a set of tokens, we map it into an indicator vector V (·), enabling
vector-space comparison. We then define a correct focus as:

CS(V (Kpre), V (Kpost)) > γ, (4)

where γ is a threshold hyperparameter. Intuitively, a higher cosine similarity indicates stronger over-
lap between the KEYTOKENS of the pre-unlearning model (Kpre) and the post-unlearning model
(Kpost), reflecting stability of focus; conversely, lower similarity signals that unlearning has dis-
rupted the association between prompt keywords and the correct answer. Implementation details for
constructing V (·) are provided in Appendix D.

Table 1 reports the proportion of cases where the model maintains a correct focus. This proportion
drops when the target knowledge is forgotten compared to when it is retained. The decline is the
most on News dataset, with an average decrease of 34.2% across different unlearning methods. We
attribute this to the nature of news content: because the information is relatively recent, the model’s
memory of it is likely shallower and more reliant on prompt level. As a result, the shift in focus
within prompt is clearly revealed by UNPACT. In contrast, the decline is smaller on WMDP dataset.
Since WMDP consists of multiple-choice questions, the structured format constrains the model’s
response space and reduces its reliance on knowledge-related keywords, making the distinction be-
tween forgotten and retained knowledge less significant.

Therefore, our results suggest that the apparent effectiveness of unlearning may stem from a dis-
ruption of the model’s focus on prompt keywords which support the correct answer.

Moreover, since unlearning mainly alters models’ focus within the prompt, the question remains
whether the target knowledge is truly erased. We investigate this in the following section.

5
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GAGD GAKL NPOGD NPOKL TV RMU Average
News

Retained 56.2 64.5 81.1 74.4 72.0 66.7 69.6
Forgotten 31.9▼24.3 26.7▼37.8 24.0▼57.1 45.5▼28.9 27.3▼44.7 56.9▼9.8 35.4▼34.2

Books
Retained 38.1 66.7 33.3 50.0 68.0 41.7 49.6
Forgotten 31.8▼6.3 27.5▼39.2 23.5▼9.8 33.3▼16.7 27.8▼40.2 25.0▼16.7 28.2▼21.4

WMDP
Retained 14.6 20.7 20.6 18.9 42.5 28.9 24.3
Forgotten 13.9▼0.7 11.5▼9.2 12.0▼8.6 10.9▼8.0 39.8▼2.7 20.0▼8.9 18.0▼6.3

Table 1: The proportion of cases where the model maintains a correct focus on KEYTOKENS pre-
and post-unlearning (%). It drops when the target knowledge is forgotten compared to when it is
retained, indicating that unlearning works by shifting the model’s focus on KEYTOKENS.

5 IS KNOWLEDGE REALLY UNLEARNED?

It is known that knowledge intended to be forgotten can often be restored through interventions such
as model weight editing (Patil et al., 2023) or additional fine-tuning (Hu et al., 2025; Lynch et al.,
2024). However, these approaches directly modify the model parameters, effectively producing a
new model rather than probing the same post-unlearning one. Therefore, a more compelling question
is whether forgotten knowledge can be recovered within the same post-unlearning model under a
black-box setting.

5.1 EXPERIMENTAL DESIGN

To investigate this, we impose a stricter condition to recover knowledge: only the input prompt
can be modified, and the model is restricted to greedy decoding. Building on our previous finding
in Section 4 that unlearning works by shifting the model’s focus away from certain KEYTOKENS
correspond to target knowledge, we hypothesize that emphasizing the correct KEYTOKENS in the
prompt could resume the focus and thereby restore the supposedly forgotten knowledge.

We therefore design a recovery strategy, FOCUSONKEY, to elicit supposedly “unlearned” knowl-
edge from post-unlearning LLMs. For each prompt that the pre-unlearning model answers correctly,
we first apply UNPACT to identify the KEYTOKENS Kpre, the set of keywords on which a correctly
answering model places its focus. Intuitively, Kpre represents the most promising tokens through
which the post-unlearning model might recover the forgotten knowledge if they are explicitly em-
phasized within the prompt.

To implement this idea, we iterate over subsets Ks ⊆ Kpre and append to the original prompt a
minimal emphasis phrase, such as “Focus on [Ks] to answer.” or “Your answer should focus on
[Ks].” This simple instruction highlights the relevant keywords without elaborate prompt engineer-
ing. The effectiveness of such appended phrases is further supported by the recency effect in LLM
prompting, where information appearing later in the input often exerts stronger influence (Zhang
et al., 2024a; Zhao et al., 2021).

In preliminary experiments, we additionally observed that explicitly including question tokens (e.g.,
“How”, “What”) within prompts further improves recovery (see Appendix E). A plausible explana-
tion is that models of smaller weight (e.g., 7B, 8B, 14B) exhibit weaker question-answering ability
and lower sensitivity to question tokens (Han et al., 2025), which can degrade response quality. To
mitigate this, we slightly extend Kpre by incorporating the question token, ensuring that the model’s
attention is guided not only to the knowledge-relevant keywords but also to the question pattern.

5.2 RESULTS

Figure 4 illustrates that supposedly “unlearned” knowledge can indeed be recovered by FOCUSON-
KEY. For example, the post-unlearning model initially produces an incorrect answer because it
ignores the keyword “Northern.” After appending a simple instruction such as “Your answer should

6
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GAGD GAKL NPOGD NPOKL TV RMU Average
News

PROBAB 12.8 25.8 53.8 39.1 66.7 4.8 33.8
FOCUSONKEY 27.7▲14.9 38.7▲12.9 73.1▲19.3 69.2▲30.5 83.3▲16.6 9.5▲4.7 51.2▲17.4

Books
PROBAB 33.3 5.0 8.8 7.7 33.3 3.6 15.3

FOCUSONKEY 42.9▲9.6 22.5▲17.5 26.5▲17.7 28.2▲20.5 50.0▲16.7 14.3▲10.7 30.7▲15.4

WMDP
PROBAB 33.3 26.0 9.4 36.3 41.0 41.9 31.3

FOCUSONKEY 60.3▲27.0 49.3▲23.3 48.6▲39.2 39.6▲3.3 65.2▲24.2 63.4▲21.5 54.4▲23.1

Table 2: Recover rate (%) of FOCUSONKEY compared to probabilistic evaluation (abbreviated as
PROBAB) (Scholten et al., 2024). FOCUSONKEY (i.e., greedy decoding) recovers approximately 2
times more “unlearned” knowledge than PROBAB (i.e., multinominal sampling).

focus on How, Northern,” the model re-aligns its attention to “Northern” in both the attached phrase
and the original question, and consequently generates the correct answer.

Answer before unlearning: 45.50 Northern Ireland pounds

Answer after unlearning: 45.20

Lose focus on 
correct KeyTokens

Recover focus on 
correct KeyTokens

Answer after recovering: 45.50 Northern Ireland pounds

Recovering “Unlearned” Knowledge

Unlearning

FocusOnKey

Figure 4: Simply emphasizing KEYTOKENS
can recover “unlearned” knowledge.

To quantify this effect, we define the recovery rate
as the proportion of supposedly forgotten knowl-
edge that can be restored. As shown in Table 2,
FOCUSONKEY achieves strong recovery perfor-
mance, with rates ranging from 30.7% to 54.4%
on average across six unlearning methods. We also
compare against a baseline PROBAB (Scholten
et al., 2024), which approaches recovery from a
probabilistic perspective: by sampling multiple
outputs rather than relying on greedy decoding, it
increases the chance of surfacing forgotten knowl-
edge. Nevertheless, FOCUSONKEY attains nearly
twice the recovery rate of PROBAB while relying
solely on greedy decoding.

Notably, this implies that explicitly emphasizing
the KEYTOKENS in the prompt elevates forgot-
ten knowledge to the model’s Top-1 prediction,
rather than leaving it as a low-probability option
recoverable only through multinomial sampling as
PROBAB. In other words, even without exploring multiple trials, FOCUSONKEY substantially out-
performs PROBAB, underscoring the extent to which unlearned knowledge remains readily accessi-
ble through prompt manipulation.

Therefore, our results suggest that the target knowledge is often not truly erased by unlearn-
ing methods. Only by explicitly emphasizing relevant keywords in prompt, the supposedly “un-
learned” knowledge can be recovered.

6 WHY CATASTROPHIC FORGETTING HAPPENS?

It is also known that unlearning can induce catastrophic forgetting (), where the model unintention-
ally loses other useful knowledge unrelated to the target, or even degenerates to producing meaning-
less outputs (e.g., “........”). Such behavior typically arises when the unlearning strength is too high,
for example when no regularization is applied or when training continues for excessive epochs. We
examine this phenomenon in this section.

Building on our earlier finding in Section 4 that unlearning disrupts models’ focus on prompt tokens,
we hypothesize that catastrophic forgetting may arise from a similar mechanism. To test this, we
apply UNPACT to analyze cases of catastrophic forgetting.

7
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Answer after unlearning: ••••••••••••••••••••••••••••••••

Answer after unlearning: ••••••••••••••••••••••••••••••••

Answer after unlearning: ••••••••••••••••••••••••••••••••

Catastrophic Forgetting

Figure 5: All prompt tokens are ignored
when unlearning elicits catastrophic forget-
ting, where LLMs generate nonsense outputs.

Figure 5 shows that when catastrophic forgetting
occurs, the LLM neglects all tokens in the prompt,
and consequently generates nonsensical outputs re-
gardless of the input prompt. This interpretation
also aligns with the mechanism of unlearning algo-
rithms: they penalize the model on input text con-
taining the target knowledge. However, these texts
inevitably contain many irrelevant tokens alongside
the target ones. For example, in the prompt of Fig-
ure 5 “When did Samuel Paty get killed?”, only
“Samuel Paty” and “killed” are directly tied to the
target knowledge, while common words such as
“When”, “did”, and “get” are not. However, since
the unlearning loss does not distinguish between
relevant and irrelevant tokens, it inadvertently dis-
rupts the model’s reliance on the latter as well, lead-
ing to a collapse in general performance.

In short, our results suggest that catastrophic forgetting arises from indiscriminate penalization of
all tokens during unlearning, including common words (e.g., “get”, “do”, “on”) that are essential
for LLMs’ general performance.

7 THE DILEMMA OF UNLEARNING

Taken together, our findings indicate that current unlearning methods face a dilemma which is hard
to avoid: either the supposedly “unlearned” knowledge remains recoverable, or the model suffers
catastrophic forgetting that collapses general performance. Yet a reliable unlearning method should
achieve both goals simultaneously: making knowledge unrecoverable while preserving normal per-
formance (Nguyen et al., 2025; Deep Singh et al., 2025).

To better understand how far current approaches are from this goal, we introduce a pair of comple-
mentary metrics. The recovery rate (defined in Section 5.2) quantifies how easily forgotten knowl-
edge can be restored. The destructive rate measures the extent to which the model produces irrele-
vant or nonsensical answers, serving as an indicator of catastrophic forgetting. Together, these two
metrics capture the trade-off between insufficient unlearning and overly destructive unlearning.

GAGD

GAKL

NPOGD
NPOKL

RMU
TV

Gap to Reliable 
Unlearning

Limit of 
Existing 
Methods

Dilemma of Unlearning

D
es

tr
uc

tiv
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Figure 6: Current unlearning methods face a
dilemma, remaining a gap to reliable unlearning.

For each unlearning method, we adopt hyper-
parameters recommended as optimal in mile-
stone works (Shi et al., 2024; Li et al., 2024c)
to ensure fair comparison. To probe catas-
trophic forgetting, we further increase the train-
ing epochs slightly beyond the recommended
values, which is known to elicit stronger for-
getting effects. During the unlearning process,
we save checkpoints at every 20% of progress
and evaluate both recovery rate and destructive
rate across these checkpoints.

Figure 6 illustrates the performance regions of
different unlearning methods, represented by
the minimum convex polygons covering all five
checkpoints during training. Each method ex-
hibits distinct strengths and weaknesses. For in-
stance, NPOKL evolves from high recoverabil-
ity toward high destructiveness as training pro-
gresses, with an intermediate point that reflects a partial trade-off between the two metrics. RMU
is less prone to catastrophic forgetting but also struggles to further reduce the recovery rate. To
approximate the performance frontier, we connect the checkpoints closest to the origin (which rep-
resents reliable unlearning). The resulting boundaries highlight that current mainstream unlearning
methods still remain a gap to reliable unlearning.
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In short, our results reveal that existing unlearning methods trade off between the dilemma of
insufficient forgetting and catastrophic forgetting, leaving reliable unlearning still out of reach.

8 RELATED WORK

Machine unlearning. Generally speaking, machine unlearning seeks to eliminate specific informa-
tion from a model while preserving its overall performance (Thaker et al., 2025; Jia et al., 2024;
Yuan et al., 2024; Bourtoule et al., 2021). Early research works primarily address classification
tasks (Pawelczyk et al., 2023; Wang et al., 2023; Tanno et al., 2022; Guo et al., 2019). More recent
works have expanded the scope to generation tasks of LLMs (Yuan et al., 2024; Li et al., 2024c;
Sheshadri et al., 2024; Maini et al., 2024), which our work focuses on. Mainstream methods of
LLMs unlearning primarily rely on parameter optimization, which needs to fine-tune the model on
a forgetting set (Tamirisa et al., 2024; Choi et al., 2024). However, such methods are likely to harm
the overall performance, resulting in catastrophic forgetting (Huang et al., 2024; Li et al., 2024a; Liu
et al., 2024). Researchers therefore propose regularizers for utility preservation that either improve
the performance on a retain set (Liu et al., 2022) or ensure the unlearned model remains close to the
target model during unlearning (Maini et al., 2024).

Questions on unlearning. Despite the growing interest of unlearning, some recent works ques-
tion its effectiveness from different perspectives. Ji et al. (2024) shows that unlearning suffers from
a challenge of catastrophic forgetting, where LLMs’ performance degrades significantly Li et al.
(2024a); Luo et al. (2023). (Hong et al., 2024; Jin et al., 2024; Patil et al., 2023) have shown
that it is possible to recover unlearned content using existing unlearning heuristics such as resid-
ual knowledge, model weights edit. Shumailov et al. (2024) proposes a concept that when related
knowledge is introduced in-context, the unlearned LLMs behave as if it know the forgotten knowl-
edge. Lynch et al. (2024); Hu et al. (2025); Qi et al. (2023) show that fine-tuning on the unlearned
data, loosely related data, or even unrelated information can recover unlearned content. However,
our work interprets and recovers unlearned content from a prompt perspective, which is effective for
closed-sourced models.

Interpretability of LLMs. We summarize the interpretability of LLMs from two aspects. (1)
Mechanistic interpretability analyzes model internals to reverse engineer the algorithms learned by
the model (Belrose et al., 2023; Geiger et al., 2021; Elhage et al., 2021; Cammarata et al., 2021).
These works decode intermediate representations that require open-sourced LLMs. (2) Prompt in-
terpretability analyzes the input prompt to explain model behaviors. (Feng et al., 2024) projects
input tokens into the embedding space and estimates their significance. (Han et al., 2025) analyzes
the impact of specific question tokens on the output. (Dong et al., 2024; Miglani et al., 2023; Zhang
et al., 2024a) leverage prompt tokens’ saliency to understand LLMs’ behavior. To broaden the use
scope to closed-sourced LLMs, we take the latter approach to design UNPACT, which perturbs each
prompt token to see its impact on output logits, without the requirement of LLMs’ internal states.

9 CONCLUSION

In this work, we investigate unlearning for LLMs through the lens of interpretability. We introduce
UNPACT which quantifies token-level influences and enables direct comparisons between pre- and
post-unlearning models. Using six unlearning methods, three LLMs, and three benchmarks, we
provided new insights into why unlearning appears to work, whether knowledge is truly removed,
and why catastrophic forgetting emerges. Our results reveal that: (1) unlearning appears to be
effictive by disrupting LLMs’ focus on keywords that support the correct answer; (2) the target
knowledge is often not erased and can be recovered through simple keyword emphasis in prompt;
(3) catastrophic forgetting arises from indiscriminate penalization of all tokens.

Taken together, these findings highlight an unlearning dilemma: current methods are either insuf-
ficient — knowledge remains recoverable, or overly destructive — general performance collapses.
Reliable unlearning lies in a narrow and unstable middle ground, suggesting that achieving both
irrecoverable forgetting and preserved utility remains an open challenge. We hope this paper pro-
vides a foundation for future work on developing unlearning methods that are both effective and
interpretable, and for establishing principled standards of what it means to “forget” in LLMs.

9
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A EXTENDED PRELIMINARIES

As mentioned in Section 2, We conducted experiments on Books, News, and WMDP using unlearn-
ing methods such as GA, NPO, and TV. These experiments aim to answer three questions closely
associated to unlearning. In this section, we will introduce these methods and datasets in detail.

Notations. Consider an LLM which has learned parameterized by θ, whose hidden states of the
model at layer l denoted as M(·). Given an input x, it gives the probability distribution over the
next tokens p(·|x; θ). The fine-tuning process on dataset D = {(xi, yi)}Ni=1 aims to minimize the
prediction loss ℓ(y|x; θ) = − log p(y|x; θ), where p(y|x; θ) =

∏T
t=1 p(yt|x ◦ y<t; θ), T is the

number of tokens in the sequence y, yt is the t-th token, y<t is the prefix up to t, and ◦ denotes
string concatenation. LLM unlearning requires the unlearned model parameterized by θu to forget
a specific forget set DF ⊆ D while maintaining performance on the retain set DR = D \ DF ,
compared to the initial learned model θl.

A.1 DETAILS OF UNLEARNING METHODS

• Gradient Ascent (GA) (Jang et al., 2022) performs an optimization on the model that is oppo-
site to conventional learning with gradient descent, which is the most straightforward way for
unlearning. Specifically, it maximizes the prediction loss on forgetting set.

−E(x,y)∼DF
[− log p(y | x; θ)] . (5)

• Negative Preference Optimization (NPO) (Zhang et al., 2024b) builds on DPO (Rafailov et al.,
2023) to treat the forget set as negative preference data (ignore positive terms in DPO loss),
assigning low likelihood to forgetting set without staying too far from the learned model.

− 2

µ
E(x,y)∼DR

[
log σ

(
−µ log

p(y | x; θ)
p(y | x; θl)

)]
(6)

where σ is the sigmoid function and µ is a hyperparameter which we fix 0.1 in experiments.
• Task Vector (TV) (Ilharco et al., 2022) manipulates model weights to subtract the portion related

to the forgetting set. Specifically, we first train the initial learned model θl on forgetting set until
an overfitting model θover. We then obtain a task vector related to the weight portion of forgetting
by computing the difference θover − θl. Unlearning is achieved by subtracting this task vector
from the original learned model θu = θl − (θover − θl).

θu = θl − (θover − θl). (7)

• Representation Misdirection for Unlearning (RMU) (Li et al., 2024c) Specifically, RMU em-
ploys a dual loss function mechanism: the forget loss disrupts the integrity of internal represen-
tations by steering the activation vectors of hazardous data toward random directions, rendering
the model unable to correctly decode the relevant information; the retain loss ensures that the ac-
tivation patterns of benign data remain consistent with the original model through regularization,
thereby maintaining the model’s general capabilities.

ExF∼DF

1

TF

∑
xFt∈xF

||Mu(xFt
)− c · u||22 + α · ExR∼DR

1

TR

∑
xRt∈xR

||Mu(xRt
)−Mfro(xRt

)||22

(8)

We also consider the following two regularization loss to maintain performance:

• Gradient Descent (GD) (Maini et al., 2024; Zhang et al., 2024b) simply use the prediction loss
during training on the retain set, with a standard gradient descent learning objective. This ap-
proach is straightforward and computationally efficient, as it only requires forward and backward
passes on the data to be retained. The formula is as follows.

E(x,y)∼DR
[− log p(y | x; θ)] . (9)

• KL Divergence Minimization (KL) (Maini et al., 2024; Zhang et al., 2024b) minimizes the KL
divergence of the prediction distribution between pre- and post-unlearning models. By maintain-
ing distributional consistency, KLR helps prevent catastrophic forgetting and preserves model
utility on retained data. The formula is as follows.

E(x,y)∼DR
[KL(p(y | x; θ) ∥ p(y | x; θl))] . (10)
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A.2 DETAILS OF DATASETS

We use the models which have learned related knowledge parameterized by θl as the target for
unlearning. Notably, unlearning is performed on the text corpus, and evaluation is done on question-
answer pairs derived from the corpus, which can quantify LLMs’ memorization of knowledge on
DF and DR. The text and pair are shown in Table 3.

Dataset Example

News
Text: Sweden’s Loreen won the competition for the second time with her pop anthem Tattoo.

Evaluated question: Which song did Sweden’s Loreen win the Eurovision Song Contest with?
Ground truth answer: Tattoo

Books

Text: “Look there,” said Hagrid, “see ... on the ground? ... That’s unicorn blood.”

Evaluated question: What specific type of blood did Hagrid point out on the ground?
Ground truth answer: unicorn blood

WMDP

Evaluated question: Which secretion system has been found in B. mallei?
A. T2SS, B. T6SS
C. Both, D. Neither
Ground truth answer: A

Table 3: Examples of datasets to unlearn. Unlearning is performed on the text and evaluation is on
question-answer pairs derived from the text.

B GRID SEARCH OF THRESHOLD

As mentioned in Section 3, we define KEYTOKENS as follows:

K(x, y) =

{
{xi | C(xi, y) > 0}, if less than β

{xi | N(C(xi, y)) > α}, otherwise
(11)

For the hyperparameter α, β from this equation, we perform a grid search to determine their values.
Specifically, we iterate within the range of [0.1, 0.5] for α, β, and compute the difference of number
of focused KEYTOKENS between correct and incorrect response cases. Figure 7 shows that we can
determine the best hyperparamters as α = 0.22, β = 0.24

Figure 7: Grid search of hyperparameters α = 0.22, β = 0.24.
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C LIMITATION OF ROUGE-L

Since ROUGE-L was proposed by (Lin, 2004), it has become a widely evaluation metric (Shi et al.,
2024). It is computed based on the longest common subsequence match, The formula is as follows:

Rlcs =
LCS(X,Y )

m
(12)

Rlcs =
LCS(X,Y )

n
(13)

ROUGE-L =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
(14)

where LCS(a, b) is the length of longest common subsequence between a and b, X is a reference
sentence and Y is a candidate sentence, whose sizes are respectively m and n, β is a hyperparameter.

ROUGE-L measures the similarity between two sentences from the perspective of words and phrases.
However, it lacks the capability to assess semantic-level equivalence, such as recognizing synonyms.
Our experimental findings further corroborate that ROUGE-L is not invariably a reliable metric. In
certain instances, it fails to adequately capture the similarity to the ground truth.

In the question “How much data did Kristopher and his team steal from a prominent Russian
weapons-maker in January?”, ground truth is “100gigabytes”, and the LLM responds “100GB”.
Though they are the same in semantic-level assessments, the ROUGE-L score is 0. Furthermore,
our statistical analysis reveals that 37.5% of the correct answers possess a ROUGE-L score of less
than 20. so relying solely on ROUGE-L for answer evaluation may lead to misjudgments, especially
when there is diversity in the expression of answers.

To more effectively capture semantic-level information and mitigate the impact of synonyms on
ROUGE-L scores, we employed an LLM during the judge phase. This was achieved by utilizing a
prompt template to provide the LLM with the question, ground truth, and the LLM-generated an-
swer. The LLM assesses the correctness and provides “Yes” or “No” and a rationale for its judgment.
The prompt template is presented below.

Prompt Template of LLM Judge

You are a grading assistant. Your task is to compare a student’s answer with the reference answer and
determine whether the student’s answer is content-wise equivalent to the reference answer, even if it is
expressed in a different way.
Please focus on semantic similarity rather than wording or structure. If the student’s answer conveys the
same key points, facts, and reasoning as the reference answer, it should be considered correct.
The student’s answer may contain extra information that is unrelated to the question. Please ignore such
irrelevant parts.
Reference Answer:
{reference}

Student Answer:
{student}

Question:
{question}

Does the student’s answer match the reference answer in terms of meaning? Answer “Yes” or
“No”, and briefly explain your reasoning.
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D HOW TO COMPARE KEYTOKENS?

As mentioned in Section 4, we adapt cosine similarity (i.e., CS(·, ·)) (Xia et al., 2015) to quantify
the difference between KEYTOKENS before and after unlearning:

CS(V (Kpre), V (Kpost)) > γ, (15)

where V (·) transfers a set of tokens to an indicator vector which facilitate computation, and γ = 0.5
is determined through grid search of hyperparameter.

Specifically, suppose the KEYTOKENS before and after unlearning is (“Harry”, “Potter”) and
(“Harry”). V (·) gives the occurrence list of both KEYTOKENS before and after unlearning, i.e.,
V (“Harry”, “Potter”) = [1, 1] since “Harry”:1 and “Potter”:1, V (“Harry”) = [1, 0] since “Harry”:1
and “Potter”:0. Then, we compute the cosine similarity CS([1, 1], [1, 0]) = 0.71 > 0.5, indicating
that the KEYTOKENS before and after unlearning is similar.

E QUESTION TOKENS FACILITATE RECOVERY

As mentioned in Section 5, we observe that question tokens within prompts facilitate knowledge
recovery. Figure 8 shows an example. KEYTOKENS for correct response is “Germany” and “Sat-
urday”. Emphasizing the question token “Which” along with KEYTOKENS make the LLM focus
on the question token itself, and successfully recover focus on “Saturday”. And the “unlearned”
knowledge is also recovered.

A plausible explanation of this phenomenon is that the limited question-answering capability of the
Llama2-7B model results in lower sensitivity to question tokens (Han et al., 2025), thereby affecting
response quality. Therefore, we slightly modify Kpre by adding the question token.

Figure 8: Question token “Which” facilitates KEYTOKENS focus and knowledge recovery.
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F RECOVERING “UNLEARNED” KNOWLEDGE

Figure 9 shows more examples of recovering “unlearned” knowledge unveiled by UNPACT. Simi-
larly, redder token means more positive contribution; bluer token means more negative contribution.
In Section 5, Figure 4 shows “unlearned” knowledge can be readily recovered by focusing on correct
KEYTOKENS within prompt.

Following the observation, we turn our attention to the top case for further analysis. Initially, learned
LLMs focused on the KEYTOKENS “in”, “Isra”,“strike” and “ards”, therefore answered correctly.
After unlearning, none of the KEYTOKENS was focused on, so unlearning works. Then, we applied
FOCUSONKEY and discovered that some of KEYTOKENS before unlearning received renewed at-
tention. As a result, the “unlearned” knowledge was recovered.

The analysis of the bottom case aligns above. For initial response, LLMs concentrated on the cor-
rect KEYTOKENS, resulting in accurate responses. After unlearning, LLMs shifted their focus to
incorrect KEYTOKENS, which led to wrong answers. Subsequently, the application of FOCUSON-
KEY enabled the LLMs to appropriately refocus on KEYTOKENS in the input question, thereby
successfully recovering the previously “unlearned” knowledge.

Figure 9: Simply emphasizing KEYTOKENS can recover “unlearned” knowledge. Redder token
means more positive contribution; Bluer token means more negative contribution.

G WHY UNLEARNING CAN WORK?

Figure 10, Figure 11, and Figure 12 show more examples of Figure 3 in Section 4. Redder token
means more positive contribution; Bluer token means more negative contribution. In Section 4, we
observed that unlearning succeeds or fails because it disrupts or does not disrupts LLMs’ focus on
KEYTOKENS for correct response.
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Figure 10: When target knowledge is forgotten, LLMs lose focus on KEYTOKENS ; When target
knowledge is retained, LLMs still focus on KEYTOKENS. Redder token means more positive con-
tribution; Bluer token means more negative contribution. This figure is continued in Figure 11.
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Figure 11: When target knowledge is forgotten, LLMs lose focus on KEYTOKENS ; When target
knowledge is retained, LLMs still focus on KEYTOKENS. Redder token means more positive con-
tribution; Bluer token means more negative contribution. This Figure is continued from Figure 10
and continued in Figure 12.
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Figure 12: When target knowledge is forgotten, LLMs lose focus on KEYTOKENS ; When target
knowledge is retained, LLMs still focus on KEYTOKENS. Redder token means more positive con-
tribution; Bluer token means more negative contribution. This figure is continued from Figure 11.
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