
Modeling Cognitive Strategies in Teaching

Sevan K. Harootonian
Department of Psychology

Princeton University

Thomas L. Griffiths
Department of Psychology

Department of Computer Science
Princeton University

Yael Niv
Department of Psychology

Princeton Neuroscience Institute
Princeton University

Mark K. Ho
Department of Psychology

New York University

Abstract

Teaching is a complex social behavior that sometimes results from goal-directed
processing. However, goal-directed teaching is cognitively demanding since it
requires actively assessing and correcting gaps in a learner’s knowledge. When do
people teach using such mentally effortful strategies versus falling back on more
cognitively frugal ones? Here, we investigated this question using a combination of
novel behavioral experiments and computational theory. We found robust individual
differences in people’s teaching strategies: some participants spontaneously teach
using high-effort processing (e.g., Bayesian theory of mind and model-based
planning) while others engage in low-effort processing (e.g., model-free heuristics).
Our results and analyses provide a novel demonstration of how people engage in
planning versus heuristics when teaching, as well as how people adapt processing
to avoid mental effort in social interactions.

1 Introduction

Humans are unmatched in their achievements as a species, from acquiring language and solving
complex problems to creating sophisticated technologies like microprocessors and modern societies.
These accomplishments are attributed to our extraordinary capacity for flexible learning, which
enables abstract thinking and advanced reasoning—skills that modern machine-learning models strive
to replicate [12]. However, much of our knowledge is actually acquired through social interactions,
and behind every exceptional person, there is often a teacher or mentor figure who has significantly
influenced their thinking [21, 16]. Despite the prevalence of teaching and mentoring, from indigenous
tribes passing down traditions to university classrooms, the cognitive strategies that teachers employ
to facilitate effective learning remain largely unexplored[4].

Teaching is challenging because it requires teachers to infer which information will most benefit the
learner’s understanding and performance. This process often relies on theory of mind—the ability to
attribute mental states such as beliefs, desires, and intentions to others. Effective teaching requires the
teacher to infer the learner’s knowledge state and predict how the learner will interpret and respond to
the provided information [3, 5, 17]. This has been modeled through frameworks like Bayesian Theory
of Mind [8, 1, 9, 10] and Rational Speech Act models [18, 7, 2], which formalize how teachers
anticipate learners’ responses by considering how their beliefs change with different inputs. These
models view teaching as rational communication, where teachers act as rational agents, choosing
actions based on expected utility, including the learner’s belief updates [2]. They suggest that goal-
directed teaching strategies, relying on mental state inference, enable flexibility and adaptability,
allowing teachers to tailor methods to the learner’s progress [14].
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On the other hand, teaching can also be guided by more habitual and automatic behaviors. The
habitual and automatic approach relies on ingrained routines or heuristics, where actions that have
been previously effective are performed with minimal conscious thought or adaptation to the specific
context. Heuristic strategies, less emphasized in teaching research, are often modeled through simpler,
rule-based approaches that capture how teachers might default to well-practiced patterns of instruction
without actively considering the learner’s current knowledge state [6, 20, 11, 19]. Heuristics offer a
lower cognitive-cost alternative by relying on simple decision rules or “shortcuts” that can be executed
rapidly and with minimal mental effort, making them efficient in many teaching scenarios. However,
this efficiency comes at the cost of reduced flexibility. Habitual strategies, driven by heuristics, may
persist even in situations in which they are not the most effective approach, particularly in novel
teaching environments [22].

Both goal-directed and habitual systems can be considered optimal and rational within their respective
contexts, aligning with the broader concept of resource-rationality. According to this framework,
individuals optimize their cognitive strategies not just to achieve their goals but also to manage their
cognitive resources efficiently [13]. For example, to conserve cognitive resources, a teacher might
rely on habitual strategies in familiar or low-stakes situations, while engaging in more goal-directed
behavior when the stakes are higher or the learning context is novel or complex.

Building on these insights, here we investigate the cognitive strategies that individuals employ when
teaching. We developed a novel Graph Teaching Task to measure individual variability in teaching
strategies, and to distinguish between heuristic-based and mental-state inference-based approaches.
Our findings reveal significant individual differences in teaching strategies, with some participants
favoring heuristic-based methods while others engage in more theory of mind reasoning.

2 Methods

Task: Participants acted as teachers in the experiment. They were shown a graph with possible edges
connecting nodes with rewards to be collected, and a single path from top to bottom already taken by
the learner. Participants were instructed that the learner may not know all the possible edges (paths)
between nodes and that they had taken a path that collected as many points as they could, given their
knowledge (Figure 1). The participant’s task was to teach the learner one edge to help the learner
improve their performance as much as possible. Critically, there was no feedback presented, meaning
that the teachers did not know whether their teachings had helped the learner’s performance. The task
consisted of 40 trials, each featuring a new learner with a new graph.

Figure 1: An example trial from experi-
ment 1 where the nodes represent reward
values, grey edges are possible paths, and
dark edges indicate the learner’s previous
path attempting to collect the most points.
This is a directed deterministic graph where
the learner can only move downwards.

Participants: One hundred participants (61 female, 31 male; mean age: 34 ± 10.38 years) were
recruited from Prolific. Participants earned an average of $4.02 ± $1.26 and spent 19.16 ± 10.39
minutes on the experiment. One participant who expressed confusion about the task was removed
from the analysis, and no participant performed below chance level. This study was approved by the
Institutional Review Board of Princeton University, and all participants provided informed consent
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3 Modeling Approach

We used two types of models to explain participant behavior: Bayesian inference models and heuristic-
based models. The Bayesian models aim to infer the learner’s knowledge and maximize the utility of
teaching an edge, while the heuristic models rely on task features rather than learner features.

3.1 Bayesian Mentor Models

The Bayesian Mentor models consist of three variants: the Optimal Bayesian Mentor (OBM), the
Naive Bayesian Mentor (NBM), and the Prior-only Mentor (POM). Each model follows the same
general structure: (1) modeling the learner’s behavior, (2) inferring the learner’s knowledge, and (3)
calculating the utility of teaching each edge.

Learner Model: We model the learner as an agent navigating a directed deterministic graph,
represented as a Markov Decision Process ML = ⟨S, TL, R⟩, where S is the set of nodes (states),
TL is the learner’s transition model (a subset of the true transitions T ), and R is the known reward
function, which assigns rewards to each node. The learner follows an optimal policy, resulting in a
trajectory ζ = {s0, s1, ..., sT }.

Utility Calculation: For each Bayesian model, the utility of teaching an edge e = (s, s′) is the
improvement in the learner’s performance, defined as the difference in cumulative reward between
the learner’s current trajectory ζ and the new trajectory ζe:

U(e | ζ) =
∑
TL

P (TL | ζ) (G(ζe)−G(ζ)) (1)

where G(ζ) is the cumulative reward, and P (TL | ζ) is the probability distribution over the learner’s
transition model.

Inference Variants: The main difference between Bayesian models is in how P (TL | ζ) is computed.

Optimal Bayesian Mentor (OBM): The OBM infers the learner’s transition model TL by considering
the likelihood of the observed trajectory ζ under the learner’s optimal policy:

POBM(TL | ζ) ∝ P (ζ | TL)P (TL) (2)

Here, P (ζ | TL) is computed via inverse planning, representing the likelihood of the trajectory ζ
given TL, and P (TL) is a uniform prior over valid transition models.

Naive Bayesian Mentor (NBM): The NBM uses a simplified likelihood function that assigns
probability 1 if the learner’s transition model TL is consistent with the observed trajectory ζ, and 0
otherwise:

PNBM(TL | ζ) ∝
{
1, if ζ ⊆ TL
0, otherwise

(3)

This means the NBM considers all TL that include ζ, without evaluating the optimality of the
trajectory.

The Prior-only Mentor (POM) does no inference but rather assumes a uniform prior over all possible
transition models.

3.2 Heuristic Mentor Models

Heuristic Mentor models rely on simple task features to select edges, offering a low-cost alternative
to Bayesian models that is adjusted to the task at hand, but not to the specific learner.

Reward Heuristic: This heuristic prioritizes edges based on the sum of rewards at connected nodes:
FReward(ei,j) = R(si) +R(sj), with higher reward sums indicating higher utility.

Level Heuristic: This heuristic considers the vertical position of edges. Top edges (closer to the
start) can be riskier but more impactful, while bottom edges are typically safer. The feature is defined
as FLevel(ei,j) = j, with the regression model capturing individual differences in risk tolerance.
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4 Results

We observed significant individual differences in Teaching Scores1, indicating that participants may
be using different teaching strategies (Figure 2A). The dotted vertical lines represent the performance
of different models, with the Bayesian mentor models outperforming the heuristic models. The
bimodal distribution of participant scores in Figure 2 suggests the dominance of two primary teaching
strategies: a heuristic-based strategy (perhaps a combination of the Reward and Level heuristics) and
a mentalizing-based strategy, which involves either a noisy optimal inference (OBM), a suboptimal
inference (NBM), or no inference at all (POM).

To further understand the teaching strategies employed by participants, we computed Bayesian
Information Criterion (BIC) scores for each model for each subject. Figure 2B shows the mean
BIC scores with 95% confidence intervals for the different models (black circles with whiskers),
together with individual BIC scores represented by colored points, where the color reflects each
participant’s teaching score. Lower BIC scores indicate a better fit, and the two best-fitting models
are the mixture heuristic model of Level & Reward and OBM. As can be seen by the colors of the
dots, the mixture heuristic model fit the lower-performing individuals best (blue hues) while OBM
fit the higher-performing individuals best (yellow hues). This finding strengthens our hypothesis
that different individuals are using distinct mental strategies to teach. Although the mixture heuristic
model provided a significantly better fit for the dataset as a whole (Mann-Whitney U test: U =
4060, n1 = 99, n2 = 99, p = 0.037), Figure 2C shows a higher number of subjects were best
fit by the OBM model (with at least a ∆BIC ≥ 10, which is considered "very strong" evidence
against models with higher BIC [15]). Again, we see that the best fit individuals for OBM are the
higher-performing ones, further supporting our hypothesis.

A B

C

Figure 2: A) Histogram of participants’ average Teaching Score across 40 trials. The dotted vertical
lines represent the performance of each model as a pure teaching strategy. B) BIC scores for different
models across subjects.The x-axis show the 95% CI of the mean BIC. The colored points are BIC
scores for individual and the color reflecting their Teaching Score. C) Bar plot of the number of
subjects best fit by each model with at least a ∆BIC ≥ 10. Colors in B,C represent individuals’
average performance as per A.

5 Conclusion

Our study reveals significant individual differences in teaching strategies, ranging from cognitively
demanding goal-directed approaches to simpler heuristic-based methods. Using a novel Graph
Teaching Task, we demonstrated that while some participants engage in complex mental-state
reasoning, others rely on "quicker", model-free heuristics. 2 Those using goal-directed strategies

1As a normalized performance metric, we calculated a “Teaching Score” for each trial by dividing the
additional points the average learner (given the current graph) would have gained from the participant’s teaching
by the points the learner would have gained from the optimal edge, as determined by the Optimal Bayesian Mentor
model. This normalization ensured that trials with graphs yielding more points would not be overweighted
compared to other trials, providing a normalized measure of performance across different graph configurations.

2The task was not designed as a reaction time task, hence we can’t confirm if the heuristics were faster to use.

4



performed better, as shown by their higher Teaching Scores and closer fit to the Optimal Bayesian
Mentor model, highlighting the adaptive nature of teaching strategies based on cognitive effort and
task complexity.

These findings suggest that understanding how humans adaptively balance heuristic and goal-directed
teaching strategies can inform the development of autonomous systems that learn and interact with
humans in complex environments. By modeling this flexibility, machines could better adapt to
evolving contexts and engage more effectively by adjusting their strategies based on human behavior.
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