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Abstract

Inverse reinforcement learning is the problem of inferring a reward function from an optimal
policy or demonstrations by an expert. In this work, it is assumed that the reward is
expressed as a reward machine whose transitions depend on atomic propositions associated
with the state of a Markov Decision Process (MDP). Our goal is to identify the true reward
machine using finite information. To this end, we first introduce the notion of a prefix
tree policy which associates a distribution of actions to each state of the MDP and each
attainable finite sequence of atomic propositions. Then, we characterize an equivalence class
of reward machines that can be identified given the prefix tree policy. Finally, we propose
a SAT-based algorithm that uses information extracted from the prefix tree policy to solve
for a reward machine. It is proved that if the prefix tree policy is known up to a sufficient
(but finite) depth, our algorithm recovers the exact reward machine up to the equivalence
class. This sufficient depth is derived as a function of the number of MDP states and (an
upper bound on) the number of states of the reward machine. These results are further
extended to the case where we only have access to demonstrations from an optimal policy.
Several examples, including discrete grid and block worlds, a continuous state-space robotic
arm, and real data from experiments with mice, are used to demonstrate the effectiveness
and generality of the approach.

1 Introduction

Several frameworks exist for solving complex multi-staged tasks, including hierarchical reinforcement learning
(HRL) (Pateria et al., 2021), reward machines (RMs) (Icarte et al., 2018) and linear temporal logic (LTL)
specifications (Chou et al., 2020; Vaezipoor et al., 2021). HRL leverages a decomposition of tasks into
subtasks, enabling agents to focus on solving smaller, manageable problems before integrating solutions into
a higher-level policy (Sutton et al., 1999). On the other hand, RM and its generalizations (Corazza et al.,
2022) encode task-specific knowledge as finite-state machines, capturing temporal dependencies and logical
constraints in a concise and interpretable manner, similar to LTL. This structure simplifies policy learning
and improves efficiency, especially in environments with long horizons or sparse rewards.

As an extension to inverse reinforcement learning (IRL) (Ng and Russell, 2000), one could ask the ques-
tion of learning RMs, which enables agents to autonomously extract structured representations of tasks,
significantly enhancing their ability to solve complex, temporally extended problems. By learning reward
machines directly from demonstrations, agents can adapt to tasks without requiring manually specified task
representations, making this approach scalable and practical for real-world applications, such as robotic ma-
nipulation and autonomous vehicle navigation (Camacho et al., 2019; Icarte et al., 2023; Xu et al., 2020; Baert
et al., 2024; Camacho et al., 2021). This capability is especially valuable in environments where high-level
task-relevant features (aka, atomic propositions) are observable, underscoring the importance of learning
RMs in advancing autonomous decision-making systems. For instance, in a high-level indoor navigation or
patrolling task, semantic room labels can act as such propositions. Beyond autonomy applications, IRL and
RM learning can also be used to infer the agent’s (e.g., humans’) intentions to design incentives or better
decision making environments (Nitschke et al., 2024). As will be demonstrated, such intent inference can
also be used in neuroscience to analyze animal behavior and decision-making.
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Some of previous work on learning reward machines from data either assumes that the machine’s states are
observed (Araki et al., 2019) or the reward is observed (Xu et al., 2020; Icarte et al., 2023; Hu et al., 2024;
Abate et al., 2023). In the latter case the problem becomes finding a reward machine consistent with the
observed input-output traces. Other work (Hasanbeig et al., 2024; 2021; Furelos-Blanco et al., 2020) infers
reward machines by combining automata synthesis with reinforcement learning and querying the environment
for experiences. Others (Xu et al., 2021; Memarian et al., 2020) use the standard L∗ algorithm for automata
learning (Angluin, 1987) to learn a consistent reward machine. This assumes access to an oracle that can
answer membership and conjectures queries. There are also works that only use observations of atomic
propositions (Camacho et al., 2021; Baert et al., 2024), similar to us; however, they are limited to single-
stage goal reaching tasks, where the RM has a simple structure that is merely used to obtain dense rewards.
In parallel, several works aim to infer an LTL specification from demonstrations satisfying and/or violating
the specification (Neider and Gavran, 2018; Vazquez-Chanlatte and Seshia, 2020), requiring a potentially
large, labeled data set. Since LTL learning problem is inherently ill-posed, several regularization techniques
are used such as formula templates or concept classes.

To the best of the authors’ knowledge, no prior work has formalized and solved the problem of learning
reward machines from partially observed optimal policies directly without the need to observe the rewards
or the machine’s state. The two main challenges of this setting are 1) partial observability (the reward is not
observed, only the atomic propositions are observed), 2) partial reachability (not all transitions of the reward
machine are visited in a given environment). In this work, we address these challenges by first characterizing
what can be learned in this setting (i.e., an equivalence class of reward machines) and then proposing a
SAT-based algorithm, which provably learns a reward machine equivalent to the underlying true one. The
key insight of our algorithm is to identify pairs of atomic proposition prefixes, namely negative examples,
that lead to different nodes of the underlying reward machine from the observable optimal prefix-based
policy, and encoding these examples as constraints in the SAT problem. We show that our method can be
applied even when the optimal policy is accessible only through a finite set of optimal trajectories. To this
end, we approximate the policy from the data and replace the SAT problem with a variant called weighted
MAX-SAT that provides robustness to incorrectly labeled negative examples. We demonstrate the efficacy
of our algorithm in diverse settings, including grid-based MDPs, a robotic control task, and a real-world
dataset of mouse navigation.

Notation: Given a set X, we denote by ∆(X) and |X| the set of all valid probability distributions on X and
the cardinality of X, respectively. 1(X) denotes the indicator function of X. X∗, Xω denote the set of all
finite/infinite sequences of elements in X. For a sequence τ and non-negative integers i, j, τi denotes the ith

element of τ ; |τ | denotes the length of τ ; τend denotes the last element of τ when τ is finite; τi:j denotes the
subsequence starting with the ith element and ending with the jth; and τ:i denotes the subsequence ending
with the ith element.

2 Preliminaries and Problem Statement

2.1 Markov Decision Processes and Reward Machines

A Markov Decision Process (MDP) is a tuple M = (S,A,P, µ0, γ, r), where S is a finite set of states, A is
a finite set of actions, P : S × A → ∆(S) is the Markovian transition kernel, µ0 ∈ ∆(S) is the initial state
distribution, γ ∈ [0, 1) is the discount factor and r : S × A × S → R is the reward function. The set of
feasible state trajectories for an MDP M, denoted by Ts(M), is defined as:

Ts(M) = {(s0, s1, . . .) ∈Sω | ∃(a0, a1, . . .) ∈ Aω : P(st+1 | st, at) > 0,∀t}.

When we want to refer to finite prefixes of Ts(M), we simply use T fin
s (M), and we omit M when it is clear

from the context.

An MDP without the reward is referred to as an MDP model, and is denoted by M/r. MDP models can
be decorated with labels. We denote such labeled MDP models as ML = (S,A,P, µ0, γ, L, AP), where
L : S → AP is a labeling function that assigns to each state an atomic proposition, representing high-
level conditions satisfied at that state, from the set AP. A labeled MDP has a corresponding language
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L(ML) ⊆ (AP)ω, with L(ML) .= {σ ∈ (AP)ω | σ = L(τ), where τ ∈ Ts(ML)}, where we overload L to take
in sequences. We also define the prefixes of a language as:

Pref(L) = {w ∈ (AP)∗ | ∃x ∈ L, s.t. w is a prefix of x}.

The set of reachable states for a proposition sequence σ is:

Reach(σ) = {s ∈ S | τ ∈ T fin
s s.t. L(τ) = σ, τ|τ | = s}.

A Reward Machine (RM) is a tuple R = (U , uI , AP, δu, δr) which consists of a finite set of states U , an
initial state uI ∈ U , an input alphabet AP, a (deterministic) transition function δu : U × AP → U , and an
output function δr : U ×AP→ R. To avoid ambiguity between MDP states and RM states, the later will be
referred to as nodes. The reward machine without the reward is denoted as G ≜ R/δr, and we refer to it as
a reward machine model. We extend the definition of the transition function to define δ∗

u : U × (AP)∗ → U
as δ∗

u(u, l0, · · · , lk) = δu(· · · (δu(δu(u, l0), l1), · · · , lk). Given a state u ∈ U , we define the paths of u as the
input words which can be used to reach u:

Paths(u) = {w ∈ (AP)∗ | δ∗
u(uI , w) = u}.

We overload the operator Reach to include the set of MDP states reachable at u. It is given by:

Reach(u) = {s ∈ Reach(σ) | σ ∈ Paths(u)}.

As a running example, we borrow the patrol task from (Icarte et al., 2018). Consider the room grid world
shown in Figure 1a. It is a 4 by 4 grid where the agent can move in the four cardinal directions, with a
small probability of slipping to neighboring cells. We color-code different cells to denote the proposition label
associated with the corresponding cell. For example, all cells colored green have the high level proposition
A. The agent is tasked to patrol the rooms in the order A → B → C → D. This is captured by the
reward machine shown in Figure 1b. Assume the agent’s state trajectory starts with τ = (a1, a2, a3, b4, c1).
The proposition sequence associated with τ is σ = AAABC. The RM nodes traversed by following τ are
(u0, u1, u1, u1, u2, u3). Since c1 is the only state than can be reached with σ, we have that Reach(σ) = {c1}.
Similarly, σ ∈ Paths(u3). Each transition in the reward machine gives a reward of zero, except the transition
from u3 to u0, i.e., δr(u, l) = 1 if (u, l) = (u3, D), and zero otherwise.
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Figure 1: (a) The room grid world. (b) The patrol reward machine. (c) The room grid world with a hallway.

2.2 Markov Decision Process with a Reward Machine

A Markov decision process with a reward machine (MDP-RM) is a tuple RM = (M/r,R, L) where M and
R are defined as in Section 2.1, and L is a labeling function L : S → AP. An MDP-RM can be equivalently
seen as a product MDP MProd = (S ′,A′,P ′, µ′

0, γ′, r′) where S ′ = S × U , A′ = A, P ′(s′, u′|s, u, a) =
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P(s′|s, a)1(u′ = δu(u, L(s′))), γ′ = γ, µ′
0 ∈ ∆(S × U) with µ′

0(s, u) = µ0(s)1(u = uI) and r′(s, u, a, s′, u′) =
δr(u, L(s′)). To make the notation compact, we denote the product state by s̄ = (s, u). The product of an
MDP model with a RM model is a product MDP model G ×ML = (S ′,A′, T ′, µ′

0, γ′) defined similarly.

A trajectory of the product MDP MProd is a sequence (s̄∅, a∅, s̄0, a0, s̄1, a1, · · · ), where s̄∅ = (∅, uI) and
a∅ = ∅. An initial state s0 is sampled from µ0. The introduction of s̄∅ and a∅ at the start of the trajectory
is to ensure that s0 induces a transition in the reward machine. The reward machine thus transitions to
u0 = δu(uI , L(s0)). The agent then takes action a0 and transitions to s1. Similarly, the reward machine
transitions to u1 = δu(u0, L(s1)). The same procedure continues infinitely. We consider the product policy
πProd : DomProd → ∆(A) where DomProd ⊆ S × U is the set of accessible (s, u) pairs in the product MDP.
This policy is a function that describes an agent’s behavior by specifying an action distribution at each state.
We consider the Maximum Entropy Reinforcement Learning (MaxEntRL) objective given by:

JMaxEnt(π; r′) = Eπ
µ0

[
+∞∑
t=0

γt

(
r′(s̄t, at, s̄t+1) + λH(π(.|s̄t))

)
], (1)

where λ > 0 is a regularization parameter, and H(π(.|s̄)) = −
∑

a∈A
π(a|s̄) log(π(a|s̄)) is the entropy of the

policy π. The expectation is with respect to the probability distribution Pπ
µ0

, the induced distribution over
infinite trajectories following π, µ0, and the Markovian transition kernel P ′ (Ziebart et al., 2008). The
optimal policy π∗

Prod, corresponding to a reward function r′, is the maximizer of (1), i.e.,

π∗
Prod = arg max

π
JMaxEnt(π; r′). (2)

Optimal product MDP trajectories are trajectories of the product MDP generated using π∗
Prod. We overload

this definition to optimal trajectories of the MDP, which is generated from the optimal product MDP tra-
jectories by simply removing the u states. For the rest of the paper, optimal trajectories or demonstrations
refer to the optimal trajectories of the MDP.

2.3 Prefix Tree Policy

Since the RM is unknown and the state of the RM is unobserved, we need a representation of the agent’s
policy that is independent of the RM state u. We accomplish this by defining a prefix tree policy (PTP)
as the function that associates a distribution over the actions to each state and each finite sequence of
atomic propositions that can be generated by the MDP. It is denoted as πPTP : DomPTP → ∆(A), with
DomPTP = {(s, σ) | σ ∈ Pref(L(ML)) and s ∈ Reach(σ)}. An important remark here is that the agent is
acting according to a policy πProd(a|s, u), since the agent has access to u. The PTP in turn encodes the
information of the agent’s product policy in terms of the variables that we have access to, namely the MDP
states only. The relation between the two policies is governed by:

πPTP(a|s, σ) = πProd(a|s, δ∗
u(uI , σ)), (3)

where σ ∈ Pref(L(ML)). In particular, we say that the product policy πProd induces πPTP. We define the
depth-l restriction of a PTP as its restriction to the set

(
∪l

j=1S × (AP)j
)
∩ DomPTP. That is the policy

associated to words σ of length up to l. It is denoted by πl
PTP.

The induced PTP captures both what is observable about a product policy and what is reachable on the
product. Therefore, we can only learn a reward machine up to whatever information is available in its
induced PTP. We formalize this with the following definition.
Definition 1. Two reward machines are policy-equivalent with respect to a labeled MDP model if the
product policies obtained by solving problem (2) for each of the reward machines induce the same prefix tree
policy defined as in (3). Among all the reward machines that are policy equivalent with respect to a labeled
MDP, we define a minimal reward machine as one with the fewest number of nodes.

Several equivalence relations among reward machines in the literature are special cases of policy equivalence.
For instance, when learning finite state machines from observed rewards (Xu et al., 2020; Giantamidis
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et al., 2021), two reward machines are said to be input-output equivalent if they produce the same reward
sequence for the same atomic proposition sequence. Such input-output equivalent reward machines are
clearly policy-equivalent. Furthermore, for a trivial, i.e., one state, reward machine, our definition reduces
to the policy-equivalence definition in the standard inverse reinforcement learning problem (Shehab et al.,
2024; Cao et al., 2021).

2.4 Problem Statement

Consider a labeled MDP model ML and a prefix tree policy πtrue
PTP induced by an optimal solution of prob-

lem (2). We are interested in the following two problems in this paper:

(P1) Does there always exist a depth-l∗ such that, given the labeled MDP model ML, a bound umax

on the number of nodes of the underlying reward machine, and the depth-l∗ restriction πtrue,l∗

PTP of
the true prefix tree policy, it is possible to learn a reward machine that is policy-equivalent to the
underlying one?

(P2) If l∗ in problem (P1) exists, find a minimal reward machine that is policy-equivalent to the underlying
one.

In what follows, we first provide an algorithm that takes the labeled MDP modelML, the depth-l restriction
πtrue,l

PTP of the prefix tree policy πtrue
PTP for some arbitrary l, and the bound umax, and computes a reward machine

that induces a prefix tree policy πlearned
PTP with the same depth-l restriction, i.e., πlearned,l

PTP = πtrue,l
PTP . Then, we

prove the existence of a sufficient depth-l∗ in (P1), for which this algorithm solves problem (P2). We provide
an upper bound on l∗ in terms of the number of states in the MDP and the number of nodes in the RM.

3 Methodology

3.1 SAT Encoding

We encode the RM learning problem into a Boolean Satisfiability problem (SAT). SAT is the problem of
determining whether there exists an assignment to variables of a given Boolean formula that makes it evaluate
to true. While SAT is known to be NP-complete (Cook, 1971), there are several powerful off-the-shelf solvers
capable of solving large practical instances (Biere et al., 2009). Specifically, we use SAT to encode a graph
with n ≤ umax nodes and associate a Boolean variable with each edge in the graph. Each node has |AP|
outgoing edges. We define the Boolean variables {bikj | 1 ≤ i, j ≤ n, 1 ≤ k ≤ |AP|} as:

bikj =
{

1 if i
k→ j,

0 Otherwise,
(4)

where we use the shorthand i
k→ j to denote that proposition k transitions node i to node j, i.e., δu(ui, k) =

uj . We can encode several properties of the RM into Boolean constraints. Without loss of generality, we
set node 1 of the graph to be uI . To make the derivation easier, we define for each atomic proposition
k an adjacency matrix Bk with (Bk)ij = bikj . The Boolean constraints we add are due to determinism,
full-specification, negative examples and non-stuttering of the learned reward machine. We expand on each
of them below.

Determinism: Due to the RM being a deterministic machine, each label can only transition to one node.
The corresponding Boolean constraints are:

∀i, k, j, ∀j′ ̸= j bikj = 1 =⇒ bikj′ = 0. (5)

Full Specification: This constraint, also known as being input-enabled (Hungar et al., 2003), ensures that
all labels generate valid transitions at all nodes. The corresponding Boolean constraints are:

∀i,∀k, ∃j such that bikj = 1. (6)
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We can combine the conditions of Sections 3.1 and 3.1 into one condition on each Bk enforcing that each
row has exactly one entry with value 1.

Negative Examples: Our Boolean constraint here depends on the following result.
Lemma 1. Let σ, σ′ ∈ (AP)∗ be two finite label sequences. If πtrue

PTP(a|s, σ) ̸= πtrue
PTP(a|s, σ′), then δ∗

u(uI , σ) ̸=
δ∗

u(uI , σ′).

Proof. It follows from (3).

Based on this result, given the depth-l restriction πl
PTP of a PTP πPTP, we construct the set of negative

examples as:

E−
l = {{σ, σ′} | πl

PTP(a|s, σ) ̸= πl
PTP(a|s, σ′) for some s, a}. (7)

Let σ = k1k2 · · · kl and σ′ = k′
1k′

2 · · · k′
m be two propositional prefixes that lead to different policies in the

same state, therefore {σ, σ′} ∈ E−
l . We encode the condition given by Lemma 1 into Boolean constraints as:

(B⊺
kl

B⊺
kl−1
· · ·B⊺

k1
e1)

∧
(B⊺

k′
m

B⊺
k′

m−1
· · ·B⊺

k′
1
e1) =

[
0 0 · · · 0

]⊺
, (8)

where
∧

is the element-wise AND operator and e1 ≜ [1, 0, · · · , 0]⊺ indicates that the paths start from the
initial node. Our algorithm adds the Boolean constraint given in (8) for each element of E−. The significance
of encoding negative examples is that it eliminates the learning of trivial reward machines. In particular,
our method never learns a trivial one-state reward machine with all self-transitions (Icarte et al., 2023) as
long as there is at least one negative example in our prefix tree policy.

Non-Stuttering: A reward machine is said to be non-stuttering if when a proposition transitions into
a node, that same proposition can not transition out of the node, i.e., for all (u, a, u′) ∈ U × AP × U :
δu(u, a) = u′ =⇒ δu(u′, a) = u′. This is related to multi-stage tasks where the particular duration spent
on a subtask (i.e., satisfying a given atomic proposition) is not important (Baier and Katoen, 2008). When
the reward machine is a priori known to be non-stuttering, this extra condition can be included in the SAT
problem. The main significance of this condition is trace-compression (Icarte et al., 2023), by which we can
reduce the number of negative examples in E− by only keeping the shortest negative examples among the
equivalent ones. In this case, two negative examples are equivalent if between two pairs, the corresponding
label sequences differ only by the same proposition repeated consecutively more than one time. We encode
non-stuttering into Boolean constraints as follows:

∀i, j, k : bikj = 1 =⇒ bjkj = 1. (9)

The utility of this constraint is demonstrated empirically in Section 5.1.

3.2 Algorithm

To learn a minimal reward machine from the depth-l restriction of a prefix tree policy, we proceed as follows.

We start with one node and increases the number n of nodes until the following SAT problem is feasible
when instantiated for a graph with n nodes:

SATn((5), (6), (9), for all {σ, σ′} ∈ E−(8)). (SAT)

By construction, this is guaranteed to be satisfiable for some n ≤ umax, upon which a reward machine model
Glearned can be constructed from the satisfying assignment’s Bk’s. Then, we compute the product MDP
model (M/r)learned = Glearned ×ML. The learned product policy is constructed as follows. For each length
l word σ ∈ (AP)l and for all s ∈ Reach(σ), we define

πlearned
Prod (a|s, δlearned,∗

u (uI , σ)) = πtrue,l
PTP (a|s, σ), (10)
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where the transition function δlearned,∗
u is the transition function of Glearned.

The last step is finding the numerical values of rewards that render the product policy πlearned
Prod optimal for

the product MDP model (M/r)learned. This is a standard IRL problem without reward machines where the
special structure of the rewards on the product can be represented as features. We solve this step using the
method developed in (Shehab et al., 2024). Featurization (see, (Shehab et al., 2024, Section 4)) is used to
enforce that the reward function of the product can be written as r((s, u), a, (s′, u′)) = δr(u, L(s′)), with
u′ = δu(u, L(s′)). This IRL method gives us the corresponding output function δr of the reward machine.
Remark 1. Although we constrain the output function of the reward machine to be of the form δr : U×AP→
R (leading to what is commonly known as simple reward machines (Icarte et al., 2018)), this does not limit
the generality of our framework. The same procedure remains applicable in the case of a dense output function
of the form δr : U × AP → [S × A × S → R]. We focus on the simple output function formulation in this
paper to simplify both the presentation and the interpretation of the resulting reward machines.

The overall procedure is summarized in Algorithm 1.

Algorithm 1: Learning a Minimal Reward Machine from depth-l Restriction of a Prefix Tree Policy
Input: Depth-l prefix tree policy πtrue,l

PTP , labeled MDP ML.
Output: Learned reward machine Rlearned

1 n← 1
2 while SATn is infeasible do
3 n← n + 1
4 Construct E−

l using (7)
5 {Bk}|AP|

k=1 ← SATn solution
6 Glearned ← Construct_RM_model({Bk}|AP|

k=1 )
7 (M/r)learned ← Glearned ×ML

8 foreach σ ∈ (AP)l do
9 foreach s ∈ Reach(σ) do

10 Define product policy: πlearned
Prod (a|s, δlearned,∗

u (uI , σ))← πtrue,l
PTP (a|s, σ)

11 δr ← IRL_to_extract_reward(πlearned
Prod , (M/r)learned)

12 return Rlearned = (Glearned, δr)

Remark 2. It is important to emphasize that up to line 7 in Algorithm 1, neither the optimality of the prefix
tree policy nor the transition kernel P of the MDP is used. That is, our method learns a reward machine
model Glearned in a model-free fashion as long as the prefix-tree policy is induced by a reward machine. This
is further illustrated through an example in Appendix C. The optimality with respect to the MaxEnt objective
in (1) and the transition kernel only comes into play to extract the numerical reward values in lines 8-11.

3.3 Proof of Correctness

Let Glearned be the reward machine model extracted from the SAT solution, with δlearned
u being the associated

transition function. The first property of our SAT solution is that it is consistent with any fixed depth-of
the prefix tree policy. We formalize this in the result below.
Proposition 1. Given the labeled MDP model ML, the depth-l restriction πtrue,l

PTP of the true prefix policy
πtrue

PTP, and an upper bound umax on the number of nodes of the underlying reward machine, let Glearned be the
output of our SAT problem, and define πlearned

PTP to be the (infinite depth) prefix tree policy induced by Glearned.
Then, the learned and the true prefix tree policies have the same depth-l restriction, i.e., πlearned,l

PTP = πtrue,l
PTP .

Proof. See Appendix A.1.

While Proposition 1 represents a desirable property of our algorithm, being consistent with the depth-l
restriction of the true prefix tree policy is in general not sufficient to be consistent with the true (infinite-
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depth) prefix tree policy (as required in Problem (P1) from Section 2.4). This is potentially problematic
if the agent demonstrates unseen changes in its policy for prefixes longer than l. At the same time, it is
not possible to run our algorithm with the unrestricted prefix tree policy πtrue

PTP because it would lead to
an infinite number of negative examples, i.e., |E−

∞| =∞. Consequently, the algorithm would not terminate.
Fortunately, we can show that if l is large enough, then increasing l will not change the satisfying assignments
of the SAT problem.
Proposition 2. GivenML, an upper bound umax on the number of nodes of the underlying reward machine,
and the depth-l restriction πl

PTP of some prefix tree policy πPTP, where l = |S|u2
max. Then, {Bk}|AP|

k=1 is a
satisfying assignment for

SATumax((5), (6), (9), for all {σ, σ′} ∈ E−
l (8))

if and only if it is a satisfying assignment for all j ≥ l for

SATumax((5), (6), (9), for all {σ, σ′} ∈ E−
j (8)).

Proof. See Appendix A.2.

Now, we present the main result of this section. Our result guarantees that given a sufficiently deep restriction
of the true prefix tree policy, our recovered reward machine will be consistent with true infinite depth prefix
tree policy. That is, our algorithm is guaranteed to find a reward machine that is policy-equivalent to the
true reward machine.
Theorem 1. Given a labeled MDP model ML and the depth-l restriction πtrue,l

PTP of a prefix tree policy
induced by a reward machine Rtrue with at most umax nodes, if l ≥ |S|u2

max, then the reward machine
Rlearned returned by Algorithm 1 is policy-equivalent to Rtrue with respect to ML.

Proof. Follows immediately from Propositions 1 and 2. In particular, we know that Glearned is a solution
of SATumax,j , for all j ≥ l, due to Proposition 2. Combined with Proposition 1, this means that πlearned,j

PTP =
πtrue,j

PTP , for all j ≥ l.

Remark 3. Note that, in practice, a depth-l restriction where l≪ |S|u2
max can be sufficient to find a reward

machine that is policy equivalent to the true one if all the solutions of the corresponding SAT problem are
policy-equivalent to each other (e.g., they correspond to the same reward machine up to renaming of nodes).
This will be further illustrated in the experiments of Section 5.1.

4 Learning From Demonstrations

In this section, we present how our method can be applied when the optimal policy is known only through
a set of optimal demonstrations D = {(σi, si, ai)}|D|

i=1. Hence, the depth-l restriction of the true prefix tree
policy is unknown. Consequently, we construct the following consistent unbiased estimate:

π̂PTP(a|s, σ) =
∑|D|

i=1 I(σi = σ, si = s, ai = a)∑|D|
i=1 I(σi = σ, si = s)

. (11)

However, the fact that we only have access to an approximation of πPTP leads to two challenges. First, using
π̂PTP to directly construct the set of negative examples E−

l will lead to many pairs {σ, σ′} being incorrectly
considered as negative examples (see equation (7)). Second, the SAT problem is not robust to incorrect
negative examples. In the next subsections, we address these two problems.

4.1 Estimating Negative Examples

To limit the inclusion of incorrect negative examples in E−
l , a pair of prefixes {σ1, σ2} will be considered as a

negative example only if we have high confidence that they correspond to negative examples given the true
prefix tree policy. In particular, let σ1, σ2 be two prefixes from D that we want to compare and let s ∈ S
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be a state. For j ∈ {1, 2}, let nj be the number of visitations to the pair (s, σj), i.e., the denominator in
(11). Note that πPTP(a|s, σj) is a categorical distribution of which we have a sample estimate for. Hence, it
follows from (Weissman et al., 2003) that for all ϵ > 0:

P(∥π̂PTP(a|s, σj)− πPTP(a|s, σj)∥1 ≤ ϵ) ≥ 1− δj , (12)

with δj ≜ (2|A| − 2)e− 1
2 njϵ2 . We pick ϵ = 1

2∥π̂PTP(a|s, σ1) − π̂PTP(a|s, σ2)∥1. Using a union bound, the
probability of the two confidence intervals described in (12) (for j ∈ {1, 2}) to overlap is lower bounded by
1− δ1− δ2. Consequently, we consider the pair {σ1, σ2} as being a negative example if there is a state s such
that 1− δ1 − δ2 ≥ 1− α, where α is a user-defined parameter.

4.2 MAX-SAT: SAT with Robustness to Incorrect Negative Examples

Even when the set of negative examples is constructed from pairs of prefixes for which we have a high
confidence of being true negative examples, some pairs may still be mislabeled as negative examples. We
refer to those as false positives. To deal with these false positive, we implement a weighted MAX-SAT
(Manquinho et al., 2009; Biere et al., 2009) variant of the SAT problem. Concretely, the weighted MAX-
SAT problem consists of finding a Boolean assignment of the variables bikj such that (i) constraints (5),
(6) and (9) hold, i.e., the recovered RM is deterministic, non-stuttering, and fully specified; and (ii) the
constraint (8) holds for a maximum number of pairs {σ, σ′} in E−

l . In other words, (5), (6) and (9) are hard
constraints whereas the constraints coming from (8) are soft constraints with equal unitary weights. This
approach allows for robustness to misclassifications of negative examples. We empirically demonstrate in
Section 5.3 that this weighted MAX-SAT formulation consistently infers the smallest set of consistent reward
machine models, even in the presence of false positives.

5 Experiments

To demonstrate the generality and efficiency of our approach, we apply it to a diverse set of domains,
from classical grid-based MDPs to a continuous robotic control task and a real-world biological navigation
dataset. In every experiment, we fix the discount factor to γ = 0.99 and the regularization weight to λ = 1.0
when solving Problem (2), both for generating demonstration traces and for reward recovery. Our code is
implemented in Python, and the Z3 library (De Moura and Bjørner, 2008) is used for solving the SAT and
weighted MAX-SAT problems. To enumerate all the satisfying assignments of the SAT problem, we add a
constraint that the next solution should be different every time our SAT solver finds a solution. We will
release the complete implementation on GitHub, upon acceptance to adhere with the double-blind review
process.

5.1 Tabular GridWorld MDPs

Our first experiment (patrol) is on the running-example patrol task of Figure 1. By setting umax = 4, our
bound from Theorem 1 is 256. However, with only a depth-6 prefix tree policy, we end up with a total of
6 solutions. These are all the possible renamings of the true reward machine (see Figure 1b), meaning that
the true reward machine is learned up-to-renaming with a depth-6 prefix tree policy. Table 1 summarizes
the findings, where we also show how the non-stuttering condition of Section 3.1 helps reduce the size of
the negative example set, yet still recovering the true reward machine model. While some reduction in the
SAT solver time is achieved, the drastic gain is in the time required to encode all the negative examples into
the SAT solver, making the overall procedure orders of magnitude faster. For the remaining experiments,
non-stuttering is assumed.

For our second experiment (patrol-hallway), we add a hallway between the rooms, as shown in Figure 1c.
This is a 3×3 grid world, where the corresponding label of each room is shown. The reward machine is kept
the same, and the atomic proposition H is added as a self-loop to all the nodes. With this added hallway,
longer atomic proposition prefixes are required to reach all nodes of the reward machine, showing how the
underlying MDP affects the required depth for learning a reward machine. For example, the shortest atomic
proposition that can reach u3 is now σ = AHBHC instead of ABC as in the previous example. With a

9
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Task Depth |S| |A| |E−| SAT time (sec)
patrol with (9) 6 16 4 3076 0.51

patrol without (9) 6 16 4 30573 1.73
patrol-hallway 9 9 4 241435 2.859

Table 1: Solution statistics for the tabular GridWorld MDP.

depth-9 prefix tree policy, the reward machine is again learned up-to-renaming. Additional experiments
studying transferability and the sensitivity to the upper bound umax can be found in appendices D and E.

5.2 Tabular BlockWorld MDPs

The setup for this experiment is a modified block world problem (Khodeir et al., 2023; Wolfe and Barto,
2006). There are three blocks colored green, yellow and red, as well as 3 piles. Each stacking configuration
of the blocks is a state of the MDP, and the action space consists of selecting a pile to pick from and a pile
to place onto. We can only grab the top block of any stack. Action outcomes are assumed deterministic.
The goal in the first task (stack) is to stack the blocks in the ordered stacking configurations st1, st2, st3,
shown in Figure 2a. All other states have the label i, denoting intermediate states. The corresponding
reward machine is shown in Figure 2b. If the robot stacks the blocks in the order st1 → st2 → st3, it gets a
reward of 1.0. With a depth-10 prefix tree policy and umax = 3, our algorithm recovers 2 consistent reward
machines, which are the true reward machine up-to-renaming. The findings are summarized in Table 2.
Results obtained from a finite set of demonstrations are reported in Appendix B.1.1.

(a)

u0start u1 u2

⟨¬st1, 0⟩

⟨st1, 0⟩

⟨¬st2, 0⟩

⟨st2, 0⟩

⟨¬st3, 0⟩

⟨st3, 1.0⟩

(b)

Figure 2: (a): Block World MDP. The left-most stacking configuration has label st1, where all blocks are
stacked on the first pile with green being under yellow and yellow being under red. Similarly, the middle
configuration has label st2 and the right-most configuration has label st3. (b): Stacking Reward Machine.

For our second task (stack-avoid), we introduce a “bad” state, shown in Figure 3a. The true reward
machine is shown in Figure 3b. The robot’s task is to stack the blocks in the order st1 → st2 without
going through stbd. If it does so, it reaches u2 and gets a reward of 1 forever. If during execution it passes
through stbd, it will get a smaller (yet more immediate) reward of 0.2, but it will get stuck at u3 with 0
reward forever. We note that the product policy is uniformly random in both u2 and u3. This means that
proposition traces such as st1, i, st2 and st1, i, stbd, st2 look identical from a policy perspective, as both
reach nodes with uniformly random policies, while the first being more desirable than the second. By setting
umax = 3, a depth-8 policy was sufficient to recover the reward machine shown in Figure 3c up-to-renaming;
that is, we find a smaller reward machine consistent for this task. Notably, setting umax = 4 with the same
depth policy yields more than a 1000 solutions, indicating that uniquely recovering the same sized reward
machine -as the ground truth machine- requires longer depth policies. Results obtained from a finite set of
demonstrations are reported in Appendix B.1.2.

Task Depth |S| |A| |E−| SAT time (sec)
stack 10 60 9 73548 0.612

stack-avoid 8 60 9 24763 0.569

Table 2: Solution statistics for the tabular BlockWorld MDP.

10
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(a)

u0start u1 u2

u3

⟨¬st1, 0⟩

⟨st1, 0⟩

⟨stbd, 0.2⟩

⟨¬st2, 0⟩

⟨st2, 0⟩

⟨stbd, 0.2⟩

⟨True, 1⟩

⟨True, 0⟩

(b)

u0start u1 u2

⟨stbd, 0⟩

⟨stbd, 6.57⟩

⟨¬st1, 6.44⟩

⟨st1, 12.35⟩

⟨¬st2 ∧ ¬stbd, 5.79⟩

⟨st2, 8.6⟩

⟨True, 6.45⟩

(c)

Figure 3: (a) The block stacking configuration with label stbd that we want our robot to avoid. (b) The
ground truth reward machine. (c) Smaller consistent reward machine with the task stack-avoid.

5.3 2D-Continous Reacher Robotic Arm

Our setup for this experiment is a modified Reacher-v5 environment (Gymnasium (Towers et al., 2024);
MuJoCo (Todorov et al., 2012)), where a 2D robotic arm must reach targets randomly placed within the
arena. The agent’s state is a 10-D continuous vector consisting of the end-effector’s position and velocity,
the target’s coordinates, and their mutual distance. Actions are continuous torques in [−1, 1]2 applied at
the elbow and shoulder joints.

Inspired by (Araki et al., 2021), we fix three colored targets — blue (b), red (r), and yellow (y) — in distinct
quadrants of the arena (see Figure 4). The goal is to reach them in the order b → y → r. To train an
expert policy, we discretize each torque dimension into five levels {−1.0,−0.5, 0.0, 0.5, 1.0} (yielding 25 total
actions). We then employ Proximal Policy Optimization (PPO) (Schulman et al., 2017), as implemented
in Stable-Baselines3 (Raffin et al., 2021), to maximize a reward given by the negative Euclidean distance
between the end-effector and the active target.

When generating trajectories, we switch the desired target immediately upon reaching the previous target,
thereby emulating a reward machine without introducing the machine during training or simulation. Ap-
pendix B.2 provides full discretization and training details. From this procedure we collect 1M trajectories.

Table 3 reports, for various probability thresholds α (defined in Section 4.2), the size of the negative-example
set E− and its False Positive Rate (FPR)1. As expected from Section 4, solving our SAT problem with all the
negative examples yields 0 solutions. Instead, we employ our weighted MAX-SAT variant and recover two
viable solutions (Figures 4b and 4c) up-to-renaming, which represent the best achievable given our dataset.
These are the same solutions that we recover if instead we supervised with the ground-truth reward machine
to remove the false positives, emphasizing the robustness of this approach.

(a)

u0start u1 u2

¬b

b

¬y

y

¬r

r

(b)

u0start u1 u2

¬b

b

¬y

y

¬r ∧ ¬b
b

r

(c)

Figure 4: Reacher experiment. (a): 2-link robotic arm with the three colored targets. (b) First recovered
reward machine model. (c) Second recovered reward machine model.

1FPR is simply the number of false positives divided by |E−|.
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|D| |S| |A| |τ | |E−| α FPR # Weighted MAX-SAT solutions
1M 17.4M 25 160 1472 0.001 1.90% 4
1M 17.4M 25 160 1193 0.0001 1.67% 4
1M 17.4M 25 160 882 0.00001 1.36% 4

Table 3: Summary of the experiments for the 2D-continuous reacher arm.

5.4 Real-world Mice Navigation

We also applied our learning framework to the trajectories of real mice navigating (in the dark) in a 127-node
labyrinth maze (Rosenberg et al., 2021) shown in Figure 5. Each node, labeled with a number in Figure 5a,
represents a state in the MDP. The mouse can select from 4 actions: {stay, right, left, reverse}. State 116
(middle-right) contains a water resource and is labeled w, state 0 (center) is the home state labeled h, and all
other states are labeled i. Two cohorts of 10 mice moved freely in the maze for 7 hours, with one cohort being
water-restricted and the other was not. A sample water-restricted mouse trajectory is shown in Figure 5b.
Difference in water restriction condition resulted in different animal behavior between these two cohorts.
For the purposes of our study, we only considered the water-restricted mice. We used the same dataset of
trajectories from (Ashwood et al., 2022), which is comprised of 200 mouse trajectories, given as state-action
pairs of length 22 each. We set our probability threshold at α = 0.001. With umax = 2, our algorithm learns
the unique reward machine shown in Figure 5c. This is consistent with the seen behaviors of water-restricted
mice which first try to reach the water port and hydrate, after which their behaviors switch to exploring the
maze or going back the home state (Zhu et al., 2024; Ashwood et al., 2022). More details can be found in
Appendix B.3.

0

1

2

3 4

5 6

7

8

9

10

11

12

13

14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63 64

65 66

67 68

69 70

71 72

73 74

75 76

77 78

79 80

81 82

83 84

85 86

87 88

89 90

91 92

93 94

95 96

97 98

99 100

101 102

103 104

105 106

107 108

109 110

111 112

113 114

115 116

117 118

119 120

121 122

123 124

125 126

(a)

Entry

Exit

(b)

u0start u1

⟨h, 0.00⟩
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Figure 5: Labyrinth experiment. (a): Maze structure and state space definition. (b): Trajectory of a single
mouse. (c): Recovered reward machine. (a) and (b) are reprinted from (Rosenberg et al., 2021).

We further evaluate the quality of the recovered reward machine using a held-out set of unseen trajectories
(20 test trajectories). The reward machine model and the product policy are learned from the remaining
180 training trajectories. For each trajectory in the test set, we compute its log-likelihood under the product
policy. This metric reflects how well the learned model captures the underlying trajectory distribution
and generalizes beyond the training data. The results are shown in Table 4 and represent the average
log-likelihood over the test dataset. To contextualize the results, we compare against three baselines: a
uniformly random policy and two variants of Max Causal Entropy IRL Ziebart (2010). D-IRL employs a
dense feature representation, assigning a distinct reward value to every MDP state. F-IRL uses a structured
feature representation aligned with the environment’s labeling. Specifically, its feature vector is a one-hot
encoding indicating whether the agent is at the home port (h), at the water port (w), or in any other
intermediate state (i). These results also quantitatively demonstrate the superiority of the learned reward
machine in capturing the unseen behaviors of the mice.

6 Limitations and future work
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Method D-IRL F-IRL Uniform LRM
Average log-likelihood −28.99 −28.57 −30.49 −9.81

Table 4: Average log-likelihood performance of the learned reward machine on unseen trajectories, compared
against three baseline methods.

The present framework assumes that the atomic propositions provided by the labeling function are exact,
meaning no noise or mislabeling is present in the observed labels. While this assumption simplifies the
analysis and ensures that the negative examples used in the SAT formulation are correct, it may be unrealistic
in settings where the labeling function is derived from perception modules or noisy sensors. Future work
could address this limitation by extending the framework to handle noise in the labeling function, for instance
by integrating robust RM-learning techniques such as those in Parac et al. (2024), thereby broadening
applicability to real-world domains.

Another limitation arises from the requirement to identify all negative examples up to depth l = |S|u2
max for

the theoretical results to apply (see Theorem 1). Although this bound is polynomial in the size of the MDP
and the maximum number of RM nodes, the number of distinct negative examples —and thus the number of
clauses in the SAT formulation— may grow exponentially with l in the worst case. For large problems, this
can lead to SAT instances of prohibitive size and render the approach computationally intractable. On the
other hand, in practice, we were able to identify the reward machine model with a much smaller depth in all
our examples. Therefore, the existence of a tighter sufficient depth bound is an open problem, which we will
investigate further in the future. We are also interested in developing smart prefix-selection algorithms that
incorporate a verification loop to check, on the fly, whether the selected negative examples are sufficient.

7 Conclusion

In this work, we present a framework for learning reward machines from partially observed policies, where
neither the rewards nor the reward machine states are available to the learner. Instead, our method constructs
a SAT problem instance from a sufficiently deep prefix tree policy, from which a reward machine equivalent to
the true underlying one can be recovered. The approach is generalized to learn the reward machines directly
from demonstrations from an optimal expert, where robustness to inaccuracies in policy estimates is handled
using finite-sample confidence bounds and MAX-SAT is used to eliminate incorrect negative examples. A
diverse set of experiments illustrate the effectiveness of our approach.
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Appendices

A Proofs

A.1 Proof of Proposition 1

Proof. We proceed by contradiction. Assume that there exists some σ′ ∈ Pref(L(ML)), with |σ′| ≤ l, a
state s ∈ Reach(σ′) and an action a ∈ A such that:

πlearned
PTP (a|s, σ′) ̸= πtrue

PTP(a|s, σ′). (13)

Let u ≜ δ∗,learned
u (uI , σ′). The left-hand-side of (13) can be written as:

πlearned
PTP (a|s, σ′) = πlearned

Prod (a|s, u) = πtrue
PTP(a|s, σ), for some σ ∈ Path(u) ∩ Pref(L(ML)), with |σ| ≤ l,

where the second equality is due to (10). We get:

πtrue
PTP(a|s, σ) ̸= πtrue

PTP(a|s, σ′), where both σ, σ′ ∈ Path(u).

More precisely, δ∗,learned
u (uI , σ) = δ∗,learned

u (uI , σ′). Due to the contrapositive of Lemma 1, we have a con-
tradiction. Similarly, due to the full specification condition of Section 3.1 and (10), the support of the two
prefix policies will be the same by construction.

A.2 Proof of Proposition 2

We start by formally defining some important concepts that will be central for proving our result. Our proof
idea requires reasoning about joint (i.e. synchronized) paths over two distinct reward machine models, and
being able to shrink these joint paths by removing cycles (i.e. loops). To start, we define cycles in a product
MDP model G ×ML as follows:
Definition 2. Given a product MDP model G×ML and a proposition sequence σ = l1 · · · lk, generated from
a state sequence τ = (s1, s2, · · · , sk) (i.e., σ ∈ Pref(L(ML))), we say that a subsequence σi:j of σ is a cycle
in G ×ML if si = sj and δ∗

u(uI , σ:i) = δ∗
u(uI , σ:j).

We will use the above definition to construct shorter label sequences with no cycles given a long label
sequence. In particular, let lc ≜ |S||U| be the number of states in G ×ML. By the pigeonhole principle,
we know that any state trajectory of length more than lc has to visit some product state more than once,
meaning that it has at least one cycle. In particular, given any proposition sequence σ, with |σ| > lc, let σ̄
be the subsequence of σ obtained by removing all the cycles in σ. Then, we know that |σ̄| ≤ lc, since σ̄ has
at most all the unique states from σ, which cannot exceed lc. Note that removing cycles preserves the last
product state reached from following σ.

Next, we define synchronized reward machine models.
Definition 3. Let G1 = (U1, u1

I , AP, δ1
u), G2 = (U2, u2

I , AP, δ2
u) be two reward machine models, with

|U1|, |U2| ≤ umax. The synchronized reward machine model is a reward machine model defined as
follows:

Gsync = (U sync, usync
I , AP, δsync

u )
U sync = U1 × U2,

usync
I = (u1

I , u2
I),

δsync
u ((u1

i , u2
j ), l) = (δ1

u(u1
i , l), δ2

u(u2
j , l)), l ∈ AP.

Similarly to a regular reward machine model, the product Gsync ×ML is well defined. The total number
of states in Gsync × ML is upper bounded by l = |S|u2

max. In particular, consider an arbitrary label
sequence σ ∈ Pref(L(ML)), generated from a state sequence τ = (s1, s2, · · · , s∗), with |σ| > |M|u2

max,
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and let (u, u′) = δsync,∗
u (usync

I , σ). This means that the synchronized product state (u, u′, s∗) is reachable
in Gsync ×ML. Thus, by removing cycles of σ in Gsync ×ML, we can construct a shorter prefix σ̄, with
|σ̄| ≤ |M|u2

max, such that (u, u′) = δsync,∗
u (usync

I , σ̄), and s∗ is the MDP state reached.

We are now ready for the proof of Proposition 2. We provide Figure 6 as an illustration of the proof.

Proof. For a shorthand notation, denote the first SAT instance in the proposition statement as SATumax,l

and the second SAT instance as SATumax,j . Also note that E−
l ⊆ E

−
j when j ≥ l as the negative examples

can only grow as the depth increases. Throughout the proof, we interchange πj
PTP and πPTP as both are

equal up to depth j.

We need to show that the additional negative examples in E−
j \ E

−
l do not change the set of satisfying

assignments. The ⇐= direction is straightforward, since a satisfying assignment cannot become unsatisfying
by removing constraints.

For the =⇒ direction, take a satisfying assignment {Bk}|AP|
k=1 for SATumax,l and assume by contradiction that

{Bk}|AP|
k=1 is not satisfying for SATumax,j with j > l. Consider the reward machine model Glearned, with the

transition function δlearned
u , corresponding to {Bk}|AP|

k=1 . Since {Bk}|AP|
k=1 is unsatisfying for SATumax,j , then

there exists a negative example {σ, σ′} ∈ E−
j \ E

−
l such that

δlearned,∗
u (uI , σ) = δlearned,∗

u (uI , σ′), (14)

while πj
PTP(a∗|s∗, σ) ̸= πj

PTP(a∗|s∗, σ′) for some (s∗, a∗) ∈ S × A. These two facts are shown as ̸=πPTP and
=u connecting σ and σ′ in Figure 6.

Now, let Gtrue = (U , uI , AP, δtrue
u ) be a reward machine model consistent with πPTP. We define the following

nodes, along with the associated product states:

utrue ≜ δtrue
u (uI , σ), (utrue, s∗) ∈ Gtrue ×ML,

ulearned ≜ δlearned
u (uI , σ), (ulearned, s∗) ∈ Glearned ×ML,

utrue,′ ≜ δtrue
u (uI , σ′), (utrue,′, s∗) ∈ Gtrue ×ML,

ulearned,′ ≜ δlearned
u (uI , σ′), (ulearned,′, s∗) ∈ Glearned ×ML.

Hence, by (14), we have that ulearned = ulearned,′. Let Gsync be the synchronized reward machine model
between Glearned and Gtrue according to Definition 3. We observe the following:

(utrue, ulearned) = δsync,∗
u (usync

I , σ), (utrue, ulearned, s∗) ∈ Gsync ×ML,

(utrue,′, ulearned,′) = δsync,∗
u (usync

I , σ′), (utrue,′, ulearned,′, s∗) ∈ Gsync ×ML.

This means that the synchronized product states (utrue, ulearned, s∗) and (utrue,′, ulearned,′, s∗) are both reachable
in Gsync ×ML. Thus, by removing cycles, there must exist shorter sequences, σ̄, σ̄′, with |σ̄|, |σ̄′| ≤ |S|u2

max,
such that:

(utrue, ulearned) = δsync,∗
u (usync

I , σ̄),
(utrue,′, ulearned,′) = δsync,∗

u (usync
I , σ̄′). (15)

Note that s∗ is still the reached MDP state in both synchronized product nodes above. By the definition of
δsync,∗

u , we can decompose (15) into:

utrue = δtrue
u (uI , σ̄), ulearned = δlearned

u (uI , σ̄),
utrue,′ = δtrue

u (uI , σ̄′), ulearned,′ = δlearned
u (uI , σ̄′). (16)

This means that σ and σ̄ lead to the same node utrue in Gtrue. Similarly, σ′ and σ̄′ both lead to the same
node utrue,′. Since Gtrue is consistent with πPTP, the following holds:

πPTP(a|s∗, σ̄) = πPTP(a|s∗, σ), ∀a ∈ A,

πPTP(a|s∗, σ̄′) = πPTP(a|s∗, σ′), ∀a ∈ A. (17)
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Since πPTP(a∗|s∗, σ) ̸= πPTP(a∗|s∗, σ′) due to our contradiction assumption, we conclude from (17)
that πPTP(a∗|s∗, σ̄) ̸= πPTP(a∗|s∗, σ̄′). However, ulearned = ulearned,′ combined with (16) implies that
δlearned

u (uI , σ̄) = δlearned
u (uI , σ̄′), contradicting that {Bk}|AP|

k=1 is a SAT assignment for the depth l. This
concludes the proof.

l

j

σ̄

σ̄′

σ

σ′

=u ̸=πPTP

=u

=πPTP

=u

=πPTP

̸=πPTP=u

Figure 6: Proof Illustration of Proposition 2. =πPTP , ̸=πPTP means that the prefix tree policy πPTP is
equal/different for the corresponding sequences. =u means that the corresponding sequences arrive at the
same node in Glearned.

B Experiment Details and Additional Results

B.1 Tabular BlockWorld MDP

To generate the expert trajectory dataset, we first compute the product policy given the BlockWorld MDP
dynamics and the corresponding ground-truth reward machine. We use soft bellman iteration to find the
optimal product policy. The procedure is summarized in Algorithm 2.

At each time step, we use the visited proposition prefix σ to find the reached node u on the true reward
machine, using u = δ∗

u(uI , σ). We then sample an action from the true product policy π∗(a|s, u), where s
is the MDP state reached. We keep count of the sampled actions at all state-prefix pairs for constructing
the prefix tree policy. The procedure is summarized in Algorithm 3. In the following section, we show the
results for the stack and stack-avoid tasks.

B.1.1 (stack) task

We simulated varying size demonstration datasets and solved our SAT problem with each. In Table 5, we
show the effect of the number of demonstrations in reducing the number of satisfying solutions. With a
demonstration dataset of size 1M , the ground-truth (stack) reward machine is recovered up-to-renaming.
However, even a demonstration set of size 5000 can indeed reduce the number of satisfying solutions to 4.
These 4 solutions include the ground-truth reward machine (accounting for 2 solutions due to renaming),
and the reward machine (up-to-renaming again) shown in Figure 7b, where δu(u2, a) = u1, instead of
δu(u2, a) = u2 as in the ground-truth reward machine.

B.1.2 (stack-avoid) task

In Table 6, we similarly show the effect of the size of the simulated dataset on the number of satisfying
solutions for the stack-avoid task. In this task, 1M trajectories were not enough to extract all the necessary
negative examples to reduce the number of solutions to 2. However, a much smaller dataset of size 1000
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Algorithm 2: Soft Bellman Iteration on the Product MDP
Input: MDP M, ground-truth reward machine R, labeling function L, tolerance ϵ.
Output: Optimal product policy π∗

1 Construct product MDP MProd =
(
S ′, A′, P ′, µ′

0, γ′, r′) as in Section 2.2.
2 Initialize

V0(s, u)← 0 ∀(s, u) ∈ S ′, error←∞, k ← 0

3 while error > ϵ do
4 foreach (s, u) ∈ S ′ do
5 foreach a ∈ A′ do
6 Qk+1(s, u, a) ← r′((s, u), a

)
+ γ′ ∑

(s′,u′)∈S′ P ′((s, u), a, (s′, u′)
)

Vk(s′, u′)

7 Vk+1(s, u) ← log
∑

a∈A′

exp
(
Qk+1(s, u, a)

)
8 error ← max(s,u)∈S′

∣∣Vk+1(s, u)− Vk(s, u)
∣∣

9 k ← k + 1
10 foreach (s, u) ∈ S ′, a ∈ A′ do
11 π∗(a | s, u) ← exp

(
Qk(s, u, a)− Vk(s, u)

)
12 return π∗

Algorithm 3: Constructing the Prefix-Tree Policy via Simulation
Input: MDP M, reward machine R, true product policy π∗(a | s, u), # trajectories N , trajectory

length H
Output: Prefix-tree policy πH

PTP
1 Initialize counts: C(σ, s, a)← 0 for all prefixes σ, states s ∈ S, actions a ∈ A.
2 for i← 1 to N do
3 σ ← ϵ (empty prefix)
4 s ∼ µ0 (initial MDP state)
5 u← uI (initial RM node)
6 for t← 1 to H do
7 u← δu(u, σ);
8 Sample a ∼ π∗(· | s, u);
9 Execute a, observe s′ ∼ P(s, a) and label ℓ← L(s′);

10 σ ← σ ∥ ℓ (concatenation);
11 C(σ, s, a)← C(σ, s, a) + 1;
12 s← s′;

13 foreach prefix σ, state s, action a do

14 πH
PTP(a | s, σ) = C(σ, s, a)∑

a′∈A C(σ, s, a′) .

15 return πH
PTP

20



Under review as submission to TMLR

|D| |τ | |E−| α # SAT solutions
1000 20 58 0.05 24
3000 20 174 0.05 12
5000 20 305 0.05 8
10000 20 490 0.05 8
0.1M 20 2249 0.05 4
1M 20 7995 0.05 2

Table 5: Size of the simulated dataset vs. the number of satisfying solutions.

u0start u1 u2

¬st1

st1

¬st2

st2

¬st3

st3

(a)

u0start u1 u2

¬st1

st1

¬st2

st2

¬st3 ∧ ¬st1

st3

st1

(b)

Figure 7: Recovered Reward Machine Models for stack task.

was enough to reduce the number of solutions to 4, which we can manually inspect. These solutions are
shown in Figures 8a and 8b (up-to-renaming). The reward machine in Figure 8b differs from the ground-
truth reward machine by assigning δu(u1, stbd) = u1, instead of δu(u1, stbd) = u2. Such an ambiguity
could have been resolved by a negative example of the form {σ1 = st1, i, st1, σ2 = st1, i, stbd, i, st1}, which
the MDP is capable of producing given the length of the simulated trajectories. However, since the policy
becomes uniformly random after reaching stbd, simulating such negative examples might require a much
larger dataset.

|D| |τ | |E−| α # SAT solutions
200 20 26 0.05 32
500 20 52 0.05 8
1000 20 67 0.05 8
0.1M 20 1615 0.05 4
1M 20 5330 0.05 4

Table 6: Size of the simulated dataset vs. the number of satisfying solutions.

u0start u1 u2

stbd

stbd

¬st1,

st1

¬st2 ∧ ¬stbd

st2

True

(a)

u0start u1 u2

stbd

¬st1,

st1

¬st2

st2

True

(b)

Figure 8: Recovered Reward Machine Models for stack-avoid task.
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B.2 2D-Continuous Robotics Reacher Arm

B.2.1 Expert policy training using deep RL

To train the policy, we used the standard Reacher-v5 environment from Gymnasium, augmented with cus-
tom wrappers to discretize the action space and introduce randomized initial conditions. We also increased
the episode horizon from the default 50 steps to 160 steps in order to match the expected time to visit all 3 de-
sired poses and finish the task. The DiscreteReacherActionWrapper maps the continuous two-dimensional
action space to a MultiDiscrete space of 25 torque combinations by restricting each component to one
of five values: {-1.0, -0.5, 0.0, 0.5, 1.0}. Additionally, the ForceRandomizedReacher wrapper introduces
randomized initial joint positions and velocities at each episode reset to promote robustness and generaliza-
tion. This modification was essential, as the default initial conditions in the base environment are typically
limited to small perturbations around fully-extended arm configurations. Training solely from such narrow
initializations led to poor task performance and limited the policy’s ability to generalize across the broader
state space.

We trained a Proximal Policy Optimization (PPO) agent using the stable-baselines3 library, with all the
default settings and hyperparameters. To accelerate training, we employed a vectorized environment with
50 parallel instances running on CPU. The agent was trained for 20 million time steps using a multilayer
perceptron (MLP) policy.

B.2.2 Discretizing the state space and sampling the policy

The MDP state space is generated by discretizing the shoulder angle θ1, the elbow angle θ2, and the angular
velocities θ̇1, θ̇2. The angles are discritized uniformly in [−π, π] with a bin size of 10◦ ≈ 0.17 radians. The
angular velocities are discretized uniformly in [−14, 14] with a bin size of 0.25 rad/s. This leads to ≈ 17.4M
states in the MDP.

When sampling an action from the optimal policy, we first identify the discrete state corresponding to the
current continuous state. The action is then sampled at the center point of that discrete region. This
approach standardizes the policy’s behavior across different continuous states that map to the same discrete
representation, ensuring consistency within each discretized region of the state space.

B.3 Real-world Mice Navigation

For recovering the reward function, we first need to construct the product policy. However, real-world data
generally do not perfectly fit the assumed mathematical models, i.e., the max entropy assumption. Since
most of the states in the MDP are unvisited, and many action are not sampled at most of the states, the
product policy is predominantly sparse (∼ 92% of the action probabilities are 0). We preprocess the policy
by clipping its minimum value to 0.05. This allows us to use the results from (Shehab et al., 2024) to compute
the reward function, as we requires computing the log of the policy. The reward space is constrained to satisfy
the feature-decomposition which the reward machine provides. However, there is generally no guarantee that
we can find such a featurized reward function that can perfectly induce any product policy. With the shown
reward in Figure 5c, the norm difference between the induced policy and the true policy is 2.66 (the norm
difference with a uniformly random policy is 2.97). By increasing umax to 3, one of the recovered reward
machines is shown in Figure 9, which yields a slightly larger policy difference norm of 2.71.

C Policy Optimality is not Required

In this section, we illustrate with a toy example that the optimality of the prefix tree policy is not necessary
to recover the reward machine model. We consider the MDP given by the BlockWorld of Section 5.2, and a
simple 2-node reward machine model given by Figure 10. We do not specify a reward function here nor solve
the forward MaxEnt RL problem before simulating the dataset, and instead specify an arbitrary stochastic
policy at each node of the reward machine. With a dataset size 50K and trajectory length 20, our method
learns uniquely the reward machine model.
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Figure 9: Recovered Reward machine for Mice
Dataset with umax = 3.
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¬st1

st1

¬st2

st2

Figure 10: Reward machine model considered
in Appendix C.

D Sensitivity to the Node Bound umax
To understand the effect of misspecifying the number of nodes on the resulting learned reward machine, we
run an additional experiment in the Gridworld benchmark (see Section 5.1) while varying the bound on the
number of nodes. We simulate a dataset of 2, 500 trajectories of length 10 each. We then construct the
negative example set using our finite sample results and solve for a reward machine model using MaxSAT.
The recovered models are shown in Figure 11 below. These reward machine models still qualitatively capture
the overall task even with the limited number of nodes. To quantitatively assess the quality of these models,
we first learn a product policy for each using Algorithm 4 below. We then perform trajectory rollouts to
compute the return of the policy consistent with each model. While the actions are sampled according to
the corresponding learned policy of each model, the reward is calculated based on the traversed nodes in
the ground-truth reward machine, given by Figure 1b2. Results in Table 7 show a graceful degradation in
performance as the number of reward machine nodes decreases. We also implemented a Max Entropy IRL
baseline Ziebart et al. (2008), where a static reward is learned from the demonstration set.

u0start u1

¬B

B

¬D

D

(a) umax = 2

u0start u1 u2

¬A

A

¬B

B

¬D

D

(b) umax = 3

Figure 11: Recovered reward machine models with varying node bounds.
.

Model Total # clauses # used clauses Rollouts |τ | Average Return per Rollout
umax = 4 1112 1112 10K 100 176.62
umax = 3 1112 902 10K 100 148.74
umax = 2 1112 589 10K 100 94.25
D-IRL - - 10K 100 17.12
F-IRL - - 10K 100 14.49

Table 7: Statistics for the varying bound experiment. (Total # clauses) is the number of negative examples
from the finite dataset. (# used clauses) is the number of negative examples which MaxSAT included as
hard constraints. (Rollouts) is the total number of rollouts. (|τ |) is the length of the trajectory. (Average
Return per Rollout) is the sum of accumulated rewards in all the rollouts divided by the number of rollouts.

2For this experiment we set the reward for completing the task at 10.
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Algorithm 4: Construct Learned Product Policy
Input: Learned reward machine model Ĝ, Ground-truth reward machine model G, True prefix tree

policy πPTP, Labeling function L, MDP M, prefix length dp

Output: Learned product policy π̂
1 foreach node u ∈ Ĝ do
2 Compute Reach(u) ;

// we consider prefixes up to a fixed length of dp

3 foreach σ ∈ Paths(u) do
4 Compute Reach(σ);
5 foreach s ∈ Reach(σ) do
6 foreach a ∈ A do
7 π̂(a | s, u) += πPTP(a | s, σ)

8 Normalize π̂ and fill in zero rows with uniform policy;
9 return π̂

E Transferability Performance

In this section, we test the transferability of our recovered reward machines when deployed on a different
environment with the same labeling function. In particular, the new environment is similar to the Tabular
GridWorld MDP studied in Section 5.1, except that the room assignment is changed, as shown in Figure 12a
below. The dynamics are kept the same. In order to test transferability, we first generate a trajectory dataset
using the ground-truth optimal policy in the new environment. Then, for each reward machine model, given
by a varied umax, we construct a product policy according to Algorithm 4 (using the prefix tree policy of
the original environment) and solve for a reward function that will be optimized in the new environment.
We then compute the log-likelihood of the trajectory dataset given the corresponding optimized policies.
The results are shown in Figure 12b, where (TRUE) is the log-likelihood of the ground-truth optimal policy
in the new environment. It can be seen that the performance of the learned reward machine with 4 nodes
almost matches that of the ground-truth reward machine. The results also display a graceful degradation in
performance with decreasing number of nodes.
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Figure 12: (a): Modified labeled MDP. (b): Average log-likelihood of different models over 100 trajectories
generated by the optimal policy in the new labeled MDP.
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