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ABSTRACT

Deep metric learning aims at learning a deep neural network by letting similar
samples have small distances while dissimilar samples have large distances. To
achieve this goal, the current DML algorithms mainly focus on pulling similar
samples in each class as closely as possible. However, the action of pulling similar
samples only considers the local distribution of the data samples. It ignores the
global distribution of the data set, i.e., the center positions of different classes. The
global distribution helps the distance metric learning. For example, expanding the
distance between centers can increase the discriminant ability of the extracted
features. However, how to increase the distance between centers is a challenging
task. In this paper, we design a genius function named the skewed mean function,
which only considers the most considerable distances of a set of samples. So
maximizing the value of the skewed mean function can make the most significant
distance larger. We also prove that current energy functions used for uniformity
regularization on centers are special cases of our skewed mean function. At last,
we conduct extensive experiments to illustrate the superiority of our methods.

1 INTRODUCTION

Deep metric learning (DML) is a branch of supervised feature extraction algorithms that con-
strain the learned features, such that similar samples have a small distance and dissimilar sam-
ples have a large distance. Because having the ability to learn a deep neural network for un-
seen classes, distance metric learning, i.e., the classes of testing classes do not appear in the
training data set, DML are widely used in the applications of image classification & clus-
tering, face re-identification, or general supervised and unsupervised contrastive representa-
tion learning Chuang et al. (2020). The goal of DML is to optimize deep neural networks
to span its projection space on a surface of a hyper-sphere, in which the semantically simi-
lar samples have small distances, and the semantically dissimilar samples have large distances.
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Figure 1: The illustration of assigning the
location of centers. c1 is only pushed away
by the six nearest centers. Because the push-
ing directions are contrary, the position of c1
is easy to stick. Therefore, the location as-
signment fails.

This purpose can be formulated as a set of triplets . How-
ever, because of the exponential amount of those triplets,
distance metric learning needs an additional procedure
called as information sample selection, such as hard sam-
ple mining and semi-hard sample mining. With the
advance of the mining techniques, state-of-the-art met-
ric learning algorithms Wang et al. (2019b); Kim et al.
(2020); Roth et al. (2022); Wang & Liu (2021); Schroff
et al. (2015); Sun et al. (2020); Deng et al. (2019);
Wang et al. (2018) use the log-exp function qλ(θ) =
log(

∑n
j=1 e

λai(θ)) Oh Song et al. (2016) to combine the
distance metric learning and the information sample se-
lection together. an

Where θ is the parameter of the deep metric, δ1 and δ2 are
two tuned parameters, and Si and Di are the sets of sim-
ilar and dissimilar samples of the query xi, respectively.

Although achieving excellent performance, those log − exp function-related algorithms fail to as-
sign different classes’ centers. Assigning the locations of class centers facilitates distinguishing the
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features from different. For example, if we can let the centers have a significant distance in the
features samples, thus the distance of two samples from those two classes will also be increased,
making them more easily distinguished.

There are several methods designed to enlarge the distance between centers. The most representative
ones are potential energy functions. However, those functions only consider the nearest centers of
the query samples. Because the nearest centers are distributed around the query, the pushing actions
shown from those nearest centers will let the query sample be stuck, i.e, the position of the query
is hard to move in the training stage. As seen from the figure 1, we consider the c1 as the query
centers, and the six centers in the circle are the nearest centers of the center c1. Because the current
energy function only lets the nearest samples push the query samples away, the six nearest samples
will let the query sample stuck because the directions of those pushing actions contradict each other.
This makes the potential energy function fails to assign the locations of centers.

In this paper, we propose a set of functions named as skewed mean function, which can consider
the largest values of a set of samples. In this way, we can let the sample pairs with largest distance
be away from each other. Because those samples are on the boundary of the cluster of each sample.
Those samples are less to be stuck. Using this finding, we design a regularization term to assign the
centers of different classes. The contents include the following aspects:

1 We give a unified framework of proxies-based distance metric learning. From our
framework, we summarize the traditional distance metric learning algorithms and the
classification-based distance metric learning algorithm together. Therefore, the math-
ematical proof of their connections gives us a theoretical base for performing ablation
experiments to support our comment that all problems of distance metric learning are
about the Lipschitz constant.

2 We reveal that the potential energy-based methods have less power to push centers away
from each other since they only consider local data information. To alleviate this problem,
we adopt the log-exp mean functions and power mean function to design the term to pull
the centers of each class. Because we prove the potential energy methods are a special
cause of ours, our algorithms have the power to push centers of different classes.

3 We conduct extensive experiments on challenging data sets such as CUB-200-2011,
Cars196, Aircraft, and Inshop to illustrate the effectiveness of our algorithms.

Notation. X o = {(xi, yi)}N1
i=1 is C-class dataset where xi ∈ Rd1 is the i-th sample and yi ∈

{1, · · · , C} is the label of xi. zi = fθ(xi) : Rd1 → Rd2 is a deep neural networks parameterized
by θ. The similarity between xi and xj is denoted as Aij = cos(fθ(xi), fθ(xj)). The set of proxies
is denoted by X p = {(wk, yk)}N2

k=1 where wk ∈ Rd2 and yk ∈ {1, · · · , C} is the corresponding
label of wk. The similarity between xi and wj is denoted by Bij = cos(fθ(xi),wj). Because
proxy-based DML does not calculate the similarity between samples within X or X p, the similar
relationship between samples X o+X p can be depicted by a bipartite graph. For xi ∈ X o, its similar
samples are only in X p and denoted as S1

i . For wi ∈ X p, its similar samples are only in X o and
denoted by S2

i . Likewise, dissimilar sample sets of xi ∈ X o and wi ∈ X p are denoted by D1
i and

D2
i , respectively.

2 DISTANCE METRIC LEARNING REVISITED

3 SHORTCOMINGS OF DISTANCE METRIC LEARNING

In this section, we adopt the proxy anchor loss as the baseline to analyze current distance metric
learning model. The objective function of proxy anchor loss is presented as follows.

J =
1

|P+|
∑
p∈P+

log

1 +
∑

x∈X+
p

e−α(s(x,p))−δ

+
1

|P |
∑
p∈P

log

1 +
∑

x∈X+
p

eαs(x,p)+δ

 (1)
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where δ > 0 is a margin, α > 0 is a scaling factor, P indicates the set of all proxies, and P+ denotes
the set of positive proxies of data in the batch. Also, for each proxy p, a batch of embedding vectors
X is divided into two sets: X+, the set of positive embedding vectors of p, and X−

p = Xp −X+
p .

The gradient of the loss function with respect to s(x,p) is given by

∂ℓ(X)

∂s(s, p)
=


1

P+
−αe−α(s(x,p)−δ)

1+
∑

x′∈X
+
p

e−α(s(x,p)−δ) , ∀x ∈ X+
p

1
P+

−αe−α(s(x,p)−δ)

1+
∑

x′∈X
+
p

e−α(s(x,p)−δ) , ∀x ∈ X+
p

(2)

In practice, the best performance of distance metric learning algorithms set α a large value. Nor-
mally, α > 32. According to Eq.(2), we know large α only focuses the farthest similar sample
and nearest dissimilar samples in the optimization procedure. Only consider the nearest dissimilar
samples means the distance metric leaning only consider the local distribution of the trainging data,
and does consider the global information of the training set. As a consequence, the moving of the
closest dissimilar sample will be stuck by other ignored dissimilar samples. Because those nearest
samples will give each element a pushing force from its anchor or on is its.Therefore, we can claim
that the goal of distance metric learning mainly depends on the shrinking of similar samples in each
class. In this way, the distance metric learning does not have the power to assign the centers of each
classes. Geometrically, pushing centers away from each other will benefit the distinguish samples
between different classes. For example, suppose the radius of the cluster region of each class be
fixed as r, and the gap between two classes be δ. If we let the centers of each class be pushing away
from each other, the gap between two classes will also be enlarged, i.e., δ + ϵ where ϵ is the amount
increased by the pushing action for centers. In this way, the features extracted by neural networks
will be easy to distinguish. Besides, if the centers are not assigned by the algorithm. When we want
the gap between two classes still to be δ++ϵ, we should shrink samples in the cluster of each class
significantly. However, the training samples of distance metric learning are not very much. For ex-
ample, the widely used dataset in metric learning is CUB-200-2011 has 200 classes with each class
69 samples on average. Compared with dimension of features extracted by neural network, normally
being 512 or 1024, the number 69 is very smaller. In this way, it is hard to shrink so less samples
in the high dimensional feature space without the overfitting. When the overfitting happens, the
performance of distance metric learning will be hurt. Therefore, how to assign the centers of each
class is an very important issue.

3.1 SHORTCOMINGS OF ENERGY FUNCTION

Several works are proposed to assign the centers of different classes for classification problem. The
well-known ones are the energy function based ones whose formulations are presented as follows.

Es,d(wi|Ci=1) =

C∑
i=1

C∑
j=1,i̸=i

fs(S(wi,wj)) =

{ ∑
i̸=j S(wi,wj)

−s , s > 0
−
∑

i̸=j log(S(wi,wj)) , s = 0
(3)

where S(wi,wj) is a similarity function between wi and wj . Commonly, there S(wi,wj) = |wi −
wj |22.

Let us calculate the gradient descent of energy function with respective to s(wi,wj), there is

∂Es,d(wi|Ci=1)

∂s(wi,wj)
=

{∑
i̸=j(−s)S(wi,wj)

−s−1 , s > 0

−
∑

i ̸=j S(wi,wj)
−1 , s = 0

(4)

As seen from the above Eq.(4), we know that if S(wi,wj) is small, the value of gradient descent is
large. It means the algorithm would give a large weight to the sample pairs with smaller distance.
Thus, the energy function only consider the closest samples of each query, and ignore the farther
samples. This have two shortcomings: If only closest samples of each query are considered, so the
pushing action on this query sample is easy to be eliminated by the samples around it. Considering
there are hundreds of classes in each distance metric learning task, thus, such phenomenons easy
encounter. And the centres can not be assigned to the whole surface of the hyper-sphere in the
feature space.

In the following content, we design a new mechanism to solve this problem. That is we let the
farthest samples of each query to push the query. Because the farthest samples are always located
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in the boundary of the region of the features, so when we let the distance between them and query
samples, it is hard to be stuck.

3.2 DISTANCE METRIC LEARNING SURVEY BY SKEWED MEAN FUNCTIONS

Definition 1. Given a set of numbers S = {s1, s2, · · · , sN}, without loss generality, by setting
0 < s1 < s2 < · · · < sN , we can define a K skewed mean of the numbers S as follows.

M [K](S) =

{
1

|K|
∑|K|

i=1 si ,K < 0
1
K

∑K
i=1 sN−i+1 ,K > 0

(5)

where K ∈ {±1,±2, · · · ,±N}.

Obviously, M [−1] = s1, M [1] = sN , and M [N ](S) = M [−N ](S) = 1
N

∑N
i=1 si.

As seen from the definition of the skewed mean functions, it is easy to find the largest value from
a set of numbers. If those numbers are the distances between a pair of centers, we can enlarge the
skewed mean functions to assign the position of centers. However, those skewed mean function
involves the operation of ranking the numbers, which make the skewed mean function is not a
continuous function with respective to the distance S(wi,wj). To solve this problem, we design a
series of continuous skewed mean function by introducing the following Theorem.

Theorem 1. Given a monotonously continuous increasing function y = fλ(x) : R1 :→ R1 where
λ ∈ R1, and its inverse function x = f−1

λ (y) : R1 :→ R1, we define a function presented as follows.

bS(λ) = f−1
λ (

1

N

N∑
i=1

fλ(si)) (6)

We can calculate the K skewed mean of the numbers S = {s1, s2, · · · , sN} defined in Eq.(5) by
using Eq.(6) with an appropriate selected λ, if bS(λ) satisfies the following rules:

(1) bS(λ) is a monotonously increasing function with respective to λ

(2) limλ→+∞ bS(λ) = max{si}Ni=1 and limλ→−∞ bS(λ) = min{si}Ni=1

For the Theorem 1, we can give two examples of fλ(x), i.e., fλ(x) = eλx and fλ(x) = xλ, which
respectively corresponds to

bS(λ, a) =
1

λ
loga

(
1

N

N∑
i=1

aλsi

)

bS(λ) = (
1

N

N∑
i=1

(si)
λ)1/λ

(7)

Property 1. The functions b(λ) and g(λ) has the following properties:

(1) Both b(λ) and g(λ) are two monotonically increasing functions with respective to λ;
(2) limλ→+∞ b(λ) = an and limλ→+∞ g(λ) = an;
(3) limλ→−∞ b(λ) = a1 and limλ→−∞ g(λ) = a1, thus, there is an appropriate number λ∗

to let b(λ∗) = ak or g(λ∗) = ak where ak is the k-th largest number in {ai}Ti=1.

(4) Let ai = (xi−x)T M(xi−x) where M ⪰ 0 ∈ Rd×d is a distance metric, b(λ) and −b(−λ)
are convex with respective to the matrix M when λ > 0.

Remark 1. By using the K skewed mean function, we can automatically select the k largest values
of a set of numbers or the smallest values. If we want to assign the centers of different classes in the
features space, we should select the center pairs whose distance are large, and let those sample pairs
with large distance be pushed away from each other. Because all of those samples are on the surface
of a sphere, the distances between those selected sample pairs have a maximal values. In this way,
the algorithms will convergence.
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3.3 REGULARIZATION PUNISHING LARGE SIMILARITY BETWEEN CLASS CENTERS

In this section, we design a term to push centers of classes away from each other. Suppose {pi}Ci=1
are centers of classes and the similarity between pi and pj is denoted as s(pi,pj). Then, we collect
all similarities related to pc as a set denoted by Mc = {s(pc,pi)|j ̸= c}. In Mc, the r-th largest
element of is denoted by v

(r)
Mc

. In this way, there is a constraint v(1)Mc
< δ3 to fulfill the above goal,

whose continuous version is presented as follows.

R1 =
1

γ3
log

 C∑
j=1,j ̸=i

eγ3(s(pi,pj)−δ3)


R2 = (

1

C(C − 1)

C∑
i=1

∑
i̸=j

s(pi,pj)
λ)

1
λ

(8)

Thus, if we add the above regularization for the metric learning algorithm, we can achieve a new
optimization problem which have the ability to constrain the location of centers of different classes.

3.4 THE RELATIONSHIP BETWEEN EXISTING METHODS.

Let us introduce a relaxation of the constraint v(1)Mc
< δ3. Let us combine all {Mc}Cc=1 to one

large set M =
⋃C

c=1 Mc, the set {v(1)Mc
|c = 1, · · · , C} is a subset of M. Therefore, the constraint

v
(1)
Mc

< δ3 can be relaxed as 1
C

∑C
c=1 v

(1)
Mc

< δ3. In this way, by constructing a continuous version of
it, we can have an new regularization. Excepting the log-exp mean function, there is another skewed

mean function can be used, i.e., g(λ) = ( 1n
∑n

i=1 a
λ
i )

1
λ . Thus, the new continuous constraint is

(
1

C(C − 1)

C∑
i=1

∑
i ̸=j

s(pi,pj)
λ)

1
λ

< δ3 (9)

If we set the similarity function as the negative distance, the constraint in Eq.(10) is presented as

(
1

C(C − 1)

C∑
i=1

∑
i̸=j

d(pi,pj)
−λ)

1
−λ

> δ3 (10)

If we set λ = −1, the left term in Eq.(10) is the energy based regularization proposed by in Uniform-
face Duan et al. (2019). If we perform the operation (x)−λ on left term of Eq.(10), the minimum
hyperspherical energy 1

C(C−1)

∑C
i=1

∑
i ̸=j d(pi,pj)

−λ is obtained Liu et al. (2018). Because (x)−λ

is a monotonous decrease function with respect to λ, the minimum hyperspherical energy has the
same goal of Eq.(10).

For the regularization term used in Uniformface, to let λ = −1 will reduce the flexibility of the
algorithm to suit different types of data, because we know the λ is a parameter related to the class
number C. Different from Uniformface, the minimum hyperspherical energy term has a parameter
λ on s(pi,pj). However, s−λ(pi,pj) will be very large with a relative small λ if s(pi,pj) is small.
Such a large value will make its coefficient in the objective function hard to tune. Thus, in practice, λ
could not be selected too large. Actually, λ is set to 0, 1, 2 in Liu et al. (2018). This means minimum
hyperspherical energy term also lacks enough flexibility to deal with different types of samples.

Besides the flexibility, the above mentioned two methods should calculate C(C − 1)/2 times simi-
larity, which is extremely large when the class number of the task is large. So many calculation will
make the gradient update very slow. For example, in the face recognition, the class number can be
more than 690K, so such the terms used in Uniformface and minimum hyperspherical energy term
will cost plentiful computational resources. However, in our algorithm, we consider the {pi}Ci=1 as
nodes in the bipartite graph. Similar to samples in X , we can also only select small part of {pi}Ci=1 to
construct the objective function. In this way, our algorithm can save a lot of computational resource.

5



Under review as a conference paper at ICLR 2023

4 EXPERIMENTAL RESULTS

In this section, our method is evaluated and compared to current state-of-the-art methods on the four
benchmark datasets for deep metric learning. We also investigate the effect of hyperparameters and
embedding dimensionality of our loss to demonstrate its robustness.

4.1 DATASETS

We employ CUB-200-2011Wah et al. (2011), Cars-196Krause et al. (2013), Stanford Online Product
(SOP)Oh Song et al. (2016) and In-shop Clothes Retrieval (In-Shop) datasets Liu et al. (2016) for
evaluation. For CUB-200-2011, we use 5864 images of its first 100 classes for training and 5,924
image of the other classes for testing. For Cars-196, 8054 images of its first 98 classes are used for
training and 8131 images of the other classes are kept for testing. For SOP, we follow the standard
dataset split in Oh Song et al. (2016) using 59551 images of 11,318 classes for training and 60,502
images of the rest classes for testing. Also for In-Shop, we follow the setting in Oh Song et al. (2016)
using 25882 images of the first 3,997 classes for training and 28,760 images of the other classes for
testing; the test set is further partitioned into a query set with 14,218 images of 3,985 classes and a
gallery set with 12,612 images of 3,985 classes.

4.2 IMPLEMENTATION DETAILS

Embedding network: For a fair comparison to previous work, the inception network Ioffe &
Szegedy (2015) with batch normalization pre-trained for ImageNet classification is adopted as
our embedding network. We change the size of its last fully connected layer according to the
dimensionality of embedding vectors, and L2-normalize the final output.

Training: In every experiment, we employ AdamW optimizer Loshchilov & Hutter (2017),
which has the same update step of Adam Kingma & Ba (2014) yet decays the weight separately.
Our model is trained for 40 epochs with initial learning rate 10−4 on the CUB-200-2011 and
Cars-196, and for 60 epochs with initial learning rate 6 · 10−4 on the SOP and In-shop. The learning
rate for proxies is scaled up 100 times for faster convergence. Input batches are randomly sampled
during training.

Image setting: Input images are augmented by random cropping and horizontal flipping
during training while they are center-cropped in testing. The default size of cropped images is
224× 224 as in most of previous work, but for comparison to HORDE Jacob et al. (2019), we also
implement models trained and tested with 256× 256 cropped images.

4.3 ABLATION EXPERIMENT ON DIFFERENT METHODS

To demonstrate the importance of the neighborhood parameter learning, we conduct an ablation
study on CUB-200-2011. Since the outer objective is a standard metric learning based on the log-exp
function, therefore, we could instead it with the objective function of other type of metric learning
algorithm, such as multi-similar loss Wang et al. (2019b), N-pair lossSohn (2016), lifted-structure
lossOh Song et al. (2016), Proxy-nca loss Movshovitz-Attias et al. (2017) and the adaptive neigh-
borhood metric learning Song et al. (2021).

The reason why we select those three methods to conduct the ablation experiment, is they are the
special cases of the adaptive neighborhood metric learning Song et al. (2021). We adopt the re-
formulated metric learning methods as the outer objective function of our methods, our bi-level
learning framework could solve the neighborhood parameters and the metric parameter according
to the algorithm ??. We utilize the dataset CUB-200-2011 to training those methods, and adopt the
Recall@1 to evaluate the performance of them. The results are shown in the Table 1. As seen from
the Table 1, with the help of the neighborhood parameter learning, those well-known metric learning
algorithms could be improved further in terms of performance.
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Table 1: Performance on the CUB-200-2011 of the three state-of-the-art methods and their improved
versions with 512 dimension.

Recall@k 1 2 4 8

Lifted structure
loss512

Original 45.4 58.4 69.5 79.5

bi-level 47.1 60.3 71.6 81.8

Multi-similar
loss512

Original 49.2 61.9 67.9 72.4

bi-level 52.7 65.4 68.3 75.7

N-pairs loss512
Original 43.6 56.6 68.6 79.6

bi-level 46.8 60.7 72.6 83.8

Proxy-NCA
loss512

Original 44.6 53.6 68.6 84.6

bi-level 47.8 62.7 72.5 87.8

DANML512
Original 65.4 76.8 85.7 90.7

Improved 67.6 79.1 88.2 93.4

4.4 COMPARISON TO STATE-OF-THE-ART METHODS

With further comparison the performance of our method with state-of-the-art techniques on image
retrieval task, we conduct the proposed methods on the CUB-200-2011, Car-196, Stanford Online
Product (SOP) and In-shop Clothes Retrieval (In-Shop) datasets. We adopt the recall@k as the
metric to evaluate the performance of the related metric learning methods. The result are shown in
Table 2-4.

As shown in Table 2, our DANML improves Recall@1 by 1.9% on the CUB-200-2011, and 1.5% on
the Cars-196 over the recent state-of-the-art multi-similarity loss. This may be because the logistic
loss function is more powerful than the linear function for generalization. Meanwhile, for recently
proposed method Circle Loss, our DANML outperforms it about 0.9% on the CUB-200-2011 and
2.2% on the Cars-196 dataset. Compared with ABE which is an ensemble method with a much
heavier model, our method achieves a higher Recall@1 by 7.0% improvement on the CUB-200-
2011 and 0.4% on the Cars-196 dataset.
For the Stanford Online Products (SOP) and the In-Shop Clothes Retrieval (In-Shop), as seen from
Tables 4 and 3, our method outperforms multi-similarity loss by 1.7% on the In-Shop dataset and
by 0.4% on the SOP dataset, respectively. Furthermore, when compared with ABE, our method
increases Recall@1 by 3.6% and 2.8% on the In-Shop and SOP dataset, respectively. For the Circle
Loss which is a recent state-of-the-art method on SOP dataset, our DANML achieves a better per-
formance about 1.6% on it.

4.5 IMPACT OF HYPERPARAMETERS68 
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Figure 2: The Recall@1 corresponds to different
dimensions.

Figure 3: The Recall@1 corresponds to different r.

Embedding dimension: The dimension of embedding vectors is a crucial factor that controls the
trade-off between speed and accuracy in image retrieval systems. We thus investigate the effect
of embedding dimensions on the retrieval accuracy in our Bi-level metric learning framework. We
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Table 2: Recall@K(%) performance on CUB-200-2011 dataset and Cars-196 dataset. Superscript
denotes embedding size.

CUB-200-2011 Cars-196

Recall@K(%) 1 2 4 8 16 32 1 2 4 8 16 32

Clustering64Oh Song et al. (2017) 48.2 61.4 71.8 81.9 - - 58.1 70.6 80.3 87.8 - -
ProxyNCA64Movshovitz-Attias et al. (2017) 49.2 61.9 67.9 72.4 - - 73.2 82.4 86.4 87.8 - -
Smart Mining64Harwood et al. (2017) 49.8 62.3 74.1 83.3 - - 64.7 76.2 84.2 90.2 - -
Margin128Wu et al. (2017) 63.6 74.4 83.1 90.0 94.2 - 79.6 86.5 91.9 95.1 97.3 -
HDC384Wu et al. (2017) 53.6 65.7 77.0 85.6 91.5 95.5 73.7 83.2 89.5 93.8 96.7 98.4
HTL512Ge (2018) 57.1 68.8 78.7 86.5 92.5 95.5 81.4 88.0 92.7 95.7 97.4 99.0
ABIER512Opitz et al. (2018) 57.5 68.7 78.3 86.2 91.9 95.5 82.0 89.0 93.2 96.1 97.8 98.7
ABE512Kim et al. (2018) 60.6 71.5 79.8 87.4 - - 85.2 90.5 94.0 96.1 - -
Multi-similarity loss512Wang et al. (2019b) 65.7 77.0 86.3 91.2 95.0 97.3 84.1 90.4 94.0 96.5 98.0 98.9
Hardness-aware512Zheng et al. (2019) 53.7 65.7 76.7 85.7 - - 79.1 87.1 92.1 95.6 - -
Circle Loss512Yifan Sun (2020)66.7 77.4 86.2 91.2 - - 83.4 89.8 94.1 96.5 - -
Ranked list loss512Wang et al. (2019a) 61.3 72.7 82.7 89.4 - - 82.1 89.3 93.7 97.7 - -

Ours512 67.6 79.1 86.4 91.2 97.1 98.1 85.6 92.1 94.1 97.7 98.1 99.3

Table 3: Recall@K(%) performance on SOP dataset. Superscript denotes embedding size.

SOP

Recall@k 1 10 100 1000

Clustering64Oh Song et al. (2017) 67.0 83.7 93.2 -
ProxyNCA64Movshovitz-Attias et al. (2017) 73.7 - - -
Smart Mining64Harwood et al. (2017) 49.8 62.3 74.1 -
Margin38Wu et al. (2017) 72.7 86.2 93.8 98.0
HDC384Wu et al. (2017) 69.5 84.4 92.8 97.7
HTL512Ge (2018) 74.8 88.3 94.8 98.4
ABIER512Opitz et al. (2018) 74.2 86.9 94.0 97.8
ABE512Kim et al. (2018) 76.3 88.4 94.8 98.2
Multi-similarity loss512Wang et al. (2019b) 78.2 90.5 96.0 98.7
Hardness-aware512Zheng et al. (2019) 68.4 83.5 92.3 -
Ranked list loss512Wang et al. (2019a) 79.8 91.3 96.3 -
Circle Loss512Yifan Sun (2020) 78.3 90.5 96.1 98.6

Ours512 79.9 92.1 96.4 98.9

Table 4: Recall@K(%) performance on In-Shop dataset. Superscript denotes embedding size.

In-Shop

Recall@k 1 10 20 30 40 50

FashionNet4096Oh Song et al. (2017) 53.0 73.0 76.0 77.0 79.0 80.0
HDC384Wu et al. (2017) 62.1 84.9 89.0 91.2 92.3 93.1
HTL512Ge (2018) 80.9 94.3 95.8 97.2 97.4 97.8
ABIER512Opitz et al. (2018) 83.1 95.1 96.9 97.5 97.8 98.0
ABE512Kim et al. (2018) 87.3 96.7 97.9 98.2 98.5 98.7
Multi-similarity loss512Wang et al. (2019b) 89.7 97.9 98.5 98.8 99.1 99.2

Ours512 90.1 98.2 98.9 99.0 99.3 99.4
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test our loss with embedding dimensions varying from 64 to 1, 024 following the the experiment in
Wang et al. (2019b), and further examine that with 32 embedding dimension. The result of analysis
is quantified in Figure 2, in which the retrieval performance of our loss is compared with that of MS
loss Wang et al. (2019b). The performance of our loss is fairly stable when the dimension is equal to
or larger than 128. Moreover, our loss outperforms MS loss in all embedding dimensions, and more
importantly, its accuracy does not degrade even with the very high dimensional embedding unlike
MS loss.

Parameter r in our method: We also investigate the effect of the hyperparameter r of our method
on the Cars-196 dataset and CUB-200-211. The results of our analysis are summarized in Figure 3,
in which we examine Recall@1 of the proposed bi-level metric learning loss by varying the values of
the parameter r ∈ {0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.66, 0.7}. For CUB-200-211 and Cars-196,
the results suggest that when r near 0.55 and 0.45, the proposed bi-level metric learning achieve
the best performances, respectively. The results indicate the performance of the proposed bi-level
methods is sensitive to the parameter λ, so we should carefully chose r in the proposed bi-level
distance metric learning algorithm. The r is the gap between two negative classes which determines
the lower-bound of the Lipschitz constant of the learned deep neural network network. That is why
the performance of the proposed methods is sensitive to the value of r.

5 CONCLUSION

In this paper, we reveal that learning the position of centers for each class is very important to
metric learning. However, current potential energy-based regularization has less ability to constrain
the position of centers because it considers the nearest centers of each query center. The pushing
actions given by the nearest centers on the query center contradict each other. To overcome this
shortcoming, we design a function named skewed mean function, which can be used to calculate
the most considerable distances of a set of numbers. Using the skewed mean function, we give new
center regularization, which considers center pairs with farthest centers. The conducted experiments
illustrate the effectiveness of our proposed method.
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