
EncCluster: Bringing Functional Encryption in Federated
Foundational Models

Vasileios Tsouvalas1∗ Samaneh Mohammadi2,3∗ Ali Balador3 Tanir Ozcelebi1

Francesco Flammini3 Nirvana Meratnia1

1Eindhoven University of Technology, Eindhoven, Netherlands
2RISE Research Institutes of Sweden, Västerås, Sweden

3Mälardalen University, Västerås, Sweden

Abstract

Federated Learning (FL) decentralizes model training by transmitting local model
updates to a central server, yet it remains vulnerable to inference attacks during these
transmissions. Existing solutions, such as Differential Privacy (DP) and Functional
Encryption (FE), often degrade performance or impose significant operational
burdens on clients. Meanwhile, the advent of Foundation Models (FMs) has trans-
formed FL with their adaptability and high performance across diverse tasks. How-
ever, delivering strong privacy guarantees with these highly parameterized FMs in
FL using existing privacy-preserving frameworks amplifies existing challenges and
further complicates the efficiency-privacy trade-off. We present EncCluster†, a
novel method that integrates model compression through weight clustering with
decentralized FE and privacy-enhancing data encoding using probabilistic filters to
deliver strong privacy guarantees in FL without affecting model performance or
adding unnecessary burdens to clients. We perform a comprehensive evaluation,
spanning 4 datasets and 5 architectures, to demonstrate EncCluster scalability
across encryption levels. Our findings reveal that EncCluster significantly re-
duces communication costs — below even conventional FedAvg — and accelerates
encryption up to 1000× over baselines; at the same time, it maintains high model
accuracy and enhanced privacy assurances.

1 Introduction
Federated Learning (FL) addresses the challenges of data privacy, regulatory compliance, and cen-
tralized data processing by enabling collaborative AI model training directly on edge devices (1).
Unlike traditional approaches that aggregate data on centralized servers, FL keeps raw data on devices,
reducing privacy risks and helping organizations comply with regulations like GDPR and the AI Act.
FL operates through multiple rounds where model updates are sent to clients, trained locally, and
then aggregated on a server (e.g., FedAvg (2)) until the model converges.
Although FL preserves privacy by keeping raw data on devices, it remains vulnerable to inference
attacks during model update communications, potentially exposing sensitive information (3; 4). To
address this, privacy-preserving methods such as Differential Privacy (DP) (5) and Secure Multi-Party
Computation (SMPC) (6) have been proposed. However, DP often degrades model performance (7),

∗Equal contribution. Corresponding author: samaneh.mohammadi@ri.se
†Code: https://github.com/FederatedML/EncCluster

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/FederatedML/EncCluster

while SMPC faces scalability challenges due to high computational demands (8). Encryption-based
techniques, including Homomorphic Encryption (HE)(9) and Functional Encryption (FE) (10), offer
strong privacy without sacrificing performance but depend on fully-trusted Third-Party Authorities
(TPAs) for key management, which can be impractical during FL training due to the decentralized
nature of FL and the risks associated with relying on fully trusted entities (6; 11). Additionally, these
methods involve cryptographic operations across all model parameters, leading to significant increases
in computational costs and training times as models grow in complexity.
The need for scalable privacy-preserving solutions becomes increasingly urgent with the rise of
Foundation Models (FMs) in FL. These models, exemplified by ViT architectures that scale to billions
of parameters (12), have shown exceptional capabilities across various tasks. However, as FMs
are more widely adopted in FL (13; 14; 15), the existing trade-offs between privacy and efficiency
become even more pronounced. Current encryption-based methods struggle to meet the computational
demands of these large-scale models, revealing a critical gap in the literature: the absence of scalable,
efficient privacy-preserving techniques that can accommodate the growing complexity and size of
FMs within the FL paradigm.
To bridge the gap between the high-performance potential of FMs and the practical constraints of
privacy-preserving FL schemes, we introduce EncCluster, a framework that offer robust privacy
protection against inference attacks while requiring minimal communication and computation overhead
for clients participating in FL. To achieve this, we design our framework with the following three
building blocks, i.e. (i) model compression via weight clustering, (ii) decentralized FE, allowing
cryptographic encryption without fully-trusted TPAs, and (iii) encoding via probabilistic data structure
(i.e., Binary Fuse (BF) filters) to further enhance privacy without introducing excessive computational
burdens. Specifically, we apply weight clustering locally on clients’ models and subsequently encrypt
the resulting set of cluster centroids via FE. Cluster-weight mapping, which signifies associations
between positions in the weight matrix and respective centroids, is then injected into BF filters through
computationally efficient hashing operations. To fuse all model updates, the server reconstructs
this mapping via a membership query in the BF filters and performs a secure aggregation without
decrypting the clients’ model updates. In doing so, EncCluster restricts the computationally
“heavy” encryption operations to a small set of centroid values —irrespective of the model’s parameters
— while mappings to model weights are encoded through cost-effective hashing, striking a balance
between privacy preservation and the practical computational and communication demands of FMs
in FL. Concisely, our contributions are as follows:

• We introduce EncCluster, a lightweight privacy-preserving FL framework that maintains
model performance with low operational costs, enabling FMs in FL where strict privacy is key.

• We combine weight clustering with decentralized FE and BF filter-based encoding for secure,
efficient transmission, and aggregation of compressed model updates, eliminating reliance on
trusted external entities.

• Our comprehensive evaluation across 4 datasets and 5 neural architectures demon-
strates EncCluster’s efficiency gains over traditional FE schemes, achieving 13× reduction
in communication costs and 1000-fold speedup in computational demand, alongside a mere
1.15% accuracy loss compared to FedAvg.

• We showcase EncCluster scalability across various encryption levels revealing near-
constant communication costs in FL with minimal increases to clients’ encryption times,
all while maintaining robust privacy guarantees.

2 Preliminaries
Weight Clustering. Weight clustering compresses neural networks by grouping similar weights
into clusters using algorithms like K-means (16). This can be done per layer or across the entire
model. Given a neural network f with weights 𝜃 = (𝜃1,… , 𝜃𝑑) ∈ ℝ𝑑 , the goal is to form 𝜅 clusters
 = {𝑐1,… , 𝑐𝜅} by minimizing:

𝑤𝑐(𝜃,) =
𝜅
∑

𝑗=1

𝑑
∑

𝑖=1
𝑢𝑖𝑗 ⋅ ||𝜃𝑖−𝑧𝑗||

2 , (1)

2

where = {𝑧1,… ,𝑧𝜅} represents the 𝜅 centroids, and 𝑢𝑖𝑗 is a binary indicator for the assignment
of weights to clusters. Minimizing 𝑤𝑐 yields the centroids and cluster mappings, assigning each
weight to its nearest centroid.
Probabilistic Filters. Probabilistic filters are data structures that map a universe of keys to
fixed-size bit values, compacting data using hash functions to create a uniformly distributed array of
fingerprints . These structures allow efficient membership checking with adjustable false positive
rates while ensuring zero false negatives.
Among various filters, Binary Fuse (BF) filters (17) stand out for their space efficiency (up to 1.08
bits per entry) and low false positive rates (2−𝑏𝑝𝑒). A 𝜇-wise BF filter uses 𝜇 distinct hash functions
ℎ𝑗 : {1,… ,2𝑛} → {1,… , 𝑡}, where 𝑡 is the size of the fingerprint array . Let 𝑔: ℕ → {1,… ,2𝑛}
generate 𝜉-bit fingerprints. For each key 𝑖 ∈ , the fingerprint array is computed as:

 =
⋃

𝑖∈
𝜙(𝑖) =

⋃

𝑖∈

(𝜇
⋃

𝑗=1
{ℎ𝑗(𝑔(𝑖))}

)

(2)

Here, 𝜙(𝑖) computes the set of 𝜇 locations in for each key 𝑖 in . Once is constructed, we can
perform a membership check as:

Member(𝑥) =
{

true,
⨁𝑚

𝑗=1
[

ℎ𝑗(𝑔(𝑥))
]

= 𝑔(𝑥)
false, otherwise

(3)

where ⨁𝑚
𝑗=1[⋅] represents a bitwise XOR over the hash-indexed values in . If the result matches

the fingerprint 𝑔(𝑥), the filter likely identifies 𝑥 as a member. BF filters use efficient hash functions
like MurmurHash3 (18), ensuring low computational cost and high-quality hash distributions.
Decentralized Functional Encryption. Functional encryption (FE) enables operations on encrypted
data to yield plaintext results without decrypting individual inputs (19). Compared to traditional HE,
FE is more efficient, especially in secure multi-party aggregation (10). We focus on Decentralized
Multi-Client Functional Encryption (DMCFE) (20), which supports inner product computations on
encrypted data. DMCFE is notable for (i) allowing participants to hold partial keys, eliminating the
need for a trusted TPA, and (ii) incorporating a labeling mechanism to bind functional keys to specific
ciphertexts, ensuring exclusivity.
Let be a family of sets of functions 𝑓 : 1×…×𝑛 → , 𝓁 = {0,1}∗ ∪{⊥} be a set of labels, and
 be a set of clients. A DMCFE scheme for the function family and the label set 𝓁 is a tuple of
six algorithms 𝐷𝑀𝐶𝐹𝐸 = (𝖲𝖾𝗍𝗎𝗉,𝖪𝖾𝗒𝖦𝖾𝗇,𝖽𝖪𝖾𝗒𝖲𝗁𝖺𝗋𝖾,𝖽𝖪𝖾𝗒𝖢𝗈𝗆𝖻,𝖤𝗇𝖼,𝖣𝖾𝖼):
• 𝖲𝖾𝗍𝗎𝗉(𝜆,𝑛): Takes as input a security parameter 𝜆 and the number of clients 𝑛 and generates public

parameters 𝗉𝗉. We assume that all the remaining algorithms implicitly contain 𝗉𝗉.
• 𝖪𝖾𝗒𝖦𝖾𝗇(𝗂𝖽𝑖): Takes as input a client-specific identifier, 𝗂𝖽𝑖, and outputs a secret key 𝗌𝗄𝑖 and an

encryption key 𝖾𝗄𝑖, unique to client 𝑖.
• 𝖽𝖪𝖾𝗒𝖲𝗁𝖺𝗋𝖾(𝗌𝗄𝑖,𝑓): Takes as input a secret key 𝗌𝗄𝑖 and a function 𝑓 ∈ to computes a partial

functional decryption key 𝖽𝗄𝑖.• 𝖽𝖪𝖾𝗒𝖢𝗈𝗆𝖻({𝖽𝗄𝑖}𝑖∈): Takes as input a set of 𝑛 partial functional decryption keys {𝖽𝗄𝑖}𝑖∈ and
outputs the functional decryption key 𝖽𝗄𝑓 .

• 𝖤𝗇𝖼(𝖾𝗄𝑖,𝑥𝑖,𝑙): Takes as input an encryption key 𝖾𝗄𝑖 and a message 𝑥𝑖 to encrypt under label 𝑙 ∈ 𝓁
and outputs ciphertext 𝖼𝗍𝑖,𝑙.• 𝖣𝖾𝖼(𝖽𝗄𝑓 ,{𝖼𝗍𝑖,𝑙}𝑖∈): Takes as input a functional decryption key 𝖽𝗄𝑓 , and 𝑛 ciphertexts under the
same label 𝑙, and computes value 𝑦 ∈ .

3 EncCluster Framework
We present EncCluster, a novel approach that combines model compression via weight clustering,
decentralized FE, and BF filter-based efficient encoding to enhance FL’s privacy against inference
attacks, while simultaneously reducing communication costs and the computational load on clients.
3.1 Notations
Let represent the aggregation server and the set of 𝑛 clients, each with a local dataset 𝑛,
participating over 𝑅 federated rounds. The model is f𝜃 , with weight parameters 𝜃 = (𝜃1,… , 𝜃𝑑), while

3

Membership Query (Eq. 5)
Encrypted

Centroids Substitution

Server

Secure
Aggregation (Eq. 7)

Weight
Clustering (Eq. 2)

Ciphertext

Fingerprints

Centroids

Mappings

Client

BF filter
Encoding (Eq. 3)

FE Encryption

Local
Training

Aggregated Weights

Client Updates
(Ciphertext + Fingerprints)

Figure 1: Overview of EncCluster’s training process. Clients train locally, cluster weights, encrypt centroids
using DMCFE, and encode cluster-weight 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 into BF filter fingerprints. Server reconstructs mappings
via BF filter queries, derives encrypted clustered weights, and aggregates them to update the model.

optimized parameters after local training are denoted by 𝜃∗. For client 𝑛 and round 𝑟, 𝑟
𝑛 represents

the 𝜅 clusters formed from the model weights 𝜃𝑟𝑛, with centroids 𝑟
𝑛 and mapping 𝑟

𝑛. 𝑟
𝑛 is the

fingerprint array for client 𝑛 in round 𝑟, and �̂� represents the encrypted value of 𝑥 using DMCFE (20).
We use 𝑟 as the label 𝑙 in DMCFE, as in (10; 21).
3.2 Threat Model and Assumptions
In EncCluster, we consider the following threat model:

• ∗HbC Server: Follows protocols but seeks private information from clients’ encrypted model
updates, possibly colluding with clients.

• Dishonest clients: Collude with the server to access private data from other clients without
altering model updates.

• HbC TPA: Follows the DMCFE protocol but may seek private information from clients.
To ensure key confidentiality, we assume a secure key-provisioning process, such as Diffie-
Hellman (22). Denial-of-service (DoS) and poisoning attacks are considered out of scope. With these
assumptions, we analyze our system’s resilience against the threat model in Section 4. A quantitative
evaluation of privacy leakage is provided in Appx. D.
3.3 Delivering Scalable FE in FL with EncCluster
EncCluster framework starts with the TPA executing 𝖲𝖾𝗍𝗎𝗉(𝜆,𝑛) to generate public parameters
𝗉𝗉. Each client, identified by 𝗂𝖽𝑖, independently generates secret and encryption key pairs (𝗌𝗄𝑖,𝖾𝗄𝑖),allowing them to create partial decryption keys via 𝖽𝖪𝖾𝗒𝖲𝗁𝖺𝗋𝖾(𝗌𝗄𝑖). Clients send their partial
decryption keys and model updates to the server at each round, facilitating FL.

Training Overview. Training begins with the server initializing and distributing a neural network
f𝜃 . In round 𝑟, clients locally train on their datasets 𝑛, updating model parameters 𝜃𝑟∗𝑛 . Next, they
perform weight clustering, obtaining clusters 𝑟

𝑛 = ⟨𝑟
𝑛,

𝑟
𝑛⟩. The centroids 𝑟

𝑛 are encrypted using
𝖾𝗄𝑛 to get ̂𝑟

𝑛, while 𝑟
𝑛 is encoded into a 𝜇-wise BF filter, resulting in fingerprint array 𝑟

𝑛. The
local training completes with each clients sending ̂𝑟

𝑛, 𝑟
𝑛, and their partial decryption key 𝖽𝗄𝑛 to the

server. The server estimates 𝑟
𝑛 using 𝑟

𝑛 via querying, and forms encrypted weights �̂�𝑟𝑛 by replacing
the positions indexed by 𝑛 with the encrypted centroids from ̂𝑟

𝑛. It then combines the partial
decryption keys to compute 𝖽𝗄𝑓 and securely aggregates the encrypted weights. Fig. 1 illustrates
EncCluster’s training process, and Algorithm 1 outlines the EncCluster algorithm.

∗Honest but Curious.

4

Efficient Client-side Encryption. Standard cryptographic encryption of model updates imposes high
computational and communication costs due to the large prime numbers involved. As security levels
increase, these costs rise exponentially. To address this, EncCluster applies weight clustering
before encryption, reducing model weights 𝜃 to a compact set of centroids 𝑛. This minimizes the
encryption workload and data transmission during FL by requiring only the centroids to be encrypted.
Formally, client 𝑛 minimizes the following loss:

min
𝜃

𝑛(𝜃) = 𝑤𝑐(𝜃∗𝑛 ,𝑛) =
𝜅
∑

𝑗=1

𝑑
∑

𝑖=1
𝑢𝑖𝑗 ⋅ ||𝜃

∗
𝑛,𝑖−𝑧𝑛,𝑗||

2 ,

where 𝜃∗𝑛 = min
𝜃𝑛

𝑐𝑒(f𝜃𝑛 (𝑛))
(4)

Here, 𝑐𝑒 is the cross-entropy loss on the dataset 𝑛, 𝑛 represents the centroids, and 𝑢𝑖𝑗 indicates
whether weight 𝜃𝑖 belongs to cluster 𝑗. The client first optimizes the model parameters 𝜃 for accuracy
on 𝐷𝑛, then minimizes the clustering loss 𝑤𝑐 on the post-training parameters 𝜃∗.
To protect against HbC TPA and dishonest clients, EncCluster encodes the cluster-weights mapping
𝑛 into a 4-wise BF filter using 8 bits per parameter (𝜉 =8). Each key in𝑛 ={(𝑖,𝑛,𝑖) ∣ 𝑖∈{1,… ,𝑑}},
consisting of a weight position and its corresponding cluster, is inserted into the filter to produce the
fingerprint array 𝑛. The hashing operation ensures that 𝑛 cannot be deduced from 𝑛, protecting
against preimage attacks. Reconstruction of 𝑛 from 𝑛 relies on a shared seed 𝑠𝑛 between clients
and the server, ensuring secure and accurate estimation. While this mechanism does not offer
the same security as cryptographic FE, it effectively protects sensitive data while avoiding the
computational complexity of encryption.

Secure Aggregation. After local training in round 𝑟, the server synthesizes a new global model
from clients’ fingerprints 𝑟

𝑛 and encrypted centroids ̂𝑟
𝑛. The server reconstructs each client’s

BF filter using 𝑟
𝑛 and their unique seed 𝑠𝑛, estimating the cluster-weights mappings ′𝑟

𝑛 through
membership queries:

 ′𝑟
𝑛 = {𝑗 | Member (𝑖, 𝑗) = true}𝑖∈{𝑑}, 𝑗∈{𝜅} , (5)

where Member(⋅) operates as in Eq. 3. Due to the low false positive rate of BF filters, ′𝑟
𝑛 ≈ 𝑟

𝑛. The
server then replaces positions in ′𝑟

𝑛 with the corresponding encrypted centroids from ̂𝑟
𝑛, yielding

the encrypted updated model weights �̂�𝑟𝑛. By combining clients’ partial decryption keys, the server
derives the functional decryption key 𝖽𝗄𝑓 and computes the aggregated global model:

𝜃𝑟+1 =
{

𝖣𝖾𝖼
(

{�̂�𝑟𝑛,𝑖}𝑛∈ ,𝖽𝗄𝑓
)}

𝑖∈{𝑑}
, (6)

where 𝖣𝖾𝖼(⋅) decrypts the aggregated weights, forming the updated global model for the next federated
round. In EncCluster, aggregation can be plain or weighted (e.g., FedAvg (2)). We use the latter,
scaling centroids by sample size before encryption and normalizing 𝜃𝑟+1 by the total number of
samples after aggregation. Algorithm 2 provides an overview of the secure aggregation mechanism.

4 Security and Privacy Analysis
Both server and the TPA operate as HbC entities, with dishonest clients raising concerns about
passive attacks that could extract client information (e.g., model updates) during FL training.
Our analysis evaluates how these entities could attempt to access unauthorized information and
how EncCluster counters these threats.
Inference Attacks I (Reconstruction Attack): Here, we assess the privacy risks associated with
weight clustering, focusing on potential reconstruction attacks aimed at deriving a client’s weights,
𝜃𝑛, from the aggregated weights, 𝜃, using data from any aggregation round, 𝑟. Despite DMCFE
protection, which secures client centroids from external access, attackers may attempt to infer client’s
centroids by clustering 𝜃 into and reconstruct 𝜃𝑛, assuming mirrors 𝑛. The attack strategy
involves optimizing the placement of within 𝜃𝑛 to reduce the discrepancy between the estimated
weights, �̂�𝑛, and the actual weights, 𝜃𝑛, typically by minimizing MSE(

𝜃, �̂�𝑛
). In EncCluster,

such attacks can be initiated by:

5

• Dishonest Clients: Without direct access to 𝑛, clients must infer cluster-weight mappings to
approximate 𝜃𝑛, with the objective of minimizing MSE(

𝜃, �̂�𝑛
). The computational complexity

of this process is 𝑂(𝜅𝑑), where 𝑑 represents the dimensionality of the weights, rendering the
task increasingly infeasible as 𝑑 and 𝜅 grow.

• HbC Server: Utilizing the estimated cluster-weight mappings ′𝑛, the server can attempt
to deduce client weights �̂�𝑛 using and ′𝑛. This process has a computational complexity
of 𝑂(𝜅!), rendering attacks impractical for 𝜅 > 32. Even if reconstruction is successful, the
privacy leakage remains bounded (see Eq. 11). It is important to note that this analysis assumes
 ≈ 𝑛, an assumption often not true in pragmatic federated settings (see Appx. C). We provide
A quantitative evaluation of this attack in Appx. D.

Inference Attack II (Compromised TPA): The TPA’s role in initializing DMCFE and coordinating
client-specific key generation (𝑠𝑘, 𝑒𝑘) using unique identifiers (𝗂𝖽) is critical. However, being an HbC
entity it could misuse 𝗂𝖽 to access clients’ 𝑠𝑘 and 𝑒𝑘. By intercepting communications from client 𝑗, a
compromised TPA might decrypt 𝑍𝑟

𝑗 using “dummy” updates and perform secure aggregation. Yet,
access to 𝑗’s raw centroid values does not facilitate the accurate reconstruction of 𝜃𝑟𝑗 . The complexity
involved in deducing the cluster-to-weights mapping 𝑛 from 𝑟

𝑗 , compounded by the BF filters’ sen-
sitivity to unknown seeding (𝑠𝑗), safeguards data integrity against a compromised TPA. Furthermore,
TPA could aim to estimate clients’ model weights using 𝑍𝑟

𝑗 and the aggregated parameters 𝜃𝑟 by
replacing each weight in 𝜃𝑟 with its nearest centroid in 𝑍𝑟

𝑗 . However, variability in weight clustering
optimization (Eq. 1) across clients leads to flawed estimations, underscoring EncCluster’s defense
against compromised TPA scenarios.

5 Experiments
Datasets and FL Settings. We conduct experiments on 4 diverse image classification datasets. Note
that we focus solely on classification tasks; yet EncCluster poses no restriction on the underlying
downstream task. We train 4 neural architectures from scratch designed for on-device learning,
namely ResNet-20 (23), ConvMixer-256/8 (24), ConvNeXt (25), and MobileNet (26). Additionally,
to demonstrate EncCluster’s efficacy with vision FMs in FL, we employ popular ViT architectures
pre-trained in self-supervised manner, such as CLIP (27), DINOv2 (28), where, we fine-tune the last 5
transformer blocks, similar to (29; 13). Our FL simulations are performed using Flower (30), with key
parameters: number of clients (𝑀), rounds (𝑅), local epochs (𝐸), clients’ participation rate (𝜌), class
concentration (𝛾), and number of clusters (𝜅). For a detailed experimental setup, refer to Appx. B.1.
Baselines. We evaluate EncCluster in terms of accuracy, encryption complexity, and total volume
of communicated data relative to FedAvg (×times FedAvg). We introduce FedAvg𝑤𝑐 , which incorpo-
rates weight clustering and Huffman encoding before transmitting models to the server, to analyze the
impact of weight clustering. Additionally, we consider SEFL (31) as a baseline owing to its analogous
use of HE with pruning for scalable privacy-preserving FL. We also compare EncCluster with
DeTrust-FL (21) to demonstrate its advantages over other FE-based FL adaptations. To ensure a
fair comparison, all baselines share the same weight initialization, while we use a fixed 𝑅 across
experiments to facilitate a direct comparison of required data transfer volumes across baselines (lower
is better).
5.1 Privacy-Efficiency Trade-Off
Self-Supervised Pretrained FMs. Here, we evaluate the effectiveness of EncCluster with vision
FMs in FL, where strong privacy guarantees are paramount. We use CLIP ViT-B/32 with 30 clients
(𝑁 = 30) under both IID and Non-IID data distributions to compare EncCluster’s efficiency
against traditional FE-based approaches. Table 1 shows that EncCluster maintains stringent
privacy protections and delivers significant reductions in computation and communication, even
with FMs integrated into FL. Compared to DeTrust-FL, EncCluster reduces communication
demands by up to 13 times and slashes encryption time from potentially over an hour per round
to just 2.34 seconds, all while keeping model performance within 1% of FedAvg. These results
underscore EncCluster’s ability to effectively balance privacy and efficiency, enabling the use of
FE with FMs in scenarios where it was previously infeasible.
Training Models from Scratch. We train the “lightweight” ResNet-20 (23) from scratch
with 30 clients (𝑁 = 30) across both IID and Non-IID data distributions to evaluate

6

Table 1: Evaluation of EncCluster in terms of accuracy loss (𝛿-Acc), data transmission and clients’ encryption
times versus FedAvg for CLIP ViT-B/32 (27). Federated parameters are set to 𝑁=30, 𝜌=1, and 𝐸=1.

Dataset Approach IID (𝛾 ≈ 1.0) non-IID (𝛾 ≈ 0.2) Data Transmitted
(× times FedAvg)

Client-side
Encryption (s)Accuracy 𝛿-Acc. Accuracy 𝛿-Acc.

CIFAR-100
FedAvg𝑤𝑐

77.35
-0.21

75.49
-0.56 0.043 —

DeTrust-FL -0.15 -0.14 3.758 3720.04
EncCluster (Ours) -0.34 -0.67 0.255 2.34

EMNIST
FedAvg𝑤𝑐

94.89
-0.18

93.13
-0.37 0.041 —

DeTrust-FL -0.09 -0.12 3.754 3594.88
EncCluster (Ours) -0.29 -0.45 0.254 2.33

Food-101
FedAvg𝑤𝑐

86.72
-0.26

84.71
-0.49 0.043 —

DeTrust-FL -0.14 -0.17 3.759 3723.09
EncCluster (Ours) -0.32 -0.67 0.255 2.34

Table 2: Evaluation of EncCluster in terms of accuracy loss (𝛿-Acc), data transmission and clients’ encryption
times versus FedAvg for ResNet-20 (23). Federated parameters are set to 𝑁=30, 𝜌=1, and 𝐸=1. Partial client
participation experiments are in Table 4.

Dataset Approach IID (𝛾 ≈ 1.0) non-IID (𝛾 ≈ 0.2) Data Transmitted
(× times FedAvg)

Client-side
Encryption (s)Accuracy 𝛿-Acc. Accuracy 𝛿-Acc.

CIFAR-10
FedAvg𝑤𝑐

89.07

-0.12
83.12

-0.71 0.034 —
DeTrust-FL -0.09 -0.10 3.743 329.53
SEFL -0.98 -1.74 2.581 7.64
EncCluster (Ours) -0.32 -0.79 0.284 2.04

CIFAR-100
FedAvg𝑤𝑐

61.33

-1.07
54.37

-1.64 0.035 —
DeTrust-FL -0.11 -0.09 3.757 338.61
SEFL -2.42 -3.88 2.656 8.01
EncCluster (Ours) -1.21 -1.67 0.285 2.03

whether EncCluster maintains its efficiency with smaller models as observed with FMs. Ta-
ble 2 demonstrates that EncCluster significantly mitigates accuracy loss, boosts communication
efficiency, and speeds up client-side computations, even when training models from scratch in FL.
Compared to DeTrust-FL, EncCluster slashes communication demands by up to 13× and cuts
encryption time from 325 seconds to just over 2 seconds. Against SEFL, EncCluster partic-
ularly shines in Non-IID scenarios, where SEFL faces up to a 4% greater accuracy drop. Mean-
while, EncCluster maintains a 𝛿-Acc of 2%, achieves a 9-fold increase in encryption speed, and
reduces communication costs by 4×. Due to limited space, we provide additional experiments under
partial client participation in Appx. B.2.
5.2 EncCluster’s Scalability

Encryption Key Sizes. To assess EncCluster’s scalability with different encryption levels, we
experimented with various key sizes (𝐾𝑆) of DMCFE on ResNet-20 with CIFAR-10 for 𝑁=10 in IID
settings (𝛾 ≈ 1.0). We tracked encryption time and communication costs, measuring how 𝐾𝑆 influ-
ences computations and the size of encrypted messages. Additionally, we tested EncCluster𝑛𝑜𝐵𝐹 ,
a variant substituting BF filter-based with Huffman encoding to assess the overhead of BF filters. Our
findings, shown in Fig. 2, reveal that EncCluster maintains low encryption times across all key
sizes, peaking at 6.44 seconds for 𝐾𝑆=521. In contrast, DeTrust-FL’s encryption time increases with
larger 𝐾𝑆, and SEFL is consistently about 4× slower than EncCluster. The overhead from BF
filters is minimal, showcasing efficient scalability and added privacy benefits. Further details on the BF
filters’ overhead are available in Appx.B.3. Communication costs, as depicted in Fig. 2b, remain nearly
constant and significantly lower for EncCluster compared to DeTrust-FL, SEFL, and even FedAvg.
Weight clustering reduces data to just 𝜅 values, minimizing overhead, while EncCluster𝑛𝑜𝐵𝐹achieves even lower communication costs, proving ideal for bandwidth-constrained FL environments.
Cluster Sizes. We now investigated the impact of cluster size 𝜅 on model performance using CIFAR-
10 with 𝑁=10, full client participation, and IID settings (𝛾 ≈ 1.0). Experiments varied 𝜅 from
16 to 512, alongside key size (𝐾𝑆) of DMCFE to explore the relationship between cluster size
and communication overhead under different security levels. As shown in Fig. 3a, model accuracy
improves significantly with increasing 𝜅, rising from 68% at 𝜅=16 to over 89% at 𝜅=512, highlighting
the effectiveness of weight clustering in capturing clients’ post-training parameters (see Eq. 1).
Accuracy improvements are consistent across various𝐾𝑆 values (Fig. 3b), indicating that performance

7

is mainly influenced by 𝜅 rather than encryption level. However, accuracy plateaus at 𝜅 = 128, where
further increases yield diminishing returns while escalating communication costs and computational
overhead ((𝜅 ⋅𝑑)). 𝐾𝑆 has minimally impacts on data volume, fluctuating slightly between 0.285
and 0.303, as only 𝜅 values are encrypted regardless of 𝐾𝑆. Thus, EncCluster scales efficiently
to higher encryption levels without increasing client-side overhead, providing scalable FE in FL.
Neural Architectures. We evaluate EncCluster’s performance across various neural architectures,
focusing on accuracy loss and encryption time, excluding communication results as they mirror
previous findings tied to weight clustering (see Fig. 2b). Encryption time accounts for the injection of
cluster-weight mappings into BF filters, which depends on model size (from 0.16M in ConvNeXt-Tiny
to 3.4M in MobileNet). As shown in Table 3, EncCluster consistently achieves minimal accuracy
loss across all architectures. For larger models like MobileNet and ConvMixer-256/6, performance
impact is even lower, with 𝛿-Acc as low as -0.19 for CIFAR-10 and -0.97 for CIFAR-100. Encryption
times confirm EncCluster’s computational efficiency, with only a 0.1-second increase across
models due to low-cost BF filter hashing. These results demonstrate EncCluster’s scalability and
minimal performance impact, making it suitable for secure, efficient FL, even for large-scale FMs.

6 Related Work
Privacy-preserving FL. FL is vulnerable to inference attacks during model updates (3; 4). DP
has been used to mitigate this (5; 32) but often degrades model performance (7). Cryptographic
alternatives like HE (9) and SMPC (33) preserve privacy without affecting accuracy but impose high
computational and communication costs (34). Optimizations such as pruning and quantization (31; 35)
help but struggle with balancing security and resource constraints. FE has emerged as a lower-overhead
alternative, supporting complex computations like weighted averaging (36; 10; 21). Decentralized
FE (20; 37) improves privacy by using unique keys for each client, avoiding the risks of HE’s single-
shared key. However, many FE-based approaches, like HybridAlpha (10) and CryptoFE (36), require
a trusted third party, limiting practicality. DeTrust-FL (21) mitigates this by enabling clients to
collaboratively generate decryption keys, but it requires fixed client participation. These approaches
still encrypt all model parameters, leading to significant computational and communication overhead,
especially for resource-limited devices. EncCluster integrates FE with weight clustering and
probabilistic filters, improving efficiency while maintaining strong privacy.
Communication-efficient FL. FL communication efficiency can be enhanced through methods
like adaptive optimizers (38) and client sampling (39), which speed up convergence and reduce
transmission. Compression techniques like sparsification (40; 41), quantization (42; 43), and low-rank
approximation (44; 45) also reduce data transmission. Weight clustering (46) compresses model

KS = 160 KS = 192 KS = 224 KS = 256 KS = 320 KS = 384 KS = 448 KS = 521

100

101

102

103

Ex
ec

ut
io

n
Ti

m
e

(s
)

138.7s

4.6s

0.6s
1.2s

201.7s

5.3s

0.9s
1.4s

247.2s

6.1s

1.1s
1.6s

329.5s

7.0s

1.5s
2.0s

495.4s

9.4s

2.3s 2.8s

695.9s

11.8s

3.2s 3.7s

945.3s

15.9s

4.4s 4.8s

1287.5s

23.4s

5.9s 6.4s

DeTrust-FL
SEFL

EncClusternoBF (Ours)
EncCluster (Ours)

(a) Execution time of encryption process.

KS = 160 KS = 192 KS = 224 KS = 256 KS = 320 KS = 384 KS = 448 KS = 521
10 2

10 1

100

101

Da
ta

 T
ra

ns
m

itt
ed

(×
 ti

m
es

 F
ed

Av
g)

96.0

52.9

1.2

9.2

104.0
62.5

1.2

9.2

112.0
71.0

1.2

9.2

120.0
80.2

1.2

9.2

136.0
97.8

1.3

9.2

152.0
116.2

1.3

9.2

168.0
134.3

1.3

9.2

192.0 154.2

1.3

9.3

DeTrust-FL
SEFL

EncClusternoBF (Ours)
EncCluster (Ours)

(b) Volume of transmitted data compared to standard FedAvg.
Figure 2: Efficiency of EncCluster on ResNet-20 in IID settings (𝛾 ≈ 1.0) with CIFAR-10, 𝑁 = 10, 𝜌 = 1.
(a) Encryption time (log scale); (b) Transmitted data volume and bits-per-parameter (𝑏𝑝𝑝) compared to FedAvg.

8

(a) Impact of cluster size (𝜅) and key sizes (𝐾𝑆).
0

-5

-10

-15

-20

= 16 = 32 = 64 = 128 = 256 = 512

-A
cc

.
(v

s
Fe

dA
vg

 -
90

.0
7%

) KS
160
192
224
320
521

(b) Accuracy loss (𝛿-Acc.) across cluster sizes (𝜅).
Figure 3: Evaluation of EncCluster with varying cluster sizes (𝜅) and key sizes (𝐾𝑆) using ResNet-20
on CIFAR-10 (IID, 𝛾 ≈ 1.0). Subfigure (a) compares test accuracy and data transmitted to FedAvg; (b) shows
accuracy loss for different 𝜅 and 𝐾𝑆. Federated parameters are 𝑁 = 10, 𝑅 = 100, and 𝜌 = 1.0.

parameters with minimal accuracy loss. Recent work (47; 48) incorporating weight clustering into
FL has significantly reduced communication costs, making it ideal for low-bandwidth environments.
SEFL (31) combines HE with gradient pruning, and BatchCrypt (35) uses quantization and batching;
yet both face scalability and communication challenges. EncCluster addresses these limitations by
combining weight clustering with decentralized FE, increasing encrypted parameters per operation,
reducing communication overhead, and enhancing privacy with minimal computational cost through
probabilistic filter-based encoding.
7 Conclusions
We introduce EncCluster, a framework that bridges the gap between upholding privacy guarantees
against inference attacks on model updates and delivering operational efficiency and scalability within
FL. EncCluster uses model compression via weight clustering to transmit compressed model
updates during training, secured by combining decentralized FE with BF filter-based encoding.
Through extensive testing on 4 datasets and 5 architectures, EncCluster substantially reduces
communication costs (>13× reduction) and computational demands (>1000-fold speedup) with
minimal accuracy loss; thereby delivering robust privacy without reliance on trusted TPAs. Moreover,
our work pioneers the integration of strong FE privacy guarantees with FMs in FL, marking a significant
advancement in developing FL systems where privacy and efficiency coexist as complementary rather
than conflicting objectives.
Limitations. While EncCluster, combined with DMCFE, significantly improves client pri-
vacy with near-constant communication overhead and minimal impact on training times, its adap-
tation to other cryptographic frameworks has not been explored. Future research could inte-
grate EncCluster with emerging decentralized FE schemes (37; 21), eliminating the need for
a TPA and seamlessly integrating FE into existing FL systems. Additionally, pre-setting cluster
sizes in weight clustering, which depends on model and task complexity, limits adaptability across
diverse FL systems. Notably, the integration of recent adaptive weight clustering schemes (48)
within EncCluster— capable of dynamically adjusting cluster size based on model and task needs
— offers a promising path to overcome such challenges.
Broader Impacts. Our evaluation across widely utilized deep learning architectures in FL highlights
a significant gap in recent research (10; 21; 36; 31; 35), emphasizing the need to assess performance
under complex models and challenging tasks. By open-sourcing our code, we aim to foster further
exploration into approaches that simultaneously prioritize privacy and efficiency rather than treating
Table 3: EncCluster across various neural architectures on CIFAR-10 (IID, 𝛾 ≈ 1.0), reporting FedAvg
accuracy, EncCluster’s accuracy loss (𝛿-Acc), and client-side encryption time with 𝑁 = 10, 𝑅= 100, 𝜌= 1.0.

Dataset ConvNeXt-Tiny ResNet-20 MobileNet ConvMixer-256/8
Accuracy 𝛿-Acc. Accuracy 𝛿-Acc. Accuracy 𝛿-Acc. Accuracy 𝛿-Acc.

CIFAR-10 86.47 -0.36 89.07 -0.32 91.48 -0.24 92.35 -0.19
CIFAR-100 60.35 -1.29 61.33 -1.19 70.02 -0.97 72.64 -1.02
Encryption time (s) 2.02 2.03 2.08 2.12

9

them as separate challenges in FL. While EncCluster does not explicitly address eavesdropping
threats, BF filter-based encoding, which relies on a unique seed value for data reconstruction, naturally
safeguards against such threats. Additionally, our evaluations primarily focused on accuracy as a
performance metric. However, as highlighted in (49), model compression techniques may dispropor-
tionately impact different subgroups of data, raising fairness concerns in communication-efficient FL
frameworks that warrant further attention from the community.

Acknowledgements
The work presented in this paper is partially performed in the context of the Distributed Artificial
Intelligent Systems (DAIS) project supported by the ECSEL Joint Undertaking (JU) under grant
agreement No.101007273.

References
[1] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, D. Bacon, Federated learning: Strategies

for improving communication efficiency, arXiv preprint arXiv:1610.05492 (2016).
[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, B. A. y Arcas, Communication-efficient learning of deep

networks from decentralized data, in: Artificial intelligence and statistics, PMLR, 2017, pp. 1273–1282.
[3] M. Nasr, R. Shokri, A. Houmansadr, Comprehensive privacy analysis of deep learning: Passive and active

white-box inference attacks against centralized and federated learning, in: 2019 IEEE symposium on
security and privacy (SP), IEEE, 2019, pp. 739–753.

[4] R. Shokri, M. Stronati, C. Song, V. Shmatikov, Membership inference attacks against machine learning
models, in: 2017 IEEE symposium on security and privacy (SP), IEEE, 2017, pp. 3–18.

[5] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, L. Zhang, Deep learning with dif-
ferential privacy, in: Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security, 2016, pp. 308–318.

[6] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, K. Seth,
Practical secure aggregation for privacy-preserving machine learning, in: proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017, pp. 1175–1191.

[7] Y. Yang, B. Hui, H. Yuan, N. Gong, Y. Cao, {PrivateFL}: Accurate, differentially private federated learning
via personalized data transformation, in: 32nd USENIX Security Symposium (USENIX Security 23), 2023,
pp. 1595–1612.

[8] M. S. Riazi, K. Laine, B. Pelton, W. Dai, Heax: An architecture for computing on encrypted data, in:
Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 1295–1309.

[9] C. Fang, Y. Guo, Y. Hu, B. Ma, L. Feng, A. Yin, Privacy-preserving and communication-efficient federated
learning in internet of things, Computers & Security 103 (2021) 102199.

[10] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, H. Ludwig, Hybridalpha: An efficient approach for privacy-
preserving federated learning, in: Proceedings of the 12th ACM workshop on artificial intelligence and
security, 2019, pp. 13–23.

[11] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, Y. Zhou, A hybrid approach to
privacy-preserving federated learning, in: Proceedings of the 12th ACM workshop on artificial intelligence
and security, 2019, pp. 1–11.

[12] M. Dehghani, J. Djolonga, B. Mustafa, P. Padlewski, J. Heek, J. Gilmer, A. Steiner, M. Caron, R. Geirhos,
I. Alabdulmohsin, R. Jenatton, L. Beyer, M. Tschannen, A. Arnab, X. Wang, C. Riquelme, M. Minderer,
J. Puigcerver, U. Evci, M. Kumar, S. Van Steenkiste, G. F. Elsayed, A. Mahendran, F. Yu, A. Oliver,
F. Huot, J. Bastings, M. P. Collier, A. A. Gritsenko, V. Birodkar, C. Vasconcelos, Y. Tay, T. Mensink,
A. Kolesnikov, F. Pavetić, D. Tran, T. Kipf, M. Lučić, X. Zhai, D. Keysers, J. Harmsen, N. Houlsby, Scaling
vision transformers to 22 billion parameters, ICML’23, JMLR.org, 2023.

[13] V. Tsouvalas, Y. M. Asano, A. Saeed, Federated fine-tuning of vision foundation models via probabilistic
masking, in: ICML 2024 Workshop on Foundation Models in the Wild, 2024.
URL https://openreview.net/forum?id=VDgx8JLtid

[14] Z. Peng, X. Fan, Y. Chen, Z. Wang, S. Pan, C. Wen, R. Zhang, C. Wang, Fedpft: Federated proxy fine-tuning
of foundation models (2024). arXiv:2404.11536.
URL https://arxiv.org/abs/2404.11536

[15] D. P. Nguyen, J. P. Munoz, A. Jannesari, Flora: Enhancing vision-language models with parameter-efficient
federated learning (2024). arXiv:2404.15182.
URL https://arxiv.org/abs/2404.15182

[16] S. Lloyd, Least squares quantization in pcm, IEEE transactions on information theory 28 (2) (1982)
129–137.

10

https://openreview.net/forum?id=VDgx8JLtid
https://openreview.net/forum?id=VDgx8JLtid
https://openreview.net/forum?id=VDgx8JLtid
https://arxiv.org/abs/2404.11536
https://arxiv.org/abs/2404.11536
http://arxiv.org/abs/2404.11536
https://arxiv.org/abs/2404.11536
https://arxiv.org/abs/2404.15182
https://arxiv.org/abs/2404.15182
http://arxiv.org/abs/2404.15182
https://arxiv.org/abs/2404.15182

[17] T. M. Graf, D. Lemire, Binary fuse filters: Fast and smaller than xor filters, Journal of Experimental
Algorithmics (JEA) 27 (1) (2022) 1–15.

[18] A. Appleby, Murmurhash3.(2016), URL: https://github. com/aappleby/smhasher/wiki/MurmurHash3
(2016).

[19] D. Boneh, A. Sahai, B. Waters, Functional encryption: Definitions and challenges, in: Theory of Cryptog-
raphy: 8th Theory of Cryptography Conference, TCC 2011, Providence, RI, USA, March 28-30, 2011.
Proceedings 8, Springer, 2011, pp. 253–273.

[20] J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, D. Pointcheval, Decentralized multi-client functional
encryption for inner product, in: Advances in Cryptology–ASIACRYPT 2018: 24th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2–6, 2018, Proceedings, Part II 24, Springer, 2018, pp. 703–732.

[21] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, S. Kadhe, H. Ludwig, Detrust-fl: Privacy-preserving federated
learning in decentralized trust setting, in: 2022 IEEE 15th International Conference on Cloud Computing
(CLOUD), IEEE, 2022, pp. 417–426.

[22] R. Canetti, H. Krawczyk, Analysis of key-exchange protocols and their use for building secure channels, in:
International conference on the theory and applications of cryptographic techniques, Springer, 2001, pp.
453–474.

[23] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770–778.

[24] A. Trockman, J. Z. Kolter, Patches are all you need?, arXiv preprint arXiv:2201.09792 (2022).
[25] S. Woo, S. Debnath, R. Hu, X. Chen, Z. Liu, I. S. Kweon, S. Xie, Convnext v2: Co-designing and scaling

convnets with masked autoencoders (2023). arXiv:2301.00808.
[26] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: Inverted residuals and linear

bottlenecks (2019). arXiv:1801.04381.
[27] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,

J. Clark, G. Krueger, I. Sutskever, Learning transferable visual models from natural language supervision,
in: ICML, 2021.

[28] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza, F. Massa,
A. El-Nouby, M. Assran, N. Ballas, W. Galuba, R. Howes, P.-Y. Huang, S.-W. Li, I. Misra, M. Rabbat,
V. Sharma, G. Synnaeve, H. Xu, H. Jegou, J. Mairal, P. Labatut, A. Joulin, P. Bojanowski, Dinov2: Learning
robust visual features without supervision (2023). arXiv:2304.07193.

[29] M. Zhao, T. Lin, F. Mi, M. Jaggi, H. Schütze, Masking as an efficient alternative to finetuning for pretrained
language models, in: B. Webber, T. Cohn, Y. He, Y. Liu (Eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics,
Online, 2020, pp. 2226–2241. doi:10.18653/v1/2020.emnlp-main.174.
URL https://aclanthology.org/2020.emnlp-main.174

[30] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani, K. H. Li, T. Parcollet,
P. P. B. de Gusmão, et al., Flower: A friendly federated learning research framework, arXiv preprint
arXiv:2007.14390 (2020).

[31] S. Mohammadi, S. Sinaei, A. Balador, F. Flammini, Secure and efficient federated learning by combining
homomorphic encryption and gradient pruning in speech emotion recognition, in: International Conference
on Information Security Practice and Experience, Springer, 2023, pp. 1–16.

[32] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek, H. V. Poor, Federated learning with
differential privacy: Algorithms and performance analysis, IEEE Transactions on Information Forensics
and Security 15 (2020) 3454–3469.

[33] V. Mugunthan, A. Polychroniadou, D. Byrd, T. H. Balch, Smpai: Secure multi-party computation for
federated learning, in: Proceedings of the NeurIPS 2019 Workshop on Robust AI in Financial Services,
MIT Press Cambridge, MA, USA, 2019, pp. 1–9.

[34] S. Mohammadi, A. Balador, S. Sinaei, F. Flammini, Balancing privacy and performance in federated
learning: A systematic literature review on methods and metrics, Journal of Parallel and Distributed
Computing (2024) 104918.

[35] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, Y. Liu, {BatchCrypt}: Efficient homomorphic encryption for
{Cross-Silo} federated learning, in: 2020 USENIX annual technical conference (USENIX ATC 20), 2020,
pp. 493–506.

[36] X. Qian, H. Li, M. Hao, S. Yuan, X. Zhang, S. Guo, Cryptofe: Practical and privacy-preserving federated
learning via functional encryption, in: GLOBECOM 2022-2022 IEEE Global Communications Conference,
IEEE, 2022, pp. 2999–3004.

[37] J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, D. Pointcheval, Dynamic decentralized functional encryp-
tion, in: Annual International Cryptology Conference, Springer, 2020, pp. 747–775.

[38] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ, S. Kumar, H. B. McMahan, Adaptive
federated optimization, arXiv preprint arXiv:2003.00295 (2020).

11

http://arxiv.org/abs/2301.00808
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/2304.07193
https://aclanthology.org/2020.emnlp-main.174
https://aclanthology.org/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://aclanthology.org/2020.emnlp-main.174

[39] W. Chen, S. Horvath, P. Richtarik, Optimal client sampling for federated learning, Transactions on Machine
Learning Research (2022).

[40] A. F. Aji, K. Heafield, Sparse communication for distributed gradient descent, arXiv preprint
arXiv:1704.05021 (2017).

[41] Y. Lin, S. Han, H. Mao, Y. Wang, W. J. Dally, Deep gradient compression: Reducing the communication
bandwidth for distributed training, arXiv preprint arXiv:1712.01887 (2017).

[42] H. Xu, K. Kostopoulou, A. Dutta, X. Li, A. Ntoulas, P. Kalnis, Deepreduce: A sparse-tensor communication
framework for federated deep learning, Advances in Neural Information Processing Systems 34 (2021)
21150–21163.

[43] S. Vargaftik, R. B. Basat, A. Portnoy, G. Mendelson, Y. B. Itzhak, M. Mitzenmacher, Eden: Communication-
efficient and robust distributed mean estimation for federated learning, in: International Conference on
Machine Learning, PMLR, 2022, pp. 21984–22014.

[44] H. Mozaffari, V. Shejwalkar, A. Houmansadr, Frl: Federated rank learning, arXiv preprint arXiv:2110.04350
(2021).

[45] A. Mohtashami, M. Jaggi, S. Stich, Masked training of neural networks with partial gradients, in: Interna-
tional Conference on Artificial Intelligence and Statistics, PMLR, 2022, pp. 5876–5890.

[46] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neural networks with pruning, trained
quantization and huffman coding, International Conference on Learning Representations (ICLR) (2016).

[47] S. Khalilian, V. Tsouvalas, T. Ozcelebi, N. Meratnia, Fedcode: Communication-efficient federated learning
via transferring codebooks, arXiv preprint arXiv:2311.09270 (2023).

[48] V. Tsouvalas, A. Saeed, T. Ozcelebi, N. Meratnia, Communication-efficient federated learning through
adaptive weight clustering and server-side distillation, in: ICASSP 2024 - 2024 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, pp. 5805–5809. doi:
10.1109/ICASSP48485.2024.10447174.

[49] S. Hooker, N. Moorosi, G. Clark, S. Bengio, E. Denton, Characterising bias in compressed models (2020).
arXiv:2010.03058.

[50] Q. Li, Y. Diao, Q. Chen, B. He, Federated learning on non-iid data silos: An experimental study, in: 2022
IEEE 38th International Conference on Data Engineering (ICDE), IEEE, 2022, pp. 965–978.

[51] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles,
G. Cormode, R. Cummings, et al., Advances and open problems in federated learning, Foundations and
Trends® in Machine Learning 14 (1–2) (2021) 1–210.

[52] W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy, S. Truex, Y. Wu, A framework for evaluating gradient
leakage attacks in federated learning, arXiv preprint arXiv:2004.10397 (2020).

12

https://doi.org/10.1109/ICASSP48485.2024.10447174
https://doi.org/10.1109/ICASSP48485.2024.10447174
http://arxiv.org/abs/2010.03058

A EncCluster Algorithm

For completeness, this section includes the EncCluster algorithm detailed in Algorithm 1 and the secure
aggregation process outlined in Algorithm 2.
Algorithm 1 EncCluster: Efficient Functional Encryption in FL through weight clustering and probabilistic
filters. Here, 𝜂 refers to the learning rate, while SecureAggr refers to the secure aggregation process on server-side
presented in Algorithm 2.
1: DMCFE_Init(𝜆,)2: Server initializes model parameters 𝜃, and computes the total number of samples, |𝐷|=∑𝑖∈𝑁 |𝐷𝑖|.3: for 𝑟 = 1 to 𝑅 do4: for 𝑛 ∈ in parallel do5: (

𝑟
𝑛,

𝑟
𝑛
)

← ClientUpdate(𝜃𝑟)
6: for 𝑧 ∈ 𝑟

𝑛 do
7: �̂� ← 𝖤𝗇𝖼(𝖾𝗄𝑛,𝑧)8: end for
9: 𝑟

𝑛 ←
{(

𝑖, 𝑟
𝑛,𝑖

)}

𝑖∈{𝑑}10: 𝑟
𝑛 ←

⋃

𝑖∈ 𝑟
𝑛
𝜙(𝑖) ⊳ // See Equation 2

11: 𝖽𝗄𝑟𝑛 ← 𝖽𝖪𝖾𝗒𝖲𝗁𝖺𝗋𝖾
(

𝗌𝗄𝑛, |𝐷𝑛|
)

12: end for13: 𝖽𝗄𝑟 ← 𝖽𝖪𝖾𝗒𝖢𝗈𝗆𝖻({𝖽𝗄𝑟𝑛}𝑛∈)
14: 𝜃𝑟+1 ← SecureAggr

({(

̂𝑟
𝑛,

𝑟
𝑛
)}

𝑖∈ , 𝖽𝗄𝑟
)

15: end for16: procedure DMCFE_Init(𝜆,)17: 𝗉𝗉 ← 𝖲𝖾𝗍𝗎𝗉
(

𝜆, | |

)

18: for 𝑛 ∈ clients in parallel do19: (

𝖾𝗄𝑛,𝗌𝗄𝑛
)

← 𝖪𝖾𝗒𝖦𝖾𝗇(𝗂𝖽𝑛)20: end for21: end procedure22: procedure ClientUpdate(𝜃)23: for epoch 𝑒 = 1,2,… ,𝐸 do24: for batch 𝑏 ∈𝑛 do25: 𝜃∗ ← 𝜃− 𝜂 ⋅∇𝜃
(

𝑐𝑒
(f𝜃 (𝑏)

))

26: end for27: end for28: ← {𝑥 ∣ 𝑥 ∈ rand(𝜃∗)}
|𝑥|=𝜅 ⊳ // Cluster initialization

29: (,) ← 𝑤𝑐 (𝜃∗,)30: return (,)31: end procedure

Algorithm 2 SecureAggr: Server-side secure weighted aggregation directly on encrypted client updates.
1: Inputs: Clients’ encrypted centroids and fingerprints, {̂𝑛, 𝑛

}

𝑛∈ , functional decryption key 𝖽𝗄, and total number of training samples,
|𝐷|.2: Output: Aggregated model parameters 𝜃agg.3: for 𝑛 ∈𝑁 do4: ′

𝑛 ← {𝑗|Member (𝑖, 𝑗)}𝑖∈{𝑑}, 𝑗∈{𝜅} ⊳ // Equation 5
5: �̂�𝑛 ←

{

̂𝑛,𝑖
}

𝑖∈′𝑛
⊳ // Enc. Cluster Substitution

6: end for7: 𝜃agg ← 1
|𝐷|

{

𝖣𝖾𝖼
(

{�̂�𝑛,𝑖}𝑛∈ , 𝖽𝗄
)}

𝑖∈{𝑑}8: return 𝜃agg

B Additional Experiments

B.1 Experimental Details

Training Parameters: For our experiments, we simulate a federated environment using Flower (30) with key
parameters: number of clients (𝑀 = 30), rounds (𝑅), local training epochs (𝐸 = 1), client participation rate (𝜌),
class concentration (𝛾), and clusters (𝜅 = 128) with exceptions of experiments detailed in Figure 3. Clients train
with a batch size of 64, using the Adam optimizer with a learning rate of 1𝑒−3. For 𝜌 = 1 (IID and non-IID),
we use 100 rounds. For 𝜌 << 1, we extend to 300 rounds for IID and 500 for non-IID. In scenarios where 𝜌 <
1.0, client selection in each round was randomized. Unless specified otherwise, a key size of 256 was used for
DMCFE, indicated by the parameter 𝐾𝑆. All experiments run on NVIDIA A10 GPUs in an internal cluster
server with 96 CPU cores and one GPU per run.
Data Splits: Data is split across clients using a Dirichlet distribution 𝐷𝑖𝑟(𝑎) (50), where 𝑎 controls class
distribution. In IID settings, 𝑎 = 10 (𝛾 ≈ 1.0), ensuring all classes are distributed evenly. In non-IID settings,

13

𝑎 = 0.1 (𝛾 ≈ 0.2), leading to skewed label distributions typical in FL scenarios(51). We fix the seed in data
partitioning to ensure consistent data splits across experiments for direct comparison.

B.2 Additional Experiments with Partial Client Participation

In this section, we provide additional experiments performed under partial client participation (𝜌=0.2) with
ResNet-20 (23) on CIFAR-10/100. We report our findings in Table 4, where we also report the accuracy
degradation and communication cost compared to FedAvg, as well as encryption times for clients.

Table 4: Evaluation of EncCluster in terms of accuracy loss (𝛿-Acc), data transmission and clients’ encryption
times versus FedAvg for ResNet-20 (23). Federated parameters are set to 𝑁=30, 𝜌=0.2, and 𝐸=1.

Dataset Approach IID (𝛾 ≈ 1.0) non-IID (𝛾 ≈ 0.2) Data Transmitted
(× times FedAvg)

Client-side
Encryption (s)Accuracy 𝛿-Acc. Accuracy 𝛿-Acc.

CIFAR-10

FedAvg𝑤𝑐

88.42

-0.28
81.91

-0.89 0.032 —
DeTrust-FL -0.06 -0.12 3.744 326.15
SEFL -1.14 -1.97 2.569 7.63
EncCluster (Ours) -0.44 -1.05 0.281 2.04

CIFAR-100

FedAvg𝑤𝑐

60.07

-1.32
47.37

-1.87 0.033 —
DeTrust-FL -0.09 -0.03 3.756 339.12
SEFL -2.35 -3.79 2.632 7.98
EncCluster (Ours) -1.67 -2.03 0.279 2.03

From Table 4, we note that EncCluster’s efficiency remains unaffected from the number of clients that
participate in each FL round. More importantly, we note that EncCluster allows FE to work in flexible FL
settings (i.e., a subset of clients in each federated round), a benefit of DMCFE cryptosystem.

B.3 Binary Fuse Filter Efficiency

To evaluate the impact of BF filters on computational complexity, communication overhead, and accuracy loss
(𝛿-Acc), we tested EncCluster on ResNet-20 with 𝑁 = 30, comparing it to EncCluster𝑛𝑜𝐵𝐹 , a variant that
replaces BF filters with Huffman encoding for transmitting cluster-weight mappings. Table 5 shows that BF filters
have minimal impact on accuracy due to their near-perfect mapping reconstruction at the server, with a slight
increase in encryption time from 1.72 to 2 seconds. In terms of communication, EncCluster𝑛𝑜𝐵𝐹 requires only
0.032 times the data of FedAvg, while adding BF filters increases this to 0.284 due to the bit requirement per filter
entry (8.68 bits-per-entry). Despite this, EncClusterstill significantly reduces communication costs compared
to other privacy-preserving methods (see Table 2), while improving privacy. Significantly, EncCluster𝑛𝑜𝐵𝐹proves particularly advantageous in FL systems with limited communication resources operating under less
“stringent” threat models — such as when a fully-trusted authority exists — delivering computational efficiency
while substantially reducing communication overhead to over 100× less than DeTrust-FL’s.

Table 5: Effect of BF filters in EncCluster using ResNet-20 with 𝑁 = 30. We report test accuracy loss
(𝛿-Acc), upstream communication data relative to FedAvg, and client-side encryption times.

𝜌 CIFAR-10 CIFAR-100
EncCluster𝑛𝑜𝐵𝐹 EncCluster EncCluster𝑛𝑜𝐵𝐹 EncCluster

IID
(𝛾 ≈ 1.0)

0.2 -0.31 -0.44 -1.31 -1.67
1 -0.14 -0.32 -1.09 -1.21

non-IID
(𝛾 ≈ 0.2)

0.2 -0.94 -1.05 -1.85 -2.03
1 -0.73 -0.79 -1.63 -1.67

Encryption time (s) 1.72 2.04 1.72 2.03
Data Transmitted

(× FedAvg) 0.034 0.284 0.035 0.281

C Weight Clustering Convergence Analysis

Estimation Error Analysis due to Weight Clustering. In this section, we analyze the privacy implications
due to the weight clustering process in EncCluster. Recall that 𝜃∗ refers to the original post-trained model
weights, while 𝜃 denotes the clustered weights. We encode cluster-weight mappings using probabilistic filters,
which introduce an error probability of 2−bpe (where 𝑝 denotes the false positive rate of the filter) leading to the

14

assignment of a weight to an incorrect cluster. Note that the introduced error probability is independent across
both clients and cluster dimensions. The estimation error between 𝜃∗ and 𝜃 can be computed as follows:

𝔼
[

‖

‖

𝜃∗−𝜃‖
‖

2
2

]

=
𝑑
∑

𝑖=1
𝔼
[

(

𝜃∗𝑖 −𝜃𝑖
)2
]

(7)

=
𝑑
∑

𝑖=1

(

(1−2−bpe) ⋅𝔼
[

(

𝜃∗𝑖 − 𝑐𝑖
)2
]

+2−bpe ⋅𝔼
[

(

𝜃∗𝑖 − 𝑐𝑖
)2
])

(8)

=
𝑑
∑

𝑖=1

⎛

⎜

⎜

⎝

(1−2−bpe) ⋅
⎛

⎜

⎜

⎝

𝜅
∑

𝑘=1

∑

𝜃∗𝑖 ∈𝑘

‖

‖

𝜃∗𝑖 − 𝑐𝑘‖‖
2
⎞

⎟

⎟

⎠

+2−bpe ⋅
(

1
𝜅−1

𝜅
∑

𝑘=1

‖

‖

𝜃∗𝑖 − 𝑐𝑖‖‖
2
)

⎞

⎟

⎟

⎠

. (9)

Here, 𝑐𝑖 refers to a randomly chosen centroid (any centroid apart from the correct one) due to the reconstruction
error of the cluster-weights mapping. Assuming a uniform distribution of weights and centroids, the expected intra-
cluster distance 𝛼 (distance between weights within a given cluster) is given by 𝛼 =

(

∑𝜅
𝑘=1

∑

𝜃∗𝑖 ∈𝑘
‖

‖

‖

𝜃∗𝑖 − 𝑐𝑘
‖

‖

‖

2
)

,
while the inter-cluster distance 𝛽 (error due to the false positive rate of the probabilistic filter) is estimated by
the average distance from each given weight belonging to a cluster to all other clusters’ centroids, computed
as 𝛽 =

(

1
𝜅−1

∑𝜅
𝑘=1

‖

‖

‖

𝜃∗𝑖 − 𝑐𝑖
‖

‖

‖

2
)

. While exact estimation of 𝛼 and 𝛽 are complex and depend on the specific
characteristics of the data, we note that both 𝛼 and 𝛽 are bounded.
In terms of privacy amplifications due to weight clustering, we can consider the minimum discrepancy between
𝜃∗ and 𝜃 as worst case scenario, which occurs when both 𝛼 and 𝛽 take their minimal values (referred by 𝐷𝑖𝑛𝑡𝑟𝑎and 𝐷𝑖𝑛𝑡𝑒𝑟) across all 𝑑 weight values. Thus, we can derive the following:

𝔼
[

‖

‖

𝜃∗−𝜃‖
‖

2
2

]

≥ 𝑑
(

(1−2−bpe) ⋅𝐷𝑖𝑛𝑡𝑟𝑎+2−bpe ⋅𝐷𝑖𝑛𝑡𝑒𝑟
) (10)

Distributed Mean Estimation Error Analysis. We can now compute the the expected mean estimation error
of server-side aggregated model to derive a privacy leakage estimation, similar to Equation 10. For this, we
compute the lower bound of the mean estimation error between the true mean is 𝜃∗𝑟+1 = 1

𝑁
∑𝑁

𝑖=1 𝜃
∗𝑟
𝑖 and our

estimation �̄�𝑟+1 = 1
𝑁
∑𝑁

𝑖=1 𝜃
𝑟
𝑖 . Here, the mean estimation error is as follows:

𝔼
[

‖

‖

‖

𝜃∗𝑟+1− ̂̄𝜃𝑟+1‖‖
‖

2

2

]

=
𝑑
∑

𝑖=1
𝔼
[

(

𝜃∗𝑟+1− �̄�𝑟+1
)2

]

(11)

=
𝑑
∑

𝑖=1
𝔼
⎡

⎢

⎢

⎣

(

1
𝑁

∑

𝑖∈

(

𝜃∗𝑟𝑖 −𝜃𝑟𝑖
)

)2
⎤

⎥

⎥

⎦

(12)

= 1
𝑁2

𝑑
∑

𝑖=1
𝔼
⎡

⎢

⎢

⎣

(

∑

𝑖∈

(

𝜃∗𝑟𝑖 −𝜃𝑟𝑖
)

)2
⎤

⎥

⎥

⎦

(13)

= 1
𝑁2

𝑑
∑

𝑖=1

∑

𝑖∈
𝔼
[

(

𝜃∗𝑟𝑖 −𝜃𝑟𝑖
)2
]

(14)

≥
𝑑
(

(1−2−bpe) ⋅ �̄�𝑖𝑛𝑡𝑟𝑎+2−bpe ⋅ �̄�𝑖𝑛𝑡𝑒𝑟
)

𝐾
(15)

Here, �̄�𝑖𝑛𝑡𝑟𝑎 and �̄�𝑖𝑛𝑡𝑒𝑟 refer to the mean intra-cluster and inter-cluster distance across clients. Since server does
not have access to clients’ centroids, direct re-construction of clients’ weights remains infeasible.

D Weight Clustering Privacy Leakage Analysis

We now evaluate the ability of server to re-construct individual clients weights by performing an cluster inference
attack as presented in Inference Attacks I. For this, we performed experiments, where we measured the similarity
between the “perfectly” estimated client weights (e.g. replacing each entry in 𝜃𝑛 with their closest value in),
�̂�𝑛, and the true client’s weights, 𝜃𝑛, by measuring the similarity of the two models in the embeddings space.
Specifically, we extract embeddings on the client’s locally stored data using both �̂�𝑛 and 𝜃𝑛, after which we
perform a dimensionality reduction through PCA and measure the MSE error, similar to (52).

15

0 20 40 60 80 100
Federated Round

0

100

200

300

400

500

M
SE

(f
(

),
f(

))

CIFAR-10 CIFAR-100

(a) IID settings
0 20 40 60 80 100

Federated Round
0

100

200

300

400

500

600

700

M
SE

(f
(

),
f(

))

CIFAR-10 CIFAR-100

(b) Non-IID settings
Figure 4: Evaluation of Cluster Inference Attacks in EncCluster. We report MSE between the client’s data
embeddings extracted from client’s true and estimated weights for both (a) IID and (b) non-IID settings.

In Figure 4, a pronounced contrast emerges between IID and non-IID settings. Specifically, in IID scenarios where
there’s a significant overlap between and 𝑛, the attacker achieves notably lower MSE values, particularly in
the later stages of training. Conversely, in non-IID settings, the effectiveness of the attack diminishes significantly,
marked by high fluctuations across training rounds. Given the prevalence of highly non-IID conditions in most
practical FL environments, Figure 4b underscores the potential for privacy breaches stemming from weight
clustering in EncCluster. Nonetheless, it’s critical to acknowledge that these findings are predicated on the
assumption of a “perfect” estimation scenario, where 𝜃𝑛 entries are precisely matched with the nearest values in
, necessitating 𝑂(𝜅𝑑) complexity. This scenario underscores that, even when subjected to such potent attack
strategies, the server’s capacity to accurately reconstruct client models is limited, thereby offering a degree of
protection against private data exposure.

16

	Introduction
	Preliminaries
	EncCluster Framework
	Notations
	Threat Model and Assumptions
	Delivering Scalable FE in FL with EncCluster

	Security and Privacy Analysis
	Experiments
	Privacy-Efficiency Trade-Off
	EncCluster's Scalability

	Related Work
	Conclusions
	EncCluster Algorithm
	Additional Experiments
	Experimental Details
	Additional Experiments with Partial Client Participation
	Binary Fuse Filter Efficiency

	Weight Clustering Convergence Analysis
	Weight Clustering Privacy Leakage Analysis

