
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

Samuel Horváth 1 Stefanos Laskaridis 2 Shashank Rajput 3 Hongyi Wang 4

Abstract
Deep Neural Networks (DNNs) have been a large
driver for AI breakthroughs in recent years. How-
ever, these models have been getting increasingly
large as they become more accurate and safe. This
means that their training becomes increasingly
costly and time-consuming and typically yields a
single model to fit all targets. Various techniques
have been proposed in the literature to mitigate
this, including pruning, sparsification, or quantiza-
tion of model weights and updates. While achiev-
ing high compression rates, they often incur signif-
icant computational overheads at training or lead
to non-negligible accuracy penalty. Alternatively,
factorization methods have been leveraged for
low-rank compression of DNNs. Similarly, such
techniques (e.g., SVD) frequently rely on heavy
iterative decompositions of layers and are poten-
tially sub-optimal for non-linear models, such as
DNNs. We take a further step in designing effi-
cient low-rank models and propose MAESTRO, a
framework for trainable low-rank layers. Instead
of iteratively applying a priori decompositions,
the low-rank structure is baked into the training
process through LOD, a low-rank ordered decom-
position. Not only is this the first time importance
ordering via sampling is applied on the decom-
posed DNN structure, but it also allows selecting
ranks at a layer granularity. Our theoretical analy-
sis demonstrates that in special cases LOD recov-
ers the SVD decomposition and PCA . Applied
to DNNs, MAESTRO enables the extraction of
lower footprint models that preserve performance.
Simultaneously, it enables the graceful trade-off
between accuracy-latency for deployment to even
more constrained devices without retraining.

1Mohamed bin Zayed University of Artificial Intelli-
gence (MBZUAI), Abu Dhabi, UAE 2Brave Software, Lon-
don, UK 3DataBricks, San Fransisco, USA 4Carnegie Mel-
lon University, Pittsburgh, USA. Correspondence to: Samuel
Horváth <samuel.horvath@mbzuai.ac.ae>, Stefanos Laskaridis
<mail@stefanos.cc>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Deep Learning has been experiencing an unprecedented
uptake, with models achieving a (super-)human level of
performance in several tasks across modalities, giving birth
to even more intelligent assistants (Radford et al., 2023) and
next-gen visual perception and generative systems (Radford
et al., 2021). However, the price of this performance is that
models are getting significantly larger, with training and
deployment becoming increasingly costly (Laskaridis et al.,
2024). Therefore, techniques from Efficient ML become
evermore relevant (Wan et al., 2023), and a requirement for
deployment in constrained devices, such as smartphones or
IoT devices (Laskaridis et al., 2022).

Typical techniques to compress the network involve i) quan-
tization, i.e., reducing precision of the model (Wang et al.,
2019) or communicated updates (Seide et al., 2014; Alis-
tarh et al., 2017), ii) pruning the model during training,
e.g., through Lottery Ticket Hypothesis (LTH) (Frankle
& Carbin, 2019), iii) sparsification of the network repre-
sentation and updates, i.e., dropping the subset of coordi-
nates (Suresh et al., 2017; Alistarh et al., 2018) or iv) low-
rank approximation (Wang et al., 2021; Dudziak et al.,
2019), i.e. keeping the most relevant ranks of the decom-
posed network. Despite the benefits during deployment,
that is a lower footprint model, in many cases, the overhead
during training time or the accuracy degradation can be
non-negligible. Moreover, many techniques can introduce
multiple hyperparameters or the need to fine-tune to recover
the lost accuracy.

In this work, we focus training low-rank factoriza-
tion. Specifically, we pinpoint the challenges of tech-
niques (Wang et al., 2021; 2023) when decomposing the
parameters of each layer in low-rank space and the need to
find the optimal ranks for each one at training time. To solve
this, we propose LOD (Low-rank ordered Decomposition),
a non-trivially extended version of Ordered Dropout tech-
nique from Horváth et al. (2021), applied to progressively
find the optimal decomposition for each layer of a DNN
while training (Fig. 1). Critical differences to prior work
include i) the non-uniformity of the search space (i.e. we
allow for different ranks per layer), ii) the trainable aspect of
the decomposition to reflect the data distribution, and iii) the
gains to training and deployment time without sacrificing

1

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

accuracy. Nevertheless, we also provide a latency-accuracy
trade-off mechanism to deploy the model on even more
constrained devices.

Our contributions can be summarized as follows:

• We propose MAESTRO1, a novel layer decomposition
technique that enables learning low-rank layers in a pro-
gressive manner while training. We fuse layer factoriza-
tion and ordered dropout into LOD, an extended variant
of the ordered dropout, in a novel manner, by embedding
ordered importance directly into the factorized weights.
By decomposing layers and training on stochastically
sampled low-rank models, we apply ordered importance
decomposed representation of each layer. We combine
this with a hierarchical group-lasso term (Yuan & Lin,
2006) in the loss function to zero out redundant ranks
and progressively shrink the rank space. This way, we
enable computationally efficient training achieved by the
proposed decomposition without relying on inexact and
potentially computationally expensive iterative decompo-
sitions such as Singular Value Decomposition (SVD).

• MAESTRO is fundamentally a theoretically motivated ap-
proach that embeds decomposition into training. First, we
show that our new objective can recover i) the SVD of the
target linear mapping for the particular case of uniform
data distribution and ii) the Principal Component Analysis
(PCA) of the data in the case of identity mapping.

• As MAESTRO’s decomposition is part of the training pro-
cess, it also accounts for data distribution and the target
function, contrary to SVD, which operates directly on
learned weights. We show that this problem already arises
for a simple linear model and empirically generalize our
results in the case of DNNs, by applying our method to
different types of layers (including fully-connected, con-
volutional, and attention) spanning across three datasets
and modalities.

• We illustrate that our technique achieves better results
than SVD-based baselines at a lower cost. Indicatively,
MAESTRO can achieve on par or better results than low-
rank SOTA methods on vision datasets (CIFAR-10, Im-
ageNet) with lower training overhead due to progressive
shrinking, while at the same time it reaches 6% lower per-
plexity at a quarter of the computational cost and half of
the parameters of SVD-variants in Transformer models.

2. Related Work
The topic of Efficient ML has received a lot of attention
throughout the past decade as networks have been getting
increasingly computationally expensive. We distinguish
between training and deployment time, with the latter having

1The implementation can be found here:
https://github.com/SamuelHorvath/Maestro-LoD

a more significant impact and thus amortizes the potential
overhead during training. Nevertheless, cost optimisation is
evermore relevant for training large models, and the advent
of Federated Learning (McMahan et al., 2017), efficient
training becomes increasingly relevant to remain tractable.

Efficient inference. For efficient deployment, various tech-
niques have been proposed that either optimize the architec-
ture of the DNN in a hand-crafted (Howard et al., 2017) or
automated manner (i.e. NAS) (Tan & Le, 2019), they remove
redundant computation by means of pruning parts of the
network (Han et al., 2015; Carreira-Perpinán & Idelbayev,
2018; Frankle & Carbin, 2019; Chen et al., 2021; Sreeni-
vasan et al., 2022; Li et al., 2016; Wen et al., 2016; Hu et al.,
2016; Wen et al., 2016; Zhu & Gupta, 2017; He et al., 2017;
Yang et al., 2017; Liu et al., 2018; Yu & Huang, 2019b), in
a structured or unstructured manner, or utilise low-precision
representation (Wang et al., 2019) of the neurons and activa-
tions. However, such techniques may involve non-negligible
training overheads or lack flexibility of variable footprint
upon deployment. Closer to our method, there have been
techniques leveraging low-rank approximation (e.g. SVD)
for efficient inference (Xue et al., 2013; Sainath et al., 2013;
Jaderberg et al., 2014; Wiesler et al., 2014; Dudziak et al.,
2019). Last, there is a category of techniques that dynami-
cally resize the network at runtime for compute, memory or
energy efficiency, based on early-exiting (Laskaridis et al.,
2021) or dynamic-width (Yu et al., 2019) and leverage the
accuracy-latency tradeoff.

Efficient training. On the other hand, techniques for effi-
cient training become very relevant nowadays when scal-
ing DNNs sizes (Hu et al., 2021) or deploying to embed-
ded devices (Lin et al., 2022), and oftentimes offer addi-
tional gains at deployment time. Towards this goal, there
have been employed methods where part of the network is
masked (Sidahmed et al., 2021) or dropped (Alam et al.,
2022; Caldas et al., 2019; Wu et al., 2018) during training,
with the goal of minimizing the training footprint. Simi-
larly to early-exiting, multi-exit variants for efficient train-
ing (Kim et al., 2023; Liu et al., 2022) have been proposed,
and the same applies for width-based scaling (Horváth et al.,
2021; Diao et al., 2021). Last but not least, in the era of
transformers and LLMs, where networks have scaled expo-
nentially in size, PEFT-based techniques, such as adapter-
based fine-tuning (Houlsby et al., 2019) (such as LoRA (Hu
et al., 2021)), become increasingly important and make an
important differentiator for tackling downstream tasks.

Learning ordered representation. Ordered Dropout (OD)
was proposed as a mechanism for importance-based pruning
for the easy extraction of sub-networks devised to allow
for heterogeneous federated training (Horváth et al., 2021).
Similar constructions were proposed to be applied in the rep-
resentation layer of autoencoders (Rippel et al., 2014) to en-

2

https://github.com/SamuelHorvath/Maestro-LoD

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

Layer K +1

v
layer K

Original Mapping
Layer K +1

v
layer K

Factorized Mapping

Ranks

Layer K +1

v
layer K

Structural Mapping

Ordered
Ranks 1 32

Remove Redundant
Ranks

Approximate Mapping

Layer K +1

layer K

LoD
Low-rank
ordered

Decomposition

Layer K +1

layer K

Layer K +1

layer K

i ∼ {1,2,…, rankK,K+1}
Sample

i = 1 i = 2 i = 3

Layer K +1

v
layer K

Figure 1: MAESTRO’s construction. To obtain low-rank approximation, the given linear map is decomposed and trained with LOD to
obtain an ordered representation that can be efficiently pruned.

force identifiability of the learned representation or the last
layer of the feature extractor (Horváth et al., 2021) to learn
an ordered set of features for transfer learning. Contrary to
prior work, MAESTRO’s LOD non-trivially extends ordered
representation in three meaningful ways. First, it is the first
work that is applied to the decomposed network, which gets
progressively shrunk as redundant ranks converge to zero.
This is achieved through hierarchical group lasso penalty,
as described in Sec. 3.3. Second, LOD allows for heteroge-
neous (non-uniform) ranks per layer, yielding a much richer
operating space. Last, through LOD we can leverage the
ordered representation of ranks at inference time to further
compress the model, allowing a graceful accuracy-latency
tradeoff for deployment on more constrained devices, with-
out the need to retrain.

3. MAESTRO

In this work, we focus on low-rank models as a technique
to reduce the neural network model’s computational com-
plexity and memory requirements. The main challenge that
we face is the selection of the optimal rank or the trade-
off between the efficiency and the rank for the given layer.
Therefore, we devise an importance-based training tech-
nique, MAESTRO, which learns not only a mapping between
features and responses but also learns the decomposition of
the trained network. This is achieved by factorizing all the
layers in the network.

3.1. Formulation

Low-rank approximation. Our inspiration comes from
the low-rank matrix approximation of a matrix A ∈ Rm×n.
For simplicity, we assume that A has rank at most r =
min{m,n} with k ≤ r distinct non-zero singular values
σ̃1 > σ̃2 > . . . > σ̃k > 0, with corresponding left and right
singular vectors ũ1, ũ2, . . . , ũk ∈ Rm and ṽ1, ṽ2, . . . , ṽk ∈
Rn, respectively. For such a matrix, we can rewrite its
best l-rank approximation as the following minimization

problem

minU∈Rm×l,V ∈Rn×l

∥∥∥∑l
i=1 uiv

⊤
i −A

∥∥∥2
F

(1)

where ci denotes the i-th column of matrix C and ∥·∥F
denotes Frobenius norm. We note that Problem (1) is non-
convex and non-smooth. However, (Ye & Du, 2021) showed
that the randomly initialized gradient descent algorithm
solves this problem in polynomial time. In this work, we
consider the best rank approximation across all the ranks.
Eckart–Young–Mirsky theorem leads to the following ob-
jective

minU∈Rm×r,V ∈Rn×r
1
r

∑r
b=1

∥∥U:bV
⊤
:b −A

∥∥2
F
, (2)

where C:b denotes the first b columns of matrix C. This
objective, up to scaling, recovers SVD of A exactly, and for
the case of distinct non-zero singular values, the solution
is, up to scaling, unique (Horváth et al., 2021). This formu-
lation, however, does not account for the data distribution,
i.e., it cannot tailor the decomposition to capture specific
structures that appear in the dataset.

LoD for data-dependent low-rank approximation. There-
fore, the next step of our construction is to extend this prob-
lem formulation with data that can further improve com-
pression, reconstruction, and generalization and incorporate
domain knowledge. We assume that data comes from the dis-
tribution x ∼ X centered around zero, i.e., Ex∼X [x] = 0.2,
and the response is given by y = Ax. In this particular case,
we can write the training loss as

min
U∈Rm×r,V ∈Rn×r

Ex,y∼X

[
r∑

b=1

1

r

∥∥U:bV
⊤
:b x− y

∥∥2] . (3)

It is important to note that the introduced problem formu-
lation (3) for the neural network with a single hidden layer
and no activations can be solved using stochastic algorithms

2We make this assumption for simplicity. It can be simply
overcome by adding a bias term into the model.

3

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

by sampling from the data distribution X (subsampling)
and rank distribution D. When we apply LOD to DNNs,
contrary to any prior work (Horváth et al., 2021; Rippel
et al., 2014; Diao et al., 2021), our formulation is the first
one to apply importance-based ordered dropout to the de-
composed representation of each layer, thus preserving the
dimensionality. More importantly, we decompose each layer
independently and allow for finding the optimal rank per
layer in a data-informed manner. We discuss details in the
next paragraph.

DNN low-rank approximation. For Deep Neural Networks
(DNNs), we seek to uncover the optimal ranks for a set of
d linear mappings W 1 ∈ Rm1×n1 , . . . ,W d ∈ Rmd×nd ,
where W i’s are model parameters and d is model depth,
e.g., weights corresponding to linear layers3, by decompos-
ing them as W i = U i

(
V i
)⊤

. We discuss how these are
selected in the next section. To decompose the network, we
aim to minimize the following objective

Ex,y∼X

[
1∑d

i=1 ri

d∑
i=1

ri∑
b=1

l(h(U1
(
V 1
)⊤

, . . . ,

U i
:b

(
V i
:b

)⊤
, . . . , Ud

(
V d
)⊤

,W o, x), y)
]
,

(4)

where ri = min{mi, ni}, l is a loss function, h is a DNN,
and W o are the other weights that we do not decompose.
We note that our formulation aims to decompose each layer,
while decompositions across layers do not directly interact.
The motivation for this approach is to uncover low-rank
structures within each layer that are not affected by inaccu-
racies from other layers due to multiple low-rank approxi-
mations.

3.2. Layer Factorization

The following sections discuss how we implement model
factorization for different architectures.

FC layers. A 2-layer fully connected (FC) neural network
can be expressed as f(x) = σ(σ(xW1)W2), where W s are
weight matrices of each FC layer, and σ(·) is any arbitrary
activation function, e.g., ReLU. The weight matrix W can
be factorized as UV ⊤.

CNN layers. For a convolution layer with dimension,
W ∈ Rm×n×k×k where m and n are the number of in-
put and output channels, and k is the size of the convolution
filters. Instead of directly factorizing the 4D weight of a
convolution layer, we factorize the unrolled 2D matrix. Un-
rolling the 4D tensor W leads to a 2D matrix with shape
Wunrolled ∈ Rmk2×n, where each column represents the
weight of a vectorized convolution filter. Factorization can

3We can apply our decomposition on different types of lay-
ers, such as Linear, Convolutional and Transformers as shown in
Sec. 3.2.

Algorithm 1: MAESTRO (Training Process)
Input: epochs E, dataset D, model h parametrized by

U1 ∈ Rm1×r1 ,
V 1 ∈ Rn1×r1 , . . . , Ud ∈ Rmd×rd , V d ∈ Rnd×rd ,
W o, and hyperparameters λgl, εps

1 for t← 0 to E − 1 do // Epochs
2 for (x, y) ∈ D do // Iterate over dataset
3 Sample (i, b) ∼

{
{(i, b)}rib=1

}d

i=1
; // LoD

4 L =

l(h(U1
(
V 1

)⊤
, . . . , U i

:b

(
V i
:b

)⊤
, . . . , Ud

(
V d

)⊤
,W o, x),

y) +λgl

∑d
i=1

∑ri
b=1

(∥∥U i
b:

∥∥+
∥∥V i

b:

∥∥) // Loss
5 L.backward() // Update weights
6 end
7 for i← 1 to d do
8 for b← 1 to ri do
9 // rank importance thresholding

10 if
∥∥V i

b:

∥∥∥∥U i
b:

∥∥ ≤ εps then
11 ri = b− 1 // progressive shrinking
12 break
13 end
14 end
15 end
16 end

then be conducted on the unrolled 2D matrix; see (Wang
et al., 2021) for details.

Transformers. A Transformer layer consists of a stack of
encoders and decoders (Vaswani et al., 2017). The encoder
and decoder contain three main building blocks: the multi-
head attention layer, position-wise feed-forward networks
(FFN), and positional encoding. We factorize all trainable
weight matrices in the multi-head attention (MHA) and the
FFN layers. The FFN layer factorization can directly adopt
the strategy from the FC factorization. A p-head attention
layer learns p attention mechanisms on the key, value, and
query (K,V,Q) of each input token:

MHA(Q,K, V) = Concat(head1, . . . , headp)WO.
Each head performs the computation of:
headi = Attention(QW

(i)
Q ,KW

(i)
K , V W

(i)
V)

= softmax

(
QW

(i)
Q W

(i)⊤
K K⊤√
d/p

)
VW

(i)
V .

where d is the hidden dimension. The trainable weights
W

(i)
Q ,W

(i)
K ,W

(i)
V , i ∈ {1, 2, . . . , p} can be factorized by

simply decomposing all learnable weights W · in an atten-
tion layer and obtaining U ·V ⊤· (Vaswani et al., 2017).

3.3. Training Techniques

Having defined the decomposition of typical layers found in
DNNs, we move to formulate the training procedure of our
method, formally described in Algorithm 1. Training the
model comprises an iterative process of propagating forward
on the model by sampling a rank bi per decomposed layer i

4

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

up to maximal rank ri (line 3). We calculate the loss, which
integrates an additional hierarchical group lasso component
(lines 4) and backpropagate on the sampled decomposed
model (line 5). At the end of each epoch, we progressively
shrink the network by updating the maximal rank ri, based
on an importance threshold εps (line 11). We provide more
details about each component below.

Efficient training via sampling. In Sec. 4, we show that for
the linear case (3), the optimal solution corresponds to PCA
over the linearly transformed dataset. This means that the
obtained solution contains orthogonal directions. This prop-
erty is beneficial because it directly implies that when we
employ gradient-based optimization, not only is the gradient
zero at the optimum, but the gradient with respect to each
summand in Equation (3) is also zero. The same property
is directly implied by overparametrization (Ma et al., 2018)
or strong growth condition (Schmidt & Roux, 2013). As a
consequence, this enables us to sample only one summand
at a time and obtain the same quality solution. When con-
sidering (4) as an extension to (3), it is unclear whether this
property still holds, which would also imply that the set
of stationary points of (3) is a subset of stationary points
of the original objective without decomposition. However,
in the experiments, we observed that sampling is sufficient
to converge to a good-quality solution. If this only holds
approximately, one could leverage fine-tuning to recover the
loss in performance.

Efficient rank extraction via hierarchical group-lasso.
By definition, (3) leads to an ordered set of ranks for each
layer. This ordered structure enables efficient rank extrac-
tion and selection. To effectively eliminate unimportant
ranks while retaining the important ones, thus leading to a
more efficient model, we consider Hierarchical Group Lasso
(HGL) (Lim & Hastie, 2015) in the form

λgl

d∑
i=1

ri∑
b=1

(∥∥U i
b:

∥∥+ ∥∥V i
b:

∥∥), (5)

where Cb: denotes the matrix that contains all the columns
of C except for the first b− 1 columns.

Progressive shrinking. HGL encourages that unimportant
ranks become zero and can be effectively removed from the
model. To account for this, for each layer we remove V i

b:

and U i
b: (i.e., set ri = b − 1) if

∥∥V i
b:

∥∥∥∥U i
b:

∥∥ ≤ εps, where
εps is a pre-selected threshold – and a hyperparameter of
our method.

Hyperparameter optimization. We provide an algorithm
for finding the optimal value for the hyperparameter λgl

in Alg. 2. From the evaluation of Tab. 11-15, this strategy
typically requires at most 2-3 times the computational effort
(in terms of FLOPs) compared to a single training loop with
an optimally chosen λgl. This is significantly easier than

tuning the per-layer maximal rank and the pretraining steps,
where the full-rank model is being pretrained, as is the case
in other low-rank baselines. Equivalently, the value of εps
represents the effective zero-point in our algorithm, typical
value of which was 1e− 7 in our experiments.

Algorithm 2: MAESTRO (Hyper-parameter optimization)
Input: constraints (e.g., min required accuracy, max

#parameters), epochs E, dataset D, model h,
evaluation frequency Eeval

every, εps, limits for HPO:
largeValue, smallValue

1 λgl = largeValue
2 old_model = NULL
3 while λgl > smallValue do
4 model = RandInit(model)
5 for t← 0 to E − 1 do // Epochs
6 Train(model, dataset, λgl)
7 if t mod Eeval

every == 0 then
8 acc = CalculateAcc(model, dataset)
9 flops, params = MeasureFootprint(model, εps)

10 if acc ≥ constraints[‘acc’] and params ≤
constraints[‘params’] then

11 return model // model satisfying constraints
was found

12 end
13 if params < few_params then
14 break // model too sparse
15 end
16 end
17 end
18 flops, params = MeasureFootprint(model, εps)
19 if params > constraints[‘params’] then
20 /** no model satisfies constraints, return the last

model satisfying parameters constraints**/
21 return old_model
22 end
23 old_model = Copy(model)
24 λgl = λgl / 2
25 end

Initialization. Initialization is a key component of the train-
ing procedure (He et al., 2015; Mishkin & Matas, 2015).
To adopt the best practices from standard non-factorized
training, we follow a similar approach to (Khodak et al.,
2021; Wang et al., 2021), where we first initialize the non-
factorized model using standard initialization. For initial-
izing factorized layers, we use the Singular Value Decom-
position of the non-factorized initialization – in a full-rank
form – to ensure that the resulting product matrix is the
same as the original parameter decomposition. In addi-
tion, SVD is an optimal decomposition for the linear case
with uniform data. However, in contrast with the adaptive
baseline method (Wang et al., 2023) we only decompose
once, rather than on every training iteration. As such, we
only run decomposition once and progressively shrink the
ranks in a data-centric manner. This is contrary to related
work (Wang et al., 2021; 2023) that requires manual rank
and layer selection and full-rank warmup to achieve the

5

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

desired performance, at the cost of training overhead, of
course.

3.4. Train-Once, Deploy-Everywhere

Up until now, we have described how our method works for
training low-rank models, which yield computational, mem-
ory, network, and energy (Wu et al., 2022) bandwidth bene-
fits during training. At deployment time, one can directly
deploy the final model (rank ri for each layer) on the device,
which we acquire from performing a threshold sweep of εps
over the effective range of rank importance across layers.
However, in case we want to run on even more constrained
devices, such as mobile or embedded (Almeida et al., 2021)
systems, the learned decomposition also gives us the flex-
ibility to further compress the model in a straightforward
manner, effectively trading off accuracy for a smaller model
footprint. Inspired by (Yu & Huang, 2019a), we propose
to use greedy search. We begin with the current model and
compare model performance across various low-rank mod-
els, each created by removing a certain percentage of ranks
from each layer. We then eliminate the ranks that cause the
least decrease in performance. This process is iterated until
we reach the desired size or accuracy constraint. To make
this approach efficient, we estimate the loss using a single
mini-batch with a large batch size (e.g., 2048). This also
avoids issues with BatchNorm layers; see (Yu & Huang,
2019a) for details.

In summary, MAESTRO comprises a technique for trainable
low-rank approximation during training time that progres-
sively compresses the model, reflecting the data distribution,
and a method that enables a graceful trade-off between ac-
curacy and latency for embedded deployment, by selecting
the most important parts of the network. We validate these
claims in Sec. 5.2 and 5.5, respectively.

4. Theoretical Guarantees
In this section, we further investigate the theoretical proper-
ties of MAESTRO for the linear mappings, i.e., the setup of
the problem formulation (3).
Theorem 4.1 (Informal). Let A = Ũ Σ̃Ṽ ⊤ be a SVD decom-
position of A. Then, the minimization problem (3) is equiva-
lent to PCA applied to the transformed dataset x → Σ̃Ṽ ⊤x,
x ∼ X projected on the column space of Ũ .

The formal statement can be found in Appendix C. Theo-
rem 4.1 shows that MAESTRO can adapt to data distribution
by directly operating on data x ∼ X and also to the tar-
get mapping by projecting data to its right singular vectors
scaled by singular values. In particular, we show that in the
special case, when X is the uniform distribution on the unit
ball, (3), i.e., MAESTRO, exactly recovers truncated SVD of
A, which is consistent with the prior results (Horváth et al.,
2021). In the case A is the identity, it is straightforward
to see that MAESTRO is equivalent to PCA. We can see

that MAESTRO can efficiently extract low-rank solutions by
filtering out directions corresponding to the null space of
the target mapping A and directions with no data. We also
numerically verify both of the special cases–PCA and SVD,
by minimizing (3) using stochastic gradient descent (SGD)
with D being the uniform distribution. These experiments
are provided in Fig. 2a and 2b. We provide further evidence
on the adaptivity of MAESTRO in Appendix E.1 and E.2.

We showed that MAESTRO could recover SVD in a particu-
lar case of the linear model and the uniform data distribution
on the unit ball. We note that in this case, SVD is optimal,
and we cannot acquire better decomposition. Therefore, it is
desired that MAESTRO is equivalent to SVD in this scenario.
More generally, we argue that MAESTRO decomposition
should be preferable to SVD due to the following reasons:

• MAESTRO formulation is directly built into the training
and tailored to obtain the best low-rank decomposition,
while SVD relies on linearity assumption.

• SVD does not account for data, and even in the linear NN
case, the learned singular vectors might exhibit wrong
ordering. We demonstrate this issue using a simple exam-
ple where we take matrix A with rank 3. We construct the
dataset X in such a way that the third singular vector is
the most important, the second one is the second, and the
first is the third most important direction. Clearly, SVD
does not look at data. Therefore, it cannot capture this
phenomenon. We showcase that MAESTRO learns the
correct order; see Fig. 6 of the Appendix.

• Pre-factorizing models allow us to apply hierarchical
group-lasso penalty (Yuan & Lin, 2006) for decomposed
weights to directly regularize the rank of different layers.

• SVD is computationally expensive and can only run
rarely, while MAESTRO is directly built into the train-
ing and, therefore, does not require extra computations.
In addition, MAESTRO supports rank sampling so training
can be made computationally efficient.

5. Experiments
We start this section by describing the setup of our exper-
iments, including the models, datasets and baselines with
which we compare MAESTRO. We then compare MAESTRO
against the baselines on accuracy and training Multiply-
Accumulate operations (MACs) and discuss the results. Sub-
sequently, we analyze the behaviour of our system in-depth
and provide additional insights on the performance of our
technique, along with an ablation study and sensitivity anal-
ysis to specific hyperparameters. Finally, we showcase the
performance of models upon deployment and how we can
derive a smaller footprint model with some accuracy trade-
off, without the need to fine-tune.

6

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

0 250 500 750 1000 1250 1500 1750 2000
Iterations

10 3

10 2

10 1

100

101

102

||
k

i=
1u i

v i
A k

||2 F

k = ... (p = ...)
1 (0.2)
2 (0.3)
3 (0.5)
4 (0.7)
5 (0.8)
6 (1.0)

(a) Verification that MAESTRO recovers SVD for linear mapping
with uniform data. We display the L2 distance between the best
rank k and MAESTRO’s approximation of mapping A. The target
matrix was randomly generated 9× 6 matrix with rank 3. p and k
represent relative and actual rank.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Si
ng

ul
ar

 V
al

ue
s

k = ... (p = ...)
1 (0.1)
2 (0.2)
3 (0.3)
4 (0.4)
5 (0.5)
6 (0.6)
7 (0.7)
8 (0.8)
9 (0.9)
10 (1.0)

(b) Verification that MAESTRO recovers PCA for identity mapping.
The plot displays the estimates of singular values. The data dis-
tribution has only 3 directions. It is expected that the top 3 ranks
will converge to value one and the rest to zero. p and k stand for
relative and actual rank, respectively.

Figure 2: Empirical showcase of theoretical properties of the MAESTRO’s formulation.

0 2 4 6 8 10
Params. (M)

82

84

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

GMACs
Cuttlefish
Maestro
Non-Factorised
Pufferfish
XNOR-Net

(a) ResNet18.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Params. (M)

82

84

86

88

90

92

94

Ac
cu

ra
cy

 (%
)

GMACs
Cuttlefish
Maestro
Non-Factorized
Pufferfish
Spectral Init.
XNOR-Net

(b) VGG-19.
Figure 3: Maestro vs. baselines on CIFAR10. Spectral-Init results is taken from
the original work; For XNOR-Net each weight is quantized from 32 to 1-bit. Thus,
we report a compression rate of 3.125%; Detailed results are presented in table
form in the Appendix E.5.

Table 2: Datasets and models for evaluation.
The footprints depict the vanilla models.

Dataset Model # GMACs # Params (M) Task

MNIST LeNet 2e−4 0.04 Image classification
CIFAR10 ResNet-18 0.56 11.18 Image classification
CIFAR10 VGG-19 0.40 20.00 Image classification
ImageNet ResNet-50 4.12 25.56 Image classification
Multi30k 6-layer Transformer 1.37 48.98 Translation (en-ge)

Table 3: Maestro vs. baselines on Multi30k.

Variant Model Perplexity GMACs Params. (M)

Non-factorized Transformer 9.85±0.10 1.370 53.90
Pufferfish∗ Transformer 7.34±0.12 0.996 26.70
MAESTRO† Transformer 6.90±0.07 0.248 13.80
∗Results from original work; † tuned λgp from {2i/100; i ∈ 0, . . . , 9}

5.1. Experimental Setup

Models & datasets. The datasets and models considered
in our experiments span across four datasets, concisely pre-
sented along with the associated models on Tab. 2. We
have implemented our solution in PyTorch (Paszke et al.,
2017)(v1.13.0) trained our models on NVidia A100 (40G)
GPUs. Details for the learning tasks and hyperparameters
used are presented in Appendix D.

Baselines. We have selected various baselines from the
literature that we believe are closest to aspects of our sys-
tem. On the pruning front, we compare with the IMP (Paul
et al., 2023) and RareGems (Sreenivasan et al., 2022) tech-
niques. On the quantization front, we compare with XNOR-
Net (Rastegari et al., 2016). With respect to low-rank meth-
ods, we compare with Spectral Initialisation (Khodak et al.,
2021), Pufferfish (Wang et al., 2021) and Cuttlefish (Wang
et al., 2023).

5.2. Performance Comparison

We start off by comparing MAESTRO with the mentioned
baselines from the literature across the datasets and models

of Tab. 24. Results are depicted in Fig. 3 and Tab. 3, while
additional performance points of MAESTRO for different
model footprints are presented in the Appendix E.3 and E.4.

Comparisons with low-rank methods. The low-rank meth-
ods we are comparing against are Pufferfish (Wang et al.,
2021) and Cuttlefish (Wang et al., 2023). These methods
try to reduce training and inference runtime while preserv-
ing model accuracy by leveraging low-rank approximations.
For ResNet-18, we achieve 94.19±0.07% for 4.08M param-
eters and 93.97±0.25% for 2.19M parameters compared to
the 94.17% of Pufferfish at 3.3M parameters. For VGG-19,
we achieve +0.41pp (percentage points) higher accuracy
compared to Pufferfish and -0.29pp to Cuttlefish at 44.8%
and 93.2% of the sizes, respectively. Finally, comparing
with the spectral initialization (Khodak et al., 2021) for
VGG-19, we achieve +5.26pp higher accuracy for 87.5%
of parameter size. Detailed results are shown in Tab. 16.
This performance benefits also apply in the case of Trans-
formers (Tab. 3), where MAESTRO performs 6% better in
terms of perplexity at 25% of the cost (MACs) and 51.7%

4The operating points we select for MAESTRO are the closest
lower to the respective baseline in terms of footprint. Where the
result is not present in the Fig. 3, we provide the λgp value so that
it can be referenced from the Appendix, Tab. 12, 13.

7

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

0 50 100 150 200 250 300
Epochs

0

1000

2000

3000

4000

To
ta

l R
an

k

Maestro: = 4e-06
Maestro: = 8e-06
Maestro: = 1.6e-05
Maestro: = 3.2e-05
Maestro: = 6.4e-05
Maestro: = 0.000128
Maestro: = 0.000256
Maestro: = 0.000512
Maestro: = 0.001024

(a) Total rank (
∑d

i=1 ri).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Layer Index

0

100

200

300

400

500

Ra
nk

Full Rank
Maestro: = 4e-06
Maestro: = 8e-06
Maestro: = 1.6e-05
Maestro: = 3.2e-05
Maestro: = 6.4e-05
Maestro: = 0.000128
Maestro: = 0.000256
Maestro: = 0.000512
Maestro: = 0.001024

(b) Ranks ri’s after training.

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

(c) Convergence for λgl = 0.

Figure 4: Training dynamics of MAESTRO for ResNet18 on CIFAR10. Results for other datasets can be found in Appendix E.3.

Table 4: Maestro vs. baselines on ImageNet-1k.

Variant Model Acc. (%) Params. (M) GMACs

No decomposition
Non-factorized ResNet-50 75.32 25.26 4.12

Not decomposing first four blocks and last layer
Pufferfish† ResNet-50 75.99 15.2 3.6
Cuttlefish† ResNet-50 76.00 14.9 3.6
MAESTRO ∗ ResNet-50 76.04 14.0 3.4

Decomposing all layers
Pufferfish† ResNet-50 71.03 9.4 2.1
MAESTRO ∗ ResNet-50 71.54 9.2 2.0
∗λgl chosen such that the final number of parameters and accuracy is
similar to the baseline models; † without label smoothing (same as our
setup for Maestro)

.

of the size (parameters) compared to Pufferfish. It is worth
noting that both Pufferfish and Cuttlefish, by default, do
not decompose all layers and have warm-up full-training
rounds, both of which cause training and hyperparameter
optimization overheads. In contrast, our technique only in-
troduces two hyperarameters, namely λgl and εps, which
govern the whole training process. We have scaled up our
experiments to ImageNet-1k levels (Tab. 4) and for the same
setup of full decomposition, we achieve slightly higher accu-
racy (+0.51pp) at 97.8% of the size of Pufferfish. For partial
decomposition, MAESTRO performs on par with Pufferfish
and Cuttlefish at a lower training and inference cost.

Comparisons with pruning methods. The next family of
baselines is related to the LTH (Frankle & Carbin, 2019).
Specifically, we compare against IMP (Paul et al., 2023)
and witness that MAESTRO can achieve +1.25pp (λgp =
128e−6) and +0.24pp (λgp = 32e−6) higher accuracy for
ResNet-18 and VGG-19 respectively. The detailed results
are shown in Tab. 16 of the Appendix. Although we cannot
scale to the size that RareGems (Sreenivasan et al., 2022)
for ResNet-18, the sparsity that they achieve is unstructured,
which most modern hardware cannot take advantage of. In
contrast, our technique performs ordered structured sparsity
compatibly with most computation targets. On the other
hand, for VGG-19, we achieve +6.82pp higher accuracy at
43.6% of the footprint.

Table 5: Ablation study for ResNet18 on CIFAR10

Variant Acc. (%) Rel. GMACs (Train.) Params. (M)

MAESTRO 94.19±0.39 1.00× 4.08±0.020

w/out GL 94.04±0.10 1.33× 11.2±0.000

w/out PS 94.12±0.36 1.33× 4.09±0.027

w/ full-training 94.05±0.32 1.97× 4.09±0.032

Comparisons with quantized models. We also compare
against XNOR-Net (Rastegari et al., 2016), which binarizes
the network to achieve efficient inference. Training contin-
ues to happen in full precision, and inference performance
is dependent on the operation implementation of the tar-
get hardware. Nonetheless, assuming a compression rate
of 3.125%, for the same model size, we achieve +1.08pp
(λgp = 512e−6) and +2.18pp (λgp = 256e−6) higher accu-
racy on ResNet-18 and VGG-19.
5.3. Training Behaviour of MAESTRO

Having shown the relative performance of our framework
to selected baselines, we now move to investigate how our
method behaves with respect to its convergence and low-
rank approximations.

Model and rank convergence. In Fig. 4, we present the
training dynamics for MAESTRO. Fig. 4a illustrates the evo-
lution of total rank throughout the training steps. We observe
that the ranks are pruned incrementally. This aligns with
the observations made during Pufferfish (Wang et al., 2021)
training, where the authors suggest warm-start training with
full precision to enhance the final model performance. In our
situation, we do not need to integrate this heuristic because
MAESTRO automatically prunes rank. Fig. 4b reveals the
ranks across layers after training. We notice an intriguing
phenomenon: the ranks are nested for increasing λgl. This
could imply apart from a natural order of ranks within each
layer, a global order. We briefly examine this captivating oc-
currence in the following section, and we plan to investigate
it more thoroughly in future work, as we believe this might
contribute to a superior rank selection and sampling process.
Lastly, Fig. 4c depicts the progression of training loss. We
find that our hypothesis that sampling does not adversely
impact training is also supported empirically.

8

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

1.0 1.5 2.0 2.5 3.0 3.5 4.0
MACS 1e8

65

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

Maestro
SVD

(a) MAESTRO vs. SVD.

0.5 1.0 1.5 2.0 2.5 3.0
MACS 1e8

89

90

91

92

93

Te
st

 A
cc

ur
ac

y

Maestro (With Hierarchical Regularization)

(b) Varying HGL.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
MACS 1e8

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Pruned Maestro Model
Maestro models with varying

(c) Nested MAESTRO.

Figure 5: MAESTRO accuracy-latency trade-off under different settings for VGG19 on CIFAR10. Additional results in Appendix E.4.

5.4. Ablation Study
In this section, we examine the impact of each component
on the performance of MAESTRO. Specifically, we run vari-
ants of our method i) without the hierarchical group lasso
regularization (HGL), ii) without progressive shrinking (PS).
Additionally, we integrate iii) an extra full low-rank pass
(b = ri) into the training at each step to assess whether extra
sampling would be beneficial. The results are displayed
in Tab. 5. As anticipated, our findings confirm that neither
the inclusion of hierarchical group lasso with a tuned λgl

nor progressive shrinking impair the final performance, but
they do significantly enhance the efficiency of MAESTRO.
Moreover, sampling more ranks at each training step does
not improve the final performance, and, in fact, it hampers
training efficiency, making it approximately twice as com-
putationally demanding.

5.5. Accuracy-Latency Trade-Off at Training and
Deployment Time

In Fig. 5, we illustrate various approaches to balance latency
(proxied through MACs operations) and accuracy in model
training and deployment. Fig. 5a demonstrates how MAE-
STRO (λgl = 0) can be pruned effectively for deployment
using the greedy search method discussed in Section 3.4.
We contrast this with the greedy pruning of a non-factorized
model that has been factorized using SVD. We reveal that
this straightforward baseline does not measure up to the
learned decomposition of MAESTRO and results in a signifi-
cant performance decrease. Next, Fig. 5b portrays the final
accuracy and the number of model parameters for varying
hierarchical group lasso penalties. This leads to the optimal
latency-accuracy balance for both training and inference.
However, it is crucial to point out that each model was
trained individually, while greedy pruning only necessitates
a single training cycle. Lastly, we delve into the observation
of nested ranks across increasing λgl. Fig. 5c displays the
performance of MAESTRO (λgl = 0) across different ranks
selected by smaller models MAESTRO (λgl > 0). Intrigu-
ingly, we observe that MAESTRO (λgl = 0) performs very
well—for instance, we can decrease its operations in half
(and parameters by 10×) and still maintain an accuracy of

87.7% without fine-tuning, just by reusing rank structure
from independent runs. As aforementioned, we intend to
further explore this in the future.

6. Conclusion and Future Work
In this work, we have presented MAESTRO, a method for
trainable low-rank approximation of DNNs that leverages
progressive shrinking by applying a generalized variant of
Ordered Dropout to the factorized weights. We have shown
the theoretical guarantees of our work in the case of lin-
ear models and empirically demonstrated its performance
across different types of models, datasets, and modalities.
Our evaluation has demonstrated that MAESTRO outper-
forms competitive compression methods at a lower cost. In
the future, we plan to expand our technique to encompass
more advanced sampling techniques and apply it to different
distributed learning scenarios, such as Federated Learning,
where data are natively non-independent or identically dis-
tributed (non-IID).

Impact Statement
The goal of our work is to make the training and deployment
of DNNs more efficient, affecting the total computation,
memory and bandwidth of systems, as well as the energy
they require to run the respective tasks. DNN model training
requires significant amounts of energy, whether in a data
center or at the edge (Wu et al., 2022; Patterson et al., 2022).
However, such techniques should not be used in lieu of mak-
ing data centers less green, but as a complementary measure
to further reduce the carbon footprint of Deep Learning.

Additionally, as our technique involves a training-aware
methodology for progressively selecting ranks, it depends
on the quality of data used in training. Deploying the model
in the wild for various downstream tasks may result in be-
havior different from the intended outcomes. Therefore, it
should be thoroughly tested before deployment to ensure
it adheres to the required Service Level Objectives (SLOs),
especially in performance-critical use cases, such as self-
driving vehicles or UAV navigation.

9

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

References
Alam, S., Liu, L., Yan, M., and Zhang, M. Fedrolex: Model-

heterogeneous federated learning with rolling sub-model ex-
traction. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K.
(eds.), Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=
OtxyysUdBE.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M.
Qsgd: Communication-efficient sgd via gradient quantization
and encoding. Advances in neural information processing sys-
tems, 30, 2017.

Alistarh, D., Hoefler, T., Johansson, M., Khirirat, S., Konstantinov,
N., and Renggli, C. The convergence of sparsified gradient
methods. arXiv preprint arXiv:1809.10505, 2018.

Almeida, M., Laskaridis, S., Mehrotra, A., Dudziak, L., Leontiadis,
I., and Lane, N. D. Smart at what cost? characterising mobile
deep neural networks in the wild. In Proceedings of the 21st
ACM Internet Measurement Conference, pp. 658–672, 2021.

Caldas, S., Konečný, J., McMahan, B., and Talwalkar, A. Expand-
ing the reach of federated learning by reducing client resource
requirements, 2019. URL https://openreview.net/
forum?id=SJlpM3RqKQ.

Carreira-Perpinán, M. A. and Idelbayev, Y. “learning-compression”
algorithms for neural net pruning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
8532–8541, 2018.

Chen, T., Ji, B., Ding, T., Fang, B., Wang, G., Zhu, Z., Liang, L.,
Shi, Y., Yi, S., and Tu, X. Only train once: A one-shot neural
network training and pruning framework. Advances in Neural
Information Processing Systems, 34:19637–19651, 2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.
Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Diao, E., Ding, J., and Tarokh, V. Hetero{fl}: Computation
and communication efficient federated learning for hetero-
geneous clients. In International Conference on Learning
Representations, 2021. URL https://openreview.net/
forum?id=TNkPBBYFkXg.

Dudziak, Ł., Abdelfattah, M. S., Vipperla, R., Laskaridis, S., and
Lane, N. D. Shrinkml: End-to-end asr model compression using
reinforcement learning. INTERSPEECH, 2019.

Elliott, D., Frank, S., Sima’an, K., and Specia, L. Multi30k:
Multilingual english-german image descriptions. pp. 70–74,
2016.

Frankle, J. and Carbin, M. The lottery ticket hypothesis: Find-
ing sparse, trainable neural networks. In International Con-
ference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

Han, S., Mao, H., and Dally, W. J. Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classifica-
tion. In Proceedings of the IEEE international conference on
computer vision, pp. 1026–1034, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778, 2016.

He, Y., Zhang, X., and Sun, J. Channel pruning for accelerat-
ing very deep neural networks. In Proceedings of the IEEE
international conference on computer vision, pp. 1389–1397,
2017.

Horváth, S., Klein, A., Richtárik, P., and Archambeau, C. Hy-
perparameter transfer learning with adaptive complexity. In
International Conference on Artificial Intelligence and Statis-
tics, pp. 1378–1386. PMLR, 2021.

Horváth, S., Laskaridis, S., Almeida, M., Leontiadis, I., Venieris,
S., and Lane, N. FjORD: Fair and accurate federated learning
under heterogeneous targets with ordered dropout. Advances
in Neural Information Processing Systems, 34:12876–12889,
2021.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Larous-
silhe, Q., Gesmundo, A., Attariyan, M., and Gelly, S. Parameter-
efficient transfer learning for nlp. In International Conference
on Machine Learning, pp. 2790–2799. PMLR, 2019.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., and Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017.

Hu, E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, L., and
Chen, W. Lora: Low-rank adaptation of large language models,
2021.

Hu, H., Peng, R., Tai, Y.-W., and Tang, C.-K. Network trimming:
A data-driven neuron pruning approach towards efficient deep
architectures. arXiv preprint arXiv:1607.03250, 2016.

Jaderberg, M., Vedaldi, A., and Zisserman, A. Speeding up con-
volutional neural networks with low rank expansions. arXiv
preprint arXiv:1405.3866, 2014.

Khodak, M., Tenenholtz, N., Mackey, L., and Fusi, N. Initialization
and regularization of factorized neural layers. arXiv preprint
arXiv:2105.01029, 2021.

Kim, M., Yu, S., Kim, S., and Moon, S.-M. DepthFL : Depth-
wise federated learning for heterogeneous clients. In The
Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=
pf8RIZTMU58.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers of
features from tiny images. 2009.

Laskaridis, S., Kouris, A., and Lane, N. D. Adaptive inference
through early-exit networks: Design, challenges and directions.
In Proceedings of the 5th International Workshop on Embedded
and Mobile Deep Learning, pp. 1–6, 2021.

Laskaridis, S., Venieris, S. I., Kouris, A., Li, R., and Lane, N. D.
The future of consumer edge-ai computing. arXiv preprint
arXiv:2210.10514, 2022.

10

https://openreview.net/forum?id=OtxyysUdBE
https://openreview.net/forum?id=OtxyysUdBE
https://openreview.net/forum?id=SJlpM3RqKQ
https://openreview.net/forum?id=SJlpM3RqKQ
https://openreview.net/forum?id=TNkPBBYFkXg
https://openreview.net/forum?id=TNkPBBYFkXg
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=pf8RIZTMU58
https://openreview.net/forum?id=pf8RIZTMU58

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

Laskaridis, S., Kateveas, K., Minto, L., and Haddadi, H. Melt-
ing point: Mobile evaluation of language transformers. arXiv
preprint arXiv:2403.12844, 2024.

LeCun, Y., Cortes, C., and Burges, C. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

Lim, M. and Hastie, T. Learning interactions via hierarchical group-
lasso regularization. Journal of Computational and Graphical
Statistics, 24(3):627–654, 2015.

Lin, J., Zhu, L., Chen, W.-M., Wang, W.-C., Gan, C., and Han, S.
On-device training under 256kb memory. In Annual Conference
on Neural Information Processing Systems (NeurIPS), 2022.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Rethinking
the value of network pruning. arXiv preprint arXiv:1810.05270,
2018.

Liu, Z., Li, D., Fernandez-Marques, J., Laskaridis, S., Gao, Y.,
Dudziak, Ł., Li, S. Z., Hu, S. X., and Hospedales, T. Federated
learning for inference at anytime and anywhere. arXiv preprint
arXiv:2212.04084, 2022.

Ma, S., Bassily, R., and Belkin, M. The power of interpola-
tion: Understanding the effectiveness of sgd in modern over-
parametrized learning. In International Conference on Machine
Learning, pp. 3325–3334. PMLR, 2018.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas,
B. A. Communication-efficient learning of deep networks from
decentralized data. In Artificial intelligence and statistics, pp.
1273–1282. PMLR, 2017.

Mishkin, D. and Matas, J. All you need is a good init. arXiv
preprint arXiv:1511.06422, 2015.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,
Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A. Automatic
differentiation in pytorch. 2017.

Patterson, D., Gonzalez, J., Hölzle, U., Le, Q., Liang, C., Munguia,
L.-M., Rothchild, D., So, D. R., Texier, M., and Dean, J. The
carbon footprint of machine learning training will plateau, then
shrink. Computer, 55(7):18–28, 2022.

Paul, M., Chen, F., Larsen, B. W., Frankle, J., Ganguli, S.,
and Dziugaite, G. K. Unmasking the lottery ticket hypoth-
esis: What’s encoded in a winning ticket’s mask? In The
Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=
xSsW2Am-ukZ.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agar-
wal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.
Learning transferable visual models from natural language su-
pervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., and
Sutskever, I. Robust speech recognition via large-scale weak
supervision. In International Conference on Machine Learning,
pp. 28492–28518. PMLR, 2023.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. Xnor-net:
Imagenet classification using binary convolutional neural net-
works. In Computer Vision–ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11–14, 2016,
Proceedings, Part IV, pp. 525–542. Springer, 2016.

Rippel, O., Gelbart, M., and Adams, R. Learning Ordered Repre-
sentations with Nested Dropout. In International Conference
on Machine Learning (ICML), pp. 1746–1754, 2014.

Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E., and
Ramabhadran, B. Low-rank matrix factorization for deep neural
network training with high-dimensional output targets. In 2013
IEEE international conference on acoustics, speech and signal
processing, pp. 6655–6659. IEEE, 2013.

Schmidt, M. and Roux, N. L. Fast convergence of stochastic
gradient descent under a strong growth condition. arXiv preprint
arXiv:1308.6370, 2013.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochastic
gradient descent and its application to data-parallel distributed
training of speech dnns. In Fifteenth annual conference of the
international speech communication association, 2014.

Sidahmed, H., Xu, Z., Garg, A., Cao, Y., and Chen, M. Efficient
and private federated learning with partially trainable networks.
arXiv preprint arXiv:2110.03450, 2021.

Simonyan, K. and Zisserman, A. Very deep convolutional networks
for large-scale image recognition. In International Conference
on Learning Representations, 2015.

Sreenivasan, K., yong Sohn, J., Yang, L., Grinde, M., Nagle, A.,
Wang, H., Xing, E., Lee, K., and Papailiopoulos, D. Rare
gems: Finding lottery tickets at initialization. In Oh, A. H.,
Agarwal, A., Belgrave, D., and Cho, K. (eds.), Advances in
Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=Jpxd93u2vK-.

Suresh, A. T., Felix, X. Y., Kumar, S., and McMahan, H. B. Dis-
tributed mean estimation with limited communication. In In-
ternational Conference on Machine Learning, pp. 3329–3337.
PMLR, 2017.

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on
machine learning, pp. 6105–6114. PMLR, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is all
you need. In Advances in neural information processing systems,
pp. 5998–6008, 2017.

Wan, Z., Wang, X., Liu, C., Alam, S., Zheng, Y., LIU, J., QU, Z.,
YAN, S., ZHU, Y., ZHANG, Q., et al. Efficient large language
models: A survey. arXiv preprint arXiv:2312.03863, 2023.

Wang, E., Davis, J. J., Zhao, R., Ng, H.-C., Niu, X., Luk, W.,
Cheung, P. Y., and Constantinides, G. A. Deep Neural Net-
work Approximation for Custom Hardware: Where we’ve been,
where we’re going. ACM Computing Surveys (CSUR), 52(2):
1–39, 2019.

Wang, H., Agarwal, S., and Papailiopoulos, D. Pufferfish:
communication-efficient models at no extra cost. Proceedings
of Machine Learning and Systems, 3:365–386, 2021.

11

https://openreview.net/forum?id=xSsW2Am-ukZ
https://openreview.net/forum?id=xSsW2Am-ukZ
https://openreview.net/forum?id=Jpxd93u2vK-
https://openreview.net/forum?id=Jpxd93u2vK-

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

Wang, H., Agarwal, S., Tanaka, Y., Xing, E. P., Papailiopoulos,
D., et al. Cuttlefish: Low-rank model training without all the
tuning. arXiv preprint arXiv:2305.02538, 2023.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning struc-
tured sparsity in deep neural networks. Advances in neural
information processing systems, 29, 2016.

Wiesler, S., Richard, A., Schlüter, R., and Ney, H. Mean-
normalized stochastic gradient for large-scale deep learning.
In 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 180–184. IEEE, 2014.

Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N.,
Maeng, K., Chang, G., Aga, F., Huang, J., Bai, C., et al. Sustain-
able ai: Environmental implications, challenges and opportuni-
ties. Proceedings of Machine Learning and Systems, 4:795–813,
2022.

Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L. S., Grau-
man, K., and Feris, R. Blockdrop: Dynamic inference paths in
residual networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

Xue, J., Li, J., and Gong, Y. Restructuring of deep neural net-
work acoustic models with singular value decomposition. In
Interspeech, pp. 2365–2369, 2013.

Yang, T.-J., Chen, Y.-H., and Sze, V. Designing energy-efficient
convolutional neural networks using energy-aware pruning. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5687–5695, 2017.

Ye, T. and Du, S. S. Global convergence of gradient descent for
asymmetric low-rank matrix factorization. Advances in Neural
Information Processing Systems, 34:1429–1439, 2021.

Yu, J. and Huang, T. Autoslim: Towards one-shot architecture
search for channel numbers. arXiv preprint arXiv:1903.11728,
2019a.

Yu, J. and Huang, T. S. Universally slimmable networks and
improved training techniques. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 1803–1811,
2019b.

Yu, J., Yang, L., Xu, N., Yang, J., and Huang, T. Slimmable
neural networks. In International Conference on Learning
Representations, 2019. URL https://openreview.net/
forum?id=H1gMCsAqY7.

Yuan, M. and Lin, Y. Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 68(1):49–67, 2006.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring the
efficacy of pruning for model compression. arXiv preprint
arXiv:1710.01878, 2017.

12

https://openreview.net/forum?id=H1gMCsAqY7
https://openreview.net/forum?id=H1gMCsAqY7

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

Appendix
Contents of the Appendix

A Limitations 13

B Extended Background 13

C Theoretical Properties of Low-Rank Layers 14

D Experimental setup 15
D.1 Datasets . 15
D.2 Models . 16
D.3 Hyperparameter Selection . 17
D.4 Deciding Against Decomposition . 17

E Extended evaluation 17
E.1 MAESTRO Recovers Correct Ordering . 17
E.2 Rank Adaptivity of MAESTRO to Data Complexity . 18
E.3 Training Behaviour of MAESTRO . 18
E.4 Model Size-Accuracy Trade-Off at Training and Deployment Time . 19
E.5 Detailed Comparison with Baselines . 20

A. Limitations
In this work, we have proposed a method for trainable low-rank approximation of DNNs that provides performance benefits
for both training and inference times. While we suggest that this could have repercussions on the energy consumption of
these tasks, we have not yet evaluated this hypothesis experimentally across different devices, be they data center-grade or at
the edge.

Additionally, we have applied our technique to CNN and Transformer models spanning across vision and NLP tasks. While
we anticipate generalization to any type of network, it remains to be seen whether our techniques can also be applied to
alternative types of layers, such as recurrent ones, and the benefits they may bring.

Although we have provided a thorough investigation of the behaviour of our proposed system, the only way we can control
the end footprint of the model during training is via the λgl and εps hyperparameters. However, there is no guarantee about
the final footprint of the model. If we are willing to sacrifise accuracy, then the technique illustrated in Sec. 3.4 and evaluated
in Sec. 5.5 is a start. More robust ways of globally ranking per-layer importances are left as future work.

Lastly, our sampling method during training is uniform up to the maximum rank during progressive shrinking. Although this
method has proven effective, alternative sampling methods could potentially accelerate rank exploration, thereby hastening
the shrinking and convergence of the network during training.

B. Extended Background
Ordered Dropout. Ordered Dropout is a technique of importance-based, nested and ordered pruning that works along the
indices of a layer’s parameters (neurons, filters, etc.) Introduced by (Horváth et al., 2021), the authors describe a training
technique where a layer’s width is discretised in |P | values, where P = {s1, s2, . . . , s|P |}, and at each training step, they
sample p ∼ UP to get a specific subnetwork, extracted by selecting the first

⌈
p ∗Kl − 1

⌉
neurons per layer and dropping the

rest. In contrast to our work, sampling is happening directly on model parameters (rather than ranks) and is uniform across
layers (i.e. a single p-value is set). Nested-ness refers to the fact that larger p-value models include the parameters of lower
p-values and importance-based pruning means that via stochastic sampling, the right-most (in terms of index) parameters
train on progressively less data due to the probability of sampling and nestedness (i.e. all data pass from the parameters of
minimal subnetwork, less pass the higher the p-value).

13

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

C. Theoretical Properties of Low-Rank Layers
In this section, we show that for the case of linear mappings, i.e., the problem formulation discussed in (3), MAESTRO acts
as PCA applied to the original dataset X projected onto the space weighted by the corresponding singular values. Before
proceeding with the theorem, we first recall the assumptions and notations introduced in the main paper.

We denote C:b as the first b columns of matrix C, C:a,:b denotes the first a rows, and b columns of a matrix C, a+1 : denotes
the all the columns/rows from index a+ 1, : denotes the all the columns/rows, and for vectors, we use a single subscript. As
discussed in the main paper, we reformulate the original least squares problems to the following decomposition problem

min
U∈Rm×r,V ∈Rn×r

Ex,y∼X

[
Eb∼D

[∥∥U:bV
⊤
:b x− y

∥∥2]] , (6)

where D is a distribution that samples b ∈ {1, 2, . . . , r} with probability pb > 0 and we assume that y is linked with x
through linear map A, i.e., y = Ax.

Theorem C.1. Let A = Ũ Σ̃Ṽ ⊤ be a SVD decomposition of A. Then, the minimization problem (6) is equivalent to PCA
applied to the transformed dataset x → Σ̃Ṽ ⊤x, x ∼ X projected on the column space of Ũ . Concretely, we can first solve

min
U∈Rm×r,V ∈Rn×r

Ez∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − I

)
Σ̃Ṽ ⊤x

∥∥∥2]] , (7)

and then we can obtain the solutions of (6) using U⋆ = Ũ⊤Ū , V ⋆ = Ṽ ⊤V̄ , where Ū , V̄ belong to the set of optimal
solutions of problem (7).zx

In the particular case, where X is a uniform distribution on the unit ball, (6) recovers the best rank approximation of A
across all ranks, i.e., up to the scale of U and V recovers truncated SVD. In the case, A is identity, (6) leads to standard
PCA decomposition.

Proof. From the assumptions that y = Ax and A = Ũ Σ̃Ṽ ⊤, we can rewrite (6) as

min
U∈Rm×r,V ∈Rn×r

Ex∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − Ũ Σ̃Ṽ ⊤

)
x
∥∥∥2]] .

Since Ũ is orthogonal, we have ∥z∥ = ∥Ũ⊤z∥. Therefore, the above problem is equivalent to

min
U∈Rm×r,V ∈Rn×r

Ex∼X

[
Eb∼D

[∥∥∥(Ũ⊤U:bV
⊤
:b − Σ̃Ṽ ⊤

)
x
∥∥∥2]] ,

which is also equivalent to

min
U∈Rm×r,V ∈Rn×r

Ex∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − Σ̃Ṽ ⊤

)
x
∥∥∥2]]

after reparametrization. The next step involves injecting identity in the form Ṽ Ṽ ⊤ as that leads to the equivalent reformulation

min
U∈Rm×r,V ∈Rn×r

Ex∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b Ṽ − Σ̃

)
Ṽ ⊤x

∥∥∥2]] .
As for the previous case, we can reparametrise the problem to obtain

min
U∈Rm×r,V ∈Rn×r

Ex∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − Σ̃

)
Ṽ ⊤x

∥∥∥2]] .
Let k = rank(Σ̃) = rank(A) ≤ r and z = Ṽ ⊤x. Furthermore, let g = Σ̃z for any z ∈ Rn, then gk+1: = 0⃗. This,
combined with the nested structure of the optimization problem, implies that the optimal solution for U has to be of the
form ui,k+1: = 0⃗ for all interesting (non-zero mapping) directions, i.e., there exists x ∈ X such that v⊤i Ṽ

⊤x ̸= 0. These
are the only interesting solutions since the case where for all x ∈ X : v⊤i Ṽ

⊤x = 0 yields zero mapping on X , which is not

14

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

of interest and could be dropped, e.g., using group lasso penalty discussed in the main part. Therefore, to solve the original
problem, we could first solve the following problem

min
U∈Rk×r,V ∈Rn×r

Ez∼X

[
Eb∼D

[∥∥∥(U:k,:bV
⊤
:b − Σ̃:k,:

)
z
∥∥∥2]]

and then reconstruct the corresponding solution of the original problem by appending zeros to the resulting matrix U . By a
similar argument, we can argue that for all non-zero mapping directions, it has to be the case that vi,k+1: = 0⃗. Therefore,
solving the original minimization reduces to

min
U∈Rk×r,V ∈Rk×r

Ez∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − Σ̃:k,:k

)
z:k

∥∥∥2]] .
This can be further simplified using reparametrization V ⊤ → V ⊤Σ̃−1

:k,:k, which leads to

min
U∈Rk×r,V ∈Rk×r

Ez∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − Ik

)
Σ̃:k,:kz:k

∥∥∥2]] , (8)

where Ik is k × k identity. If X is centred around zero, then Σ̃:k,:kz:k is also centred around zero, and the above problem is
up to scaling equivalent to PCA of Σ̃:k,:kz:k as shown by Rippel et al. (Rippel et al., 2014). Since Σ̃ is a diagonal matrix
with only k× k non-zero upper left sub-matrix, therefore, PCA on Σ̃:k,:kz:k is equivalent to PCA on Σ̃z by appending zeros
to the obtained principal component vectors. Thus, we can write an equivalent formulation

min
U∈Rm×r,V ∈Rn×r

Ez∼X

[
Eb∼D

[∥∥∥(U:bV
⊤
:b − I

)
Σ̃Ṽ ⊤x

∥∥∥2]] .
Furthermore, let Ū , V̄ belong to the set of optimal solutions of problem (7). Then U⋆ = Ũ⊤Ū , V ⋆ = Ṽ ⊤V̄ belong to the
set of optimal solutions of problem (6). This can be proved by reversing our construction and ignoring scaling since (7) is
scaling invariant.

For the case X is a uniform distribution on the unit ball, we have Σ̃:k,:kz:k is a k-dimensional ellipsoid with principal axes
being standard basis vectors {ei}ki=1, where the length of the axes is given by ordered singular values, i.e., the first basis
vector corresponds to the largest singular vector. Therefore, its principal component vectors correspond to the basis vectors.
Following our construction, one can see that the solution to the original problems leads to truncated SVD up to the scaling
factor.

For the case A is an identity, we have k = r = m = m, Σ̃ is an identity, and Ũ = Ṽ . Under this setting, the principal
component vectors obtained from (8) corresponds to principal component vectors of X in basis given by columns of
Ũ . Similarly, as in the previous case, reversing the transformations to return back to the original problem, we conclude
that the optimal solution of the original problem corresponds to principal component vectors of X since we reverse the
transformation by Ũ⊤.

D. Experimental setup
D.1. Datasets

MNIST. The MNIST dataset (LeCun et al., 2010) is a database of 28×28 greyscale handwritten digits, with a training set of
60k examples and a test set of 10k samples.

CIFAR-10. The CIFAR10 dataset (Krizhevsky et al., 2009) is a computer vision dataset that consists of 32×32 RGB images
classified into 10 labels. It is split into 50k training images and 10k test images which are balanced across labels.

ImageNet-1k. The ImageNet dataset (ILSVRC) (Deng et al., 2009) is an image classification challenge. The task comprises
to classify an 300×300 RGB image among 1000 classes. In total there are 1.2M training samples and 50k test images.

WMT16. The WMT dataset from statmt is machine translation dataset, spanning news commentaries and parliament
proceedings, that aims to investigate the applicability of machine translation techniques when translating between language
pairs. Specifically, we focus on the task of German-English language translation of image descriptions, commonly referred
to as Multi30k (Elliott et al., 2016). We only utilise the text modality for the translation task. Data is taken straight from
torchtext.

15

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

D.2. Models

LeNet. LeNet is a simple convolutional network, introduced by LeCun at al. for recognizing handwritten digits (LeCun
et al., 2010). It consists of a sequence of two convolutional layers, followed by three fully-connected layers. However, we
are using a ReLU instead of the initially proposed sigmoid activation. The detailed architecture of the network is depicted in
Tab. 6

ResNet. ResNet (He et al., 2016) is a deep neural network whose prominent feature is the existence of skip (or residual)
connections, that is connections that perform identity mappings merged with the target layer it joins with through summation.
Multiple residual blocks are stacked to form the network. The result is an easier to optimise network that offers enhanced
accuracy. We use ResNet-18 in our experiments, the architecture of which is depicted in Tab. 7, except for ImageNet, where
we use ResNet-50.

Table 6: Detailed architecture of the LeNet-5 architecture
used in our experiments. Each convolution and linear layer is
followed by a ReLU activation that is ommitted from the table.
The shapes for convolution layers follows (m,n, k, k).

Parameter Shape Layer hyper-parameter

layer1.conv1.weight 1× 6× 5× 5 stride:1;padding:1

pooling.max N/A kernel size:2;stride:1;dilation:1

layer2.conv2.weight 6× 16× 5× 5 stride:1;padding:0;dilation:1

pooling.max N/A kernel size:2;stride:2

layer3.fc1.weight 256× 120 N/A

layer4.fc2.weight 120× 84 N/A

layer5.fc3.weight 84× 10 N/A

Table 7: The hybrid ResNet architecture for the CIFAR-10 and
ImageNet datasets used in the experiments.

Layer Name ResNet-18 ResNet-50

conv1 3×3, 64, stride 1, padding 1 7×7, 64, stride 2, padding 1

conv2_x

3×3 maxpool, stride 2[
3×3, 64
3×3, 64

]
×2

[
1×1, 64
3×3, 64
1×1, 256

]
×3

conv3_x
[

3×3, 128
3×3, 128

]
×2

[
1×1, 128
3×3, 128
1×1, 512

]
×4

conv4_x
[

3×3, 256
3×3, 256

]
×2

[
1×1, 256
3×3, 256
1×1, 1024

]
×6

conv5_x
[

3×3, 512
3×3, 512

]
×2

[
1×1, 512
3×3, 512
1×1, 2048

]
×3

Avg Pool, 10-dim FC, SoftMax Avg Pool, 20-dim FC, SoftMax

VGG. VGG (Simonyan & Zisserman, 2015) is a also a convolutional network that leverages smaller 3×3 convolutions that
enables deeper architecture than before. For our experiments we are using VGG-19, the architecture of which is depicted in
Tab. 8.

Table 8: Detailed architecture of the VGG-19 architecture used in our experiments. There is a BatchNorm layer followed by a ReLU
activation (omitted in the table) after each convolution layer. The shapes for convolution layers follows (m,n, k, k).

Parameter Shape Layer hyper-parameter

layer1.conv1.weight 3× 64× 3× 3 stride:1;padding:1

layer2.conv2.weight 64× 64× 3× 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer3.conv3.weight 64× 128× 3× 3 stride:1;padding:1

layer4.conv4.weight 128× 128× 3× 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer5.conv5.weight 128× 256× 3× 3 stride:1;padding:1

layer6.conv6.weight 256× 256× 3× 3 stride:1;padding:1

layer7.conv7.weight 256× 256× 3× 3 stride:1;padding:1

layer8.conv8.weight 256× 256× 3× 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer9.conv9.weight 256× 512× 3× 3 stride:1;padding:1

layer10.conv10.weight 512× 512× 3× 3 stride:1;padding:1

layer11.conv11.weight 512× 512× 3× 3 stride:1;padding:1

layer12.conv12.weight 512× 512× 3× 3 stride:1;padding:1

pooling.max N/A kernel size:2;stride:2

layer13.conv13.weight 512× 512× 3× 3 stride:1;padding:1

layer14.conv14.weight 512× 512× 3× 3 stride:1;padding:1

layer15.conv15.weight 512× 512× 3× 3 stride:1;padding:1

layer16.conv16.weight 512× 512× 3× 3 stride:1;padding:1

pooling.avg N/A kernel size:2

classifier.weight 512× 10 N/A

classifier.bias 10 N/A

16

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

Transformers. The transformer architecture (Vaswani et al., 2017) has been lately revolutionising deep learning. Based on
the notion of self-attention, for each input token, it produces a weighted combination of other relevant tokens weighed by
the attention weight. Each attention unit has three weight matrices, namely WQ, WK , WV , for query, key and value weights
respectively producing the equivalent vectors. Attention is defined as the scaled dot product between key and query. For our
translation task, we use the architecture depicted in Tab. 10.

Table 9: Detailed information of the encoder layer in the Trans-
former architecture in our experiment

Parameter Shape Hyper-param.

embedding 9521 × 512 padding index: 1

positional encoding N/A N/A

dropout N/A p = 0.1

encoder.self-attention.wq(WQ) 512 × 512 N/A

encoder.self-attention.wk(WK) 512 × 512 N/A

encoder.self-attention.wv(WV) 512 × 512 N/A

encoder.self-attention.wo(WO) 512 × 512 N/A

encoder.self-attention.dropout N/A p = 0.1

encoder.self-attention.layernorm 512 ε = 10−6

encoder.ffn.layer1 512 × 2048 N/A

encoder.ffn.layer2 2048 × 512 N/A

encoder.layernorm 512 ε = 10−6

dropout N/A p = 0.1

Table 10: Detailed information of the decoder layer
in the Transformer architecture in our experiment

Parameter Shape Hyper-param.

embedding 9521× 512 padding index: 1

positional encoding N/A N/A

dropout N/A p = 0.1

decoder.self-attention.wq(WQ) 512× 512 N/A

decoder.self-attention.wk(WK) 512× 512 N/A

decoder.self-attention.wv(WV) 512× 512 N/A

decoder.self-attention.wo(WO) 512× 512 N/A

decoder.self-attention.dropout N/A p = 0.1

decoder.self-attention.layernorm 512 ε = 10−6

decoder.enc-attention.wq(WQ) 512× 512 N/A

decoder.enc-attention.wk(WK) 512× 512 N/A

decoder.enc-attention.wv(WV) 512× 512 N/A

decoder.enc-attention.wo(WO) 512× 512 N/A

decoder.enc-attention.dropout N/A p = 0.1

decoder.enc-attention.layernorm 512 ε = 10−6

decoder.ffn.layer1 512× 2048 N/A

decoder.ffn.layer2 2048× 512 N/A

encoder.layernorm 512 ε = 10−6

dropout N/A p = 0.1

D.3. Hyperparameter Selection

LeNet. We use a standard configuration that is commonly employed for training LeNet models — a step size of 0.01, a
momentum of 0.9, and no weight decay. We train for a total of 20 epochs.

VGG and ResNet-18. Similarly, we use a standard configuration that is commonly employed for training VGG and
ResNet-18 models — a step size of 0.01, a momentum of 0.9, weight decay of 1e−4, and a learning schedule with step size
reductions by a factor of 10 at epochs 150 and 250. We train for a total of 300 epochs.

ResNet-50. Similarly, we use a standard configuration that is commonly employed for training ResNet-50 models — a step
size of 0.01, a momentum of 0.9, weight decay of 1e−4, and a learning schedule with step size reductions by a factor of 10
at epochs 30 and 60. We train for a total of 90 epochs.

Transformers. For the Transformer model, we use the Adam optimizer with an initial learning rate at 0.001, βs =
(0.9, 0.98), ε = 10−8 batch size at 256. We also conduct gradient norm clipping with norm bound at 0.25. The entire
training takes 400 epochs. For the vanilla warm-up training, we use warm-up epoch Ewu = 10. We enable label smoothing,
weight sharing for the source and target word embedding, and weight sharing between target word embedding and the last
dense layer. The learning rate schedule follows directly from the one proposed (Vaswani et al., 2017).

D.4. Deciding Against Decomposition

During inference, if the rank of a given layer is so large that keeping it as a non-decomposed layer is more efficient, we opt
not to decompose that particular layer.

E. Extended evaluation
E.1. MAESTRO Recovers Correct Ordering

In the main text, we pointed out that SVD fails to consider data. Indeed, even in the case of linear NN, the acquired singular
vectors may exhibit incorrect ordering. To illustrate this problem, we provide a simple example in which we use a matrix A

17

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

with a rank of 3. We organize the dataset X such that the third singular vector has the highest importance, followed by the
second and then the first singular vector in decreasing order of significance. It is clear that SVD doesn’t consider the data,
and as a result, it cannot comprehend this behavior. Below (in Fig. 6), we demonstrate how MAESTRO is able to correctly
discern the order.

0 1000 2000 3000 4000 5000 6000 7000
Iterations

0

2

4

6

8

10

Si
ng

ul
ar

 V
al

ue
s k = ... (p = ...)

1 (0.2)
2 (0.3)
3 (0.5)
4 (0.7)
5 (0.8)
6 (1.0)

Figure 6: Verification that MAESTRO recovers correct order of importance. Target mapping is of rank 3, and the dataset is constructed in
such a way that the singular vectors have reversed the order of importance. p and k stand for relative and actual rank, respectively.

E.2. Rank Adaptivity of MAESTRO to Data Complexity

So far, we have found that different models can have different ranks on different datasets. However, we did not reach the
conclusion that more complex tasks lead to higher ranks because the model architecture is not invariant, i.e., we cannot
compare ranks between layers of different dimensionality.

Figure 7: MAESTRO adaptivity when PCA dimensionality drops during training. The plot displays the estimates of singular values.
The data distribution has initially 3 directions. It is expected that the top 3 ranks will converge to value one and the rest to zero. After
removing one direction, ranks drop to 2, as the data complexity changes. p and k stand for relative and actual rank, respectively.

To test this hypothesis in silo, we designed a simplified experiment on a linear autoencoder example with the same setup as
considered in Fig. 2b). To showcase the adaptivity of MAESTRO to changing data, we start by training with data that have
intrinsic dimension 3. In the middle of the training (iteration 1250/2500), we removed one dimension using projection, thus
simplifying the data. In the resulting graph (Fig. 7), we see that while the initial rank had converged to 3, it now drops to 2
as the data complexity changes. For completeness, this adaptivity is further showcased in Appendix E.1, where we have
illustrated how SVD fails to consider data-centric factors, whereas Maestro recovers the correct order of importance.

E.3. Training Behaviour of MAESTRO

For completeness, we also include an extended version of Fig. 4 from the main paper, where we presented the training
dynamics for MAESTRO. Fig. 8, 9 and 10 present similar plots, but across both MNIST and CIFAR-10. Specifically, Fig. 8
illustrates the evolution of total rank throughout the training steps. We observe that the ranks are pruned incrementally. This

18

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

aligns with the observations made during Pufferfish (Wang et al., 2021) training, where the authors suggested warm-start
training with full precision to enhance the final model performance. In our case, the necessity to implement this heuristic is
avoided, as MAESTRO prunes rank automatically. Fig. 9 demonstrates the ranks across layers post-training. An intriguing
trend is observed: the ranks are nested for increasing λgl, suggesting a potential inherent ordering of ranks not only within
each layer but also possibly a global one. We provide a preliminary exploration of this fascinating pattern in the subsequent
section and intend to probe it more deeply in future studies. We believe this may enhance the rank selection and sampling
process. Finally, Fig. 10 portrays the evolution of the training loss. Our premise that sampling does not negatively affect
training is validated by empirical performance.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

50

100

150

200

To
ta

l R
an

k

Maestro: = 4e-05
Maestro: = 8e-05
Maestro: = 0.00016
Maestro: = 0.00032
Maestro: = 0.00064
Maestro: = 0.00128
Maestro: = 0.00256

(a) LeNet on MNIST

0 50 100 150 200 250 300
Epochs

0

1000

2000

3000

4000

To
ta

l R
an

k

Maestro: = 4e-06
Maestro: = 8e-06
Maestro: = 1.6e-05
Maestro: = 3.2e-05
Maestro: = 6.4e-05
Maestro: = 0.000128
Maestro: = 0.000256
Maestro: = 0.000512
Maestro: = 0.001024

(b) ResNet-18 on CIFAR10

0 50 100 150 200 250 300
Epochs

0

1000

2000

3000

4000

5000

To
ta

l R
an

k

Maestro: = 4e-06
Maestro: = 8e-06
Maestro: = 1.6e-05
Maestro: = 3.2e-05
Maestro: = 6.4e-05
Maestro: = 0.000128
Maestro: = 0.000256
Maestro: = 0.000512

(c) VGG19 on CIFAR10

Figure 8: Total rank (
∑d

i=1 ri) progression during training.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Layer Index

0

20

40

60

80

100

120

Ra
nk

Full Rank
Maestro: = 4e-05
Maestro: = 8e-05
Maestro: = 0.00016
Maestro: = 0.00032
Maestro: = 0.00064
Maestro: = 0.00128
Maestro: = 0.00256

(a) LeNet on MNIST

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Layer Index

0

100

200

300

400

500

Ra
nk

Full Rank
Maestro: = 4e-06
Maestro: = 8e-06
Maestro: = 1.6e-05
Maestro: = 3.2e-05
Maestro: = 6.4e-05
Maestro: = 0.000128
Maestro: = 0.000256
Maestro: = 0.000512
Maestro: = 0.001024

(b) ResNet-18 on CIFAR10

2 4 6 8 10 12 14 16
Layer Index

0

100

200

300

400

500

Ra
nk

Full Rank
Maestro: = 4e-06
Maestro: = 8e-06
Maestro: = 1.6e-05
Maestro: = 3.2e-05
Maestro: = 6.4e-05
Maestro: = 0.000128
Maestro: = 0.000256
Maestro: = 0.000512

(c) VGG19 on CIFAR10

Figure 9: Ranks ri’s across different layers after training.

E.4. Model Size-Accuracy Trade-Off at Training and Deployment Time

In addition to the original illustrations, we present an extended interpretation of Fig. 5, where we depict diverse strategies
to maintain a balance between model size and accuracy in the process of model training and deployment. In Fig. 11,
we demonstrate the effective pruning of MAESTRO (λgl = 0) for deployment, utilizing the greedy search methodology
discussed in Section 3.4. This is juxtaposed with the greedy pruning of a model not originally factorized but later factorized
through SVD. Our findings reveal that this straightforward baseline does not match the performance of MAESTRO’s learned
decomposition, leading to a considerable performance drop.

Subsequently, Fig. 12 displays the end accuracy and the count of model parameters corresponding to various hierarchical
group lasso penalties. This results in an optimal compromise between latency and accuracy for both the training and
inference stages. It’s worth noting, though, that each model was trained separately, in contrast to greedy pruning, which
demands just a single training round. Additionally, we scrutinize the training expense for each model illustrated in Fig. 12,
the results of which are exhibited in Tables 11, 12, 13, 14 and 15, where we display and the final accuracy of the model,
MACs and the number of parameters for inference, and relative total training cost in terms of the number of model parameters
and MACs compared to the non-factorized model. Interestingly, smaller models are not only advantageous in terms of
inference efficiency, but they can also be trained at a small portion of the cost required by full-rank models. On the downside,
the smallest models cause a non-negligible reduction in performance.

19

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

10 1

Tr
ai

n
Lo

ss

(a) LeNet on MNIST

0 50 100 150 200 250 300
Epochs

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

(b) ResNet-18 on CIFAR10

0 50 100 150 200 250 300
Epochs

10 2

10 1

100

Tr
ai

n
Lo

ss

(c) VGG19 on CIFAR10

Figure 10: Convergence of MAESTRO with λgl = 0.

50
00

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0
35

00
0

40
00

0
45

00
0

Number of Parameters

65
70
75
80
85
90
95

100

Te
st

 A
cc

ur
ac

y

Maestro
SVD

(a) LeNet on MNIST

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Number of Parameters 1e7

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y

Maestro
SVD

(b) ResNet-18 on CIFAR10

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Number of Parameters 1e7

65

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

Maestro
SVD

(c) VGG19 on CIFAR10

Figure 11: Accuracy-latency trade-off comparing MAESTRO (λgl=0) and SVD.

Lastly, we delve deeper into the observation of nested ranks with increasing λgl. Fig. 13 outlines the performance of
MAESTRO (λgl = 0) across various ranks chosen by smaller models MAESTRO (λgl > 0). We observe that MAESTRO
(λgl = 0) delivers impressive results—for example, we can reduce its parameters by 10x for VGG while preserving an
accuracy of 87.7% without any fine-tuning simply by leveraging rank structure from separate runs. For LeNet, a reduction
in model size by a factor of three is achievable without sacrificing accuracy. Last, for ResNet-18 the reduction is 1.7×. As
highlighted earlier, we aim to delve deeper into this subject in future studies.

E.5. Detailed Comparison with Baselines

Tab. 16 presents the details of MAESTRO’s performance compared to the selected baselines leveraging pruning, quantization
and low-rank techniques presented in Sec. 5.2 for CIFAR-10. These numbers along with the operating points from Tab. 12
and 13 are illustrated in Fig. 3.

20

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

50
00

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0
35

00
0

40
00

0
45

00
0

Number of Parameters

96.5

97.0

97.5

98.0

98.5

99.0

Te
st

 A
cc

ur
ac

y

Maestro (With Hierarchical Regularization)

(a) LeNet on MNIST

0.0 0.2 0.4 0.6 0.8 1.0
Number of Parameters 1e7

90

91

92

93

94

Te
st

 A
cc

ur
ac

y

Maestro (With Hierarchical Regularization)

(b) ResNet-18 on CIFAR10

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Number of Parameters 1e7

89

90

91

92

93

Te
st

 A
cc

ur
ac

y

Maestro (With Hierarchical Regularization)

(c) VGG19 on CIFAR10

Figure 12: Impact of hierarchical group lasso on the accuracy-memory trade-off. Exact values are provided in Tables 11, 12 and 13,
respectively.

Table 11: LeNet performance on MNIST for different regularization parameters. The last column in the table displays the relative total
training cost in terms of the number of Multiply-Accumulate operations (MACs) and model parameters, compared to the non-factorized
model.

Variant Acc. (%) MACs (Inf.) Params. (Inf.) Rel. MACs / Params. (Train.)

Non-Factorized 98.99±0.09 281640±0 (1.00×) 44426±0 (1.00×) 1.00× / 1.00×
MAESTRO (λgp = 0.) 99.06±0.09 281640±0 (1.00×) 44426±0(1.00×) 1.14×/ 1.49×
MAESTRO (λgp = 8e−5) 98.91±0.09 268577±389 (0.95×) 31363±0 (0.71×) 1.08×/ 1.14×
MAESTRO (λgp = 16e−5) 98.92±0.05 255369±217 (0.91×) 44426±217 (0.41×) 1.06×/ 0.80×
MAESTRO (λgp = 32e−5) 98.31±0.39 237084±6268 (0.84×) 18155±271 (0.26×) 0.93×/ 0.53×
MAESTRO (λgp = 64e−5) 98.20±0.49 178165±19098 (0.63×) 7996±662 (0.18×) 0.77×/ 0.33×
MAESTRO (λgp = 128e−5) 97.92±0.22 131789±8965 (0.47×) 6375±77 (0.14×) 0.54×/ 0.21×
MAESTRO (λgp = 256e−5) 96.65±0.14 99969±6252 (0.35×) 5293±214 (0.12×) 0.39×/ 0.14×

Table 12: ResNet-18 performance on CIFAR10 for different regularization parameters. The last column in the table displays the
relative total training cost in terms of the number of Multiply-Accumulate operations (MACs) and model parameters, compared to the
non-factorized model.

Variant Acc. (%) GMACs (Inf.) Params. (M) (Inf.) Rel. MACs / Params. (Train.)

Non-Factorized 93.86±0.20 0.56±0 (1.00×) 11.2±0 (1.00×) 1.00× / 1.00×
MAESTRO (λgp = 0.) 94.04±0.10 0.56±0 (1.00×) 11.2±0 (1.00×) 1.10× / 1.13×
MAESTRO (λgp = 4e−6) 94.22±0.16 0.55±0.0047 (1.00×) 11.1±0.030 (0.99×) 1.09× / 1.10×
MAESTRO (λgp = 8e−6) 94.09±0.01 0.49±0.0002 (0.89×) 7.41±0.004 (0.66×) 1.00× / 0.85×
MAESTRO (λgp = 16e−6) 94.19±0.07 0.39±0.0008 (0.70×) 4.08±0.020 (0.37×) 0.83× / 0.58×
MAESTRO (λgp = 32e−6) 93.97±0.25 0.25±0.0013 (0.45×) 2.19±0.007 (0.20×) 0.60× / 0.36×
MAESTRO (λgp = 64e−6) 93.86±0.11 0.15±0.0006 (0.27×) 1.23±0.004 (0.11×) 0.39× / 0.22×
MAESTRO (λgp = 128e−6) 93.37±0.07 0.094±0.0006 (0.17×) 0.79±0.009 (0.07×) 0.25× / 0.13×
MAESTRO (λgp = 256e−6) 92.48±0.04 0.064±0.0002 (0.12×) 0.54±0.006 (0.05×) 0.16× / 0.08×
MAESTRO (λgp = 512e−6) 91.14±0.16 0.044±0.0004 (0.08×) 0.37±0.007 (0.03×) 0.11× / 0.05×
MAESTRO (λgp = 1024e−6) 89.55±0.30 0.032±0.0002 (0.06×) 0.27±0.007 (0.02×) 0.07× / 0.03×

Table 13: VGG19 performance on CIFAR10 for different regularization parameters. The last column in the table displays the relative total
training cost in terms of the number of Multiply-Accumulate operations (MACs) and model parameters, compared to the non-factorized
model.

Variant Acc. (%) GMACs (Inf.) Params. (M) (Inf.) Rel. MACs / Params. (Train.)

Non-Factorized 92.94±0.17 0.40±0 (1.00×) 20±0 (1.00×) 1.00× / 1.00×
MAESTRO (λgp = 0.) 93.06±0.17 0.40±0 (1.00×) 20±0 (1.00×) 1.10× / 1.12×
MAESTRO (λgp = 4e−6) 93.33±0.08 0.39±0.0017 (0.97×) 18.8±0 (0.94×) 1.06× / 1.04×
MAESTRO (λgp = 8e−6) 93.27±0.33 0.30±0.0017 (0.76×) 9.91±0.008 (0.49×) 0.90× / 0.73×
MAESTRO (λgp = 16e−6) 93.13±0.07 0.21±0.0014 (0.53×) 4.66±0.052 (0.23×) 0.69× / 0.46×
MAESTRO (λgp = 32e−6) 93.10±0.10 0.13±0.0009 (0.33×) 2.20±0.025 (0.11×) 0.47× / 0.27×
MAESTRO (λgp = 64e−6) 92.70±0.34 0.08±0.0005 (0.20×) 1.17±0.010 (0.06×) 0.30× / 0.16×
MAESTRO (λgp = 128e−6) 92.34±0.12 0.05±0.0005 (0.13×) 0.72±0.002 (0.04×) 0.19× / 0.09×
MAESTRO (λgp = 256e−6) 91.12±0.19 0.04±0.0007 (0.09×) 0.50±0.023 (0.02×) 0.12× / 0.05×
MAESTRO (λgp = 512e−6) 88.53±0.13 0.03±0.0003 (0.06×) 0.35±0.003 (0.02×) 0.08× / 0.03×

21

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

Table 14: Transformer performance on Multi30k for different regularization parameters. The last column in the table displays the
relative total training cost in terms of the number of Multiply-Accumulate operations (MACs) and model parameters, compared to the
non-factorized model.

Variant Acc. (%) Ppl. GMACs (Inf.) Params. (M) (Inf.) Rel. MACs / Params. (Train.)

Non-Factorized 65.33±1.13 9.85±0.10 1.370±0.0000 (1.00×) 53.9±0.000 (1.00×) 1.00× / 1.00×
MAESTRO (λgp = 0.32) 61.30±0.26 12.99±0.31 1.125±0.0030 (0.82×) 45.1±0.101 (0.84×) 1.03× / 1.14×
MAESTRO (λgp = 0.64) 63.78±0.14 9.37±0.32 0.957±0.0112 (0.70×) 39.1±0.413 (0.73×) 0.95× / 1.05×
MAESTRO (λgp = 1.28) 66.14±0.08 7.02±0.17 0.570±0.0088 (0.42×) 25.3±0.315 (0.47×) 0.75× / 0.86×
MAESTRO (λgp = 2.56) 66.08±0.09 6.90±0.07 0.248±0.0032 (0.18×) 13.8±0.113 (0.26×) 0.47× / 0.58×
MAESTRO (λgp = 5.12) 57.70±0.13 13.97±0.43 0.123±0.0002 (0.9×) 9.3±0.001 (0.17×) 0.28× / 0.39×

Table 15: ResNet50 performance on ImageNet-1k for different regularization parameters. The last column in the table displays the
relative total training cost in terms of the number of Multiply-Accumulate operations (MACs) and model parameters, compared to the
non-factorized model.

Variant Acc. (%) GMACs (Inf.) Params. (M) (Inf.) Rel. MACs / Params. (Train)

No decomposition
Non-Factorized 76.00 4.12 (1.00×) 25.56 (1.00×) 1.00× / 1.00×
Not decomposing first four blocks and last layer
MAESTRO (λgp = 2e−6) 76.04 3.43 (0.83×) 14.02 (0.55×) 0.87× / 0.64×
MAESTRO (λgp = 4e−6) 75.74 3.39 (0.82×) 13.11 (0.51×) 0.85× / 0.59×
MAESTRO (λgp = 8e−6) 75.15 3.21 (0.78×) 11.46 (0.45×) 0.83× / 0.55×
Decomposing all layers
MAESTRO (λgp = 0.) 72.82 4.12 (1.00×) 25.56 (1.00×) 1.22× / 1.24×
MAESTRO (λgp = 1e−6) 72.81 3.62 (0.88×) 18.77 (0.73×) 1.00× / 0.87×
MAESTRO (λgp = 2e−6) 72.07 2.66 (0.65×) 11.54 (0.45×) 0.76× / 0.59×
MAESTRO (λgp = 4e−6) 71.54 2.01 (0.49×) 9.21 (0.36×) 0.57× / 0.57×
MAESTRO (λgp = 8e−6) 71.02 1.69 (0.41×) 7.21 (0.28×) 0.50× / 0.39×

5000 10000 15000 20000 25000 30000
Number of Parameters

60
65
70
75
80
85
90
95

100

Te
st

 A
cc

ur
ac

y

Pruned Maestro Model
Maestro models with varying

(a) LeNet on MNIST

0 1 2 3 4 5 6 7
Number of Parameters 1e6

20

40

60

80

Te
st

 A
cc

ur
ac

y

Pruned Maestro Model
Maestro models with varying

(b) ResNet-18 on CIFAR10

0.0 0.2 0.4 0.6 0.8 1.0
Number of Parameters 1e7

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Pruned Maestro Model
Maestro models with varying

(c) VGG19 on CIFAR10

Figure 13: MAESTRO with progressive pruning to showcase nested rank importance structure. The original model corresponds to an
evaluation in Fig. 12, and pruned models are based on MAESTRO with λgl = 0, and they are pruned using the same ranks as selected by
MAESTRO with λgl > 0.

22

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

Table 16: Maestro vs. baselines on CIFAR10.

Variant Model Acc. (%) GMACs Params. (M)

Non-factorized ResNet-18 93.86±0.20 0.56 11.17
Pufferfish ResNet-18 94.17 0.22 3.336
Cuttlefish ResNet-18 93.47 0.3 3.108
IMP ResNet-18 92.12 - 0.154
RareGems ResNet-18 92.83 - 0.076
XNOR-Net ResNet-18 90.06 - 0.349†

MAESTRO†
ResNet-18 94.19±0.07 0.39±0.00 4.08±0.02(λgp = 16e−6)

MAESTRO†
ResNet-18 93.86±0.11 0.15±0.00 1.23±0.00(λgp = 64e−6)

Non-factorized VGG-19 92.94±0.17 0.40 20.56
Pufferfish VGG-19 92.69 0.29 8.37
Cuttlefish VGG-19 93.39 0.15 2.36
RareGems VGG-19 86.28 - 5.04
IMP VGG-19 92.86 - 5.04
XNOR-Net VGG-19 88.94 - 0.64†

Spectral Init.∗ VGG-19 83.27 - ≈ 0.4
MAESTRO†

VGG-19 93.10±0.10 0.13±0.00 2.20±0.03(λgp = 32e−6)
MAESTRO†

VGG-19 88.53±0.13 0.03±0.00 0.35±0.00(λgp = 512e−6)
∗Results from original work; †: XNOR-Net employs binary weights and
activations; although the overall #trainable parameters remain the same as
the vanilla network, each model weight is quantized from 32-bit to 1-bit.
Therefore, we report a compression rate of 3.125%(1/32).

23

	Limitations
	Extended Background
	Theoretical Properties of Low-Rank Layers
	Experimental setup
	Datasets
	Models
	Hyperparameter Selection
	Deciding Against Decomposition

	Extended evaluation
	Maestro Recovers Correct Ordering
	Rank Adaptivity of Maestro to Data Complexity
	Training Behaviour of Maestro
	Model Size-Accuracy Trade-Off at Training and Deployment Time
	Detailed Comparison with Baselines

