
Under review as a conference paper at ICLR 2023

DEEP LEARNING OF INTRINSICALLY MOTIVATED OP-
TIONS IN THE ARCADE LEARNING ENVIRONMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

In Reinforcement Learning, Intrinsic Motivation motivates directed behaviors
through a wide range of reward-generating methods. Depending on the task and
environment, these rewards can be useful, might complement each other, but can
also break down entirely, as seen with the noisy TV problem for curiosity. We
therefore argue that scalability and robustness, among others, are key desirable
properties of a method to incorporate intrinsic rewards, which a simple weighted
sum of reward lacks. In a tabular setting, Explore Options let the agent call an
intrinsically motivated policy in order to learn from its trajectories. We introduce
Deep Explore Options, revising Explore Options within the Deep Reinforcement
Learning paradigm to tackle complex visual problems. Deep Explore Options can
naturally learn from several unrelated intrinsic rewards, ignore harmful intrinsic
rewards, learn to balance exploration, but also isolate exploitative and exploratory
behaviors for independent usage. We test Deep Explore Options on hard and easy
exploration games of the Atari Suite, following a benchmarking study to ensure
fairness. Our empirical results show that they achieve similar results than weighted
sum baselines, while maintaining their key properties.

1 INTRODUCTION

In Reinforcement Learning (RL), an agent is sequentially given states and needs to perform actions
in order to maximize obtained extrinsic rewards re. The agent is therefore deeply tied to the reward
signal, and tends to fail when said signal is sparse or noisy. When the environment is very complex or
high-dimensional, it is desirable for the agent to explore in a directed way (Thrun, 1992), i.e. explicitly
looking for new knowledge and experiences. One of the most common ways to generate such task-
independent, directed behaviors is through intrinsic motivation (IM), i.e. an alternative reward signal
ri to spur curiosity and entice behavior exploration (Oudeyer & Kaplan, 2009; Schmidhuber, 2010).
IM biologically refers to the natural tendency of organisms to explore.

One of the most common benchmarks for Deep RL agents has been the Arcade Learning Environment
(ALE, Bellemare et al. (2013)), consisting of Atari video-games. In order to solve the most chal-
lenging, so-called hard-exploration games of the domain (Bellemare et al. (2016)), state-of-the-art
Deep RL methods have integrated IM in complex learning mechanisms, and finally managed to
overcome human-level play in all 57 games (NGU and Agent57, Badia et al. (2020b;a)). However,
these methods still fundamentally rely on a Weighted Sum (WS) of rewards rt = ret + βrit, for a very
well-chosen and complex IM reward. So while the types of behaviors that we can extract with IM
keep on expanding, we are still ultimately relying on a single signal to help exploitation. Instead, we
might want to benefit from different and complementary intrinsic signals (Matusch et al., 2020). In
this paper, we refer to this challenge as IM Incorporation (IM-Inc). We extract several key desirable
features of IM-Inc methods, including scalability, robustness and generality.

In a tabular setting, Explore Options (EO, Bagot et al. (2020)) have been proposed as an alternative
to the a weighted sum of rewards. The agent is divided into the Exploiter, trained exclusively with
the extrinsic reward, and the Explorers, trained exclusively with the intrinsic rewards. The Exploiter
can call any Explorers through options (Sutton et al., 1999), i.e. additional actions, to explore for a
fixed amount of time. However, because of their tabular nature, Explore Options are inadequate for
function approximation; but it is a crucial element to allow the agent to generalize the option over
states and effectively learn to balance exploration. We revise Explore Options into Deep Explore

1

Under review as a conference paper at ICLR 2023

Options (DeepEOs), a new method for combining intrinsic and extrinsic reward signals in Deep RL.
We introduce several key changes to usual IM approaches, and showcase their performance in the
ALE. To provide fair and controlled comparisons, we match the algorithm and hyperparameters used
in a benchmarking study (benchmark, Taiga et al. (2019)) on IM.

The contribution of our work is fourfold:

• We revise Explore Options within Deep RL to propose Deep Explore Options as a strong
alternative to a weighted sum when using intrinsic rewards, extending the benchmark.

• We empirically show that, unlike a weighted sum of rewards, DeepEOs can learn from
several IM rewards at once, and ignore harmful signals.

• We empirically show that DeepEOs can extract the exploiting behavior, while learning
meaningful and potentially transferable exploratory behaviors.

• We provide a study of methods to combine intrinsic and extrinsic rewards. We propose
several key desirable properties of such methods, and place several existing works within
this framework, including DeepEOs.

In Section 2, we provide background to build Deep Explore Options. Next, we introduce our method
and discuss the introduced elements in Section 3. In Section 4, we provide experiments in MiniGrid
to build intuition, then in Atari following the benchmark. We go over existing work in the field in
Section 5. Finally, in Section 6, we provide a study of methods to combine intrinsic and extrinsic
rewards.

2 BACKGROUND AND EXPLORE OPTIONS

2.1 REINFORCEMENT LEARNING, OPTIONS, MOTIVATION

We use the standard RL setting (Sutton & Barto (2018)), modelling the environment as a Markov
Decision Process (S,A,R, p, γ) where S is the set of states, A is the set of actions, R ⊂ R is the set
of rewards, p : S,A,S,R → [0, 1] is the dynamics function, and γ is the discount factor. The goal
of RL is to maximize the expected sum of discounted rewards from any starting state.
Options (Sutton et al. (1999)) refer to temporally extended actions. An option is defined as a triple
(I, π, β), where I ⊂ S is the option’s initiation set, i.e. states in which the option can initiate; π is
the option’s policy; and β : S → [0, 1] is the option’s termination condition.
We assume one or several intrinsic reward functions f ir (s, a, s′) = ri to generate a reward that we
are interested in learning from. These can attempt to motivate directed exploration behaviors, but
also any other behavior in the environment. An overview of the literature populating the field can be
found in Section 5.

2.2 EXPLORE OPTIONS

Explore Options (EO, Bagot et al. (2020)) have been introduced as an alternative to a weighted
sum of rewards. The method consists in decoupling the Agent into an Explorer, trained with the
intrinsic reward ri, and an Exploiter, trained with extrinsic reward re. Switching from Exploiter
to Explorer is done through the Explore Option, which the Exploiter can use at any time to let the
Explorer act for a fixed amount of steps cswitch. Within the options framework, the jth Explore
Option oj is therefore defined as ⟨S, πj , βcswitch

⟩, where the initiation set S is the entire state space,
the option policy πj is the Explorer policy trained with intrinsic reward ri,j , and the termination
function βcswitch

deterministically interrupts the option call after cswitch steps. Explore Options have
only been introduced in a tabular setting. However, by design they only make sense in a function
approximation setting: the option learning requires generalization in order to call the option in states
where little is known, and therefore directed exploration is required. Function approximation also
allows for parameter sharing, and potentially generalization across tasks.

3 DEEP EXPLORE OPTIONS

Fig. 1 gives an overview of the general Deep Explore Option framework, of which we go into more
detail in the following subsections.

2

Under review as a conference paper at ICLR 2023

Figure 1: Deep Explore Option framework. During interactions, the state is passed through the
DeepEO agent and either an Explorer (green) or the Exploiter acts according to the Explore Option.
All transitions, enhanced with intrinsic rewards, are stored in the replay buffer, and sampled uniformly
into a mini-batch, regardless of which agent had gathered them. The learning is therefore done
off-policy on all transitions of the buffer.

3.1 CORE DIFFERENCES WITH USUAL INTRINSICALLY MOTIVATED AGENTS

Option Learning A weighted sum of rewards relies on the IM rewards themselves guiding a dual
exploiting-exploring agent towards relevant parts of the space. Instead, our IM is used exclusively
to train an independent agent, that might be called through an Explore Option. We therefore rely
on off-policy learning, i.e. the Explorer showing interesting transitions to the Exploiter, rather than
merging the two behaviors – avoiding a complex β tuning. Using the option has the benefit that the
Exploiter can learn when to explore, e.g. as a default behavior when no rewards are known.

Multiple Intrinsic Rewards Intrinsic reward functions f ir are often based on heuristics and
intuition regarding what signal would motivate the agent to produce the most interesting and beneficial
behaviors. The range of possible behaviors produced by Intrinsic Motivation is as wide as the task
space, and widens with the complexity of the environment. Therefore, as we will further discuss in
Section 6, and as recommended by Matusch et al. (2020), it is desirable to learn from several intrinsic
reward signals. Due to the learning of a single agent per reward in DeepEOs, any off-policy algorithm
guarantees the optimization of the intrinsic reward, and thus ensures scalability. The only practical
issue with such approaches that learn different agents is if the scarce relative interacting of all agents
begets the necessity of Offline RL (Fujimoto et al., 2019; Levine et al., 2020)).

Auxiliary Tasks Sharing parameters of the model with auxiliary tasks in RL has been shown
to provide a denser learning signal and accelerate learning, by building an environment-aware
representation (Jaderberg et al., 2017; Lample & Chaplot, 2017). However, the learnt prediction
and control models are rarely used beyond enriching the loss. We consider the learning of a fully
intrinsically motivated policy or value function as an auxiliary task, but still use the learnt policy in
practice. We therefore construct a feature representation that we branch out into our different Agent
heads (see A.2 for the precise Architecture). The now-shared visual representation therefore needs to
encapsulate relevant elements for both our Explorers and Exploiter. This type of architecture is quite
common when learning from multiple signals (Barreto et al., 2018), but very rarely so when dealing
with IM, mainly because the WS is hard to scale. In our experiments, a shared architecture is 50%
lighter and faster than separate networks. Note that each head and independent parts of the same
optimizer can adjust for their own reward scale. In addition, our multi-headed architecture allows
for efficient swapping, isolation or resetting of control heads, meaning that adding an Explorer or
switching tasks can be done while preserving both the Explorer behaviors and the visual representation.
We combine the losses through L = Le + λ

∑
j Lij, with λ = 1, which required no tuning. λ is not

to be confused with the β from WS, since each head adjusts for their own reward scales, meaning that
λ does not carry the heavy duty of reward balancing.

3.2 BACKBONE & TRAINING

Benchmarking Study Experimental protocols in IM tend to be chaotic, with new approaches
usually introduced on arbitrary environments and algorithms, and only compared to a non-IM
baseline. Taiga et al. (2019) (benchmark) provides an experimental setup to fairly compare IM
methods in the ALE, using the WS scheme. It uses the Dopamine framework (Castro et al., 2018),

3

Under review as a conference paper at ICLR 2023

Algorithm 1: Agent Loss Computation
Input: Buffer B, Exploiter Qe, J Explorers Qij and associated reward functions f irj , ∀j

1 Uniformly sample batch
(
s, a, re, ri1, ri2 · · · , s′, done

)
∼ B // may contain options

2 option_mask = a in options // mask of actions that are options
3 Le = compute_loss (Qe; s, a, re, s′, done)
4 for j in 1 · · · J do
5 Lirj = compute_loss

(
f irj ; s, a, s′

)
∗option_mask // mask out options

6 Lij = compute_loss
(
Qirj ; s, a, rij , s′, done = False

)
∗option_mask

7 L = Le + λ
∑

j L
ij +

∑
j L

irj

Output: Total Loss L

which provides an implementation of the Rainbow agent (Hessel et al., 2018) with its 3 majors
improvements on DQN (Mnih et al., 2015): Prioritized Experience Replay (Schaul et al., 2016),
n-step returns, and Categorical DQN (C51, Bellemare et al. (2017)). We match this setting and all
hyperparameters using the DeepRL PyTorch implementation (Zhang, 2018).

Intrinsic Reward Functions The benchmark compares several intrinsic reward functions; for
our first IM function we use Random Network Distillation (RND, Burda et al. (2019b)), as it is the
simplest, most used method, and is currently part of state-of-the-art methods (Badia et al., 2020b;a).
RND uses a fixed, randomly initialized target network f : S → Rm and a learnt predictor network
f̂ : S → Rm. The method generates an intrinsic reward ri1 = f ir1 (s, a, s′) = ||f̂ (s′)− f (s′) ||22
by distilling the target into the predictor, using the loss as motivation signal. This will therefore lead
the agent towards less-visited states, that still show a high distillation error. In order to keep our
return estimates within C51’s usual [−10, 10] range, we scale the RND reward by η = 0.01. This is
not to be confused with the β from WS, as this η is vastly easier to tune: it is only meant to keep the
RND returns within a reasonable scale and never meant to balance different reward signals.

In order to study a multi-IM setting, we use another intrinsic function that is trivial to implement:
Optimistic Initialization (Machado et al., 2015). It can be obtained through a simple constant negative
reward, which will push the agent off visited grounds. The original paper balances for the lost rewards
at termination, but our purely intrinsically motivated agent is not provided a terminal signal, and can
therefore simply be fed a constant ri2 = −0.025. In this scenario, this agent is a close cousin of the
DORA method of exploration (Fox et al., 2018).

Since virtually all IM rewards are based on heuristics, they are bound to break in certain scenarios
and environments. A common example of such failure is the noisy TV problem (Burda et al., 2019a):
an agent trying to find sources of surprise will be mesmerized by unpredictable noise. In order to
test our method for such a breakdown, we implement a third intrinsic reward function ri3 ∼ N (0, 1)
that samples rewards randomly in each mini-batch. An agent trained with this will be chaotically
attracted to random parts of the state-action space.

Agents and Option Training We build our multi-headed agent with an Exploiter head and several
Explorer heads. We add actions to the Exploiter, corresponding to the EOs. When the option oj is
called, the corresponding Explorer j acts for a fixed cswitch steps before giving control back to the
Exploiter. This transition (s, a, r, s′) = (st, oj , R, st+cswitch

), with R =
∑cswitch−1

k=0 γkret+k+1, is
added to a unique buffer along the rest of the n-step transitions, regardless of the current actor. We
train all agents simultaneously, off-policy, using the same uniformly sampled buffer data, masking
the option transitions for the Explorers, as explicited in Algorithm 1. The Explorers are not provided
the done signal, since it might leak information about the task, rush agents with negative rewards,
and interfere with exploration (Burda et al., 2019a).

In the Dopamine implementation of Rainbow, ϵ-greedy is the main strategy used for exploration.
Keeping this unchanged for options would mean enforcing cswitch-long exploration phases when the
options are randomly called, leading to much more exploration than ϵ-greedy intends. Instead, we
note that ϵ-greedy means allocating a fraction ϵ of the agent’s time to exploring. In order to preserve
this idea, we enforce our Explorer agents to occupy ϵ/2 of the agent’s time, while our Exploiter
otherwise follows an ϵ/2-greedy exploration strategy.

4

Under review as a conference paper at ICLR 2023

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Step ×106

0.0

0.2

0.4

0.6

0.8

1.0

E
p

is
o

d
ic

R
ew

ar
d

DeepEOs

DeepEOs:only Aux

DeepEOs:only Opt

DQN+IM

DQN

(a) Ablation Study of DeepEOs in Four-Room Minigrid,
and comparison with DQN and DQN+IM baselines.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

V V E < V V V

V E E V E E

E > < < V E

V V

E V V V V V

> E E < E V V

> > < > >

Q Value function visualization

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0

1

2

3

4

DeepEO with Auxiliary Tasks

0 10 20 30 40 50

Separate Exploiter

0 10 20 30 40 50

Separate Explorer

0.0 0.2 0.4 0.6 0.8 1.0

Step in trajectory

0.0

0.2

0.4

0.6

0.8

1.0

F
ea

tu
re

ac
ti

va
ti

on

(b) Visual intuition for DeepEOs: [top left] early policy,
after 250k steps, where E represents a DeepEO call
(blue: goal, agent orientation: down); [top right] an
Explorer trajectory; [bottom] Learnt features with and
without auxiliary task learning, when following the
Explorer trajectory.

Figure 2: Experiments in MiniGrid.

4 EXPERIMENTS

4.1 MINIGRID INTUITION

We start by building intuition for DeepEOs in MiniGrid (Chevalier-Boisvert et al. (2018)), a 2D
visual gridworld. We use a classic four-room environment with actions {forward, left, right} and
fully-observable inputs. We implement a simple first-cell-visit intrinsic reward fir (s, a, s

′) = 1s′ /∈τ ,
which we use to train our DeepEO agent based on the DQN algorithm (Mnih et al. (2015)). We
also use it to train a weighted sum DQN+IM agent as a baseline, along with an untouched DQN
agent. We design an ablation study of DeepEOs, removing either the Option or the Auxiliary Task
learning (Section 3.1) to leave only the other. The results can be found in Figure 2a. We can see that
without ablations, DeepEOs perform better than the baselines. The ablation studies show that both the
option and the auxiliary tasks are beneficial for learning in this scenario, with the auxiliary task rather
improving early performance, and option usage rather late performance. In Figure 2b, we visualize
several key components of the method. First, we show the Exploiter policy early in training, after
250k steps. We can see that the agent quickly learns to call the Explorer (action E) in states distant
from the goal. Next, we show an Explorer trajectory towards the end of training, to confirm that it
achieves a strong and independent covering policy. Finally, we study the representation with and
without auxiliary task learning, by observing the network’s latent representation during the Explorer
trajectory. We freeze the agent’s position in the trajectory to only let the coverage map change.
We can see that the Exploiter alone (similar to a DQN agent) essentially ignores the coverage map.
However, the Explorer needs it to act, so its features are sensitive to it. Combining both networks
therefore forces the Exploiter’s representation to contain information about the coverage map, which
is useful for performance (Figure 2a). More information about all experiments in this subsection can
be found in Appendix A.1.

4.2 ATARI EXPERIMENTAL PROTOCOL

We now evaluate Deep Explore Options on the Arcade Learning Environment, with RND and Opti-
mistic Initialization Explorers, with the same games, core algorithm, architecture and hyperparameters
as the Rainbow implementation from the benchmark. Architecture and full experimental details
can be found in Appendix A.2. We use two baselines provided in the benchmark: Rainbow with
ϵ-greedy (Rainbow) and Rainbow with an RND intrinsic reward using WS (Rainbow+RND). We
refer to our method as DeepEO. In order to test our exploitation behavior, we evaluate our Exploiter
under an ϵ-greedy without options every million frames; referred to as Exploiter.

5

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100
Millions of Frames

0

500

1000

1500

2000

2500

Av
er

ag
e

Sc
or

e

Gravitar

0 20 40 60 80 100
Millions of Frames

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Sc
or

e

MontezumaRevenge

0 20 40 60 80 100
Millions of Frames

0

5000

10000

15000

20000

25000

Av
er

ag
e

Sc
or

e

Asterix

0 20 40 60 80 100
Millions of Frames

0

250

500

750

1000

1250

1500

1750

Av
er

ag
e

Sc
or

e

Venture

0 20 40 60 80 100
Millions of Frames

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

Sc
or

e

Solaris

0 20 40 60 80 100
Millions of Frames

0

2000

4000

6000

8000

Av
er

ag
e

Sc
or

e

BeamRider

0 20 40 60 80 100
Millions of Frames

0

500

1000

1500

2000

2500

3000

Av
er

ag
e

Sc
or

e

SpaceInvaders

0 20 40 60 80 100
Millions of Frames

300

250

200

150

100

50

0

Av
er

ag
e

Sc
or

e

Pitfall

0 20 40 60 80 100
Millions of Frames

0

2500

5000

7500

10000

12500

15000

17500

20000

Av
er

ag
e

Sc
or

e

PrivateEye

0 20 40 60 80 100
Millions of Frames

0

5

10

15

20

25

30

35

Av
er

ag
e

Sc
or

e

Freeway

0 20 40 60 80 100
Millions of Frames

0

20000

40000

60000

80000

100000

Av
er

ag
e

Sc
or

e

Seaquest

Figure 3: Experiments on the Atari Suite. Two left columns: hard-exploration games. Two right
columns: easy-exploration games. The blue curves represents the ϵ-greedy performance of the
Exploiter without forced usage of the Explore Options. The orange curve represents the DeepEO in a
robustness challenge: with a purely Random reward.

4.3 MAIN RESULTS

Performance and Scalability Our main empirical results are shown in Figure 3. We observe that
our results are overall competitive with the baselines. Except for SOLARIS, the Exploiter always
improves on DeepEO where option usage is forced. On PRIVATEEYE, our agents learns sooner, but
therefore also unlearns sooner – this unlearning is common in this environment. The two most notable
outliers are GRAVITAR, where DeepEOs do not manage to match Rainbow, and MONTEZUMA,
where it does not manage to match Rainbow+RND. We address the latter in 4.4, but note that
we always improve on the lower bound. In FREEWAY but most notably in PITFALL, the DeepEO
performance lags behind the Exploiter. While this is expected in Freeway, since there is always a
small chance to call the Explorers for cswitch steps, the case of Pitfall is interesting: the Exploiter
wants to do nothing to get a return of 0, but both Explorers are attracted to interactions that eventually
lead to negative rewards. The Exploiter successfully ignores them. This is a first hint that the
Exploiter ignores harmful behaviors and extracts the exploiting behavior.

Robustness Following this remark on Pitfall, we study Robustness by introducing our third IM
reward: the purely random Ri,3 ∼ N (0, 1), simulating a signal that degenerates. This is represented
as DEEPEO+RANDOM in the tuning games. We can see on Figure 3 again that this new intrinsic
reward had absolutely no harmful consequence on our performance, matching DeepEO without a
hitch. This shows that DeepEOs are perfectly robust to destructive IM rewards. For the sake of
argument, we try a Weighted Sum of our 3 rewards and report the results in Appendix B, 6 as MULTI
RAINBOW. As expected, a weighted sum of rewards is not scalable nor robust unless under heavy βj

fine-tuning.

Additional Experiments We include two more experiments in Appendix B: first, a study on the
cswitch hyperparameter, where we find performance to be very robust to its changes. We choose
cswitch = 50 in the experiments we display in the main text as the best value by a small margin. Next,
we study naive PER prioritization for 2 agents, which we find does not benefit the agent; therefore we
used random sampling for our DeepEO agent. We encourage future work to design algorithms to
perform multi-agent prioritization in a similar context.

6

Under review as a conference paper at ICLR 2023

0 50 100 150

0

25

50

75

100

125

150

175

200

Figure 4: Visualization of some learnt behaviors of, respectively, the RND and Optimistic Explorers.
Red to green respectively mean older to newer visits in a single episode. On MONTEZUMA (left), both
agents learnt to reach the key, but the RND Explorer is much faster, while the Optimistic Explorer
tends to jump more but lags on the ladder leading to the key. On FREEWAY (right), the RND Explorer
is interested by the fast-lane cars in the middle, while the Optimistic Explorer likes the upper, less
visited section.

4.4 LEARNT BEHAVIORS

Previous research has shown that temporally extended exploration can be a surprisingly efficient
exploration method (Nachum et al., 2019; Dabney et al., 2021), even when said exploration is random
or spamming. While this is a motivation for our work, it raises an important question - did our
Explorers learn any relevant behaviors, or are we simply benefiting from observing several steps of
random off-policy behavior? While Figure 2b gave a positive answer for MiniGrid, we now study
Atari. We visualize the learnt behaviors in Figure 4. Redder shades indicate earlier timesteps in
the episode, while greener represent most recent timesteps. In MONTEZUMA, both the RND and
Optimistic Explorers learn to reach the key on their own, showcasing long-term planning. We note
the relative weakness of the independent policies compared to a full online PPO RNN agent in the
original RND paper. We believe improving the Explorer quality is an important axis for future
improvement, and recommend studies on the types of algorithms that suit IM most, and on the impact
of near-offline learning. These results are still motivating for Task Transfer: in Campos et al. (2021),
the authors pre-train an exploratory behavior and use it as an option downstream. As they mention,
this approach complements well with EOs, as they allow training of the exploration policies in tandem
with exploitation.

5 RELATED WORK

Exploration without IM Methods that do not incorporate IM were state-of-the-art on Atari until
recently. Such methods generally injected noise in the action or parameter space to explore. In
Value-based methods, ϵ-greedy (Mnih et al., 2015) randomly explores with some probability at each
step, while Noisy Nets (Fortunato et al., 2018; Hessel et al., 2018) introduces a learnt noise in the
parameters. In Policy-based methods, entropy maximization (Haarnoja et al., 2018) takes advantage
of the stochastic policy formulation to motivate noisier policies.

Intrinsic Motivation: Knowledge Acquisition and Skill Learning IM (Aubret et al., 2019) is
generally used for knowledge acquisition about the environment. Motivating exploration is by far the
most common goal then, and is divided into state novelty (Bellemare et al., 2016; Ostrovski et al.,
2017; Burda et al., 2019b), prediction error (Pathak et al., 2017) and information gain (Schmidhuber,
2010). Beyond knowledge acquisition, IM can also encompass skill learning, where the agent learns a
set of temporally-extended actions to help solve the task, sometimes called option- or skill-discovery.
The main body of work involves reaching states with key properties, for example through Proto-Value
Functions Machado et al. (2017), algebraic graph connectivity (Jinnai et al., 2019a;b), the Successor
Representation (Ramesh et al., 2019) or simply a measure of diversity (Eysenbach et al., 2019).
These methods generally attempt to find a coherent set of options, so they do not try to incorporate
other forms of IM exploration. In other words, Explore Options generalize these ideas to any set of
intrinsically-motivated options, and could benefit from these methods as Explorers.

7

Under review as a conference paper at ICLR 2023

6 DISCUSSION: COMBINING REWARD SIGNALS

As explored in the previous section, the generation of useful, auxiliary reward signals under the
form of intrinsic motivation has been an active subject in recent literature; we refer to this task as
IM Generation (IM-Gen). However, addressing how to incorporate and learn from these reward
signals has seen surprisingly less attention; we refer to this task as IM Incorporation (IM-Inc). In
this section, we extract key desirable properties of IM-Inc methods. We then discuss the position of
several state-of-the-art methods in this framework.

6.1 DESIRABLE PROPERTIES

We start by assuming the usage of several IM-Gen methods fir,j (s, a, s′) = Ri,j , as a set of rewards
that simply might be useful. The goal in introducing these is to boost the present or future exploiting
performance. By future, we mean to cover Transfer and Lifelong Learning: learning representations
and behaviors that will solve downstream tasks in similar environments. With this in mind, we find
the following desirable properties for an IM-Inc method:

Scalability It is not realistic to expect of a unique IM function that it should single-handedly
maximally assist the exploiting behavior. IM-Gen methods generate all types of behaviors and data,
and might complement each-other within a single task or over tasks. From Matusch et al. (2020):
"we find that input entropy and information gain are similar objectives while empowerment may
offer complementary benefits, and thus recommend future work on combining intrinsic objectives."
In Ramakrishnan et al. (2021), the strongest exploration-based rewards change drastically with the
environment and task. An IM-Inc method should therefore be able to combine several IM rewards.
Robustness Following scalability, among the many rewards, some will be less effective, while
some might even degenerate for portions of or entire tasks (e.g. noisy TV problem, Burda et al.
(2019a)). An IM-Inc method should be able to remain unaffected by harmful signals.
Behavior Assimilation IM, in essence, leads to a conflict of interest between exploitation and the
IM behaviors. An IM-Inc method should therefore manage to assimilate these behaviors in a way that
helps exploitation in all scenarios, and does not risk losing any of the relevant behaviors. A simple
degenerating scenario is that an rgrab + rrun agent could lose both independent behaviors to chaos.
Generality To ensure convergence, IM-Gen methods often rely on some assumption on the rewards
- for example that they will disappear in time, or that they cover exploiting behavior. However, this is
vastly limiting in the types of rewards and behaviors it allows. Therefore, along with scalability, it
should be effortless to introduce and swap in new IM-Gen rewards, regardless of their nature. An
IM-Inc method should be minimally restrictive on the rewards it allows, and let them swap in easily.
Transferability of Behaviors Most IM-Gen methods produce independent behaviors that are
meaningful for several tasks. Learning such behaviors is therefore of great interest not only in the
current task, but also for future ones, in task transfer scenarios under similar dynamics. The ability
to preserve and re-use these behaviors is thus of great relevance to severely boost the learning of
down-stream tasks, as done in Campos et al. (2021). We refer to this idea as Behavior Transfer.
Representation Learning In a function approximation scenario, the learning of an IM policy
always requires to understand the structure of the state and MDP to some extent, through some form
of representation learning. Having the exploiting behavior benefit from this understanding through
auxiliary tasks or additional inputs can strongly benefit performance. Even beyond this, and following
transferability, the ability to extract and re-use these learnt representation for down-stream tasks
could lead to substantial gains in performance (e.g. Gordon et al. (2019)). We refer to this recycling
idea as Representation Transfer (Lazaric, 2012).

6.2 STUDY AND TABLE

We identify several methods that can categorize as IM-Inc from the literature. We organize them in
Table 1 following the key properties we have formulated.

First and most obviously, a weighted sum of rewards, as done in the benchmark, is the most common
IM-Inc method. The behavior assimilation method is through a merged exploiting/exploratory Agent
that requires fine attention to β, but this makes it hard to scale and hard to swap in new rewards.
It is also very restricting: if the intrinsic reward doesn’t disappear in time, it will always harm the

8

Under review as a conference paper at ICLR 2023

Method Scalability Robustness Behavior Generality Transfer Representation
Assimil. Potential Learning

Weighted Sum No No Merged No No Merged
NGU No Yes Merged No No UVFA

Agent57 No Yes Merged No Yes No
Successor Features Yes Yes GPI No Yes Aux. Tasks
Explore&Exploit Yes No Separate Yes Yes No

DeepEO Yes Yes Separate Yes Yes Aux. Task

Table 1: Comparison of methods to combine intrinsic and extrinsic rewards

exploiting behavior. Never Give Up (NGU, Badia et al. (2020b)), combines an intra and inter-episodic
IM reward through a complex mix of scaling, bounding and eventual weighted sum: we see this
reward as the limit of single-reward formulations. In NGU, a UVFA network (Schaul et al., 2015)
allows to pass β as input and thus fine-tune β during training-time. This makes NGU robust to
harmful signals. While the UVFA is beneficial for Representation Learning, it does not allow for
efficient Representation Transfer since we cannot untangle the Exploiter and Explorer to isolate the
second. Agent57 (Badia et al., 2020a) improves on NGU by further fine-tuning β with a Multi-Armed
Bandit, and replacing the UVFA by decoupled Explorer and Exploiter Value Functions for stability.
This effectively enables Behavior Transfer of the learnt Explorer to a degree, but the Exploiter does
not benefit from the Explorer representation anymore.

Successor Features (SF, originally Dayan (1993)) are a family of methods relevant here through
the General Policy Improvement Theorem (GPI, Barreto et al. (2017) and Barreto et al. (2018)),
allowing to extract the strongest available policy from any set of base policies. While this is ideal for
Behavior Assimilation and Transfer, current SF methods require a very expressive set of base rewards
in order to formulate any new reward as a linear combination of the basis. This assumption is yet to
be proven viable in a general setting. Regarding Representation learning, Barreto et al. (2018) used
an architecture similar to ours, sharing parameters in an auxiliary task manner.

Finally, we include with our DeepEO method along with its closest cousin, Explore&Exploit (Nachum
et al., 2019). Explore&Exploit independently trains a purely IM Agent and samples the next Agent
between Explorer and Exploiter every cswitch steps. Due to this fixed sampling, this method is not
robust1, while DeepEOs can learn to ignore bad options (Section 4.3). Both methods are scalable
and general (4.3), as guaranteed by the learning of a separate behavior per reward function (Section
3.1). Note that using separate behaviors is necessarily weaker than the GPI, by definition. The shared
architecture of DeepEOs allows to benefit from the Explorer Representation (Section 4.1). Regarding
Transfer, Campos et al. (2021) provide a method to efficiently transfer from learnt exploratory
behaviors using cswitch = 1 for Exploiter-called Explore Options and a higher value for random
option calls. They mention Explore Options as a complementary method to their work for training
the Explorers in tandem with the Exploiter.

7 CONCLUSION

We have introduced a taxonomy for methods to combine intrinsic and extrinsic rewards in Reinforce-
ment Learning (IM-Inc). We have extracted, as desirable properties of such methods: scalability,
robustness, behavior assimilation, generality, and transferability of the behavior and representation.
Most of these are not met by a weighted sum of rewards, the usual approach to combining rewards.
We have revised Explore Options to Deep Explore Options, to call an intrinsically motivated agent
through an option in a function approximation setting. To ensure fair comparisons, we followed a
benchmarking study that uses hard- and easy-exploration games of the Arcade Learning Environment.
We showed here that Deep Explore Options are a strong alternative to a weighted sum of rewards,
with similar performances on most games. But in addition to performance, we have empirically
demonstrated that DeepEOs possess most of the desirable properties of an IM-Inc method – in
particular scalability, robustness, generality and representation learning.

1We should note that Explore&Exploit isn’t meant as an IM-Inc method, but to study Hierarchical RL.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Arthur Aubret, Laetitia Matignon, and Salima Hassas. A survey on intrinsic motivation in reinforce-
ment learning. arXiv preprint arXiv:1908.06976, 2019.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International Conference on Machine Learning, pp. 507–517. PMLR, 2020a.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, and Charles
Blundell. Never give up: Learning directed exploration strategies. In International Conference on
Learning Representations, 2020b.

Louis Bagot, Kevin Mets, and Steven Latré. Learning intrinsically motivated options to stimulate
policy exploration. Fourth Lifelong Machine Learning Workshop at International Conference on
Machine Learning, 2020.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz,
Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using successor features
and generalised policy improvement. In International Conference on Machine Learning, pp. 501–
510. PMLR, 2018.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi
Munos. Unifying count-based exploration and intrinsic motivation. In Conference on Neural
Information Processing Systems, pp. 1471–1479, 2016.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pp. 449–458. PMLR, 2017.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros. Large-
scale study of curiosity-driven learning. In International Conference on Learning Representations,
2019a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019b.

Víctor Campos, Pablo Sprechmann, Steven Hansen, Andre Barreto, Steven Kapturowski, Alex
Vitvitskyi, Adria Puigdomenech Badia, and Charles Blundell. Beyond fine-tuning: Transferring
behavior in reinforcement learning. arXiv preprint arXiv:2102.13515, 2021.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.
Dopamine: A Research Framework for Deep Reinforcement Learning. 2018.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for gymnasium. https://github.com/Farama-Foundation/MiniGrid, 2018.

Will Dabney, Georg Ostrovski, and Andre Barreto. Temporally-extended ε-greedy exploration. In
International Conference on Learning Representations, 2021.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural Computation, 5(4):613–624, 1993.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In International Conference on Learning
Representations, 2019.

10

https://github.com/Farama-Foundation/MiniGrid

Under review as a conference paper at ICLR 2023

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband,
Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy networks for exploration. In International Conference on Learning
Representations, 2018.

Lior Fox, Leshem Choshen, and Yonatan Loewenstein. DORA the explorer: Directed outreaching
reinforcement action-selection. In International Conference on Learning Representations, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Daniel Gordon, Abhishek Kadian, Devi Parikh, Judy Hoffman, and Dhruv Batra. Splitnet: Sim2sim
and task2task transfer for embodied visual navigation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 1022–1031, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI Conference on Artificial Intelligence, 2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2017.

Yuu Jinnai, Jee Won Park, David Abel, and George Konidaris. Discovering options for exploration
by minimizing cover time. In International Conference on Machine Learning, pp. 3130–3139.
PMLR, 2019a.

Yuu Jinnai, Jee Won Park, Marlos C Machado, and George Konidaris. Exploration in reinforcement
learning with deep covering options. In International Conference on Learning Representations,
2019b.

Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep reinforcement learning.
In AAAI Conference on Artificial Intelligence, volume 31, 2017.

Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In Reinforcement
Learning, pp. 143–173. Springer, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Marlos C Machado, Sriram Srinivasan, and Michael Bowling. Domain-independent optimistic
initialization for reinforcement learning. In Workshops at the Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. A laplacian framework for option
discovery in reinforcement learning. In International Conference on Machine Learning, pp.
2295–2304. PMLR, 2017.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael
Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for
general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Brendon Matusch, Jimmy Ba, and Danijar Hafner. Evaluating agents without rewards. arXiv preprint
arXiv:2012.11538, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

11

Under review as a conference paper at ICLR 2023

Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. Why does
hierarchy (sometimes) work so well in reinforcement learning? CoRR, abs/1909.10618, 2019.

Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. In International Conference on Machine Learning, pp. 2721–2730,
2017.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computational
approaches. Frontiers in neurorobotics, 1:6, 2009.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 16–17, 2017.

Santhosh K Ramakrishnan, Dinesh Jayaraman, and Kristen Grauman. An exploration of embodied
visual exploration. International Journal of Computer Vision, 129(5):1616–1649, 2021.

Rahul Ramesh, Manan Tomar, and Balaraman Ravindran. Successor options: An option discovery
framework for reinforcement learning. arXiv preprint arXiv:1905.05731, 2019.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International Conference on Machine Learning, pp. 1312–1320, 2015.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
International Conference on Learning Representations, 2016.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artif. Intell., 112(1-2):181–211, 1999.

Adrien Ali Taiga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Bellemare. On
bonus based exploration methods in the arcade learning environment. In International Conference
on Learning Representations, 2019.

Sebastian Thrun. Efficient exploration in reinforcement learning. Technical Report CMU-CS-92-102,
Carnegie Mellon University, Pittsburgh, PA, January 1992.

Shangtong Zhang. Modularized implementation of deep rl algorithms in pytorch. https://
github.com/ShangtongZhang/DeepRL, 2018.

12

https://github.com/ShangtongZhang/DeepRL
https://github.com/ShangtongZhang/DeepRL

Under review as a conference paper at ICLR 2023

0 2 4 6 8

0

1

2

3

4

5

6

7

8

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

State maps in the trajectory, averaged over steps

Figure 5: Minigrid: One-hot encoded maps passed to the agent, here averaged over a covering
trajectory, keeping the position fixed. In order: [walls, agent_x, agent_y, visits, goal1, goal2].

A IMPLEMENTATION & EXPERIMENTAL SETUPS

A.1 MINIGRID EXPERIMENTS

For simplicity, the agent is passed a fully observable tensor of its state in the environment. In
particular, to avoid requiring a memory, the state we use for Minigrid experiments contains one-hot
encoded maps as [walls, agent_x, agent_y, visits, goal1, goal2]. The agent x and y correspond to its
orientation in space, only passed at the cell the agent is occupying. The visit map marks as 1 each
visited cell. The agent needs to ignore the last goal2 map.

For our feature-visualization experiment, we used a trajectory of 50 steps (top right of Figure 2b) and
fixed the agent positions maps, leading to Figure 5: only the visitation map changes, here average
over the trajectory.

We trained our DQN-based agents for 2 million steps, with 50k steps of random behavior, ϵ decreasing
from 1 to 0.01 over 100k steps, network updates every 4 steps, target network updates every 10k
network updates (40k steps), a learning rate of 0.00025 with Adam optimizer, discount of γ = 0.9.
The DQN+IM agent was fine-tuned to β = 0.1 as the best hyperparameter value. Our DeepEO agent
used cswitch = 50.

A.2 ATARI HYPERPARAMETERS & ARCHITECTURES

Hyperparameter Value
Discount factor γ 0.99
Min history to start learning 80K frames
Target network update period 32K frames
Adam learning rate 6.25−5

Adam ϵ 1.5−4

Multi-step returns n 3
Distributional atoms 51
Distributional min/max values [−10, 10]
ϵ-greedy schedule 1 → 0.01 over 1M frames

Table 2: List of Rainbow hyperparameters used, taken from the benchmark

Hyperparameters The list of used Rainbow hyperparameters can be seen in Table 2 above.

Architecture The network architecture used is based on the Categorical DQN, as used in Dopamine
(Rainbow without Dueling). The network has 3 Convolutional layers followed by 1 fully-connected
layer, which we refer to as the "vision module", followed by a fully-connected output layer, which
we call "control module". The Exploiter has one more action per Explorer. Each Explorer attaches a
"control module" to the shared body "vision module".

Experimental setup Following the benchmark and recommended practices (Machado et al.,
2018), we use ς = 0.25 sticky-actions and no termination on life loss.

Agents are trained over 5 seeds for up to 100 million frames on the 11 games selected by the
benchmark. 6 of them are hard-exploration games, while 5 are easy-exploration games.

13

Under review as a conference paper at ICLR 2023

Gravitar Montezuma Asterix
0

1

2

3

Sc
or

e
(P

er
 R

ai
nb

ow
 p

er
fo

rm
an

ce
) c=15

c=50
c=200
Prio
Multi Rainbow

Figure 6: Additional experiments: cswitch study; Prioritization; multi-reward Weighted Sum

B ADDITIONAL RESULTS

B.1 cswitch AND PRIORITIZATION STUDIES

We perform experiments on our three tuning games: GRAVITAR, MONTEZUMA and ASTERIX. We
chose these because they are a mix or easy and hard-exploration that provide relatively smooth
improvements with better methods. We could not match the set from the benchmark as it tunes on
games outside the main set of 11.

cswitch hyperparameter In Bagot et al. (2020), the authors linked EO’s cswitch hyperparameter
to WS’ β, since both dictate the intensity of exploration in their respective approach. It was shown
that cswitch was much more robust and lead to overall better performances than any value of β in a
simple setting. We do not have access to the benchmark’s per-β performance but only the range:
β ∈ {0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.0005, 0.00001, 0.000005}. We replicate this study
in Atari by studying cswitch ∈ {15, 50, 200}. The results are available in Figure 6, normalized by
the Rainbow performance. We find that cswitch does not have a lot of impact in performance, with
all values leading to very similar performances in all tuning games. cswitch = 50 did better on
GRAVITAR and ASTERIX by a more convincing margin than cswitch = 200 did on MONTEZUMA.
We therefore pick 50 as our main hyperparameter value.

Prioritization Rainbow uses Prioritized Experience Replay (PER, Schaul et al. (2016)) to sample
more interesting transitions from the buffer, where the notion of priority of a transition is its associated
Rainbow loss. Since we now have at least two agents, and therefore two notions of priority, a naive
adaptation of PER would lead to each agent sampling a mini-batch according to its own preferences.
We implement this idea, but as can be seen in Figure 6, we find that it vastly under-performs against
random sampling on both GRAVITAR and ASTERIX – the only one on which it was quite beneficial
unsurprisingly being MONTEZUMA. A potential cause for this gap in performance could reside in the
option transitions: their higher average loss scales might be interfering with the sampling process.
We leave deeper investigations of such multi-objective prioritization to future work.

14

	Introduction
	Background and Explore Options
	Reinforcement Learning, Options, Motivation
	Explore Options

	Deep Explore Options
	Core differences with usual Intrinsically Motivated Agents
	Backbone & Training

	Experiments
	MiniGrid Intuition
	Atari Experimental Protocol
	Main Results
	Learnt Behaviors

	Related Work
	Discussion: Combining Reward Signals
	Desirable properties
	Study and Table

	Conclusion
	Implementation & Experimental setups
	Minigrid experiments
	Atari Hyperparameters & Architectures

	Additional Results
	cswitch and Prioritization studies

