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Abstract

The identification of transition states, first-order saddle points on high-dimensional1

potential energy surfaces, is a central challenge in the physical and life sciences, as2

they govern the kinetics and mechanisms of chemical reactions and conformational3

changes. Existing methods for locating these states often require knowledge4

about the transition, such as a good initial guess of the transition pathway or5

reaction coordinates. We introduce GAP, Guided Diffusion for A Priori Transition6

State Sampling, a new workflow that reframes this search problem as a direct7

generative task. GAP utilizes a score-based diffusion model trained exclusively8

on configurations from known metastable states, requiring no prior data from the9

transition region. During inference, we guide the generative process to sample10

from the dividing isodensity surface between the stable states with a principled11

composition of conditional scores. This process is coupled with a Score-Aligned12

Ascent mechanism that maximizes the energy along the score-based reaction13

coordinate approximation, effectively collapsing the sampling onto the transition14

state ensemble. We validate our approach on a series of benchmarks, from 2D15

potentials to the high-dimensional conformational changes of alanine dipeptide16

and the folding of the chignolin protein. Our results demonstrate that GAP not only17

locates transition states with high precision but also discovers competing reaction18

pathways, a new way of locating transition states in mechanistic studies.19

1 Introduction20

Understanding and predicting the dynamics of molecular systems, from chemical reactions to protein21

folding, is fundamentally dependent on characterizing their transition states (TS) [Eyring, 1935,22

Wigner, 1938]. These states, defined as first-order saddle points on the potential energy surface23

(PES), represent the highest energy configurations along a minimum energy path and act as the24

kinetic bottlenecks that determine reaction rates and mechanisms. Despite their central importance,25

locating transition states is a notoriously difficult problem. Their short lives and scarcity make them26

experimentally elusive and computationally expensive to locate, requiring specialized algorithms to27

navigate complex, high-dimensional landscapes.28

Over the past decade, there have been major advances in the development of systematic TS optimiza-29

tion campaigns across diverse chemical systems [Steiner and Reiher, 2022]. However, these methods30

remain computationally intensive and the underlying algorithms often require chemically informed31

initial guesses of reaction pathways or TS structures that are difficult to generalize across different32

chemical systems.33

Data-driven transferable models can bypass this need for prior knowledge of the system, but their34

applicability is limited to domains where large curated datasets of known transition states [Pattanaik35

et al., 2020, Duan et al., 2023, Kim et al., 2024] or connected minima [Nam et al., 2025] are available36
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for training. Recent alternatives that sample reaction paths with diffusion models [Raja et al., 2025]37

rely on accurately learning the PES near the TS, limiting their utility for unexplored systems.38

To address these respective limitations of classical and data-driven methods, we introduce Guided Dif-39

fusion for A Priori Transition State Sampling (GAP), a workflow that integrates generative sampling40

with force-field–based optimization to achieve robust generalizability. Our first central hypothesis is41

that a useful initial guess of the TS ensemble can be inferred from the learned probability distributions42

of the metastable states (e.g., reactants and products). GAP employs a single, conditionally trained43

score-based diffusion model that learns the data manifold of metastable states [Song et al., 2020, Ho44

and Salimans, 2022]. At inference, we guide the reverse diffusion process to sample configurations45

on the dividing surface where the probability of belonging to either state is equal. This is achieved46

through a principled composition of the conditional scores with the method introduced in Skreta47

et al. [2024], which we term Score-Based Interpolation (SBI). These samples are then refined48

by force-based updates on the PES, ascending along the reaction coordinate and descending along49

orthogonal directions, using our second key insight that the reaction coordinate can be effectively50

approximated from the conditional diffusion scores. This process, which we call Score-Aligned51

Ascent (SAA), alleviates the need for the diffusion model to perfectly learn the PES. Crucially, this52

entire process is performed a priori, without any knowledge or training data from the transition region53

itself.54

Our contributions are threefold: (1) We propose a novel workflow for direct TS sampling that55

leverages guided diffusion, eliminating the need for path-finding algorithms or prior TS data. (2) We56

introduce the combination of Score-Based Interpolation and Score-Aligned Ascent as a principled57

mechanism for guiding a diffusion process to sample first-order saddle points. (3) We show that GAP58

successfully identifies known transition states and competing pathways in systems ranging from 2D59

potentials to the high-dimensional alanine dipeptide and chignolin systems.60

2 Method61

2.1 Score-Based Interpolation of Diffusion Models62

Our objective is to infer the TS, given MD data of each metastable state. First, we annotate each data63

point with its metastable state c and train a denoising score matching model [Song et al., 2020], with64

Classifier-Free Guidance (CFG) [Ho and Salimans, 2022]. The model learns to approximate both the65

conditional,∇ log pt(x|c), and unconditional score function∇x log pt(x) that can be used to sample66

from the reverse process stochastic differential equation (SDE):67

dx = [f(x, τ)− g(τ)2∇ log pt(x|c)dτ + g(τ)dw̄, (1)

from a randomly initialized xτ ∼ N (0, I). The scores are parametrized by the CFG-based score68

sc
θ(x, t) ≈ ∇ log pt(x|c), given by extrapolation:69

sc
θ(x, t) = sθ(x, t, ∅) + γ(sθ(x, t, c)− sθ(x, t, ∅)), (2)

where c is the condition, replaced by a null token ∅ for the unconditional score, and γ is the guidance70

scale that controls the strength of conditioning.71

Our key intuition is that the TS region can be effectively sampled by interpolating between the learned72

conditional scores of the two metastable states, A and B. We formulate this using a combined score73

function for the reverse SDE:74

scomb
θ (x, t) = sB

θ (x, t) + κ(sA
θ (x, t)− sB

θ (x, t)), (3)

where the interpolation weight κ controls the contribution of each state’s score. We propose two75

strategies for determining κ: Isodensity Interpolation (II) and Simple Averaging (SA). The II76

approach is inspired by the Superposition of Diffusion Models (SuperDiff) AND operator, specifically77

designed to sample the equal density region between states [Skreta et al., 2024]. The SA approach78

provides a simpler baseline by directly averaging the two conditional scores, which corresponds to79

setting κ = 0.5 [Liu et al., 2022].80

2.2 Score-Aligned Ascent for Saddle Point Search81

To further refine the TS samples and push them towards the true saddle point, we propose the Score-82

Aligned Ascent (SAA) algorithm. Transition states are first-order saddle points on a multi-dimensional83
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potential energy surface (PES). Locating a transition state corresponds to an optimization problem,84

where the energy needs to be maximized along the given transformation often referred to as the85

reaction coordinate r, and minimized in all orthogonal directions. This is achieved by decomposing86

the negative energy gradient (−∇U(x)) into components parallel and perpendicular to the reaction87

coordinate. We then invert the parallel component to create an ascent force that pushes the system88

uphill along r, while preserving the original components that minimize the energy in all orthogonal89

directions. This operation yields the idealized SAA force: FSAA = −∇U(x) + 2(∇U(x) · r)r/∥r∥22.90

This force projection-based optimization to find the saddle point has been introduced in Henkelman91

and Jónsson [1999]. One of our key findings is that we can dynamically approximate r at each step92

by taking the difference of scores conditioned on each states: r̂ = sB
θ (x, t)− sA

θ (x, t). This vector93

naturally points from one metastable state to the other (see Appendix D).94

Summarizing the workflow, we first solve the reverse-time SDE with interpolated score up to a chosen95

fixed timestep close to the SDE endpoint to ensure reliable force calculation, pause the reverse SDE96

process, and use F̂SAA = −∇U(x) + 2(∇U(x) · r̂)r̂/∥r̂∥22 to optimize the configurations. We then97

resume the reverse SDE sampling, which corrects nonphysical configurations (see Algorithm 1).98

3 Experiments and Results99

For all systems, we train a score-based diffusion model on a dataset containing metastable state100

configurations, and apply our GAP algorithm to identify the TS ensemble. For chemical systems, we101

report the committor function value (q) which gives the probability that a trajectory starting from a102

given state will reach one metastable state before reaching another metastable state. Detailed settings103

for experiments are detailed in Appendix C and ablation studies of the methods in Appendix F.1.104

3.1 Validation on 2D Model Potentials105

(a) Müller-Brown potential. (b) Double-path potential.

Figure 1: Our method (GAP) simultaneously discovers multiple transition states on two benchmark
potentials, (a) Müller-Brown and (b) double-path potential.

Müller-Brown Potential. This analytic two-dimensional potential has served as a test case for106

various TS search algorithms. The surface includes three local minima connected by two first-order107

saddle points. We assigned the two states A and B, shown in Figure 1a, to the two lowest energy108

states, due to the short lifetime of the third metastable state, which prohibits sufficient state-specific109

sampling. Nevertheless, the GAP algorithm locates configurations that cluster around both accessible110

transition states. Our ablation studies (Figure 6) indicate that the ability to locate both transition111

states was primarily driven by SAA.112

Double-Path Potential. We next evaluate our method’s robustness with a synthetic 2D potential113

engineered to exhibit two topologically distinct transition pathways connecting identical reactant114

and product states. This surface represents a particularly challenging test case, as conventional115

path-finding algorithms typically suffer from pathway degeneracy issues and may fail to identify both116

routes. As shown in Figure 1b, the GAP algorithm automatically discovers and populates both TS117

regions.118
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3.2 Application to Chemical Systems119

(a) Alanine dipeptide conformational change. (b) Chignolin folding.

Figure 2: Application of our method to chemical systems. (a) For the alanine dipeptide, the generated
samples (circles) localize the transition region between two states. (b) For chignolin, the free energy
landscape is projected onto the two slowest time-independent components. The samples generated by
our method clearly discriminate between two distinct folding pathways (TSdown and TSup). In both
plots, the color scale corresponds to the machine-learned committor value.

Alanine Dipeptide. Beyond model potentials, we evaluated our algorithm on molecular systems120

such as the conformational dynamics of alanine dipeptide. This system involves a 22-atom molecule121

implying a high dimensional configuration space. The conformational landscape of alanine dipeptide122

is conventionally analyzed through its Ramachandran plot, defined by the dihedral angles ϕ and123

ψ. We focus on the isomerization between the two most populated conformational states, the C5124

and C7ax conformations, which represent distinct local minima separated by substantial free energy125

barriers [Chekmarev et al., 2004]. The configurations generated by our algorithm lie in two narrow126

regions on the Ramachandran plot, which correspond to the known transition states for C5-C7ax127

interconversion. The agreement with reference data is validated by a narrow distribution of committor128

values around 0.5, calculated by running short Langevin Dynamics simulations from the samples, as129

shown in Figure 2a and 10. Both Figure 2a and 10 demonstrate a peaked distribution of committor130

values around 0.5, validating our method.131

Chignolin. We conclude our experiments by studying coarse-grained chignolin, a 10-residue132

fast-folding protein with multiple competing folding pathways, and transition timescales spanning133

microseconds, using the DESRES dataset [Lindorff-Larsen et al., 2011]. To visualize the GAP-134

generated configurations we project them onto the two-dimensional space of time-lagged independent135

components (TICA) [Molgedey and Schuster, 1994, Pérez-Hernández et al., 2013]. We compute the136

committor values with an ML model trained by Kang et al. [2024]. Figure 2b and 11 demonstrates137

that GAP samples concentrate along the q ≈ 0.5 isosurface, providing quantitative and qualitative138

confirmation of our method. Crucially, the samples resolve into two distinct clusters, consistent with139

the two known competing reaction pathways termed TSdown and TSup, shown in Figure 14.140

4 Conclusion141

We introduce GAP, a novel workflow that reconceptualizes TS sampling as a direct generative142

modeling task by leveraging a score-based model conditioned on known metastable states. Our143

method composes learned distributions with Score-Based Interpolation to target directly the dividing144

surface of equal probability density, while Score-Aligned Ascent provides a principled mechanism to145

guide sampling. This establishes a new paradigm for a priori sampling of transition state ensembles,146

offering a computationally efficient and scalable solution for complex biomolecular systems, as147

demonstrated on alanine dipeptide and chignolin. Future work will focus on testing this workflow to148

larger systems with production-level force fields and navigating more complex reaction networks149

with multiple intermediate states.150
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A Related Works252

A.1 Machine Learning for Transition State Search253

Numerous machine learning approaches have been developed to study rare events and in particular254

transition search. Early works leveraged a dataset of accumulated transition states to train generative255

models [Pattanaik et al., 2020] with diffusion models [Duan et al., 2023, Kim et al., 2024] and flow256

matching [Duan et al., 2025]. However, to alleviate the requirement of creating a transition state257

dataset, later works aimed to leverage geometric optimization and energy evaluations during training258

to find transition paths and extract transition states from it [Nam et al., 2025]. Wang et al. [2024]259

also leveraged the metric induced by local molecular dynamics simulation to learn a generalized flow260

matching model, while Raja et al. [2025] relied on the learned forcefield from pre-trained diffusion261

models with the Onsager–Machlup functional to approximate the transition path.262

A.2 Inference-time Control for Diffusion Models263

Diffusion models excel at generating high-quality data, spanning images, texts to molecular structures.264

Beyond sampling from the learned distribution, they can be guided to generate from modified265

target distributions that encode design objectives, constraints, or rewards. The early and well-266

known examples are classifier guidance and classifier-free guidance to sample from conditional267

distributions [Ho and Salimans, 2022]. Later on, inference-time control has been extended to268

compositional, reward-tilted, annealed, equal density distributions and more [Du et al., 2023, Skreta269

et al., 2024, 2025]. One popular branch of methods develop upon the heuristics and approximate270

guidance [Chung et al., 2022]. Another branch of methods study exact guidance where expensive271

Monte Carlo (MC) estimations are required [Lu et al., 2023]. Recently, sequential Monte Carlo272

methods have become relevant to reweight on path space to reduce the variance of inference-time273

control [Wu et al., 2023, Skreta et al., 2025, He et al., 2025].274

B Background275

B.1 Score-Based Diffusion Models276

Given a forward process that transforms a data distribution p0(x0) over a continuous time variable277

t ∈ [0, T ] into a known prior distribution pT (xT ), typically the standard Normal distributionN (0, I),278

a diffusion model sθ(x, t) can be trained such that a reverse process transforms samples from the279

prior distribution to the data distribution [Sohl-Dickstein et al., 2015]. The model can learn the added280

noise in each time step t [Ho et al., 2020] or the gradient of the log-probability of the data distribution281

∇x log pt(x), the so-called score function [Song and Ermon, 2019]. Both training strategies can be282

related as discretizing the same continuous reverse process described by the stochastic differential283

equation (SDE)284

dx = [f(x, τ)− g(τ)2∇x log pτ (x)]dτ + g(τ)dw̄, (4)
where f(x, t) is the drift coefficient, g(t) is the diffusion coefficient, w̄ is a reverse Wiener process,285

and the reverse time τ ∈ [T, 0] [Song et al., 2020]. Once the model sθ(x, t) is trained, it can be286

applied as a generative model by initializing the reverse SDE with noise xτ ∼ N (0, I) and solving it287

numerically.288

B.2 Classifier-Free Guidance289

Classifier-Free Guidance (CFG) [Ho and Salimans, 2022] is a technique for conditional generation290

that trains a single diffusion model to handle both conditional and unconditional generation scenarios.291

The model is trained to predict the score of the data distribution, conditioned on the label c ∈292

{C1, C2, ..., ∅}. During training, the conditioning information is randomly dropped with a given293

probability pdrop. This technique enables the single model to learn both the conditional score294

functions,∇ log pt(x|c), for each label, and the unconditional score function,∇ log pt(x), over the295

entire data manifold. During inference, the CFG-based score sc
θ(x, t) is given by interpolation296

sc
θ(x, t) = sθ(x, t, ∅) + γ(sθ(x, t, c)− sθ(x, t, ∅)), (5)

where sθ(x, t, c) is the conditional score, sθ(x, t, ∅) is the unconditional score, where the condition c297

is replaced by a null token ∅, and γ is the guidance scale that controls the strength of conditioning.298
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This approach provides fine-grained control over conditioning strength without requiring separately299

trained conditional models.300

B.3 Superposition of Diffusion Models301

The Superposition of Diffusion Models (SuperDiff) [Skreta et al., 2024] provides a principled way302

to combine the score functions from multiple models, each trained on a different data distribution.303

Given two score models, sA and sB , trained on distributions pA and pB respectively, a composite304

score function can be constructed by a weighted average:305

scomb
θ (x, t) = sB

θ (x, t) + κ(sA
θ (x, t)− sB

θ (x, t)). (6)

The interpolation factor κ(t) determines the nature of the composition, enabling the generation of306

samples from distributions that represent logical combinations of the base distributions. For example,307

setting κ(t) based on the relative likelihoods of a sample under each model can produce samples308

from the union (OR) of the distributions, while setting κ based on equal likelihoods can produce309

samples from the intersection (AND). In the context of transition state sampling, we are interested in310

the latter and a κ(t) that satisfies the equal density:311

d log pA
t (x) = d log pB

t (x) (7)

can be found by solving a set of three linear equations [Skreta et al., 2024]. As a comparison, we312

also include in our ablations Simple Averaging of the scores to interpolate and steer the diffusion313

process [Liu et al., 2022].314

B.4 Local mode maximization315

Transition states are first-order saddle points on a multi-dimensional potential energy surface (PES).316

Localizing a transition state corresponds to an optimization problem, where the energy needs to317

be maximized along the given transformation and minimized in all orthogonal directions. If the318

mode of transformation r, commonly referred to as reaction coordinate, is known, a gradient-based319

optimization to the transition state can be achieved with a sufficiently close start condition. The320

optimization is driven by the step ∆xi that is determined by the gradient of the potential energy with321

respect to nuclear coordinates g(x)322

∆xi = −g(x) + 2
(
g(x)T r

)
r. (8)

However, the definition of r is non-trivial for a given chemical system. Existing approaches, such323

as the Dimer algorithm Henkelman and Jónsson [1999], Olsen et al. [2004], Heyden et al. [2005],324

Kästner and Sherwood [2008], Shang and Liu [2010], find local approximations to r by locating the325

direction of least curvature with gradient calculations for multiple close-lying configurations on the326

PES.327

C Additional Details on Experiments328

1D PES Example. The 1D PES example is a simple potential with two distinct states. The analytical329

formula for this potential energy surface is given by:330

V (x) = 0.1x4 − x2 + 0.1x+ 1.0 (9)

Müller-Brown Potential. For the Müller-Brown potential, our methodology adheres to the training331

procedure detailed in Raja et al. [2025]. A score-based diffusion model was trained on the ‘tiny’332

subset of the provided dataset, which consists of 4,000 samples. The two metastable states, A and B,333

are defined by the coordinate criteria y < 20 and y > 20, respectively.334

The analytical surface of this system is defined as:335

V (x, y) =

4∑
i=1

Ai exp
[
αi(x− ai)2 + βi(x− ai)(y − bi) + γi(y − bi)2

]
(10)
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with the parameters taken directly from the simulation code:336

A = 10× barrier× [−1.73,−0.87,−1.47, 0.13]
α = 10−2 × [−0.39,−0.39,−2.54, 0.273]
a = [48, 32, 24, 16]

β = 10−2 × [0, 0, 4.30, 0.23]

b = [8, 16, 32, 24]

γ = 10−2 × [−3.91,−3.91,−2.54, 0.273]

where ‘barrier‘ is a scaling factor for the height of the potential barrier, for which we used 1.0.337

Double-Path Example. For the double-path potential, the dataset was generated via Langevin338

Dynamics simulations, following the procedure outlined in Raja et al. [2025]. A score-based diffusion339

model was subsequently trained on a curated subset of these simulation data, with 4,000 samples.340

State A and B are defined by the regions x < 0 and x > 0, respectively.341

The analytical formula for the potential energy surface is given by:342

V (x, y) = 10

(
2 +

4

3
x4 − 2y2 + y4 +

10

3
x2(y2 − 1)

)
+ 7 exp

(
− (x+ 0.7)2 + (y − 0.8)2

0.42

)
+ exp

(
− (x− 1.0)2 + (y + 0.3)2

0.42

)
− 6 exp

(
− (x+ 1.0)2 + (y + 0.6)2

0.42

)
(11)

(a) Alanine dipeptide. (b) Chignolin.

Figure 3: Potential Energy Surface (PES) of alanine dipeptide and chignolin.

Alanine Dipeptide. We generate the dataset by running Langevin Dynamics from each state343

(C5 and C7ax) for 500 ps with a 1 fs time step saving every 10 steps. We then slice parts of the344

trajectory that covers the widest region in Ramachandran space (ϕ, ψ) and subsample randomly 2.5k345

configurations for each of the two states. In Figure 3a, we show the PES of alanine dipeptide. We346

propagate the dynamics using a custom force field taken from Raja et al. [2025] at T=300K. We347

then train a diffusion model based on the EquiformerV2 architecture [Liao et al., 2023] with up348

to L=2 representations, four attention heads and 64 channels. The radius graph is computed with349

rcutoff = 5.0 Angstrom. We use the AdamW optimizer with a constant learning rate 6.10−4, 0.001350

weight decay. We use an 0.999 Exponential Moving Average (EMA) decay with an effective batch351

size of 128, and train for 500 epochs. For diffusion, we leverage the Denoising Diffusion Probabilistic352
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Model framework (DDPM) with 1000 time steps and a cosine schedule [Ho et al., 2020]. For SAA,353

we use 600 optimization steps, a learning rate of 0.003, β1 = 0.0, and β2 = 0.999.354

The committor probabilities are computed from 100 configurations sampled from the method. We355

first run a 2 ps long simulation and filter out all the configurations leading to instability that are356

labelled as non physical. For all reported results, more than 98% of samples were kept and used357

for the committor calculations. We compute the committor probabilities by running 100 replicas358

stochastic Langevin Dynamics with randomly initialized velocities using the same force field that359

generated the dataset to stay consistent with the PES distribution. The simulations are run for 1 ps360

with 1 fs at T=300K. We define each state limits and record the region first reach for each replica to361

compute the probability of reaching one state or the other.362

Chignolin. For our analysis of Chignolin, which is one of the fast-folding proteins, we employed363

the DRSRES coarse-grained (CG) dataset [Lindorff-Larsen et al., 2011]. In Figure 3b, we show364

the PES of chignolin training dataset. We removed all the conformations with ML committor value365

between 0.0001 and 0.9999. Our conditional diffusion model is an adaptation of the pre-trained366

architecture from Arts et al. [2023]. We finetuned this base model to enable conditional generation by367

incorporating a group embedding that specifies the state, i.e., folded or unfolded, at the beginning of368

the forward process. Sampling was then performed using SAA hyperparameters with 100 optimization369

steps, a learning rate of 0.0005, and a pause ratio of 0.05. Finally, the generated configurations were370

validated by computing their committor probabilities with the machine-learned committor predictor371

model from Kang et al. [2024].372
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D Validation of Score Difference Approximation to Reaction Coordinate373

To validate the claim that the score difference approximates the reaction coordinate, i.e., sA(x, t)−374

sB(x, t) ≈ r, we compare the two vectors in Figure 4. The visualization shows strong alignment375

between our approximation (blue arrows) and the true reaction coordinate (red arrows). This is376

quantified by the high average cosine similarity: 0.9275 on the Müller-Brown potential and 0.9584377

on the Double-Path example.

(a) Müller-Brown Potential. (b) Double-Path Example.

Figure 4: Validation of Score Difference Approximation. The score difference vector (red) closely
aligns with the true reaction coordinate (blue) on (a) the Müller-Brown potential and (b) a Double-
Path example.

378
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E GAP Sampling Algorithm379

Algorithm 1 Sampling with Score-Based Interpolation and Score-Aligned Ascent

Require: Denoising model ϵθ(xt, t, c) with classifier-free guidance; Energy-based force field F(x);
Total number of time steps T ; Guidance pause time step Tpause; Number of optimization steps
Nopt; Optimizer hyperparameters Θopt.
Output: Sampled molecular conformation x0.

1: function SBI_COMBINE(xt, t)
2: Compute conditional noise estimates: ϵAt ← ϵθ(xt, t, A), ϵBt ← ϵθ(xt, t, B).
3: Compute the interpolation factor: κt ← SBI(ϵAt , ϵ

B
t ,xt, t).

4: Combine noise estimates: ϵcomb ← ϵBt + κt(ϵ
A
t − ϵBt ).

5: return ϵcomb, ϵ
A
t , ϵ

B
t

6: end function

7: Initialize positions xT ∼ N (0, I).
// Phase 1: Denoising with Score-Based Interpolation

8: for t← T, Tpause + 1 do
9: ϵcomb, _, _← SBI_Combine(xt, t)

10: Perform one reverse diffusion step to obtain xt−1 from xt and ϵcomb.
11: end for

// Phase 2: Score-Aligned Ascent Optimization at latent time Tpause
12: Let z← xTpause . Initialize an optimizer O with Θopt.
13: for k ← 1, Nopt do
14: ϵcomb, ϵ

A
Tpause

, ϵBTpause
← SBI_Combine(xTpause , Tpause)

15: Approximate the reaction coordinate: τ ← ϵBTpause
− ϵATpause

.
16: Predict the clean sample: x̂0 ← predict_x0(z, Tpause, ϵcomb).
17: Evaluate the force from the external field: f ← F(x̂0).
18: Compute the Score-Aligned Ascent force: fSAA ← f − 2 f ·τ

∥τ∥2
2
τ .

19: Update positions with gradient descent: z← O(z,∇zL), where ∇zL = −fSAA.
20: end for
21: xTpause ← z.

// Phase 3: Resumed Denoising
22: for t← Tpause, 1 do
23: ϵcomb, _, _← SBI_Combine(xt, t)
24: Perform one reverse diffusion step to obtain xt−1 from xt and ϵcomb.
25: end for

return x0.
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F Additional Figures for Ablation Study380

F.1 Effect of Score-Based Interpolation and Score-Aligned Ascent381

F.1.1 1D PES Example382

We first investigate the effects of Score-Based Interpolation and Score-Aligned Ascent on a one-383

dimensional potential energy surface, with the results presented in Figure 5. When employing simple384

averaging for interpolation, it fails to capture the true transition state, instead averaging points to a385

higher energy region. In contrast, isodensity interpolation generates samples that more accurately386

close to the true transition state. The introduction of score-aligned ascent further refines these387

results. For both interpolation methods, score-aligned ascent pushes the diffusion process towards TS388

regions, correcting deviations and ensuring the final states closely align with the true TS. Notably,389

the combination of isodensity interpolation and score-aligned ascent yields the most accurate and390

physically meaningful transition path.

(a) Isodensity Interpolation. (b) Simple Averaging.

(c) Isodensity Interpolation + Score-Aligned Ascent. (d) Simple Averaging + Score-Aligned Ascent.

Figure 5: Impact of Score-Based Interpolation and Score-Aligned Ascent on 1D PES Example.

391
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F.1.2 2D PES Example392

We perform the ablation study to two-dimensional potential energy surfaces of Müller-Brown potential393

and Double-path potential to evaluate the distinct contributions of the Score-Based Interpolation (SBI)394

and Score-Aligned Ascent (SAA) components. On both systems, as shown in Figure 6 and 7, using395

Isodensity interpolation draws a line between two states, while Simple Averaging (SA) alone being396

less effective, producing a more scattered distribution of samples, with several located in nonphysical397

high-energy regions. Neither interpolation method on its own is sufficient for precise TS localization.398

The introduction of the Score-Aligned Ascent proves crucial, which refines the samples, collapsing399

the broad distributions onto the precise locations of the low- and high-energy transition states.

(a) Isodensity Interpolation. (b) Simple Averaging.

(c) Isodensity Interpolation + Score-Aligned Ascent. (d) Simple Averaging + Score-Aligned Ascent.

Figure 6: Impact of Score-Based Interpolation and Score-Aligned Ascent on Müller-Brown potential.

400
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(a) Isodensity Interpolation. (b) Simple Averaging.

(c) Isodensity Interpolation + Score-Aligned Ascent. (d) Simple Averaging + Score-Aligned Ascent.

Figure 7: Impact of Score-Based Interpolation and Score-Aligned Ascent on Double-path potential.
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F.1.3 Chemical Systems401

We further extend our ablation study to chemical systems, alanine dipeptide and chignolin, to assess402

the performance of our method in high-dimensional cases.403

For alanine dipeptide, as shown in Figure 8, the results highlight the critical role of score-aligned404

ascent. Isodensity Interpolation and Simple Averaging, when used alone, incorrectly identify a405

region of very high potential energy as the transition state. Upon introducing score-aligned ascent,406

both methods are improved, which drives generated samples are successfully guided away from407

high-energy regions and converge precisely onto the known, physically meaningful transition states408

based on the PES.409

A similar trend is observed for the folding of chignolin, depicted in Figure 9. While both interpolation410

methods can generate a coarse path between the folded and unfolded states, the resulting samples411

are diffuse and do not clearly define the transition pathway. The addition of score-aligned ascent is412

essential for refining this pathway, driving the scattered points near-TS region. This demonstrates413

that the combination of isodensity interpolation and score-aligned ascent is robust and effective for414

identifying transition states in complex biomolecular systems.415

(a) Isodensity Interpolation. (b) Simple Averaging.

(c) Isodensity Interpolation + Score-Aligned Ascent. (d) Simple Averaging + Score-Aligned Ascent.

Figure 8: Impact of Score-Based Interpolation and Score-Aligned Ascent on alanine dipeptide.
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(a) Isodensity Interpolation. (b) Simple Averaging.

(c) Isodensity Interpolation + Score-Aligned Ascent. (d) Simple Averaging + Score-Aligned Ascent.

Figure 9: Impact of Score-Based Interpolation and Score-Aligned Ascent on Chignolin.
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F.2 Committor Analysis of Chemical Systems416

F.2.1 Alanine Dipeptide417

In Figure 10, we report histograms of the distributions of committor values calculated based on the418

samples in Figure 8. We observe that given the partial coverage of the metastable states by our MD419

simulations at 300K, simply using Score-Based Interpolation allows to sample an intermediate region420

but not the TSs themselves. The SAA algorithm successfully directs the samples towards the true421

TSs as demonstrated by a peaked distribution of the committor values around 0.5. SuperDiff AND422

surpasses SA in our experiments.

(a) Isodensity Interpolation. (b) Simple Averaging.

(c) Isodensity Interpolation + Score-Aligned Ascent. (d) Simple Averaging + Score-Aligned Ascent.

Figure 10: Histogram of calculated committors on alanine dipeptide.

423
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F.2.2 Chignolin424

We report ML committor values computed with the trained models from [Kang et al., 2024] to425

compare the effects of SBI and SAA algorithm. We observe that SAA consistently increases the426

number of samples close to the q = 0.5 region. We note that the ML committor model draws much427

sharper isocommittor surfaces compared to our MD evaluation for alanine dipeptide. We refer to F.3428

for all TS sampling capabilities of our method applied to this system.

(a) Isodensity Interpolation. (b) Simple Averaging.

(c) Isodensity Interpolation + Score-Aligned Ascent. (d) Simple Averaging + Score-Aligned Ascent.

Figure 11: Histogram of ML predicted committors on Chignolin.

429

20



F.2.3 Comparison with Other Methods430

We evaluate two baseline methods for generating conformational pathways: linear interpolation,431

performed after applying the Kabsch algorithm [Lawrence et al., 2019], and a geodesic interpolation432

approach based on the radius of gyration, as proposed by Zhu et al. [2019], in Figure 12 and 13433

Specifically for the alanine dipeptide, both methods fail to produce physically realistic pathways,434

as they traverse significant energy barriers on the Potential Energy Surface (PES). Linear interpo-435

lation, in particular, is prone to generating intermediate conformations with severe steric clashes,436

leading to geometrically invalid structures. While the geodesic method avoids such direct structural437

inconsistencies, the pathway it defines remains energetically prohibitive and is therefore an unviable438

representation of the transition.

(a) Linear interpolation. (b) Geodesic interpolation.

(c) Structure of linear interpolation. (d) Structure of geodesic interpolation.

Figure 12: Comparison of linear and geodesic interpolation for alanine dipeptide. The top row
visualizes the interpolated pathways on the potential energy surface (PES), while the bottom row
shows representative intermediate structures.

439

21



(a) Linear interpolation. (b) Geodesic interpolation.

(c) Structure of linear interpolation. (d) Structure of geodesic interpolation.

Figure 13: Comparison of linear and geodesic interpolation for the folding of chignolin. The top row
displays the pathways on the PES, and the bottom row shows intermediate molecular structures.
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F.3 Qualitative Analysis of Chignolin Transition Mechanism440

(a) GAP generated samples. (b) References.

Figure 14: Visualization of chignolin transition state mechanisms. Representative structures from
GAP-sampled TSdown and TSup (left) ensembles are overlaid with transparent tubes on the reference
conformations from Kang et al. [2024] (right). The structural agreement validates our method’s
ability to resolve distinct folding pathways at atomic resolution.

To further validate the mechanistic accuracy of our approach, we conduct detailed structural analysis441

of the identified transition state sub-ensembles. As shown in Figure 14, representative structures442

from our GAP-generated TSdown and TSup ensembles exhibit remarkable concordance with reference443

configurations from Kang et al. [2024]. This structural validation confirms that our method not444

only localizes the correct transition region but also faithfully reproduces the atomic-level details that445

distinguish competing folding mechanisms, establishing GAP as a powerful tool for mechanistic446

discovery in complex biomolecular systems.447
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