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Abstract

The identification of transition states, first-order saddle points on high-dimensional
potential energy surfaces, is a central challenge in the physical and life sciences, as
they govern the kinetics and mechanisms of chemical reactions and conformational
changes. Existing methods for locating these states often require knowledge
about the transition, such as a good initial guess of the transition pathway or
reaction coordinates. We introduce GAP, Guided Diffusion for A Priori Transition
State Sampling, a new workflow that reframes this search problem as a direct
generative task. GAP utilizes a score-based diffusion model trained exclusively
on configurations from known metastable states, requiring no prior data from the
transition region. During inference, we guide the generative process to sample
from the dividing isodensity surface between the stable states with a principled
composition of conditional scores. This process is coupled with a Score-Aligned
Ascent mechanism that maximizes the energy along the score-based reaction
coordinate approximation, effectively collapsing the sampling onto the transition
state ensemble. We validate our approach on a series of benchmarks, from 2D
potentials to the high-dimensional conformational changes of alanine dipeptide
and the folding of the chignolin protein. Our results demonstrate that GAP not only
locates transition states with high precision but also discovers competing reaction
pathways, a new way of locating transition states in mechanistic studies.

1 Introduction

Understanding and predicting the dynamics of molecular systems, from chemical reactions to protein
folding, is fundamentally dependent on characterizing their transition states (TS) [Eyring, 1935,
Wigner, [1938]]. These states, defined as first-order saddle points on the potential energy surface
(PES), represent the highest energy configurations along a minimum energy path and act as the
kinetic bottlenecks that determine reaction rates and mechanisms. Despite their central importance,
locating transition states is a notoriously difficult problem. Their short lives and scarcity make them
experimentally elusive and computationally expensive to locate, requiring specialized algorithms to
navigate complex, high-dimensional landscapes.

Over the past decade, there have been major advances in the development of systematic TS optimiza-
tion campaigns across diverse chemical systems [Steiner and Reiher} 2022]]. However, these methods
remain computationally intensive and the underlying algorithms often require chemically informed
initial guesses of reaction pathways or TS structures that are difficult to generalize across different
chemical systems.

Data-driven transferable models can bypass this need for prior knowledge of the system, but their
applicability is limited to domains where large curated datasets of known transition states [Pattanaik
et al., 2020, |Duan et al.,|2023| [Kim et al., 2024 or connected minima [Nam et al., | 2025]] are available
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for training. Recent alternatives that sample reaction paths with diffusion models [Raja et al.| |2025]
rely on accurately learning the PES near the TS, limiting their utility for unexplored systems.

To address these respective limitations of classical and data-driven methods, we introduce Guided Dif-
fusion for A Priori Transition State Sampling (GAP), a workflow that integrates generative sampling
with force-field—based optimization to achieve robust generalizability. Our first central hypothesis is
that a useful initial guess of the TS ensemble can be inferred from the learned probability distributions
of the metastable states (e.g., reactants and products). GAP employs a single, conditionally trained
score-based diffusion model that learns the data manifold of metastable states [[Song et al.,[2020, Ho
and Salimans| 2022]]. At inference, we guide the reverse diffusion process to sample configurations
on the dividing surface where the probability of belonging to either state is equal. This is achieved
through a principled composition of the conditional scores with the method introduced in [Skreta
et al.| [2024]], which we term Score-Based Interpolation (SBI). These samples are then refined
by force-based updates on the PES, ascending along the reaction coordinate and descending along
orthogonal directions, using our second key insight that the reaction coordinate can be effectively
approximated from the conditional diffusion scores. This process, which we call Score-Aligned
Ascent (SAA), alleviates the need for the diffusion model to perfectly learn the PES. Crucially, this
entire process is performed a priori, without any knowledge or training data from the transition region
itself.

Our contributions are threefold: (1) We propose a novel workflow for direct TS sampling that
leverages guided diffusion, eliminating the need for path-finding algorithms or prior TS data. (2) We
introduce the combination of Score-Based Interpolation and Score-Aligned Ascent as a principled
mechanism for guiding a diffusion process to sample first-order saddle points. (3) We show that GAP
successfully identifies known transition states and competing pathways in systems ranging from 2D
potentials to the high-dimensional alanine dipeptide and chignolin systems.

2 Method

2.1 Score-Based Interpolation of Diffusion Models

Our objective is to infer the TS, given MD data of each metastable state. First, we annotate each data
point with its metastable state ¢ and train a denoising score matching model [Song et al., 2020], with
Classifier-Free Guidance (CFG) [Ho and Salimans| [2022]. The model learns to approximate both the
conditional, V log p;(x]c¢), and unconditional score function Vy log p;(x) that can be used to sample
from the reverse process stochastic differential equation (SDE):

dx = [f(x,7) — g(7)*Vlog pi(x|c)dT + g(7)dW, 4))

from a randomly initialized x, ~ N(0, I). The scores are parametrized by the CFG-based score
s(x,t) =~ Vlogp:(x]|c), given by extrapolation:

Sg (X7 t) =S¢ (Xv tv (Z)) + ’7(80 (Xa t7 C) — S¢ (X7 t; @))7 (2)

where c is the condition, replaced by a null token () for the unconditional score, and - is the guidance
scale that controls the strength of conditioning.

Our key intuition is that the TS region can be effectively sampled by interpolating between the learned
conditional scores of the two metastable states, A and B. We formulate this using a combined score
function for the reverse SDE:

sgomb(x’ t) = SE(X, t) + H(S?(X, t) — sg(x, t), 3)

where the interpolation weight « controls the contribution of each state’s score. We propose two
strategies for determining «: Isodensity Interpolation (II) and Simple Averaging (SA). The II
approach is inspired by the Superposition of Diffusion Models (SuperDiff) AND operator, specifically
designed to sample the equal density region between states [Skreta et al.,2024]]. The SA approach
provides a simpler baseline by directly averaging the two conditional scores, which corresponds to
setting x = 0.5 [Liu et al., [2022].

2.2 Score-Aligned Ascent for Saddle Point Search

To further refine the TS samples and push them towards the true saddle point, we propose the Score-
Aligned Ascent (SAA) algorithm. Transition states are first-order saddle points on a multi-dimensional
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potential energy surface (PES). Locating a transition state corresponds to an optimization problem,
where the energy needs to be maximized along the given transformation often referred to as the
reaction coordinate r, and minimized in all orthogonal directions. This is achieved by decomposing
the negative energy gradient (—VU (x)) into components parallel and perpendicular to the reaction
coordinate. We then invert the parallel component to create an ascent force that pushes the system
uphill along r, while preserving the original components that minimize the energy in all orthogonal
directions. This operation yields the idealized SAA force: Fsap = —VU (x) +2(VU (x) - 1)r/||r||3.
This force projection-based optimization to find the saddle point has been introduced in
and Jonsson|[[1999]. One of our key findings is that we can dynamically approximate r at each step
by taking the difference of scores conditioned on each states: £ = s§(x,t) — s§(x, t). This vector
naturally points from one metastable state to the other (see Appendix D).

Summarizing the workflow, we first solve the reverse-time SDE with interpolated score up to a chosen
fixed timestep close to the SDE endpoint to ensure reliable force calculation, pause the reverse SDE
process, and use Fsap = —VU (x) + 2(VU(x) - #)&/||#])3 to optimize the configurations. We then
resume the reverse SDE sampling, which corrects nonphysical configurations (see Algorithm [T]).

3 Experiments and Results

For all systems, we train a score-based diffusion model on a dataset containing metastable state
configurations, and apply our GAP algorithm to identify the TS ensemble. For chemical systems, we
report the committor function value (¢) which gives the probability that a trajectory starting from a
given state will reach one metastable state before reaching another metastable state. Detailed settings
for experiments are detailed in Appendix [C|and ablation studies of the methods in Appendix [F1]

3.1 Validation on 2D Model Potentials

1.5

GAP Samples

Training Data (State A)
Training Data (State B) 10
Low Energy TS

High Energy TS

GAP Samples
Training Data (State A)
o Training Data (State B)
Low Energy TS
«  High Energy TS
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(a) Miiller-Brown potential. (b) Double-path potential.

Figure 1: Our method (GAP) simultaneously discovers multiple transition states on two benchmark
potentials, (a) Miiller-Brown and (b) double-path potential.

Miiller-Brown Potential. This analytic two-dimensional potential has served as a test case for
various TS search algorithms. The surface includes three local minima connected by two first-order
saddle points. We assigned the two states A and B, shown in Figure[Ta] to the two lowest energy
states, due to the short lifetime of the third metastable state, which prohibits sufficient state-specific
sampling. Nevertheless, the GAP algorithm locates configurations that cluster around both accessible
transition states. Our ablation studies (Figure [6) indicate that the ability to locate both transition
states was primarily driven by SAA.

Double-Path Potential. We next evaluate our method’s robustness with a synthetic 2D potential
engineered to exhibit two topologically distinct transition pathways connecting identical reactant
and product states. This surface represents a particularly challenging test case, as conventional
path-finding algorithms typically suffer from pathway degeneracy issues and may fail to identify both
routes. As shown in Figure[Tb] the GAP algorithm automatically discovers and populates both TS
regions.
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3.2 Application to Chemical Systems

1.0 1.0
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(a) Alanine dipeptide conformational change. (b) Chignolin folding.

Figure 2: Application of our method to chemical systems. (a) For the alanine dipeptide, the generated
samples (circles) localize the transition region between two states. (b) For chignolin, the free energy
landscape is projected onto the two slowest time-independent components. The samples generated by
our method clearly discriminate between two distinct folding pathways (TS%*" and TS"). In both
plots, the color scale corresponds to the machine-learned committor value.

Alanine Dipeptide. Beyond model potentials, we evaluated our algorithm on molecular systems
such as the conformational dynamics of alanine dipeptide. This system involves a 22-atom molecule
implying a high dimensional configuration space. The conformational landscape of alanine dipeptide
is conventionally analyzed through its Ramachandran plot, defined by the dihedral angles ¢ and
1. We focus on the isomerization between the two most populated conformational states, the C5
and C7ax conformations, which represent distinct local minima separated by substantial free energy
barriers [Chekmarev et al.,2004]]. The configurations generated by our algorithm lie in two narrow
regions on the Ramachandran plot, which correspond to the known transition states for C5-C7ax
interconversion. The agreement with reference data is validated by a narrow distribution of committor
values around 0.5, calculated by running short Langevin Dynamics simulations from the samples, as
shown in Figure 2a]and [T0} Both Figure [2a]and [I0]demonstrate a peaked distribution of committor
values around 0.5, validating our method.

Chignolin. We conclude our experiments by studying coarse-grained chignolin, a 10-residue
fast-folding protein with multiple competing folding pathways, and transition timescales spanning
microseconds, using the DESRES dataset [Lindorff-Larsen et al.l 2011]. To visualize the GAP-
generated configurations we project them onto the two-dimensional space of time-lagged independent
components (TICA) [Molgedey and Schuster}, [1994), [Pérez-Hernandez et al.) . We compute the
committor values with an ML model trained by Kang et al.|[2024]|. Figure 2b]and [T1]demonstrates
that GAP samples concentrate along the ¢ ~ 0.5 isosurface, providing quantitative and qualitative
confirmation of our method. Crucially, the samples resolve into two distinct clusters, consistent with
the two known competing reaction pathways termed TS%"" and TS, shown in Figure

4 Conclusion

We introduce GAP, a novel workflow that reconceptualizes TS sampling as a direct generative
modeling task by leveraging a score-based model conditioned on known metastable states. Our
method composes learned distributions with Score-Based Interpolation to target directly the dividing
surface of equal probability density, while Score-Aligned Ascent provides a principled mechanism to
guide sampling. This establishes a new paradigm for a priori sampling of transition state ensembles,
offering a computationally efficient and scalable solution for complex biomolecular systems, as
demonstrated on alanine dipeptide and chignolin. Future work will focus on testing this workflow to
larger systems with production-level force fields and navigating more complex reaction networks
with multiple intermediate states.
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A Related Works

A.1 Machine Learning for Transition State Search

Numerous machine learning approaches have been developed to study rare events and in particular
transition search. Early works leveraged a dataset of accumulated transition states to train generative
models [Pattanaik et al., 2020]] with diffusion models [Duan et al., 2023, [Kim et al., 2024|] and flow
matching [Duan et al.| 2025]. However, to alleviate the requirement of creating a transition state
dataset, later works aimed to leverage geometric optimization and energy evaluations during training
to find transition paths and extract transition states from it [Nam et al.| 2025]]. |Wang et al.|[2024]
also leveraged the metric induced by local molecular dynamics simulation to learn a generalized flow
matching model, while Raja et al.| [2025] relied on the learned forcefield from pre-trained diffusion
models with the Onsager—Machlup functional to approximate the transition path.

A.2 Inference-time Control for Diffusion Models

Diffusion models excel at generating high-quality data, spanning images, texts to molecular structures.
Beyond sampling from the learned distribution, they can be guided to generate from modified
target distributions that encode design objectives, constraints, or rewards. The early and well-
known examples are classifier guidance and classifier-free guidance to sample from conditional
distributions [[Ho and Salimans| [2022]]. Later on, inference-time control has been extended to
compositional, reward-tilted, annealed, equal density distributions and more [Du et al., 2023, Skreta
et al., 2024, [2025]]. One popular branch of methods develop upon the heuristics and approximate
guidance [Chung et al.}|2022]]. Another branch of methods study exact guidance where expensive
Monte Carlo (MC) estimations are required [Lu et al., 2023]]. Recently, sequential Monte Carlo
methods have become relevant to reweight on path space to reduce the variance of inference-time
control [Wu et al.l |2023| [Skreta et al., 2025/ [He et al., 2025]].

B Background

B.1 Score-Based Diffusion Models

Given a forward process that transforms a data distribution p(x) over a continuous time variable
t € [0, T7] into a known prior distribution pr(xr), typically the standard Normal distribution N (0, I),
a diffusion model sy(x,t) can be trained such that a reverse process transforms samples from the
prior distribution to the data distribution [Sohl-Dickstein et al.,[2015]. The model can learn the added
noise in each time step ¢ [Ho et al.| 2020]] or the gradient of the log-probability of the data distribution
V« log pi(x), the so-called score function [[Song and Ermon, [2019]. Both training strategies can be
related as discretizing the same continuous reverse process described by the stochastic differential
equation (SDE)

dx = [f(x,7) — g(7)*Vx log p- (x)|d7 + g(7)dw, )
where f(x,t) is the drift coefficient, g(¢) is the diffusion coefficient, W is a reverse Wiener process,
and the reverse time 7 € [T, 0] [Song et all 2020]. Once the model sy(x, ) is trained, it can be
applied as a generative model by initializing the reverse SDE with noise x, ~ A(0, I) and solving it
numerically.

B.2 Classifier-Free Guidance

Classifier-Free Guidance (CFG) [Ho and Salimans| [2022] is a technique for conditional generation
that trains a single diffusion model to handle both conditional and unconditional generation scenarios.
The model is trained to predict the score of the data distribution, conditioned on the label ¢ €
{C1,Cs, ..., 0}. During training, the conditioning information is randomly dropped with a given
probability pgr.p. This technique enables the single model to learn both the conditional score
functions, V log p;(x|c), for each label, and the unconditional score function, V log p;(x), over the
entire data manifold. During inference, the CFG-based score s§(x, t) is given by interpolation

sp(x,t) = so(x,t,0) + v(sa(x, ¢, ¢) — s9(x,t,0)), 5)

where sy (x, t, c) is the conditional score, sg(x,t,() is the unconditional score, where the condition ¢
is replaced by a null token (3, and - is the guidance scale that controls the strength of conditioning.
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This approach provides fine-grained control over conditioning strength without requiring separately
trained conditional models.

B.3 Superposition of Diffusion Models

The Superposition of Diffusion Models (SuperDiff) [Skreta et al.,[2024] provides a principled way
to combine the score functions from multiple models, each trained on a different data distribution.
Given two score models, s4 and sp, trained on distributions p4 and pp respectively, a composite
score function can be constructed by a weighted average:

S50 (x, 1) = sB(x, ) + k(s (%, 1) — sB(x,1)). ©)

The interpolation factor «(t) determines the nature of the composition, enabling the generation of
samples from distributions that represent logical combinations of the base distributions. For example,
setting (t) based on the relative likelihoods of a sample under each model can produce samples
from the union (OR) of the distributions, while setting x based on equal likelihoods can produce
samples from the intersection (AND). In the context of transition state sampling, we are interested in
the latter and a (¢) that satisfies the equal density:

dlog pp(x) = dlog pg (x) @)

can be found by solving a set of three linear equations [Skreta et al.,[2024]]. As a comparison, we
also include in our ablations Simple Averaging of the scores to interpolate and steer the diffusion
process [Liu et al.| 2022].

B.4 Local mode maximization

Transition states are first-order saddle points on a multi-dimensional potential energy surface (PES).
Localizing a transition state corresponds to an optimization problem, where the energy needs to
be maximized along the given transformation and minimized in all orthogonal directions. If the
mode of transformation r, commonly referred to as reaction coordinate, is known, a gradient-based
optimization to the transition state can be achieved with a sufficiently close start condition. The
optimization is driven by the step Ax; that is determined by the gradient of the potential energy with
respect to nuclear coordinates g(x)

Ax; = —g(x) + 2 (g(x)"r) r. )

However, the definition of r is non-trivial for a given chemical system. Existing approaches, such
as the Dimer algorithm Henkelman and Jonsson/[[1999], |Olsen et al.|[2004], Heyden et al.| [2005]],
Kistner and Sherwood| [2008]], Shang and Liu|[2010], find local approximations to r by locating the
direction of least curvature with gradient calculations for multiple close-lying configurations on the
PES.

C Additional Details on Experiments

1D PES Example. The 1D PES example is a simple potential with two distinct states. The analytical
formula for this potential energy surface is given by:

V(z)=0.1z* — 22 + 0.1z + 1.0 9)

Miiller-Brown Potential. For the Miiller-Brown potential, our methodology adheres to the training
procedure detailed in [Raja et al.|[2025]]. A score-based diffusion model was trained on the ‘tiny’
subset of the provided dataset, which consists of 4,000 samples. The two metastable states, A and B,
are defined by the coordinate criteria y < 20 and y > 20, respectively.

The analytical surface of this system is defined as:

4

V(z,y) = Z Ajexp [ai(z — a;)? + Bi(z — ai) (y — b)) + 7y — b;)?] (10)
i=1
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with the parameters taken directly from the simulation code:

A =10 x barrier x [—1.73, —0.87, —1.47,0.13]
a=10"? x [-0.39, —0.39, —2.54,0.273]

a = [48, 32,24, 16]

B =10"2x[0,0,4.30,0.23]

b=[8,16,32,24]

v =10"% x [-3.91, -3.91, —2.54, 0.273]

where ‘barrier’ is a scaling factor for the height of the potential barrier, for which we used 1.0.

Double-Path Example. For the double-path potential, the dataset was generated via Langevin
Dynamics simulations, following the procedure outlined in[Raja et al|[2025]. A score-based diffusion
model was subsequently trained on a curated subset of these simulation data, with 4,000 samples.
State A and B are defined by the regions x < 0 and x > 0, respectively.

The analytical formula for the potential energy surface is given by:

4 10
V(z,y) =10 (2 + §x4 — 22 +yt+ gszzz(y2 - 1)>

0.7)2 —0.8)?
+ Texp <—(x+ )OZQ(y ) > "
N (2 =10+ (y+0.3)° (b
P 0.42
1.0)2 0.6)2
~Gexp (_(w+ )OZQ(H ) )

Y [rad]

-3 -2 -1

0 1 2 3
@ [rad]

(a) Alanine dipeptide. (b) Chignolin.
Figure 3: Potential Energy Surface (PES) of alanine dipeptide and chignolin.

Alanine Dipeptide. We generate the dataset by running Langevin Dynamics from each state
(C5 and C7ax) for 500 ps with a 1 fs time step saving every 10 steps. We then slice parts of the
trajectory that covers the widest region in Ramachandran space (¢, ¢) and subsample randomly 2.5k
configurations for each of the two states. In Figure Ba] we show the PES of alanine dipeptide. We
propagate the dynamics using a custom force field taken from |[Raja et al.|[2025]] at T=300K. We
then train a diffusion model based on the EquiformerV2 architecture [Liao et al.] with up
to L=2 representations, four attention heads and 64 channels. The radius graph is computed with
Teutoff = 9.0 Angstrom. We use the AdamW optimizer with a constant learning rate 6.10~%, 0.001
weight decay. We use an 0.999 Exponential Moving Average (EMA) decay with an effective batch
size of 128, and train for 500 epochs. For diffusion, we leverage the Denoising Diffusion Probabilistic

10
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Model framework (DDPM) with 1000 time steps and a cosine schedule [Ho et al.,[2020]. For SAA,
we use 600 optimization steps, a learning rate of 0.003, 51 = 0.0, and 32 = 0.999.

The committor probabilities are computed from 100 configurations sampled from the method. We
first run a 2 ps long simulation and filter out all the configurations leading to instability that are
labelled as non physical. For all reported results, more than 98% of samples were kept and used
for the committor calculations. We compute the committor probabilities by running 100 replicas
stochastic Langevin Dynamics with randomly initialized velocities using the same force field that
generated the dataset to stay consistent with the PES distribution. The simulations are run for 1 ps
with 1 fs at T=300K. We define each state limits and record the region first reach for each replica to
compute the probability of reaching one state or the other.

Chignolin. For our analysis of Chignolin, which is one of the fast-folding proteins, we employed
the DRSRES coarse-grained (CG) dataset [Lindorff-Larsen et al., [2011]]. In Figure we show
the PES of chignolin training dataset. We removed all the conformations with ML committor value
between 0.0001 and 0.9999. Our conditional diffusion model is an adaptation of the pre-trained
architecture from |Arts et al|[2023]]. We finetuned this base model to enable conditional generation by
incorporating a group embedding that specifies the state, i.e., folded or unfolded, at the beginning of
the forward process. Sampling was then performed using SAA hyperparameters with 100 optimization
steps, a learning rate of 0.0005, and a pause ratio of 0.05. Finally, the generated configurations were
validated by computing their committor probabilities with the machine-learned committor predictor
model from Kang et al.|[2024]).
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a3 D Validation of Score Difference Approximation to Reaction Coordinate

s74 To validate the claim that the score difference approximates the reaction coordinate, i.e., sa(x, ) —

375 sp(x,t) = r, we compare the two vectors in Figure F_ll The visualization shows strong alignment

376 between our approximation (blue arrows) and the true reaction coordinate (red arrows). This is

377 quantified by the high average cosine similarity: 0.9275 on the Miiller-Brown potential and 0.9584
on the Double-Path example.

40

1.5

@ GAP Samples
mmm True Reaction Coordinate
mmm Score Difference
© Training Data (State A)
e Training Data (State B)

o GAP Samples
W= True Reaction Coordinate

351 = Score Difference

30

25

>
20

15

10

5

-1.5+4 : : . ’ ‘ !
215 -1.0 -05 0.0 0.5 1.0 15
X X
(a) Miiller-Brown Potential. (b) Double-Path Example.

Figure 4: Validation of Score Difference Approximation. The score difference vector (red) closely
aligns with the true reaction coordinate (blue) on (a) the Miiller-Brown potential and (b) a Double-
Path example.

378

12



s7s E  GAP Sampling Algorithm

Algorithm 1 Sampling with Score-Based Interpolation and Score-Aligned Ascent

Require: Denoising model €y (%, t, ¢) with classifier-free guidance; Energy-based force field F(x);
Total number of time steps T'; Guidance pause time step Thause; Number of optimization steps
Nope; Optimizer hyperparameters © .

Output: Sampled molecular conformation x.

: function SBI_COMBINE(xy, t)
Compute conditional noise estimates: €' < €p(x,t, A), €2 + €g(xs,t, B).
Compute the interpolation factor: r; + SBI(ef', €Z, x4, 1).
Combine noise estimates: €comp < €2 + 14 (€7' — €P)
return €.onmp, €;', €2
: end function

A S T

7: Initialize positions x7 ~ N(0,T).
// Phase 1: Denoising with Score-Based Interpolation
8: fort < T, Thause + 1 do

9: €comb; _, _ < SBI_Combine(x¢, t)
10: Perform one reverse diffusion step to obtain x;_; from x; and € omp-
11: end for

// Phase 2: Score-Aligned Ascent Optimization at latent time T},qqe
12: Let z < X7, Initialize an optimizer O with Opy.
13: for k < 1, Noyc do

14 €comb eﬁm, eﬁ 4 SBI_Combine(xr,,.., Tpause)
15: Approximate the reaction coordinate: T < e% — e?pm.
16: Predict the clean sample: X < predict_xo(2, Tpause; €comb)-
17: Evaluate the force from the external field: £ + F(%Xo).
18: Compute the Score-Aligned Ascent force: fsap < f — 2%7‘.
2

19: Update positions with gradient descent: z « O(z, V,L), where V, L = —fspn.
20: end for
21: X Tpuse — Z.

// Phase 3: Resumed Denoising
22: for t < Thause, 1 do
23: €combs _, _ < SBI_Combine(xy, t)
24: Perform one reverse diffusion step to obtain x;_; from x; and € omp-
25: end for

return xg.
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F Additional Figures for Ablation Study

F.1 Effect of Score-Based Interpolation and Score-Aligned Ascent

F.1.1 1D PES Example

We first investigate the effects of Score-Based Interpolation and Score-Aligned Ascent on a one-
dimensional potential energy surface, with the results presented in Figure 5] When employing simple
averaging for interpolation, it fails to capture the true transition state, instead averaging points to a
higher energy region. In contrast, isodensity interpolation generates samples that more accurately
close to the true transition state. The introduction of score-aligned ascent further refines these
results. For both interpolation methods, score-aligned ascent pushes the diffusion process towards TS
regions, correcting deviations and ensuring the final states closely align with the true TS. Notably,
the combination of isodensity interpolation and score-aligned ascent yields the most accurate and
physically meaningful transition path.

4 3.0 4 3.0
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(c) Isodensity Interpolation + Score-Aligned Ascent.

(d) Simple Averaging + Score-Aligned Ascent.

Figure 5: Impact of Score-Based Interpolation and Score-Aligned Ascent on 1D PES Example.
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F.1.2 2D PES Example

We perform the ablation study to two-dimensional potential energy surfaces of Miiller-Brown potential
and Double-path potential to evaluate the distinct contributions of the Score-Based Interpolation (SBI)
and Score-Aligned Ascent (SAA) components. On both systems, as shown in Figure[6]and[7] using
Isodensity interpolation draws a line between two states, while Simple Averaging (SA) alone being
less effective, producing a more scattered distribution of samples, with several located in nonphysical
high-energy regions. Neither interpolation method on its own is sufficient for precise TS localization.
The introduction of the Score-Aligned Ascent proves crucial, which refines the samples, collapsing
the broad distributions onto the precise locations of the low- and high-energy transition states.

>

(c) Isodensity Interpolation + Score-Aligned Ascent.
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(a) Isodensity Interpolation.
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(d) Simple Averaging + Score-Aligned Ascent.

Figure 6: Impact of Score-Based Interpolation and Score-Aligned Ascent on Miiller-Brown potential.



GAP Samples

Training Data (State A)
Training Data (State B)
Low Energy TS
High Energy TS

7 \

GAP Samples

Training Data (State A)
Training Data (State B)
Low Energy TS

High Energy TS

—-1.5+ T T T
=15 -1.0 -0.5 0.0 0.5 1.0 15

GAP Samples

Training Data (State A)
Training Data (State B)
Low Energy TS

High Energy TS

GAP Samples

Training Data (State A)
Training Data (State B)
Low Energy TS

High Energy TS

215 -10 -05 00 0.5 10 15
X X
(c) Isodensity Interpolation + Score-Aligned Ascent. (d) Simple Averaging + Score-Aligned Ascent.

Figure 7: Impact of Score-Based Interpolation and Score-Aligned Ascent on Double-path potential.
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F.1.3 Chemical Systems

We further extend our ablation study to chemical systems, alanine dipeptide and chignolin, to assess
the performance of our method in high-dimensional cases.

For alanine dipeptide, as shown in Figure 8] the results highlight the critical role of score-aligned
ascent. Isodensity Interpolation and Simple Averaging, when used alone, incorrectly identify a
region of very high potential energy as the transition state. Upon introducing score-aligned ascent,
both methods are improved, which drives generated samples are successfully guided away from
high-energy regions and converge precisely onto the known, physically meaningful transition states
based on the PES.

A similar trend is observed for the folding of chignolin, depicted in Figure[9} While both interpolation
methods can generate a coarse path between the folded and unfolded states, the resulting samples
are diffuse and do not clearly define the transition pathway. The addition of score-aligned ascent is
essential for refining this pathway, driving the scattered points near-TS region. This demonstrates
that the combination of isodensity interpolation and score-aligned ascent is robust and effective for
identifying transition states in complex biomolecular systems.
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Figure 8: Impact of Score-Based Interpolation and Score-Aligned Ascent on alanine dipeptide.
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Figure 9: Impact of Score-Based Interpolation and Score-Aligned Ascent on Chignolin.
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F.2 Committor Analysis of Chemical Systems

F.2.1 Alanine Dipeptide

In Figure[I0] we report histograms of the distributions of committor values calculated based on the
samples in Figure[8] We observe that given the partial coverage of the metastable states by our MD
simulations at 300K, simply using Score-Based Interpolation allows to sample an intermediate region
but not the TSs themselves. The SAA algorithm successfully directs the samples towards the true
TSs as demonstrated by a peaked distribution of the committor values around 0.5. SuperDiff AND

surpasses SA in our experiments.

14 ~= Committor = 0.5 | 0.4<q<0.6: 18% | Median: 0.250

0.0 0.2 0.4 0.6 0.8 1.0
Committor

(a) Isodensity Interpolation.

== Committor = 0.5 | 0.4<q<0.6: 70% | Median: 0.530

Committor

(c) Isodensity Interpolation + Score-Aligned Ascent.
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(b) Simple Averaging.
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(d) Simple Averaging + Score-Aligned Ascent.

Figure 10: Histogram of calculated committors on alanine dipeptide.
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F.2.2 Chignolin

We report ML committor values computed with the trained models from [Kang et all, 2024] to
compare the effects of SBI and SAA algorithm. We observe that SAA consistently increases the
number of samples close to the ¢ = 0.5 region. We note that the ML committor model draws much
sharper isocommittor surfaces compared to our MD evaluation for alanine dipeptide. We refer to [F3]
for all TS sampling capabilities of our method applied to this system.
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(a) Isodensity Interpolation. (b) Simple Averaging.
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Figure 11: Histogram of ML predicted committors on Chignolin.

20



430

431
432
433
434
435
436
437
438

439

F.2.3 Comparison with Other Methods

We evaluate two baseline methods for generating conformational pathways: linear interpolation,
performed after applying the Kabsch algorithm [Lawrence et al., 2019], and a geodesic interpolation
approach based on the radius of gyration, as proposed by [Zhu et al [2019]], in Figure [12] and [13]
Specifically for the alanine dipeptide, both methods fail to produce physically realistic pathways,
as they traverse significant energy barriers on the Potential Energy Surface (PES). Linear interpo-
lation, in particular, is prone to generating intermediate conformations with severe steric clashes,
leading to geometrically invalid structures. While the geodesic method avoids such direct structural
inconsistencies, the pathway it defines remains energetically prohibitive and is therefore an unviable
representation of the transition.
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(a) Linear interpolation. (b) Geodesic interpolation.

(c) Structure of linear interpolation. (d) Structure of geodesic interpolation.

Figure 12: Comparison of linear and geodesic interpolation for alanine dipeptide. The top row
visualizes the interpolated pathways on the potential energy surface (PES), while the bottom row
shows representative intermediate structures.
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Figure 13: Comparison of linear and geodesic interpolation for the folding of chignolin. The top row
displays the pathways on the PES, and the bottom row shows intermediate molecular structures.
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440 F3 Qualitative Analysis of Chignolin Transition Mechanism

Q ﬂ 3

TSdown TSup TSdown TSur

(a) GAP generated samples. (b) References.

Figure 14: Visualization of chignolin transition state mechanisms. Representative structures from
GAP-sampled TS%"" and TS"? (left) ensembles are overlaid with transparent tubes on the reference
conformations from |Kang et al.| [2024] (right). The structural agreement validates our method’s
ability to resolve distinct folding pathways at atomic resolution.

441 To further validate the mechanistic accuracy of our approach, we conduct detailed structural analysis
a2 of the identified transition state sub-ensembles. As shown in Figure [T4] representative structures
443 from our GAP-generated TS*" and TSP ensembles exhibit remarkable concordance with reference
444 configurations from [Kang et al.| [2024]. This structural validation confirms that our method not
445 only localizes the correct transition region but also faithfully reproduces the atomic-level details that
446 distinguish competing folding mechanisms, establishing GAP as a powerful tool for mechanistic
447 discovery in complex biomolecular systems.
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