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Abstract

Recommender systems (RS) are increasingly important in so-
cial media, entertainment, and e-commerce in the information
explosion era. However, the collected data contains many bi-
ases such as selection bias, as users are free to choose items to
rate, making the collected data not representative of the target
population. Recently, many methods such as relabeling-based
and reweighting-based have been proposed to mitigate the
selection bias. However, the effectiveness of these methods
relies on strong assumptions, which are difficult to satisfy in
real-world scenarios, leading to sub-optimal debiasing perfor-
mance. In this paper, we propose a debiasing method from
the machine unlearning perspective. Specifically, we first pro-
pose a user unlearning rate network to determine which user
needs to be unlearned. Then we generate the error-maximizing
pseudo-labels for each user and fusion such pseudo-labels and
the observed labels based on the learned user unlearning rate
to mitigate the selection bias. In addition, we further propose
an unlearning to debias training algorithm to achieve unbiased
learning of the prediction model. Finally, we conduct exten-
sive experiments on three real-world datasets to validate the
effectiveness of our method.

Introduction
Recommender systems (RS) are increasingly important in so-
cial media, entertainment, and e-commerce in the information
explosion era (Shi, Larson, and Hanjalic 2014; Zhang et al.
2023; Wang et al. 2020a). It provides personalized recommen-
dations to users by analyzing their historical behavior (Koren,
Bell, and Volinsky 2009; He et al. 2017; Zhang, Liu, and
Wu 2018; Wang et al. 2021a). However, the collected data
contains many biases such as selection bias, as users are free
to choose items to rate, making the collected data not repre-
sentative of the target population (Marlin and Zemel 2009;
Marlin et al. 2007; Wang et al. 2024b; Yang et al. 2023),
which challenges the unbiased learning of RS. That is, due
to the difference between the training and inference space,
simply adopting empirical risk minimization (ERM) on the
training data cannot achieve superior prediction performance
on all user-item pairs.

Recently, many methods have been proposed to miti-
gate the selection bias. The error-inputation-based (EIB)
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method (Steck 2010) first uses the imputation model to esti-
mate the missing labels and then trains the prediction model
using observed labels and pseudo-labels. However, it is dif-
ficult to obtain accurate pseudo-labels in practice (Dudík,
Langford, and Li 2011; Dai et al. 2022; Li et al. 2023a). The
inverse propensity scoring (IPS) based methods adopt the
reweighting strategy to the observed data to adjust the distri-
bution (Schnabel et al. 2016; Saito et al. 2020), but due to the
data sparsity, it is hard to obtain accurate propensities (Wang
et al. 2022a). The doubly robust (DR) based methods use the
imputation and propensity models simultaneously, leading to
low variance (Wang et al. 2019; Saito 2020), but with short-
comings that the debiasing performance heavily relies on
the correct specification of the imputation and the propensity
models (Kweon and Yu 2024; Li et al. 2024c). By jointly
modeling rating values and user selection, generative models
have high explainability but usually with complex and sophis-
ticated models that are hard to train in practice (Marlin and
Zemel 2009; Hernández-Lobato, Houlsby, and Ghahramani
2014; Chen et al. 2018). In addition, Wang et al. (2020b)
adopts information bottleneck with a variational approxima-
tion, and Liu et al. (2022a) and Ding et al. (2022) adopt the
knowledge distillation approach to mitigate selection bias but
lack guarantees of achieving unbiasedness.

In this paper, we propose a machine unlearning approach
opening a new perspective for RS debiasing, with the core
observation that different users have different selection mech-
anisms when choosing items to be rated, and that users with
larger selection bias should be forgotten at a greater rate. For
example, Figure 1 illustrates a toy example where there are 6
users and 6 items in total, in which each user likes 3 items
out of all 6 items, and dislikes the other 3 items. Due to the
selection behavior, we can only collect the partial ratings as
shown in the middle figure, in which both user A and user B
rated one liked item and one disliked item, but user E rated
all items he disliked, and user F rated all items she liked.
From above, we can conclude that user A and use B rated
the items more like a ’random’ selection, whereas user E and
user F rated items with more self-selection behavior. If we
simply use the ERM to train the prediction model with the
collected ratings, the rating predictions for user E and user F
with more severe self-selection behavior will have a reduced
accuracy, as shown in the right figure. Thus, if we aim to
have an accurate prediction of the rating matrix over the en-



Figure 1: Motivation of unlearning for debiasing in recommendation.

tire user-item pairs, we should prefer to exploit the ratings
given by user A and user B for training the prediction model,
while downgrading sample weights when training with the
ratings given by user E and user F.

Specifically, we propose an unlearning debiasing frame-
work to first capture the user unlearning rate using a user
unlearning rate network by fusing a large amount of observa-
tional data and a small amount of unbiased rating. Then we
learn a pseudo-labeling model to maximize the error between
the generated pseudo-labels and predicted labels for all user-
item pairs. Finally, we train the prediction model based on
the learned error-maximizing pseudo-label, user unlearning
rate, and observed labels to achieve unbiased learning.

The contribution of this paper can be summarized below:

• To the best of our knowledge, we are the first work to
address selection bias in recommender systems from a
machine unlearning perspective.

• We use a user unlearning rate network to capture users
that need to be unlearned and combine this with an error-
maximizing pseudo-labeling model to unlearn those users
to achieve unbiased prediction.

• Experiment results on three real-world datasets verify the
effectiveness of the proposed method.

Related Work
Causal Recommendation
Selection bias is one of the most common biases in the RS
collected data, which is attributed to the fact that users are
free to choose which item to rate (Wang et al. 2023d; Wu
et al. 2022; Li et al. 2024b; Chen et al. 2023). This will result
in the distribution of the observed population being differ-
ent from that of the target population (Wang et al. 2022b;
Zou et al. 2023; Wang et al. 2024a, 2023a). Specifically, the
error-imputation-based (EIB) method (Steck 2010) first uses
the imputation model to estimate the missing labels and then
trains the prediction model using observed labels and pseudo-
labels. However, since the pseudo-labeling model is trained
on the observed data with selection bias, the EIB method
usually has a large bias due to incorrect imputations (Dudík,
Langford, and Li 2011). Another type of method is based
on inverse propensity scoring (IPS), which reweights the ob-
served data to adjust the observed data distribution to the

target distribution (Schnabel et al. 2016; Saito et al. 2020;
Zhang et al. 2024). However, it is difficult to accurately learn
the propensities due to data sparsity, and when there are ex-
treme propensity values, its variance can be large (Wang et al.
2022a). Li et al. (2023e) proposes a method for learning co-
variate balancing propensities, and Li et al. (2023d) further
discusses how to learn such propensities. The doubly robust
(DR) based method that combines the imputation model and
the propensity model are widely-used due to the low variance
and the doubly robust property, i.e., it is unbiased either the
imputed values or learned propensities are accurate (Wang
et al. 2019; Saito 2020), but the debiasing performance of
DR-based estimators heavily relies on the proper imputa-
tion or propensity learning strategy. DR-based methods have
gained increasing attention in recent years (Guo et al. 2021;
Li et al. 2023b; Song et al. 2023; Li, Zheng, and Wu 2022;
Li et al. 2023a). In addition, Wang et al. (Wang et al. 2020b)
and Liu et al. (Liu et al. 2021) use information bottleneck-
based method and Yang et al. (Yang et al. 2021) and Wang et
al. (Wang et al. 2023b) uses adversarial learning for debias-
ing.

Moreover, many studies focus on better debiasing with
the help of a small amount of unbiased data (Li et al. 2023c;
Xiao et al. 2024). For example, Liu et al. (2022a) and Ding
et al. (2022) adopt the knowledge distillation approach to
mitigate selection bias. Chen et al. (2021) uses meta-learning
to leverage unbiased data for debiasing, and Wang et al.
(2021b) uses bi-level optimization to learn propensities. Liu
et al. (2022b) proposes a self-supervised learning approach to
calibrate the rating distribution. Unlike the previous studies,
our method selects the samples in the observed data that need
to be forgotten, making the distribution of the remaining data
the same as the unbiased data.

Recommendation Unlearning
Machine unlearning is the process of removing the influence
of specific training data (also known as unlearning target)
from a learned model, which stems from the privacy and se-
curity concerns of the data provider (Nguyen et al. 2022; Xu
et al. 2023). Based on the design details, existing unlearning
methods can be broadly categorized into three groups: data re-
organization approaches (Wang et al. 2023c), model optimiza-
tion approaches (Sekhari et al. 2021; Graves, Nagisetty, and
Ganesh 2021), and training mechanism approaches (Chun-



dawat et al. 2023; Liu et al. 2022c), which have been widely
applied to image data (Tarun et al. 2023), text data (Wu, Do-
briban, and Davidson 2020), tabular data (Brophy and Lowd
2021), streaming data (Du et al. 2019), and graph-structured
data (Wu et al. 2023).

However, existing machine unlearning methods cannot be
directly used on recommender systems. Since recommender
systems rely on collaborative information across user-item
interaction, arbitrarily dividing the training data into shards
could lead to poor performance. To overcome these chal-
lenges, RecEraser (Chen et al. 2022) extends SISA (Bour-
toule et al. 2021) framework to recommender systems and
designs novel data partition algorithms to group similar data
into one shard. To enhance model utility, LASER (Li et al.
2023f) also groups similar data together but sequentially
trains the recommender model on sub-components instead
of training a sub-model for each shard. UltraRE (Li et al.
2024d) refines the design of each stage of RecEraser to re-
duce complexity without comprimising its efficacy. This type
of method, which requires the distributions of a naively re-
trained model and an unlearned model exactly the same, is
known as exact recommendation unlearning. Different from
these unlearning methods focusing on model optimization
or training mechanism, our approach uses the idea of data
reorganization in machine unlearning for debiased learning.
To the best of our knowledge, this is the first work that uses
unlearning methods for debiased recommendation.

Problem Setup
Let U = {u1, . . . , um} be a set of users, I = {i1, . . . , in}
a set of items, and D = U × I the set of all user-item pairs.
The rating matrix between users and items is denoted as R ∈
Rm×n. The observation matrix is denoted as O ∈ {0, 1}m×n,
where ou,i = 1 means ru,i is observed and ou,i = 0 means
ru,i is missing. Denote the features of user and item as xu,i,
and the predicted rating as r̂u,i = fθ(xu,i), where f(·) is the
prediction model parameterized by θ. If the rating matrix is
fully observed, then the prediction model can be unbiasedly
trained by minimizing the ideal loss

Lideal(θ) =
1

|D|
∑

(u,i)∈D

L(fθ(xu,i), ru,i) :=
1

|D|
∑

(u,i)∈D

eu,i,

where L(·, ·) is the training loss between the predicted rat-
ing r̂u,i and the ground truth rating ru,i, with L(·, ·) as an
arbitrary pre-defined loss function, e.g., square prediction
error L(fθ(xu,i), ru,i) = (fθ(xu,i)− ru,i)

2. In the presence
of missing ground truth ratings, the training loss for the cor-
responding samples cannot be computed, and a naive way
is to minimize the average training loss over the observed
samples, which is shown below

EN(θ) =
1

|O|
∑

(u,i)∈O

eu,i,

where O = {(u, i) | (u, i) ∈ D, ou,i = 1} is the set of user-
item pairs with the observed ratings. However, as users are
free to choose which items to rate, so that the observed ratings
are not a representative sample of all ratings, resulting in a

biased estimate of the ideal loss, i.e., E[EN(θ)] ̸= Lideal(θ).
To address this problem,

The IPS estimator uses inverse propensity to reweight the
observed data, which is shown below:

EIPS(θ) =
1

|D|
∑

(u,i)∈D

ou,ieu,i
p̂u,i

,

where p̂u,i = π(xu,i;ψ) is the propensity model for estimat-
ing the observation probability pu,i := P(ou,i = 1 | xu,i).

the DR estimator combines the propensity model p̂u,i and
the imputation model êu,i as below:

EDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
,

where p̂u,i = π(xu,i;ψ) is for estimating the observation
probability pu,i := P(ou,i = 1 | xu,i) and êu,i = m(xu,i;ϕ)
is the error imputation model for estimating eu,i using xu,i.

However, the unbiasedness condition of IPS and DR es-
timators is difficult to satisfy in real-world scenarios. This
paper focuses on circumventing these assumptions by propos-
ing prediction models unbiased learning method from the
user self-selection perspective.

Methodology
Overview of the Methodology
In the real-world scenario, different users will have different
rating preferences, e.g., some users tend to randomly pick
items to rate, and some users only rate items they like (or
dislike). In order to identify these users, we propose to first
capture the user unlearning rate using a user unlearning rate
network. Then we learn a model designed to maximize the er-
ror of pseudo-label learning, and finally based on the learned
error-maximizing pseudo-label, user unlearning rate, and ob-
served labels for unbiased learning of the prediction model.
We will look into the details of each module.

User Unlearning Rate Network
In this module, we aim to find users that need to be unlearned.
Specifically, such users should have the following proper-
ties: there is a large discrepancy between the collected user
preferences on the observational data and the user’s true pref-
erences, i.e., the user rated the items based on his/her own
preferences more than randomly. However, true user pref-
erences cannot be obtained from observational data due to
the presence of selection bias, so a natural idea is to utilize
unbiased data. We define the following loss

LA(u) =

∑
i∈I I[(u, i) ∈ A] · (fθ(xu,i)− ru,i)

2∑
i∈I I[(u, i) ∈ A]

,

where A is the unbiased rating set. The core idea of this loss
lies in measuring the gap between the prediction performance
of a prediction model on observed data and unbiased data.
The larger the performance gap, the more likely the user
should be unlearned.



Figure 2: Overview of the proposed model structure.

Algorithm 1: Unlearning to Debias (ULTD)
Input: observed ratings O, unbiased ratings A, and λ

1 while stopping criteria is not satisfied do
2 for number of steps for training the unlearning

rate network and debiased prediction model do
3 Sample a batch {(uj , ij)}Jj=1 from O and a

batch {(uk, ik)}Kk=1 from A;
4 Update the unlearning rate network and

debiased prediction model with Lf (θ, ψ);
5 end
6 for number of steps for training the

error-maximizing pseudo-labeling model do
7 Sample a batch {(ul, il)}Ll=1 from D;
8 Update the error-maximizing pseudo-labeling

model with Lg(ϕ);
9 end

10 end

However, the scalability of loss varies greatly for different
users, and using loss directly as a measure of the unlearn-
ing degree would be unstable. Therefore, we define a post-
processing function to learn the unlearning rate and map the
loss to the interval [0, 1] with a preserving order. Specifically,
we adopt the Platt scaling αu as shown below

αu(LA(u)) = σ(suLA(u) + bu),

where σ(·) is the sigmoid function and ψ = {su, bu | u ∈ U}
are learnable parameters. To maintain the order, we constrain
the parameter su > 0. Platt scaling has a wide application
across diverse domains, including computer vision, natural
language processing, and recommender systems.

Error-Maximizing Pseudo-Label
After obtaining the user unlearning rate, we generate adversar-
ial data to forget the user. Specifically, we learn the parameter
ϕ of the error-maximizing pseudo-label model gϕ(·) by the
following loss

ϕ∗ = argmin
ϕ

E[−L(fθ(xu,i), gϕ(xu,i))] + λ · Ω(gϕ)

The model gϕ(·) is trained using the following loss

Lg(ϕ) = − 1

|D|
∑

(u,i)∈D

(fθ(xu,i)− gϕ(xu,i))
2 + λ · Ω(gϕ)

Note that this loss is defined on the whole space because
it does not include the observed label. In addition, this loss
causes the model gϕ(xu,i) to generate labels that are opposite
to the prediction model fθ(xu,i). So we can learn the unbi-
ased prediction model by balancing the prediction results of
model gϕ(·) and model fθ(·) with the appropriate weighting
method, which will be introduced in the next part.

Debiased Prediction Model Learning
After obtaining the user unlearning rate and error-maximizing
pseudo-label, we combine the observed labels and propose
the loss for unbiasedly training the prediction model fθ(·):

Lf (θ, ψ) =
1

|U|
∑
u∈U

αu

(∑
i∈I ou,i(fθ(xu,i)− gϕ(xu,i))

2∑
i∈I ou,i

)

+
1

|U|
∑
u∈U

(1− αu)

(∑
i∈I ou,i(fθ(xu,i)− ru,i)

2∑
i∈I ou,i

)
,

In addition, we use joint learning to update the user unlearn-
ing rate network, the error-maximizing pseudo-labeling mod-
els, and the prediction model alternately. We summarize the
training algorithm in Algorithm 1.

Experiment
Dataset and Preprocessing
We have selected three widely used real-world datasets for
our experiments: Coat1: This dataset contains ratings 6,960
biased ratings and 4,640 unbiased ratings from 290 users for
300 items. Yahoo! R32: This dataset includes ratings 311,704
biased ratings and 54,000 unbiased ratings from 15,400 users
for 1,000 items. We binarize the ratings, assigning 0 to ratings
below three and 1 to ratings of three or above. Additionally,
we use the fully exposed industrial dataset KuaiRec (Gao

1https://www.cs.cornell.edu/~schnabts/mnar/
2http://webscope.sandbox.Music.com/



Table 1: The debiasing on three datasets. The best two results are bolded, and the best baseline is underlined. Ours-TP and
Ours-JL mean that the two-phase (TP) learning and joint learning (JL) are adopted with our methods, respectively.

Coat Yahoo! R3 KuaiRec

Method AUC ↑ N@5 ↑ R@5 ↑ AUC ↑ N@5 ↑ R@5 ↑ AUC ↑ N@50 ↑ R@50 ↑
MF 0.747 0.513 0.550 0.714 0.556 0.720 0.827 0.565 0.828
IPS 0.751 0.518 0.554 0.726 0.560 0.725 0.815 0.564 0.836
DR 0.756 0.525 0.542 0.721 0.595 0.741 0.830 0.561 0.843
DR-JL 0.759 0.542 0.556 0.721 0.595 0.741 0.823 0.572 0.860
ESCM2-DR 0.760 0.547 0.563 0.717 0.566 0.727 0.831 0.571 0.852
CausE 0.746 0.512 0.552 0.728 0.552 0.736 0.811 0.561 0.830
KDCRec 0.760 0.524 0.559 0.731 0.575 0.736 0.826 0.571 0.845
LTD 0.754 0.536 0.567 0.724 0.617 0.756 0.791 0.548 0.855
AutoDebias 0.762 0.528 0.568 0.737 0.634 0.780 0.824 0.574 0.859
Res-IPS 0.769 0.563 0.584 0.756 0.633 0.781 0.830 0.578 0.876
Res-DR 0.777 0.561 0.591 0.746 0.651 0.799 0.841 0.581 0.870

Ours-TP 0.782 0.556 0.586 0.761 0.654 0.803 0.839 0.590 0.878
Ours-JL 0.792 0.584 0.616 0.766 0.656 0.811 0.844 0.593 0.886

et al. 2022), which contains 4,676,570 video watching ratio
records from 1,411 users for 3,327 videos. For this dataset,
we binarize the records by assigning 0 to records with a value
less than two, and 1 otherwise.

Baselines
We compared our method with a series of baseline methods
widely utilized in debiasing (RS), including matrix factoriza-
tion (MF) (Koren, Bell, and Volinsky 2009), IPS (Schnabel
et al. 2016), DR (Saito 2020), DR-JL (Wang et al. 2019),
and ESCM2-DR (Wang et al. 2022a). In addition, we include
the data fusion baselines such as CausE (Bonner and Vasile
2018), KDCRec (Liu et al. 2022a), LTD (Wang et al. 2021b),
AutoDebias (Chen et al. 2021), Res-IPS (Li et al. 2024a), and
Res-DR (Li et al. 2024a).

Evaluation Metrics and Details
We utilize three widely adopted evaluation metrics: AUC,
NDCG@K (N@K), and Recall@K (R@K). For the datasets
Coat and Music, we set K = 5, while for KuaiRec, we set K =
50. Throughout the parameter-tuning process, all the methods
are implemented on PyTorch with Adam as the optimizer. We
tune learning rate in {0.005, 0.01, 0.05, 0.1}, batch size in
{32, 64, 128, 256} for Coat and {1024, 2048, 4096, 8192}
for Yahoo! R3 and KuaiRec, and embedding dimension
in {4, 8, 16, 32, 64} for Coat and {16, 32, 64, 128, 256} for
Yahoo! R3 and KuaiRec. For the user unlearning rate net-
work, we tune the layer number in {1, 2, 3} for all three
datasets and regularization hyper parameter λ in {1e−4, 1e−
3, 1e − 2, 1e − 1, 1}. For all experiments, unless explicitly
stated, we split 5% unbiased data from the test set to the
training set. In our model, we tune the weight β and γ in
{1e− 6, 5e− 6, 1e− 5, ..., 5e− 2, 1e− 1}.

Performance Comparison
Table 1 shows the prediction performance with varying base-
lines and our methods. First, the baseline methods outperform

the naive method, demonstrating the necessity of addressing
bias in recommendation systems. In addition, methods like
Res-DR and AutoDebias show strong performance, which is
due to the usage of unbiased data. Note that across all three
datasets, the proposed methods consistently outperform the
baseline methods in AUC, NDCG@K, and Recall@K met-
rics. These results highlight the robustness and superiority
of the proposed methods in both ranking and retrieval tasks,
making them highly effective for real-world applications in
recommendation systems. Furthermore, we find that joint
learning of all models works better than two-phase learn-
ing (i.e., learning and fixing the error-maximizing pseudo-
labeling model first, and then learning the user unlearning
rate network and prediction models).

Conclusion and Future Work
To the best of our knowledge, we are the first work to address
selection bias in recommender systems from a machine un-
learning perspective. Our proposed method addresses this
challenge by introducing a user unlearning rate network,
which identifies users whose data should be unlearned to
reduce bias. Meanwhile, we generate the error-maximizing
pseudo-labels and use these labels for those users who need
to be unlearned against the predicted label. we effectively
mitigate the selection bias in the data by fusing these pseudo-
labels with observed labels. Additionally, our proposed un-
learning to debias training algorithm enhances the unbiased
learning of the prediction model. Extensive experiments on
three real-world datasets demonstrate the effectiveness of our
method. There are several avenues for future research to fur-
ther enhance its capabilities and broaden its applicability. For
example, recommender systems often should be applied in
dynamic environments where user preferences and item char-
acteristics change over time. It is interesting to integrate our
debiasing method with online learning frameworks, which
allows the system to continuously use the new data (including
both biased and unbiased data) to learn an unbiased model.
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