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ABSTRACT

We introduce a new geospatial representation model called GeoVeX to learn
global vectors for all geographical locations on Earth land cover. GeoVeX is built
on a novel model architecture named Hexagonal Convolutional Autoencoders
(HCAE) combined with a Zero-Inflated Poisson (ZIP) reconstruction layer, ap-
plied to a grid of Uber’s H3 hexagons, each one described by the histogram of
OpenStreetMap (OSM) geographical tags occurrences. GeoVeX is novel on two
aspects: first, it produces pre-trained task-agnostic geospatial vectors with H3
and OSM that are, for the first time, contextualized on the neighboring hexagons
features, by leveraging an hexagonal convolutional autoencoder applied on an
H3/OSM grid centered on the location to embed; secondly, it introduces a zero-
inflated Poisson autoencoder reconstruction layer, to adapt a standard autoencoder
network to train on sparse geographical count data distributed on an hexagonal
grid. Experiments demonstrate that GeoVeX embeddings improve upon two state-
of-the-art geospatial location representations models, Hex2Vec and Space2Vec, on
two different downstream tasks: worldwide listings price prediction in the travel
industry, and hyperlocal interpolation of climate data from weather stations. The
qualitative analysis of the latent representation structures learnt by GeoVeX show-
cases the higher quality of the geographical structures learnt by the geographically
contextualized embeddings learnt by GeoVeX.

1 INTRODUCTION

Entity embedding is ubiquitous in a variety of Machine Learning tasks thanks to its many advan-
tages: it captures the semantics of each entity in the context of a given domain; it enables transfer
learning to different related tasks; it reduces the sparsity of the entity representation and compresses
the feature space. In NLP domain, global word embedding models, such as Word2Vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014) and BERT (Devlin et al., 2019) have been successful at
capturing the word semantics of big open-source vocabularies (e.g. Wikipedia, Gigaword) and are
used to transfer learning to multiple downstream tasks, such as sentiment analysis (Tang et al., 2014;
Deho et al., 2018; Alamoudi & Alghamdi, 2021), question retrieval (Zhou et al., 2015), and medical
semantics (Wang et al., 2018). Similar approaches inspired by NLP have been since then proved to
be useful in many industrial domains, where multiple models have been proposed for learning the
latent representations of entities specific to an industry, such as Product2Vec (Biswas et al., 2017)
and User2Vec (Hallac et al., 2019) in e-commerce, or Wave2Vec (Baevski et al., 2020) in speech
representation, just to name a few.

In comparison, in the field of Geographic Information Science (GIS), a global set of task-agnostic
embeddings for geographical space representation can benefit multiple domains and use cases, such
as: price prediction for houses (Wang et al., 2021), hotel rooms (Kisilevich et al., 2013), and vaca-
tion homes (Islam et al., 2022; Pradip & Suthar, 2022); interpolation of climate variables such as
temperature and pressure (Wu & Li, 2013); computer vision tasks with geo-located images (Berg
et al., 2014). These tasks, just to name a few, have in common the application of some transforma-
tions to the spatial coordinates, but they do not leverage the spatial distribution of geo entities (such
as parks, water, beach, buildings, streets, bars, etc.), which convey a more rich information of the
geographical context. Besides, in terms of modelling, previous approaches to learn geospatial em-
beddings have a set of limitations, such as being non-contextual, task-specific and/or region-specific
(Sec. 2) that we address with a novel model architecture and loss function formulation (Sec. 3.6).
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Figure 1: Workflow to use GeoVeX embeddings in downstream tasks: the task features are expanded
by simply concatenating the GeoVeX embedding associated to the H3 hexagon corresponding to the
latitude (lat) and longitude (lng) coordinates of each task item, without retraining the embeddings.

Our new approach to learn the geospatial embedding of each location on Earth, based on nearby
geographical entities, aims to pre-train a finite set of embeddings that can cover the whole Earth,
so that they can be stored and used with ease as extra features in any Machine Learning task where
entities have latitude and longitude coordinates. The general workflow is summarized in Fig. 1.
To achieve the goal of wide adoption to multiple downstream tasks, we leverage Uber Hexagonal
Hierarchical Spatial Index grid system named H31 to spatially index the data coordinates into small
regions of approximately the same size, since H3 minimizes map distortion. A pair of coordinates
(i, j) is thus represented by a unique H3 hexagonal id for which we learn a GeoVeX embedding.

To learn GeoVeX embeddings that have a geographical semantic, we associate each H3 hexagon
to the geographical tags of the entities obtained from OpenStreetMap (OSM)2. OSM is a project
that creates and distributes free worldwide geographic data, and, as of January 2022, has ≈7 billion
nodes and ≈4 million map changes per day. This makes it the equivalent of Wikipedia for word
embeddings: a massive, scalable, and information-rich global open dataset for creating and updating
global embeddings. In particular, OSM contains nodes, ways and relations, which together can be
transformed to points, lines and polygons, each one characterized by a set of semantic tags, such
as amenity:bar, highway:motorway, natural:forest. By intersecting these OSM entities with the
H3 hexagons, and by using a Bag-Of-Words (BOW) model on their tags, each hexagon can be
sparsely described by a K-dimensional histogram vector, where K is the size of a subset of the
vocabulary of OSM geographical tags, where each element represents the number of times an entity
with the respective tag is contained or intersects the hexagon itself. This information needs then
to be properly aggregated to produce an embedding while, at the same time, taking into account
the information from neighboring hexagons, which provide the geographical context. This concept
follows the first law of geography: everything is related to everything else, but near things are more
related than distant things (Tobler, 1970). The convolution operation, borrowed from Computer
Vision, presents in this domain challenges to address: 1) not square, but hexagonal grids, and 2)
different distribution of each ”channel”: not dense pixel values, but highly sparse counts. GeoVeX
model aims to bridge the gap of convolutional neural networks usage on these hexagonal grids
described by sparse counts.

In summary, the contributions of our work are:

1. the GeoVeX architecture design to learn task-agnostic pre-trained location embeddings
with H3 and OSM that are for the first time contextualized on the neighboring hexagons.
We demonstrate their expressive power qualitatively, by using an analysis of the cosine
similarities (Sec. 4.1), and quantitatively, by adding the embeddings to the feature set of
two downstream tasks: price prediction in the worldwide travel industry (Sec. 4.2) and
temperature interpolation of climate data from weather stations (Sec. A.6);

2. the novel Zero-Inflated Poisson (ZIP) autencoder’s probabilistic decoder block, which is
trained with a spatial contextual loss function, to adapt the standard reconstruction layer of
autoencoders network to the case of zero-inflated spatial contextual count data produced by
the H3 grid and the OSM entity tags counts (Sec. 3.6).

1https://eng.uber.com/h3
2https://www.openstreetmap.org/
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2 RELATED WORK

Global geospatial embeddings Hex2Vec (Woźniak & Szymański, 2021) and Space2Vec (Mai
et al., 2020) are the closest approaches to our work, since they create pre-trained location-specific
embeddings, which can add geospatial information to any downstream task without any task-specific
retraining nor any manual location imputation logic.

Hex2Vec (Woźniak & Szymański, 2021) is a state-of-the-art work that uses H3 hexagons described
by OSM entities, and develops an approach to learn geospatial embeddings. GeoVeX follows a
similar approach to create the training setup (H3 as grid methodology, and OSM as provider of
geographical entities), but it is different in terms of both model design and loss function formulation.
In fact, Hex2Vec embeddings are not contextualized, since the embedding of an H3 hexagon does
not consider any information of the surrounding hexagons (e.g. an hexagon described with just
the tag ”street” is always embedded equally worldwide, without any distinction if this hexagon is
surrounded by others with tags of ”offices” or ”ski-lifts” or ”beaches”). Regarding the loss, the
authors proposed a skip-gram model with negative sampling, paired with a triplet loss function: for
each hexagon to embed (the triplet anchor), the positive hexagon is taken from the first adjacent
ring of hexagons, and the negative hexagon is sampled from at least 3 rings away from it. It is easy
to see that imposition of complete similarity between the hexagon to embed (the anchor) and its
adjacent ones (the positives) in the loss formulation is not always appropriate since it imposes perfect
similarity of a beach-like hexagon’s embedding with a town-like one in case they are adjacent.
Finally, the authors applied the approach only to 54 cities, and without a quantitative analysis of the
improvements on down-stream tasks.

Space2Vec (Mai et al., 2020) is one of the state-of-the-art methods proposed to encode a pairs of
coordinates in a high dimensional embedding which can be used in downstream tasks. In particular
it uses trigonometric functions with different frequencies to encode a given position in space instead
of using the simple pairs of coordinates in a modeling task. The approach can actually be considered
as a worldwide embedding model in the sense that any coordinate on Earth can be transposed to a
latent representation. However, the embeddings are not learnt based on the geographical entities
(e.g. buildings, streets, bars, etc.), so Space2Vec vectors cannot be really considered as pre-trained
embeddings aiming at learning geographic characteristics of a location, in order to draw similarities
of different regions on Earth.

Local or task-specific geospatial embeddings Other approaches to learn geospatial embeddings
in GIS domain are trained for specific tasks and/or specific regions, so they cannot be used as pre-
trained geospatial embeddings without task-specific retraining and/or without manual imputation
logic. Region2Vec (Xiang, 2020) combines Point Of Interest (POI) and mobile sensors data obtained
in a specific region in China; Zone2Vec (Du et al., 2018) uses trajectories generated by taxis in
Beijing. Urban2Vec (Wang et al., 2020b) uses Street View images and focuses only on the urban use
cases, where such images are available. RegionEncoder (Jenkins et al., 2019) combines mobility
from taxis, categories of POI and satellite images to create a model specific to two urban regions.
Tile2Vec (Jean et al., 2019) applies an unsupervised representation learning on satellite images, while
using the triplet loss formulation, which leads to the same issues described for Hex2Vec. In (Islam
et al., 2022), the authors apply Moran Eigenvector Spatial Filtering (MESF) for the specific task of
predicting AirBnB listing price in San Jose County in US. In (Mac Aodha et al., 2019), the location
encoder is specifically learnt from photos to improve specific image-classification tasks, and learnt
embeddings cover only the locations in the task-specific training dataset. In (Sheehan et al., 2019),
the authors learn task-specific location embeddings from geolocated Wikipedia articles, which cover
a limited set of coordinates, thus requiring manual imputation logic for unknown locations.

Convolutional Autoencoders In terms of network architecture, our design is inspired by recent
works on Convolutional Autoencoders (CAE), among which the deep CAE architecture of Guo
et al. (2017) represents an example of the state of the art. In addition, (Hahner & Garcke, 2022)
recently introduced the use of hexagonal convolutional autoencoders. However, these architectures
are designed to work with images, and not with tensors that represent zero-inflated count variables,
so we propose some modifications to account for this.
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3 PROPOSED APPROACH: GEOVEX

In this section, first, we formalize the problem of training geospatial embeddings of a pair of coor-
dinates on Earth, then we present the proposed GeoVeX model architecture, its input format and its
novel specific components: hexagonal convolutions, the zero-inflated Poisson reconstruction layer
for the autoencoder, and the loss function used to train the network.

3.1 PROBLEM FORMALIZATION

Given a pair of latitude and longitude coordinates on Earth p = (x, y) ∈ R2, define a function
Fθ(p) : R2 → RD parameterized by θ which maps the point p to a D-dimensional embedding
e = Fθ(p), which represents the geographical characteristics of the space nearby the given point
proportionally to the distance to it, in accordance to Tobler (1970).

In this work, we propose to formulate the F function as Fθ(p) = fθ(t(p),Nn′(t(p))), where fθ :

RK × Rn′×K → RD is the GeoVeX encoder, and t : R2 → RK is the function which assigns the
vector of counts z = t(p) of K geographical tags of the entities that intersect the hexagon where
the point p resides, and Nn′(t(p)) is the set of count vectors of n′ neighbor hexagons of p. The
GeoVeX pre-trained embedding e can later be concatenated to existing features of any downstream
task involving entities described by latitude and longitude coordinates. This effectively serves to
expand the features set used by the model addressing the machine learning task to solve.

3.2 GEOVEX MODEL 3D TENSOR INPUT FROM 2D HEXAGONAL CELLS

In this section we briefly describe the GeoVeX 3D input tensor required by the network architec-
ture. GeoVeX uses an hexagonal tiling system, which is the state-of-the-art representation of a
geographical grid, because it guarantees the isotropy of local neighbourhoods (Wang et al., 2020a).
By analogy with image domain, in GeoVeX the first 2 dimensions represent the 2D coordinates of
the hexagon in a spatial coordinate system and the 3rd dimension describes the count of K OSM
tags of the entities intersecting a given H3 cell, following the Bag-Of-Words (BOW) model. After
cleaning and preprocessing, we cut the number of tags to the top K = 1024 most frequent ones with
worldwide minimum coverage, since the vocabulary presents a long tail distribution. More details
can be found in Section A.3 of Appendix.

Each hexagon’s neighborhood is defined by the r-rings neighboring cells as described in Fig. 2 for
r = 7 rings around the point (0, 0) (r = 7 has been experimentally defined to fit our GPU memory
constraints). The importance of each ring decays with distance to center, in alignment with the
first law of geography (Tobler, 1970). This is implemented using a distance weighting kernel in the
model loss function formulation in Sec. 3.6, so that the representation of an hexagon is influenced by
neighboring hexagons proportionally to the hexagonal distance to it, making them contextualized.
This is not the case for Hex2Vec model design, instead.

Transposition of the 2D hexagonal grid to 2D matricial form, for the first 2 dimensions of the 3D-
tensor, is done via axial coordinate system representation (see Luo et al. (2019) for more details on
different transposition methods), and is depicted in Fig. 3. The final 3D representation is (2r+1)×
(2r+1)×K. To enable correct convolutions within this network design, the dimensions of the input
matrix are required to be a power of 2, which can be achieved through padding. Since we trained
the network with r = 7 the input of the GeoVeX model is a 16× 16× 1024 3D tensor.

3.3 MODEL ARCHITECTURE

The architecture of GeoVeX network is summarized in Fig. 4. The base design is the one of a
Convolutional AutoEncoders (CAE) network (Guo et al., 2017), which is composed of two main
components: the encoder h = f(z) and the decoder z′ = g(h), where z is the input tensor, h
is its latent representation learnt by applying the encoder block, and z′ is the reconstructed tensor
created by the decoder block. The parameters of the CAE network are updated by minimizing the
reconstruction error described in Sec. 3.6.

The encoder is a set of convolutional blocks stacked on the 3D input tensor to extract hierarchical
features. The output units of the convolutions are flattened to form a vector, and are passed to a
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Figure 2: The hexagonal grid of the r-rings cen-
tered on the hexagon to embed, with the ax-
ial coordinates (i, j) assigned to each hexagon
based on its position in the grid.

Figure 3: The transposed hexagonal grid rep-
resented as a 3D matrix, using the axial co-
ordinates transposition and assigning the OSM
counts as 1024 tensor channels. In grey, the
padding cells that are not valid.

fully connected layer with D units, the final dimension of GeoVeX embedding. In practice, we have
found that D = 32 is a good trade-off between expressiveness and cost to store 200+ millions vec-
tors worldwide. The input tensor is thus transformed by the encoder into a 32-unit latent embedding
representation h, forcing the autoencoder to capture the most salient features that minimize the loss
function. The decoder is defined as a set of convolutional transposed layers to transform embedded
feature back to original input, followed by a novel Zero-Inflated Poisson layer of our contribution
to reconstruct the count tensor in input (Sec. 3.5). Batch Normalization (Ioffe & Szegedy, 2015)
is used to re-center and re-scale the counts tensor in input and output of every convolution opera-
tion. The usage of Batch Normalization and ReLU is aligned to (Ioffe & Szegedy, 2015): we apply
the normalization before the non-linearity and we remove the redundant bias term in the convolu-
tion operation. In terms of up/sub sampling, GeoVeX uses convolutional layers with stride of 2,
instead of convolutional layers followed by pooling layers (as in (Hahner & Garcke, 2022)), in both
the encoder (standard convolution) and the decoder (transposed convolution, sometimes referred
as ”deconvolution”), since Springenberg et al. (2014) demonstrated that replacing all the pooling
operations in a network with strided-convolutions improves overall performance.

Figure 4: Illustration of the GeoVeX network architecture, showing the different layers of the Hexag-
onal Convolutional Autoencoders (HCAE) neural network with a Zero-Inflated Poisson (ZIP) prob-
abilistic head layer to reconstruct the hexagonal matrix with geographical entity tags count. Each
hexagonal convolution block and hexagonal transposed convolution block is composed by the re-
spective convolution operator followed by Batch Normalization and ReLU operations.
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3.4 HEXAGONAL CONVOLUTIONS

The main building block of both the encoder and the decoder is the hexagonal convolution oper-
ator, which aims at extracting relevant geographical features at different granularity. The network
assumes in input an hexagonal grid transposed to a two dimensional matrix using the the axial co-
ordinate system representation as described in Sec. 3.2. In this representation, unused matrix cells
are put in the corners, avoiding empty cells in the middle of the matrix and supporting the hexago-
nal convolutional autoencoder network described below. In this context, it is shown that hexagonal
convolutions give better results than standard convolutions in case of hexagonal shaped data (Steppa
& Holch, 2019; Hoogeboom et al., 2018). In particular, the hexagonal convolution is achieved by
multiplying the 3x3 convolution kernel with a 3x3 mask to set to zero the kernel at top-left and
bottom-right cells (the mathematical formula of the 3x3 masked hexagonal convolution is given in
Section A.1 of Appendix).

3.5 ZERO-INFLATED POISSON RECONSTRUCTION LAYER

Since the network is intended to be used with geographical count data assigned to each hexagon, the
Poisson head layer is needed since the variable to reconstruct is coming from a counting process.
Moreover, it expects a large number of zeros, since it is evident that for any given hexagon on Earth,
only few geographical tags from the full vocabulary of tags are present: this hypothesis shall be
verified in the data using the respective tests (Yang et al., 2010; Van den Broek, 1995). Under this
scenario, multiple studies have demonstrated that the best fit to such data with excess of zeros is
provided by zero-inflated distributions (Ridout et al., 1998; Beckett et al., 2014; Lambert, 1992;
Unhapipat et al., 2018).

The Zero-Inflated Poisson (ZIP), which is denoted by ZIP (π, λ), has two parameters π and λ, and
has the following probability mass function, where 0 ≤ π ≤ 1 and λ ≥ 0:

∀i ∈ {1, . . . ,K},P(z.,.,i = c) =

{
π + (1− π) · e−λ if c = 0

(1− π) · e−λ · λc

c! if c ∈ {1, 2, 3, . . . } (1)

In the GeoVeX model, the parameters π and λ are estimated in the last layer of the decoder, and
are used by the above ZIP mixture model to reconstruct, from the H3 embedding, the OSM count
of each geographical tag k of each hexagon at axial coordinates i, j. In fact, the final decoder layer
produces two output variables for each coordinate i, j, k: gπ and gλ. The first one is activated with a
sigmoid function to produce π (Lambert, 1992), and the second one is activated with the exponential
function to ensure that λ > 0, as is obviously required:

π̃i,j,k =
egπ|i,j,k(h)

1 + egπ|i,j,k(h)
(2)

λ̃i,j,k = egλ|i,j,k(h) (3)

where gπ|i,j,k(h), gλ|i,j,k(h) are the two output layers of the decoder network which are conditioned
on embedding h and produce the estimated π̃ and λ̃ for each coordinate i, j, k (Fig. 4).

3.6 GEOVEX LOSS FUNCTION

GeoVeX adapts the Negative Log-Likelihood (NLL) loss function in the context of a hexagonal grid
to align with the design of the input data. In fact, the loss formulation encourages first the learning
(and, thus, the reconstruction) of the geographical tags count describing the hexagon to embed, and
then decay the importance of learning (and, thus, reconstructing) the tags count in each external ring
of hexagons, by weighting the loss of each hexagon based on its position in the grid, thus justified
simply by grid construction.

In details, the formulation of the GeoVeX loss function is an adaptation of the NLL loss with Zero-
Inflated Poisson distribution, in the context of a spatial relationship among the neighbouring regions.
Based on the ZIP mass function (Eq. 1), and given that we have N samples in each learning batch,
the log-likelihood function of each element of the 3D reconstructed tensor can be derived as:
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logL(π̃, λ̃; y)i,j,k =

N∑
n=1

I(yn|i,j,k = 0) ln[π̃n|i,j,k + (1− π̃n|i,j,k)e
λ̃n|i,j,k ]

+

N∑
n=1

I(yn|i,j,k > 0)[ln(1− π̃n|i,j,k)− λ̃n|i,j,k + yn|i,j,k ln λ̃n|i,j,k − ln(yn|i,j,k!)]

(4)
where n is the n-th sample, i and j are the two axial coordinates, k is the k-th geographical tag count,
and I(yn|i,j,k) denotes an indicator variable that takes value 1 if the condition is verified, and zero
otherwise. See derivation in (Hossain & Howlader, 2015) and (Lambert, 1992). To make the loss
of each grid hexagon weighting proportional to the ring where it is located, we apply two positional
weights to the ZIP NLL loss of each hexagon of the grid, based on its i, j axial coordinates:

• the distance weighting kernel Wdist decays the importance of each subsequent neighbour-
ing r-ith ring of hexagons, based on the inverse of the distance from the central hexagon
to the ring number r (i.e. ring r = 1 applies a weight of 1/2, while ring r = 7 applies a
weight of 1/8);

• the numerosity weighting kernel Wnum equalizes the importance of each hexagonal r-ith
ring, by subdividing the loss among the hexagons that compose it, so that each ring has
same total importance in the final loss. By construction, each ring is composed of 6 times
the number of the ring number r (i.e. ring r = 1 has 6 hexagons, while ring r = 7 has 42
hexagons, so each hexagon has to weight 6 · r to make each ring equal in importance)

The mathematical formulations in Eq. 5 and 6 are justified by construction (based on the semantic
imposed by using an hexagonal grid centered on the hexagon to embed), where r is the hexagonal
ring number, and |i − j| ≤ R is a simple condition to explicitly put to zero the loss at the invalid
top-left and bottom-right values in the axial coordinates matrix representation.

wdisti,j =


1 if i = j = 0

1/(1 + ri,j) if |i− j| ≤ R

0 otherwise
(5)

wnumi,j
=


1 if i = j = 0

1/(6 · ri,j) if |i− j| ≤ R

0 otherwise
(6)

The two loss weighting kernels are depicted in Fig. 6 and 7 in Sec. A.2 of Appendix, to help visual-
ization of the kernel effect. By combining the two weighting kernels, the loss to minimize is the sum
of the ZIP negative log-likelihood loss of each k-th geographical tag count of each i, j element of
the hexagonal grid (Eq. 4), weighted based on its grid position using the kernels Wdist and Wnum:

L = −
K∑

k=1

logL(π̃, λ̃)k ·Wdist ·Wnum

= −
K∑

k=1

M∑
i=1

M∑
j=1

logL(π̃, λ̃)i,j,k ·
wdisti,j∑M

i,j=1 wdisti,j

·
wnumi,j∑M

i,j=1 wnumi,j

(7)

4 EXPERIMENTS

We evaluate the task-agnostic GeoVeX vectors with a qualitative analysis of the latent structures
using cosine similarities, and with a quantitative analysis of the improvement of performances on
down-stream task.

4.1 QUALITATIVE EXPERIMENTS

In this analysis, we perform a qualitative comparison between GeoVeX and Hex2Vec embedding
vectors, where both models are trained on the same exact worldwide input data from H3 and OSM

7



Under review as a conference paper at ICLR 2023

(200+ millions vectors worldwide), and with the same size of embeddings space (32), to not provide
any advantage based on a different representation space. Space2Vec embeddings do not represent
any geographical characteristic so they cannot be used for unsupervised geographical explorations.

First, we selected a sample of different cities all around the world, from different continents, each
characterized by a mix of urban, suburban, green and water regions: Los Angeles, London, Cape
Town, Tokyo and Mexico City. Then, we calculated the cosine similarity between an anchor point
located in downtown (the exact center of the image) and each other point located in the region,
to evaluate the potential discovery of clusters of locations with similar characteristics. The cosine
similarities are shown in Fig. 5: the blue color indicates higher similarity to the center point location,
and the red color indicates lower similarity.

The cosine similarity calculated using the GeoVex embeddings is shown in upper images: we can
see that the geographic semantic captured by the model is aligned to human expectations, to some
degree: adjacent hexagons tend to have similar embeddings until they are very different in terms of
nearby geographical entities, and clusters of locations can be defined to delineate similar regions.

The cosine similarity calculated using Hex2Vec is shown in bottom images from Fig. 5: in this case,
there is no evident human-readable semantic that can be extracted by this plot. We can conclude that
the Hex2Vec model formulation does not perform well in terms of assigning similar embeddings to
adjacent hexagons, as there are very few smooth clusters of hexagons that can be seen inside these
more noisy patterns.

Figure 5: The cosine similarity calculated using embedding vectors from GeoVeX (top) and
Hex2Vec (bottom), using the yellow hexagon of the center point location as anchor item, for Los
Angeles, London, Cape Town, Tokyo and Mexico City.

4.2 QUANTITATIVE EXPERIMENTS

We conducted quantitative experiments on the impact of using GeoVeX vectors as additional features
in two downstream tasks: 1) prediction of worldwide vacation rental listings price in the travel
industry (Sec. 4.2) and 2) hyperlocal interpolation of temperatures from weather stations (Sec. A.6
in Appendix). In both cases, the embeddings are pre-trained, agnostic of downstream tasks, frozen
and then used as-is as additional features, to demonstrate that the task-agnostic learnt representations
are meaningful.

Expressiveness of GeoVeX, Hex2Vec and Space2Vec vectors is evaluated with a feature abla-
tion study, by comparing models using: 1) Common task features (Baseline); Additional features:
2) GeoVeX vectors; 3) Hex2Vec vectors; 4) Space2Vec encoding vectors; 5) both GeoVeX and
Space2Vec; 6) both Hex2Vec and Space2Vec.

All competing models are trained with the same Gradient Boosting Machines (GBM) regression
model architecture, which enables the discovery of interactions among features. For each task, the
model hyperparameters are optimized through random search (see Sec. A.4 of Appendix for details
on how to reproduce the experiments setup). For fair comparison, Space2Vec hyper-parameters
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have been optimized for best task performance, since this model requires manual parameters to be
configured, and Hex2Vec pre-trained embeddings are learnt with same data and same embedding
size of GeoVeX.

Vacation Rentals Price Prediction Task Open-source Inside Airbnb dataset3 contains 1M+ list-
ings located worldwide and describes each vacation rental listing with lodging characteristics, ge-
ographical coordinates, neighborhood name and daily price, which is the value to predict, after a
conversion to a common currency. The hypothesis is that the geographical characteristics of the
location influence its price, and thus GeoVeX vectors improve model performance when added as
contextual geographical features. See Section A.5 of Appendix for the list of cities and regions
obtained, so to replicate the experiment setup.

In terms of features, the baseline model is designed with the set of state-of-the-art features form
(Islam et al., 2022), where base geographical information is composed of latitude, longitude and
neighborhood name. Its intent is not be used as a performance benchmark, but to underline how
much information the additional geospatial embeddings bring on top of a state-of-the-art set of
task-specific features. The loss function is the Mean Squared Error (MSE) of the logarithm of the
price, and the metrics monitored are both the loss and the Mean Absolute Error (MAE) of the price.
The listings are split into training, validation and test with ratios 80%;10%;10%, with two splitting
methods: a common random split, and a split by city names, to evaluate how well the model is
able to generalize to new unseen geographical areas (i.e. out of training space). Table 1 shows the
average performance of all models trained 7 times, together with the respective standard deviation.

We can see that the GeoVeX vectors are useful in both test strategies. For unseen cities, the
GBM model with GeoVeX vectors confidently outperforms every other tested model, suggesting
that GeoVeX improves both upon Hex2Vec, to compress geographical information useful to predict
out-of-space, and upon Space2Vec, which encodes the location coordinates without considering the
geographical entities. For unseen coordinates (random split), the GBM model with GeoVeX vectors
paired with Space2Vec is the only model able to confidently improve the baseline performance.

Table 1: Experiment results for the price prediction task. The lower the better.

Model Split Randomly Split By City
MSE ln(Price) MAE Price MSE ln(Price) MAE Price

Baseline 0.281± 0.005 51.61± 0.46 0.492± 0.017 72.69± 1.15
w/ GeoVeX 0.285± 0.008 52.29± 0.61 0.465 ± 0.007 70.30 ± 0.26
w/ Hex2Vec 0.286± 0.010 52.20± 0.91 0.489± 0.008 71.33± 0.42
w/ Space2Vec 0.290± 0.013 52.51± 1.17 0.508± 0.010 72.56± 0.61
w/ GeoVeX & Space2Vec 0.271 ± 0.009 50.65 ± 0.89 0.492± 0.010 71.99± 0.66
w/ Hex2Vec & Space2Vec 0.280± 0.004 51.59± 0.35 0.487± 0.010 72.53± 0.44

5 CONCLUSION

We presented GeoVeX, a representation model which learns geospatial vectors as latent represen-
tations of the location’s geographical characteristics, contextualized on the neighboring locations.
GeoVeX is based on a novel architecture named Hexagonal Convolutional Autoencoder (HCAE)
with a Zero-Inflated Poisson (ZIP) reconstruction layer to learn from hexagonal grids described with
zero-inflated counts of the geographical tags of OSM entities. Qualitative analysis showcases the
improvement of representation structures compared to state-of-the-art Hex2Vec model. Then, quan-
titative experiments on real open data support the fact that the pre-trained GeoVeX embeddings can
improve models in multiple domains without task-specific re-training. In future, we aim to analyze
the impact of changing the H3 grid resolution, test different zero-inflated probabilistic distributions,
compare the task-agnostic vectors against some task-specialized versions, and tackle a broader set
of downstream tasks that involve geolocated entities, such as: climate-related tasks (e.g. effect of
urbanization on temperatures), classifications of geolocated images, or ranking of geolocated items.

3http://insideairbnb.com
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A APPENDIX

A.1 MATHEMATICAL FORMULA OF 3X3 MASKED HEXAGONAL CONVOLUTION

The mathematical formulation of the 3x3 masked hexagonal convolution is the following:

Yk = Hk ∗Xk = (Wk ⊙Mk) ∗Xk = (

[
w−1,1 w0,1 w1,1

w−1,0 w0,0 w1,0

w−1,−1 w0,−1 w1,−1

]
⊙

[
0 1 1
1 1 1
1 1 0

]
) ∗Xk (8)

where H is the 3x3 masked hexagonal convolution kernel; W is the standard 3x3 convolution kernel;
M is the 3x3 hexagonal mask; X is the input tensor; ∗ is the convolution operation; ⊙ is the element-
wise multiplication operation; i and j are the two axial coordinates; k is the 3rd channel of the
tensor, representing the normalized count of the k-th OSM tag in the first convolution, and the k-th
normalized filter in the subsequent convolutions.

A.2 VISUAL REPRESENTATION OF THE LOSS KERNELS

In this section, we show the plots of the weighting kernels used in the loss formulation: the distance
weighting kernel and numerosity weighting kernel. The kernels are plotted in the axial coordinates
system, projected to a 2D matrix form. For each i, j pair of coordinates, the weight is displayed.

Figure 6: The distance weighting kernel. Figure 7: The numerosity weighting kernel.

A.3 H3 AND OPENSTREETMAP DATA PREPARATION

The construction of the database of hexagons described by respective geographical entities is done
as follows. First, we calculate the set of hexagons that lie within the boundary of each country
shape, using resolution 8 (best trade-off between data granularity, computational power and mem-
ory needed to compute the expensive geospatial operations). The result is a set of 200+ millions
hexagons to cover the Earth’s lands. Then, from the worldwide OSM database of geographical
entities, we extract: 150 millions of points, identified by their coordinates; 220 millions of lines,
identified by a set of coordinates; 500 millions of multi-polygons, consisting of one or more set
of coordinates describing the polygons, and one or more set of coordinates describing the holes in
the polygons. These three types of entities are geographically intersected with the hexagons, and a
Bag-Of-Words (BOW) model is used to count the OSM geographical tags attributed to the entities
intersecting each hexagon.

The extraction of the set of points, lines and polygons covering all the meaningful entities that can
be used to describe the world is done with GDAL ogr2ogr 4. The initial selection of OSM keys is
done based on both the outcome of the analysis done in Woźniak & Szymański (2021), with some

4https://gdal.org/programs/ogr2ogr.html
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other tags kept and cleaned since relevant to our extended use case (e.g. highways). In addition, we
filtered out the tags with the value containing the following post-fixes: :yes and :no, since we found
them to be not consistent and misleading. We also filtered out tags that are only available in few
countries, so not relevant worldwide.

The geographical operations to clean, manipulate and intersect OSM entities with H3 hexagons are
achieved using Apache Sedona 5 on an Apache Spark 6 cluster with a total of 10 Tb of memory and
1280 cores. Once the geospatial joins of hexagons and OSM entities are computed, a second level
of sort and filtering is performed, in order to select the most meaningful features used to describe
the hexagons of the world. In fact, based on the analysis of aggregated statistics, it is clear that
some key=value pairs are only valid in few parts of the world (e.g. administrative tags), so we
keep only pairs that are assigned to hexagons in at least 20 countries. Finally, we sort the pairs
by descending distinct count of hexagons with that pair assigned, and we select the top 1024 tags.
This cut-off is chosen using a trade-off between the quality of additional descriptors and the GPU
memory constraint during model training.

A.4 HYPERPARAMETER SELECTION FOR TASKS MODELS

For each task and for each model to train, we optimize the following LightGBM hyper-parameters,
by performing a random search with 60 trials, since it can be proven that if the close-to-optimal
region of hyperparameters occupies at least 5% of the grid surface, then random search with 60
trials will find that region with high probability (Bergstra & Bengio, 2012):

• max depth: random int from 0 to 32;

• num leaves: random int from 4 to 2048;

• min data in leaf : random int from 20 to 10000;

• min gain to split: random int from 0 to 15;

• max cat threshold: random int from 32 to 1024;

• bagging fraction: random float from 0.2 to 0.95, with step of 0.1;

• feature fraction: random float from 0.3 to 0.95, with step of 0.1;

• learning rate: a range of float from 0.001 to 0.2;

• lambda l1: random int from 0 to 100, with step of 5;

• lambda l2: random int from 0 to 100, with step of 5;

• extra trees: random true or false.

For each model using Space2Vec coordinates encoding, the following additional hyper-parameters
are optimized, using a range of values suggested by the authors:

• lambda min: random value in: 0.1, 1, 10, 100, 500;

• lambda min: random value in: 1000, 10000, 40000;

• num frequencies: random value in: 8, 16, 32, 64.

A.5 VACATION RENTALS PRICE PREDICTION TASK - DETAILS

The cities and regions for which we obtained listing prices from by inside-airbnb open data are
the following: Antwerp, Asheville, Athens, Austin, Bangkok, Barcelona, Beijing, Belize, Bergamo,
Berlin, Bologna, Bordeaux, Boston, Bristol, Broward County, Brussels, Buenos Aires, Cambridge,
Cape Town, Chicago, Clark County (NV), Columbus, Copenhagen, Crete, Denver, Dublin, Edin-
burgh, Euskadi, Florence, Gauteng, Geneva, Girona, Greater Manchester, Hawaii, Hong Kong, Is-
tanbul, Jersey City, Lisbon, London, Los Angeles, Lyon, Madrid, Malaga, Mallorca, Menorca, Mex-
ico City, Milan, Montreal, Munich, Naples, Nashville, New Brunswick, New Orleans, New York
City, Oakland, Oslo, Ottawa, Pacific Grove, Paris, Portland, Porto, Prague, Puglia, Quebec City,

5https://sedona.apache.org/
6https://spark.apache.org/
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Rhode Island, Rio De Janeiro, Rome, Salem (OR), San Diego, San Francisco, San Mateo County,
Santa Clara County, Santa Cruz County, Santiago, Seattle, Sevilla, Shanghai, Sicily, Singapore,
South Aegean, Stockholm, Taipei, Thessaloniki, Tokyo, Toronto, Trentino, Twin Cities (MSA), Va-
lencia, Vancouver, Vaud, Venice, Victoria, Vienna, Washington DC, Zurich.

A.6 HYPERLOCAL TEMPERATURES INTERPOLATION TASK

ARPA Lombardia is a regional agency for environment protection which provides open weather
sensors data7 in the area of Milan (Italy). The data contains 1.4 millions of hourly temperature
samples, recorded by 13 weather stations from January 2010 to August 2022 in Milan and nearby.
Each sample is described by: the temperature, the date, the hour, and the coordinates of the weather
station. The task is the interpolation of the temperature between weather stations, which is modeled
as a prediction of the temperature in an unknown location. This is achieved by removing a subset of
stations from the training data and by comparing the model predictions with the actual temperatures
observed by the test stations. The hypothesis is that the geographical characteristics of the location
help to explain the differences in recorded temperatures from nearby sensors.

The experimental setup is the same as in Sec. 4.2. Baseline model denotes the model relying on
all the available features when geospatial data are only latitude and longitude which are the date
components (year, month and week of year) and the hour of the day. The loss function is the MSE
of the temperature, and the metrics monitored are both the loss and the MAE. The temperature
records are split into training, validation and test with ratios 80%;10%;10% by randomly sampling
the sensors, to analyze the performance of estimating the temperatures at an unknown location.

Table 2 shows the performance of the different models on the test set. We can see that the GBM
models with GeoVeX emebddings (both alone and combined to Space2Vec) confidently outperform
every other model. This shows that GeoVeX vectors help in improving the estimation of tempera-
tures in this region with a mix of urban and green areas, by providing the geographical context of
each location.

Table 2: Experiment results for the hyperlocal temperature interpolation task. The lower the better.

Model MSE Temperature MAE Temperature

Baseline 11.144± 0.094 2.651± 0.012
w/ GeoVeX 10.656± 0.135 2.615± 0.016
w/ Hex2Vec 10.862± 0.110 2.628± 0.010
w/ Space2Vec 10.880± 0.105 2.639± 0.012
w/ GeoVeX & Space2Vec 10.651 ± 0.090 2.613 ± 0.012
w/ Hex2Vec & Space2Vec 10.870± 0.172 2.629± 0.019

7https://www.arpalombardia.it/Pages/Meteorologia/Richiesta-dati-misurati.aspx
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