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Abstract— Robotic systems are often limited by their sensor
Field of View (FoV), which makes collision-free navigation
and exploration in an unknown environment challenging. In
contrast, humans are better at it because they can use their
prior knowledge and consider the information beyond the FoV.
What if robots could do it too? In our proposed approach, we
aim to enhance the intelligence of robots by utilizing pre-trained
masked autoencoders to make predictions of expanded FoV and
synthesis a novel view. This allows the robot to reason and make
informed decisions for safe and efficient navigation in unknown
environments. We demonstrate the effectiveness of computer
vision algorithms, specifically masked autoencoders, in solving
practical robotics problems without the need for fine-tuning by
using only top-down images. Our approach is evaluated in both
indoor and outdoor environments, showcasing its performance
in various settings of RGB, semantic segmentation, and binary
images.

I. INTRODUCTION

Mobile robot navigation through unknown areas has been
studied by the robotics community for a long time. In the
existing approaches, the robot updates the map based on
its observations so far and moves according to the task at
hand such as point-goal navigation, object navigation, and
exploration. In the case of ground robots, the map is typically
represented in a top-down view or Bird’s Eye View (BEV),
as the robot motion is constrained on the ground plane. Top-
down representations are also used for aerial robots deployed
for surveying and scouting.

The traditional approaches use the robot’s observations
with methods developed for the reliable construction of
maps. Recent works across the wider robotics community
have started exploring learning-based approaches to augment
the robot’s information to accomplish tasks. These methods
help in modeling complex representations and processes and
allow predicting future observations to improve robot safety
and execution efficiency.

Learning-based methods face challenges in robotics due
to the requirement for extensive datasets, which are typically
sparser compared to computer vision applications. Simulators
can generate virtual data, but introduce a ”sim2real gap”
issue. Computer vision methods trained on large datasets may
not directly apply to robot applications due to distribution
differences in image representation. Fine-tuning is often
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Fig. 1: Masked Autoencoder can be used to predict larger
field-of-view in top-down images for RGB, semantic, and
binary images without fine-tuning.

used but requires similarity between pre-training and fine-
tuning tasks, which can be challenging for robot navigation
representations such as top-down images, semantic maps,
and occupancy maps.

The recent emergence of foundational models, i.e. self-
supervised models trained on huge datasets, aims to address
this by including a variety of distribution of datasets. But
how can we use these large self-supervised models in visual
representation come at use for robotics tasks? In this paper,
we study Masked Autoencoder (MAE) [12] for helping with
predictions for top-down images.

A network capable of predicting, for example, the corners
in an indoor environment, or the roads occluded by trees
outdoors, can significantly help the robotics agent navigate
the real world by utilizing the information beyond its field-
of-view (FoV) for long-term planning. But it is important
to note that the MAE is trained on front view/first person
view images. And for robotics tasks, we need top-down, so
to make predictions in top-down view images, should we
fine-tune it? Surprisingly, the answer is no (for the most
part). We test the effectiveness of MAE to synthesize novel
views over indoor and outdoor images across three input
modalities: RGB images, semantic maps, and binary maps.
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We present scenarios where these predictions could im-
prove task efficiency. Importantly, we use only pre-trained
MAE for all the experiments, making MAE virtually a free-
lunch method to help with a variety of tasks.

Specifically, we make the following contributions in this
paper:

• We study MAE as an inpainting network for top-down
images across RGB, semantic maps, and binary maps,
and present quantitative and qualitative results across
various degrees of increasing field-of-view.

• We present methods for semantics-guided inpainting
with MAE in top-down images to remove the undesired
objects for data enhancement.

• We show motivating examples to extract uncertainty in
predictions from MAE that are helpful for uncertainty-
guided navigation and exploration.

Our work highlights how MAE, and similar foundational
models, can be used for robot tasks by choosing appropriate
modalities without any fine-tuning, and paves the way for
further improvement to the existing capabilities by task-
specific tuning of these models.

Fig. 2: Results on occupancy map from a TurtleBot2 robot.

II. RELATED WORKS

A. Top-Down Images for Robotics

Top-down images and map representations are vital for
robot navigation and exploration. Navigating through an
unknown map by Simultaneous Mapping and Localization
(SLAM), which utilizes the robot’s past observations, has
been a cornerstone of robotics for robotics. A top-down
semantic map is another representation of interest for robotic
applications. These maps are useful for semantic goal naviga-
tion [10], [11]. Top-down images are also beneficial for tasks

involving aerial robots such as surveying and scouting [4],
[18]. The maps obtained by the aerial robots can be used
for helping the ground robots navigate. Semantic maps are
obtained from such images to identify navigable and non-
navigable areas for the ground robot.

Recent works in this domain have sought to improve task
efficiency by predicting the unobserved regions of the map to
plan ahead. 2D Occupancy map, a top-down representation,
has been the focus of many of these works, showing improve-
ment in navigation, exploration distance, and time [14], [19],
[24], [22]. Katyal et al. [15] show these benefits for high-
speed navigation, highlighting the importance of predictions.
While the predictions are limited to the perception module,
planning can also enhance planning by extracting uncertainty
from the predictions [13], [9]. The idea of uncertainty
extraction also proves helpful in heterogeneous robot teams
for risk-aware planning [23]. The key challenge with all these
systems is that they need to be trained on the appropriate
modalities, for which sufficient data may not be available,
leading us to ask if there exist pre-trained models that can
be used in these applications without much training effort,
or better, without any fine-tuning at all?

B. Masked Autoencoders (MAE)

The idea of map prediction is similar to the well-known
computer vision task of image inpainting [8]. As most of
the existing networks are trained on first-person view RGB
images, they do not work well on top-down images and
other representations. Similar existing works for robotic
applications rely on generative models [16], [20], [21], which
require training or fine-tuning networks on simulation data
to get accurate results. We instead turn our attention to self-
supervised transformer-based networks that are capable to
reason about shapes due to their ability to capture long-range
relationships.

One such powerful network is masked autoencoder (MAE)
that uses ViT encoder [7] and is trained to use only the
visible patches of an image to predict the missing patches,
similar to the training strategy of BERT [6]. MAE uses linear
projections and position encodings for feature representation
and is trained with mean squared error (MSE) between the
reconstructed and original images in the pixel space, but
only for masked patches. While MAE is also trained on
RGB images only from the ImageNet-1K dataset [5], the
underlying ViT architecture allows it to reason about other
modalities as shown by MultiMAE [1]. Therefore, we use
MAE for our study and show its effectiveness for prediction
and inpainting across various modalities in top-down images
useful for robotic tasks, without any finetuning.

III. EXPERIMENTAL SETUP AND EVALUATION

A. Setup

Our objective is to evaluate whether the pre-trained MAE
can be directly transferred from first-person RGB images
to top-down RGB and semantic segmentation images as an
inpainting approach. We use the MAE based on ViT-Large
and perform an evaluation on the dataset collected from two



Fig. 3: Results of increasing FoV for outdoor images in three
masking scenarios. MAE predicts the road well for limited
masking but prediction deteriorates with larger masks.

photorealistic simulated environments, consisting of diverse
indoor and outdoor scenes. The inputs to MAE are fed as
RGB images by replacing labels with colors in semantic and
binary maps and converting the colors in the output images
back to labels by replacing them with the label assigned to
the closest color in the input images.

Indoor Data: For indoor environment, we use AI2-
THOR [17] which has 120 indoor scenes such as kitchens,
living rooms, bathrooms, etc. We collect 1444 RGB and
segmentation images with a top-own camera of a field of
view of 80 degrees and rotated at intervals of 30 degrees
(e.g., 30, 60, 90, etc.).

Outdoor Data: For outdoor images were taken from Air-
Sim VALID dataset [3] which consist of scenes from cities,
suburbs, and mountains among others, captured at different
altitudes from an aerial robot. We sample 1000 images from
this dataset for this study. For these environments, we also
evaluate MAE on binary images, consisting of navigable and
non-navigable regions, as a stand-in for occupancy maps.

Tasks: Inpainting in robotics tasks is distinct from typical
inpainting applications as in the former we usually know
what to inpaint. We study the following such applications:

1) Increasing the FoV: As shown by the previous
works [14], [15], increasing the FoV help in long-
term planning. We evaluate similarly by predicting a
larger area around the image. For this, we mask the
26%, 49%, and 67% in the periphery of the image and
refer to these as Border 1, Border 2, and Border 3,
respectively.

2) Semantics-Guided Inpainting: The images captured
during the data collection and surveying may contain
undesired objects. Sometimes this may affect planning.
For example, if a tree occludes the road in an aerial

Fig. 4: Results of increasing FoV for indoor images in three
masking scenarios. The corner of the bathtub and room is
accurately predicted based on the symmetry of the lines.

Fig. 5: Uncertainty extraction from MAE predictions.

image, the road may be considered as blocked in
the semantic map and hence would not be used for
navigation (Figure 6). Such occlusions can be removed
by MAE. While the same could be achieved with fine-
tuned networks, it would be economical to use the
same network that is being used for increasing the
field-of-view, without task-specific fine-tuning.

In addition, we also present a method to extract uncer-
tainty in predictions for uncertainty-guided navigation and
exploration, as proposed in previous works [13], [23], [9].

We evaluate the RGB predictions for the FoV increase
on the following metrics typically used to quantify visual
similarity: (1) Frechet Inception Distance (FID), (2) Struc-
tural Similarity Index Measure (SSIM), (3) Peak Signal-to-
Noise Ratio (PSNR), and (4) Mean Squared Error (MSE).
For the semantic and binary images, we use Jaccard Index,
i.e. mean Intersection-over-Union (mIoU) as the key metric
but also provide the results for some of the aforementioned
metrics since we use MAE to predict visually similar images
for these modalities. For the rest of the tasks, we present
qualitative examples.

B. Results

Table I summarizes the results for RGB images for both
types of environments. We find that increasing the border size



(FoV) results in worse results than expected since MAE, an
inpainting network can not reliably predict the outside areas
without much context. Border 3 is the extreme case where
the predictions get blurry. Figure 3 and Figure 4 show some
examples in RGB outdoor and indoor scenes respectively and
highlight this effect.

Table II and Table III summarize results for semantic
and binary maps. The mIoU is very high for border 1 and
goes down with increasing FoV. The effect is worse indoors
as it contains many more classes (270) compared to the
outdoors (30) and thus may not reliably perform color-to-
label matching. Also, small objects are within the scene and
on the periphery, and MAE can not predict them without
seeing some part of them. Note that the Jaccard index here
is not weighted by the labels’ population size. Predictions
on binary maps are relatively more robust since the size of
objects in each class and the difference in color mapping
are larger than the semantic maps. These results present
an encouraging picture for a network that was not trained
on such images. Figure 1 shows examples for each type of
image. We share more qualitative results in the Appendix.

Uncertainty extraction can be useful for guiding navigation
and exploration. MAE is a deterministic model. To extract
uncertainty, we get multiple outputs by perturbing the input
image with random noise. Figure 5 shows one such example
where we get 10 predictions and show mean and variance in
the output images. The highest variance lies in the prediction
of small segments like edges and corners, and the robot
should move towards these areas to get more observations.
MAE is confident in its predictions about larger objects. We
believe more such methods can be developed for uncertainty
extraction without any change in the weight of MAE.

TABLE I: Results for increasing the FoV in RGB images

Environment Masking FID ↓ SSIM ↑ PSNR ↑ MSE ↓

Indoor Border 1 17.83 0.94 27.76 13.76
Border 2 41.79 0.86 22.23 32.42
Border 3 76.59 0.78 19.18 52.98

Outdoor Border 1 53.66 0.84 26.38 33.59
Border 2 77.91 0.69 22.79 49.91
Border 3 116.09 0.55 19.98 67.80

TABLE II: Results for increasing the FoV in Semantic
segmentation images

Environment Masking mIoU ↑ FID ↓ SSIM ↑ PSNR ↑

Indoor Border 1 0.86 43.48 0.94 23.06
Border 2 0.55 75.42 0.84 17.33
Border 3 0.34 110.01 0.78 14.90

Outdoor Border 1 0.90 42.63 0.94 25.96
Border 2 0.73 73.03 0.86 21.39
Border 3 0.57 118.56 0.79 18.80

We also ran MAE on the map obtained from a TurtleBot2
robot equipped with a Hokuyo 2D scanner with an FoV of
270◦. The predictions and the ground truth map for some
sequences are shown in Figure 2. The robot is moving
towards right here. Here MAE is used for Border-1 prediction

TABLE III: Results for increasing the FoV in Binary images
from Outdoor environment

Masking mIoU ↑ FID ↓ SSIM ↑ PSNR ↑

Border 1 0.90 51.87 0.95 30.36
Border 2 0.78 88.44 0.76 22.05
Border 3 0.64 120.94 0.56 17.81

Fig. 6: Semantics guided inpainting for removing undesired
objects.

and shows potential for use in occupancy prediction for
navigation.

Figure 6 shows some examples of semantics-guided in-
painting with MAE by generating masks based on seman-
tic maps. The first two rows remove cars from a road,
to generate empty cities for digital mapping and dataset
augmentations [2]. The latter two remove a tree close to the
road to prescribe the path for navigation. We note that the
results for the RGB image in the last example do not look
visually appealing because MAE does not work well when
small, non-frequent features appear in the images. However,
it is noteworthy that the inpainting results for the semantic
map are quite accurate.

IV. LIMITATIONS AND FUTURE WORK

Although the predictions are close to the ground truth with
border 1 and border 2, they significantly lack quality when
more than 60% of the image is masked. This prediction
can be improved if the network is fine-tuned on top-down
view images. On the other hand, the network hallucinates
the prediction, so if no part of an object is visible, it won’t
be predicted, therefore there are some cases where it fails
to predict any object at all. Our future work will focus on
implementing prediction-driven navigation and exploration
and comparing against existing methods to quantify the
efficacy of the proposed approach.
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APPENDIX

We present the results for predictions by MAE with
different masking modes on RGB, semantic, and binary
images in the pages below. These results are also available
on our project webpage1.

1Project Webpage: https://raaslab.org/projects/FLIP-TD/
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Fig. 7: Inpainting with border 1 on outdoors RGB images



Fig. 8: Inpainting with border 2 on outdoors RGB images



Fig. 9: Inpainting with border 3 on outdoors RGB images



Fig. 10: Inpainting with border 1 on outdoors Semantic Segmentation Maps



Fig. 11: Inpainting with border 2 on outdoors Semantic Segmentation Maps



Fig. 12: Inpainting with border 3 on outdoors Semantic Segmentation Maps



Fig. 13: Inpainting with border 1 on outdoors Binary Maps



Fig. 14: Inpainting with border 2 on outdoors Binary Maps



Fig. 15: Inpainting with border 3 on outdoors Binary Maps



Fig. 16: Inpainting with multiple borders on indoors semantic map
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