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ABSTRACT

We study off-dynamics offline reinforcement learning, where the goal is to learn a
policy from offline source and limited target datasets with mismatched dynamics.
Existing methods either penalize the reward or discard source transitions occurring
in parts of the transition space with high dynamics shift. As a result, they optimize
the policy using data from low-shift regions, limiting exploration of high-reward
states in the target domain that do not fall within these regions. Consequently,
such methods often fail when the dynamics shift is significant or the optimal trajec-
tories lie outside the low-shift regions. To overcome this limitation, we propose
MOBODY, a Model-Based Off-Dynamics Offline RL algorithm that optimizes a
policy using learned target dynamics transitions to explore the target domain, rather
than only being trained with the low dynamics-shift transitions. For the dynamics
learning, built on the observation that achieving the same next state requires taking
different actions in different domains, MOBODY employs separate action encoders
for each domain to encode different actions to the shared latent space while sharing
a unified representation of states and a common transition function. We further
introduce a target Q-weighted behavior cloning loss in policy optimization to
avoid out-of-distribution actions, which push the policy toward actions with high
target-domain Q-values, rather than high source domain Q-values or uniformly
imitating all actions in the offline dataset. We evaluate MOBODY on a wide range
of MuJoCo and Adroit benchmarks, demonstrating that it outperforms state-of-
the-art off-dynamics RL baselines as well as policy learning methods based on
different dynamics learning baselines, with especially pronounced improvements
in challenging scenarios where existing methods struggle.

1 INTRODUCTION

Reinforcement learning (RL) (Kaelbling et al., 1996; Li, 2017) aims to learn a policy that maximizes
cumulative reward by interacting with an environment and collecting the corresponding rewards.
While RL has led to impressive successes in many domains, such as autonomous driving (Kiran
et al., 2021) and healthcare (Lee et al., 2023), it faces significant constraints on interaction with the
environment due to safety or cost concerns. One solution is to learn a policy from a pre-collected
offline dataset (Levine et al., 2020). Still, when the offline dataset is insufficient, data from another
environment, such as a simulator with potentially mismatched dynamics, may be needed, but requires
further domain adaptation. In our paper, we study a specific type of domain adaptation in RL, called
off-dynamics offline RL (Liu et al., 2022; 2024; Lyu et al., 2024b), where the simulator (source) and
real/deployed (target) environments differ in their transitions. The agent is not allowed to interact
with the environment but only has access to offline data that is pre-collected from the two domains
with mismatched dynamics and trains a policy with the offline data.

Existing works on off-dynamics offline RL solve the problem by 1) reward regularization methods
(Liu et al., 2022; Xue et al., 2023; Wang et al., 2024) through the state visitation frequency or
estimation of the dynamics gap or 2) data filtering methods (Xu et al., 2023; Liu et al., 2024; Wen
et al., 2024) that penalize or filter out source transitions with high dynamics shift. As a result, the
policy is mostly optimized with the transitions from the low shift regions, limiting exploration of
high-reward states in the target domain that do not fall within these regions. Consequently, such
methods often fail when the dynamics shift is significant or the optimal/high-reward trajectories lie
outside the low-shift regions. So we wonder, can we directly optimize the policy with the target
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transition, instead of only the low-shift regions to allow for more exploration of the high target reward
and large shift region?

Motivated by this, we propose a Model-Based Off-Dynamics RL algorithm (MOBODY) that learns
target domain dynamics through representation learning and optimizes the policy with exploratory
rollout from the learned dynamics instead of only the low-shift region data. Existing dynamics
learning methods, such as learning with limited target data, learning with combined source and target
data, and pretraining on source and finetuning on the target domain, are infeasible in the off-dynamics
RL setting due to the intrinsic dynamics difference in this problem. This is because 1) the dynamics
learned from the combined dataset is not the accurate target dynamics, but the dynamics resemble the
source one as the source transitions dominate the dataset, 2) the pretrain-finetune method still doesn’t
capture what is the difference between source and target dynamics using the same dynamics model,
but only tries to learn the target domain based on the source transition.
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Figure 1: Comparison between DARA (Liu
et al., 2022) (a SOTA model-free reward reg-
ularization method for offline off-dynamics
RL), MOPO (Yu et al., 2020) (a vanilla model-
based offline RL), and MOBODY on two Mu-
JoCo tasks. We show that 1) the model-free
method DARA receives low reward compared
with model-based MOBODY due to a lack
of exploration in the target domain, and 2)
MOPO fails as it cannot learn a good transi-
tion for exploration with a combined source
and target dataset.

To learn the target dynamics, we leverage shared
structural knowledge across domains, such as the
high-level robot motion and position in a robotics
task, while employing separate modules to account
for domain-specific dynamics differences. Specifi-
cally, we observe that to achieve the same next state
starting from the same state, different actions are re-
quired in two domains. Based on this, we propose to
learn separate action encoders for the two dynamics
to encode actions into a unified action representation,
and also learn a unified transition and state encoder to
map the unified latent state and action representation
to the next state. And such shared representation and
transition functions can be learned with the auxiliary
of the source data through representation learning. In
this way, MOBODY learns separate transition func-
tions for two domains but utilizes the source data
to provide shared structure knowledge regarding the
transitions. As shown in Figure 1, MOPO that di-
rectly learns dynamics with combined source and target data significantly underperforms MOBODY,
which is specifically optimized to learn the target dynamics.

We further propose a practical and useful target Q-weighted behavior cloning regularization in the
policy learning to avoid out-of-distribution and high source Q value (but low target Q value) actions,
inspired by the advantage-weighted regression (Peters & Schaal, 2007; Kostrikov et al., 2021a). The
vanilla behavior cloning loss (Fujimoto & Gu, 2021) will push the policy to favor the action in the
source data, but the action in the source data might not perform well in the target domain due to the
dynamics shift. To overcome this issue, the target Q-weight behavior cloning loss regularization will
up-weight action with the high target Q value. And we empirically validate the choice of the target-Q
weight BC loss.

Our contribution can be summarized as follows:

• We propose a novel paradigm for off-dynamics offline RL, called model-based off-dynamics offline
RL, that can explore the target domain with the learned target transitions instead of optimizing the
policy only with the low-shift transitions.

• We propose a novel framework for learning the target dynamics with source data and limited target
data by learning separate action encoders for the two domains while also learning a shared state
and the transition in the latent space. We also incorporate a target Q-weighted behavior cloning
loss for policy optimization that is simple, efficient, and empirically validated for off-dynamics
offline RL settings.

• We evaluate our method on MuJoCo and Adroit environments in the offline setting with different
types and levels of off-dynamics shifts and demonstrate the superiority of our model with an
average 44% improvement over baseline methods on the gravity and friction settings and 25% on
the kinematic and morphology shift settings.
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2 BACKGROUND

Off-dynamics offline reinforcement learning. We consider two Markov Decision Processes (MDPs):
the source domainMsrc = (S,A, R, psrc, γ) and the target domainMtrg = (S,A, R, ptrg, γ). The
difference between the two domains lies in the transition dynamics p, i.e., psrc ̸= ptrg or more
specifically, psrc(s

′ | s, a) ̸= ptrg(s
′ | s, a). Following existing literature on off-dynamics RL

(Eysenbach et al., 2020; Liu et al., 2022; Lyu et al., 2024a; Guo et al., 2024; Lyu et al., 2024b;
Wen et al., 2024), we assume that reward functions are the same across the domains, which is
modeled by the state, action, and next state, i.e., rsrc(s, a, s

′) = rtrg(s, a, s
′). The dependency

of the reward on s′ is well-justified in many simulation environments and applications, such as
the Ant environment in MuJoCo, where the reward is based on how far the Ant moves forward,
measured by the change in its x-coordinate (i.e., the difference between the x-coordinate after and
before taking action). The goal is to learn a policy π with source domain data (s, a, s′, r)src and
limited target domain data (s, a, s′, r)trg that maximize the cumulative reward in the target domain
maxπ Eπ,ptrg [

∑
t γ

trtrg(st, at)]. In the offline setting, we are provided with static datasets from a
source and a target domain Dsrc = {(s, a, s′, r)src} and Dtrg = {(s, a, s′, r)trg}, which consist of the
transitions/trajectories collected by some unknown behavior policy. Note that in the off-dynamics
setting, the number of transitions from the target domain is significantly smaller than the source, i.e.,
|Dtrg| ≪ |Dsrc|, and normally the ratio |Dsrc|

|Dtrg| can vary from 10 to 200. In our paper, we follow the
ODRL benchmark (Lyu et al., 2024b) in which the ratio is 200.

Model-based offline reinforcement learning. Model-based RL learns a transition function
T̂ (s′, r|s, a) by maximizing the the likelihood T̂ = maxT EDoffline [log T̂ (s

′, r|s, a)]. Then, the al-
gorithm rolls out new transition data to optimize the policy and take u(s, a) as the uncertainty
quantification to obtain a conservative transition, i.e., (s, a, s′, r̂ − αu(s, a)). The policy with offline
data Doffline and online rollout (s, a, s′, r̂ − αu(s, a)). However, different from traditional model-
based offline RL, we only have very limited target domain data and source data with dynamics shift.
There is no existing model-based solution for off-dynamics RL, which calls for novel methodology
development both in dynamics learning and policy learning.

Detailed discussions of related work are in Appendix A due to space limit.

3 MOBODY: MODEL-BASED OFF-DYNAMICS OFFLINE REINFORCEMENT
LEARNING

Figure 2: Architecture of the dynamics model.
MOBODY encodes the state with ϕE and
state action with ψ, outputs the next state
through ϕT , and learns the dynamics for both
domains by transition loss shown in purple
double arrow ⇔. It learns the state action
representation by matching the state action
representation zsa with the next state repre-
sentation zs′ through encoder loss shown in
the green double arrow⇔ and the state repre-
sentation through cycle transition loss shown
in orange double arrow⇔.

In this section, we present our algorithm, MOBODY,
for the off-dynamics offline RL problem setting. We
first present how we learn the target dynamics with
very limited target domain data Dtrg and source do-
main data Dsrc. Secondly, for policy learning, we in-
corporate a target Q-weighted behavior cloning loss
to regularize the policy, where the target Q value is
learned from enhanced target data, including reward
regularized source data, target data, and rollout data
from learned dynamics. The algorithm is summarized
in Algorithm 2.

3.1 LEARNING THE TARGET DYNAMICS

Decomposition of the dynamics. In general, the
dynamics can be modeled as s′ = ϕ(s, a) or s′ =
ϕsrc(s, a) and s′ = ϕtrg(s, a) for the two domains.
Although the dynamics are different, the transitions
share some structured knowledge that we can utilize.
Also, from another perspective, for the two domains,
to achieve the same next state, different action is
required, i.e., (s, asrc, s

′)src and (s, atrg, s
′)trg. Based

on this, we propose using separate action encoders to encode actions from the two domains into the
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shared latent space. So the source and target domains can share a unified representation of states and
a common transition function with the latent action.

We define the zs as the state representation, zsrc
sa and ztrg

sa as the state-action representations from the
action encoder for source and target dynamics, respectively. Specifically, we model the state and state
action representation through zs = ϕE(s), z

trg
sa = ψtrg(zs, a) and zsrc

sa = ψsrc(zs, a), so that we can
obtain a separate state action representation for two domains. So, with the learned representation zs
and zsa, we have the dynamics modeled as s′ = ϕT (zs, ψ(zs, a)), where ϕT is the transition function.
For simplicity and to reduce the model parameters, we choose to directly add the state and state
action representation together and feed into the transition function s′ = ϕT (zs +ψ(zs, a)). Note that
this additive term zs + ψ(zs, a) is also widely adopted in the implementation of the model-based RL,
where the transition is modeled as s′ = s + f(s, a). We show the flow of the dynamics learning
component in Figure 2. And our dynamics model is:

source dynamics :zs = ϕE(s), zsa = zs + ψsrc(zs, a), ŝ
′ = ϕT (zsa), (1)

target dynamics :zs = ϕE(s), zsa = zs + ψtrg(zs, a), ŝ
′ = ϕT (zsa), (2)

where ϕE is the state encoder, ϕT is the transition, and ψsrc and ψtrg are the state action encoders for
source and target, respectively. Equation (1) and Equation (2) show that we use different modules
(action encoder ψsrc and ψtrg) for the source and target domains, but with shared state representation
from state encoder ϕE and unified transition function ϕT . We now discuss how representation
learning techniques, utilizing several loss functions, enable us to learn representation and dynamics.

Transition Loss. The transition loss minimizes the Mean Squared Error of the predicted next state
and the ground truth next state as shown in a purple two-way arrow in Figure 2. The goal of the
transition loss is to learn the shared transition knowledge ϕT using both source and target data.

Lsrc
dyn = 1

N

∑N
i=1 ∥s

′ − ϕT (zs + ψsrc(zs, a))∥2;Ltrg
dyn = 1

N

∑N
i=1 ∥s

′ − ϕT (zs + ψtrg(zs, a))∥2. (3)

Encoder Loss (Learning separate action encoder ψsrc and ψtrg). The ϕT can map the latent state
action representation to the next state for both domains, we use encoder loss to learn the separate
action encoders for the two domains to map different actions to the unified latent space that served
as the input to the ϕT . Specifically, we adopt a general assumption in representation learning that
the representation of the state action should be close to the next state (Ye et al., 2021; Hansen et al.,
2022b), where the predicted representation of the current state-action pair ψ(s, a) incorporates the
transition information to be close to the next state representation ϕE(s′). This encourages the action
encoder to further encode the difference of the dynamics information for the two domains, thereby
improving the efficiency of learning the dynamics model. The encoder loss is formulated as:

Lsrc
rep = 1

N

∑N
i=1 ∥|zs′ |× − (zs + ψsrc(zs, a))∥2, Ltrg

rep = 1
N

∑N
i=1 ∥|zs′ |× − (zs + ψtrg(zs, a))∥2, (4)

zs′ = ϕE(s
′) is the next state representation encoded with ϕE and | · |× is the stopping gradient.

Here, N is the batch size. The encoder loss is shown in a green two-way arrow in Figure 2.

Cycle Transition Loss (Learning shared ϕE and ϕT ). To further improve the state representation
quality and avoid mode collapse in the encoder loss, we include a “cycle transition loss” through
VAE-style (Kingma et al., 2013) learning. The dynamics function maps the state action to the next
state through the state action representation. Then, from one perspective, by setting ψ to 0, the
dynamics only input the state into the dynamics learning framework, and no action will be taken. The
output of the dynamics will be the same state, i.e., (s, 0, s), which is the same for two domains. So
when the ψ is set to 0, the state is predicted as: ŝ = ϕT (ϕE(s) + 0). Then we can explicitly learn the
state representation with the state in the offline dataset by minimizing: ∥ϕT (ϕE(s))− s∥2. From this
perspective, we can view ϕE as an encoder and ϕT as a decoder, and we propose using a Variational
AutoEncoder (VAE) (Kingma et al., 2013) to learn the state representation.

Let zs be expressed as zs = µϕE
(s) + σϕE

(s) ⊙ ϵ, with ϵ ∼ N (0, I) and µϕE(s) and σϕE
are the

output of state encoder network ϕE . Let dz be the dimension of the latent representation, the loss for
learning the state representation is:

Lcycle =
1

2N

∑N
i=1

∑dz
j=1

(
µ2
i,j + σ2

i,j − log σ2
i,j − 1

)
+ 1

N

∑N
i=1 ∥si − ŝi∥2 , (5)

The cycle transition loss is shown in an orange two-way arrow in Figure 2.

Unlike previous VAE-based dynamics learning methods, which are not tailored for off-dynamics RL,
we introduce a cycle transition loss alongside the encoder loss to jointly learn state representations
and shared transition functions across domains, rather than just learning state representations. The
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VAE representation also mitigates mode collapse that arises when trained solely on the encoder loss.
The decoder, serving as a shared transition function, maps the unified state-action representation
from separate action encoders to the next state, providing additional supervision signals for learning
cross-domain dynamics. In conclusion, our method learns the unified transition function ϕT for both
domains, while using the ψsrc and ψtrg to learn the distinct information of the two dynamics.

Reward learning and uncertainty quantification (UQ) of the learned dynamics. Given that
the reward is modeled as a function of (s, a, s′) tuple and the reward function is the same across
domains, we learn the reward function r̂(s, a, s′) as a function of the (s, a, s′) tuple with the combined
source and target dataset through the MSE loss Lreward = 1

2EDsrc∪Dtrg

[
r(s, a, s′) − r̂(s, a, s′)

]2
+

1
2EDsrc∪Dtrg

[
r(s, a, s′)− r̂(s, a, ŝ′)

]2
, where ŝ′ is the predicted next state. Here, we use both the true

next state and the predicted next state from the dynamics model to learn the reward model, as during
inference, we do not have the true next state and only have a predicted next state. This is further
described in the Appendix B. Also, we follow the standard model-based approach (Yu et al., 2020)
for the UQ of the dynamics, by penalizing the estimated reward r̂ with the uncertainty in predicting
the next state: r̃(s, a, s′) = r̂(s, a, s′)− βu(s, a) where u(s, a) the uncertainty of the next state and
β is the scale parameter. We refer to the details in Appendix B.

To summarize, the dynamics learning loss is:

minEDsrcL
src
dyn + EDtrgL

trg
dyn + EDsrc∪Dtrg [Lreward + λrep(Lcycle + Lrep)], (6)

where λrep is a scalar controlling the weight of the representation learning term and set to be 1
in the experiments, as we notice there is no significant performance difference with different λrep.
And the representation loss is summing the source and target loss: Lcycle = Lsrc

cycle + Lsrc
cycle, and

Lrep = Lsrc
rep + Lsrc

rep. We summarize the dynamics learning algorithm in Algorithm 1.

3.2 POLICY LEARNING WITH THE TARGET-Q-WEIGHTED BEHAVIOR CLONING LOSS

After we learn the target dynamics, we perform model-based offline RL training. During the policy
optimization, we roll out new target data from the learned target dynamics with the current policy and
state in the offline data and keep the rollout data in the Dfake. Also, we want to utilize the source data
to optimize the policy. We follow the previous work by DARA (Liu et al., 2022) on off-dynamics
offline RL. This approach first performs reward regularization on the source data, which learns
domain classifiers p(trg|s, a, s′) and p(trg|s, a) to penalize the reward of large shift in the source
data: rDARA(s, a) = r(s, a)− η log psrc(s

′|s,a)
ptrg(s′|s,a) . Details of the DARA are referred to in Appendix C.1.

Our enhanced target data is Denhanced = Dsrc_aug ∪ Dtrg ∪ Dfake, a combination of regularized source
data, target data, and model rollouts.

Learning the Q function We learn the Q functions following standard temporal difference learning
with enhanced target data:

minLQ = minEDsrc_aug∪Dtrg∪Dfake

[(
r + γmax

a′
Qθ−(s′, a′)−Qθ(s, a)

)2
]
. (7)

Policy optimization with target Q-weighted behavior cloning. In offline RL, a central challenge
is exploration error, as out-of-distribution actions cannot be reliably evaluated—an issue exacerbated
under off-dynamics settings. Behavior cloning (Fujimoto & Gu, 2021; Goecks et al., 2019) offers
a simple and effective regularization by biasing the policy toward actions in the offline dataset, by
pushing actions close to the actions in the offline dataset. However, in off-dynamics RL, naively
cloning source-domain actions can harm performance: actions in the source dataset may perform
poorly in the target domain due to the dynamics shift, so vanilla behavior cloning alone in TD3-BC
(Fujimoto & Gu, 2021) is insufficient for policy regularization.

Instead, inspired by the advantage weighted regression and the IQL (Kostrikov et al., 2021a), i.e.
Lπ(ϕ) = E(s,a)∼D

[
exp

(
β (Q̂θ(s, a)− Vψ(s))

)
log πϕ(a | s)

]
, which re-weight the log likelihood

of the offline data with the advantage, we can re-weight the behavior cloning loss with the target Q
value, namely a Q weighted behavior cloning loss, where the target Q value is learned with enhanced
target data, so that this Q value approximates the Q value in the target domain. Intuitively, the target
Q-weighted behavior cloning loss up-weights the policy’s loss with higher target Q-values, guiding
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the policy toward actions expected to perform better under target dynamics. The policy loss with Q
weighted behavior cloning loss is:

π =argmin
π

−E(s,a)∈Denhanced

[
λQ(s, π(s))

]
+ E(s,a)∈Dsrc_aug∪Dtrg

[
exp

(
Q(s, π(s))

1/N
∑N

i |Q(si, π(si))|

)
(π(s)− a)2

]
,

(8)

where the λ = α
1/N

∑N
i |Q(s,a)| is the scaler λ that balance the behavior regularization error and Q

loss and α is a hyper parameters. We empirically validate the choice of target Q-weighted instead of
AWR style loss in Section 4.3 and Appendix C.4.2. We summarize the MOBODY in Algorithm 2 in
the Appendix B.

4 EXPERIMENTS

In this section, we empirically evaluate MOBODY in off-dynamics offline RL settings using four
MuJoCo environments from the ODRL benchmark: HalfCheetah-v2, Ant-v2, Walker2d-v2, and
Hopper-v2 and manipulation tasks in Adroit: Pen and Door. We also perform comprehensive ablation
studies to justify the importance of each component of MOBODY.

4.1 EXPERIMENTAL SETUP

Environments, Tasks, and Datasets. We evaluate MOBODY on the MuJoCo and Adroit envi-
ronments from the ODRL benchmark (Lyu et al., 2024b). For the MuJoCo environment, we set
the source domain unchanged and consider several types of dynamics shifts for the target domain,
1) gravity and friction, each scaled at four levels: {0.1, 0.5, 2.0, 5.0} by multiplying the original
values in MuJoCo, and 2) kinematics and morphology shift, each is achieved by constraining the
rotation angle ranges of certain joints or modifying the size of specific limbs or the torsos of the
robot. We also consider the Adroit task with kinematics and morphology shift, scaled to medium and
hard shift levels, to demonstrate that our method applies to a wide range of environments and shift
types/levels. We use the medium-level offline datasets collected by the ODRL benchmark, which
uses an SAC-trained behavior policy tuned to achieve about 50% of expert performance. The target
dataset is then collected through rollout trajectories until 5,000 target transitions are reached. Also,
the source data contains 1 million transitions.

We evaluate the performance with the Normalized Score, defined as: normalized_score =
score−random_score

expert_score−random_score × 100, where the random_score is achieved by the random policy and
the expert_score is achieved by the SAC (Haarnoja et al., 2018) trained to the expert level in the
target domain. We also conduct hyperparameter and computational cost analysis in the Appendix C.4
to demonstrate that our method is not overly sensitive to hyperparameters.

Baselines. We compare MOBODY against model-free, model-based, and off-dynamics offline RL
baselines. For model-free methods, we use IQL (Kostrikov et al., 2021a) and TD3-BC (Fujimoto &
Gu, 2021), trained directly on the combined offline dataset of source and target transitions, without
any modification tailored to off-dynamics settings. For model-based offline RL, we adopt MOPO
(Yu et al., 2020): instead of training dynamics only on the target domain (which performs poorly
in our setting), we follow prior off-dynamics work (Eysenbach et al., 2020) and train MOPO’s
dynamics model and policy on the combined source+target dataset. We further include representative
off-dynamics offline RL methods DARA (Liu et al., 2022), BOSA (Liu et al., 2024), and SRPO
(Xue et al., 2023) and RADT (Wang et al., 2024). Finally, we compare MOBODY with alternative
dynamics learning strategies in Section 4.3.2.

4.2 MAIN RESULTS

Results on MuJoco gravity/friction shift. In Table 1, we show the detailed results and highlight
the best and second-best scores of the MuJoco gravity and friction shift problems. In the last row of
Table 1, we sum the normalized scores in total. Our proposed MOBODY receives 44% improvement
over the best performing baselines, RADT, and performs the best or second best in 28 out of 32
tasks. Also, MOBODY outperforms the baseline more in the large-shift setting, demonstrating the
effectiveness of our method for exploration and the dynamics learning and the suboptimality of
conservative reward regularization or data filtering methods.
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Table 1: Performance of MOBODY and baselines on MuJoCo tasks (HalfCheetah, Ant, Walker2D,
Hopper) under medium-level offline dataset with dynamics shifts in gravity and friction (levels 0.1,
0.5, 2.0, 5.0). Source domains remain unchanged; target domains are shifted. We report normalized
target-domain scores (mean ± std over three seeds). Best and second-best scores are highlighted in
cyan and light cyan, respectively. MOBODY receives 44% improvement over the second best
baseline RADT.

Env Level BOSA IQL TD3-BC MOPO DARA RADT SRPO MOBODY

HalfCheetah
Gravity

0.1 9.31± 1.94 9.62± 4.27 6.90± 0.34 6.28± 0.22 12.90± 1.01 16.14± 0.66 32.94± 1.65 14.18± 1.06
0.5 43.96± 5.68 44.23± 2.93 6.38± 3.91 40.20± 7.20 46.11± 1.93 40.50± 1.58 41.99± 1.63 47.18± 1.23
2.0 27.86± 0.94 31.34± 1.68 29.29± 3.62 21.89± 10.49 31.85± 1.31 33.28± 3.16 32.24± 1.97 41.60± 7.35
5.0 17.95± 11.97 44.00± 23.13 73.75± 14.11 57.75± 18.92 27.67± 17.01 71.31± 2.80 −2.33± 0.69 83.05± 1.21

HalfCheetah
Friction

0.1 12.53± 3.61 26.39± 11.35 8.95± 0.71 28.32± 9.23 23.69± 16.46 9.74± 0.46 17.36± 0.73 57.53± 2.49
0.5 68.93± 0.35 69.80± 0.64 49.43± 9.91 54.98± 5.91 64.89± 3.04 66.50± 0.99 109.18± 2.15 69.54± 0.48
2.0 46.53± 0.37 46.04± 2.04 43.51± 0.74 42.33± 3.89 46.25± 2.36 37.74± 2.35 75.19± 1.54 50.02± 3.26
5.0 44.07± 9.07 44.96± 6.78 35.83± 6.65 42.39± 10.22 40.06± 7.87 25.74± 3.24 5.10± 1.96 59.20± 4.91

Ant
Gravity

0.1 25.58± 2.21 12.53± 1.11 13.23± 2.61 8.93± 1.23 11.03± 1.24 15.75± 1.17 13.78± 1.81 37.09± 2.12
0.5 19.03± 4.41 10.09± 2.00 12.91± 2.85 12.28± 3.88 9.04± 1.35 13.25± 0.86 7.02± 2.73 37.44± 2.79
2.0 41.77± 1.52 37.17± 0.96 34.04± 4.12 35.43± 3.22 36.64± 0.82 43.25± 1.72 4.17± 2.03 45.83± 1.71
5.0 31.94± 0.69 31.59± 0.35 6.37± 0.45 28.97± 5.93 31.01± 0.39 49.36± 2.61 8.45± 1.24 65.45± 3.23

Ant
Friction

0.1 58.95± 0.71 55.56± 0.46 49.20± 2.55 49.86± 5.99 55.12± 0.24 54.13± 0.56 2.55± 3.45 58.79± 0.11
0.5 59.72± 3.57 59.28± 0.80 25.21± 7.17 32.28± 3.25 58.92± 0.80 57.46± 0.65 6.57± 1.76 62.41± 4.10
2.0 20.18± 3.79 19.84± 3.20 22.69± 8.10 15.93± 0.87 17.54± 2.47 21.28± 0.72 10.81± 2.09 47.41± 4.40
5.0 9.07± 0.88 7.75± 0.25 10.06± 4.16 13.89± 3.20 7.80± 0.12 9.53± 0.65 11.72± 1.86 31.17± 5.57

Walker2d
Gravity

0.1 18.75± 12.02 16.04± 7.60 36.48± 0.95 41.98± 10.13 20.12± 5.74 26.56± 2.62 13.67± 3.19 65.85± 5.08
0.5 40.09± 20.37 42.05± 10.52 27.43± 3.92 40.32± 8.78 29.72± 16.02 55.20± 2.18 56.28± 2.34 43.57± 2.32
2.0 8.91± 2.28 25.69± 10.70 11.88± 9.38 28.79± 3.07 32.20± 1.05 13.50± 2.38 8.52± 0.82 44.32± 4.58
5.0 5.25± 0.50 5.42± 0.29 5.12± 0.18 5.65± 0.99 5.44± 0.08 4.61± 1.13 5.12± 0.46 46.05± 20.73

Walker2d
Friction

0.1 7.88± 1.88 5.72± 0.23 29.60± 24.90 27.99± 2.11 5.65± 0.06 10.58± 0.71 9.02± 0.81 28.23± 9.13
0.5 63.94± 20.40 66.26± 3.03 45.01± 18.98 60.81± 3.04 68.81± 1.12 78.58± 1.08 −0.23± 0.45 76.96± 1.99
2.0 39.06± 17.36 65.40± 7.13 67.89± 1.66 68.38± 1.09 72.91± 0.37 42.18± 3.85 15.51± 2.73 73.74± 0.49
5.0 10.07± 4.91 5.39± 0.03 5.76± 0.84 5.34± 1.61 5.36± 0.28 8.36± 1.91 4.94± 0.66 27.38± 3.87

Hopper
Gravity

0.1 27.82± 13.41 13.10± 0.98 15.59± 6.09 22.49± 3.71 23.40± 11.62 31.11± 1.80 17.62± 1.66 36.25± 1.50
0.5 28.54± 12.77 16.24± 7.89 23.00± 14.87 23.92± 1.91 12.86± 0.18 36.37± 2.06 67.06± 3.60 33.57± 6.71
2.0 11.84± 2.37 16.10± 1.64 18.62± 6.88 11.76± 0.32 14.65± 2.47 16.44± 1.60 12.09± 0.71 23.79± 2.09
5.0 7.36± 0.13 8.12± 0.16 9.08± 1.15 7.77± 0.31 7.90± 1.27 8.11± 0.97 7.48± 0.51 8.06± 0.03

Hopper
Friction

0.1 25.55± 2.69 24.16± 4.50 18.64± 3.37 34.32± 6.79 26.13± 4.24 33.08± 2.53 18.21± 0.85 51.19± 2.56
0.5 25.22± 4.48 23.56± 1.68 19.60± 15.45 12.32± 3.96 26.94± 2.86 38.10± 3.32 18.41± 1.31 41.34± 0.49
2.0 10.32± 0.06 10.15± 0.06 9.89± 0.20 10.99± 0.76 10.15± 0.03 10.20± 0.30 9.71± 0.37 11.00± 0.14
5.0 7.90± 0.06 7.93± 0.01 7.80± 1.04 7.68± 0.19 7.86± 0.05 8.20± 0.36 7.76± 0.26 8.07± 0.04

Total 875.88 901.52 779.14 893.22 890.62 986.13 647.91 1427.26

MOBODY improves more when the dynamics shift is larger. Additionally, in larger shift sce-
narios, such as HalfCheetah-Friction-0.1, Ant-Friction-5.0, and Walker2d-Friction-5.0, MOBODY
achieves significant improvement over baseline methods, which receive very low rewards in the target
domain. We also summarize the performance comparison under different shift levels in Figure 5 in
Appendix C.3. Existing methods, DARA, BOSA, SRPO and RADT, fail in large shift settings as
the reward regularization methods are mainly trained with source data with regularization, resulting
in optimizing the policy with the low dynamics-shift transitions and cannot adapt to the large shift
target domain, as we mentioned earlier. Thus, such methods lack exploration of high-reward states in
the target domain that do not fall within these low dynamics-shift regions, which is more frequent
when shift is large.

Results on MuJoco kinematics/morphology shift. We also conduct experiments on MuJoco and
Adroit with kinematics and morphology shift. Due to page limit, we summarize the results in Figure 3
by summing the normalized score across different tasks. We observe that MOBODY receives a higher
overall score. We do not include error bars because the results are aggregated across many tasks, and
a single standard deviation is not well-defined at this level of aggregation. We also present all the
experimental results for each task in Table 4 and Table 5 in Appendix C.3, showing that our method
performs the best in 32 out of 40 tasks and achieves an overall 25% improvement in all tasks.

DARA and BOSA do not have significant improvements compared with IQL. The DARA
reward augmentation term, based on a KL divergence between source and target dynamics, can
become ill-defined when their supports barely overlap, destabilizing training and sometimes making
DARA worse than IQL. For BOSA, relying on a target dynamics model trained only on 5,000 target
transitions makes accurate dynamics learning difficult, thereby degrading performance.

In a few settings, MOBODY slightly underperforms SRPO or other baselines. SRPO assumes
optimal policies across dynamics often induce similar stationary state distributions. When this holds
in some tasks, it yields strong performance there, but bad performance when the assumption is
violated. However, MOBODY outperforms SRPO on most tasks, indicating better robustness under
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broader dynamics shifts. In the remaining MOBODY-underperforming cases, the gap to the best
baseline is small (less than 1.7%), typically either because all methods fail and achieve very low
rewards (e.g., Hopper-Gravity-5.0), or because baselines already perform very well under small shifts
(e.g., HalfCheetah-Friction-0.1, Walker2d-Friction-0.1), and additional exploration benefits from
MOBODY is less pronounced is these settings.
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(c) Manipulation Task

Figure 3: Aggregation experimental results on MuJoco kinematic and morphology shift task, and
Manipulation tasks. Our method outperforms the baselines. Detailed results of each environment,
shift type, and shift level are referred to Table 4 and Table 5 in the Appendix C.3.

4.3 ABLATION STUDY

In Section 4.3.1, we first conduct ablation studies on two main components of MOBODY: dynamics
learning and policy learning, showing the necessity of each component. In Section 4.3.2, we compare
our dynamics learning with others to demonstrate the effectiveness and better generalization ability.
In Section 4.3.3, we then conduct ablation studies to analyze how each component contributes to the
overall performance and show that the model-based rollout from our learned dynamics is the main
contributor, while the target-Q weighted BC loss is an auxiliary but essential regularizer that further
improves AWR BC loss. In Section 4.3.4, we also conduct other ablation studies to validate the
choice of target-Q weighted BC loss over the standard IQL weight.

4.3.1 ANALYSIS OF THE EFFECTIVENESS OF EACH COMPONENT

We evaluate the overall effectiveness of each component, then analyze specific design choices. For
dynamic learning, we assess the impact of the cycle transition loss and representation learning. For
policy learning, we examine the effectiveness of the Q-weighted loss.

We first evaluate the performance of our proposed dynamics learning and policy learning by replacing
the dynamics learning with the existing dynamics learning model or the policy learning with the
existing offline RL algorithm. We denote the two ablation studies as follows:

A1: Replace dynamics learning We compare our MOBODY with a variant replacing the dynamics
learning with the existing model-based method. We use a black-box dynamics model trained on
target data only, while the policy learning follows the same method as in MOBODY. Table 2
demonstrates that the A1 variant is significantly degraded compared with our proposed MOBODY
algorithm in Walker2d. This indicates that only using the existing dynamics models trained on the
target data is insufficient to rollout trajectories in the target domain. This motivates us to propose a
novel dynamics model learning method.

A2: Replace policy learning Similar to the A1, we replace the policy learning with the existing
offline RL algorithm. We adopt the same dynamics learning approach as in MOBODY and use
Conservative Q-Learning (CQL) (Kumar et al., 2020) for policy learning. Table 2 shows that our
proposed MOBODY outperforms the A2 variant in Walker2d. This demonstrates that the policy
learning part of our proposed MOBODY with Q-weight behavior cloning can better utilize the
dynamics model compared with the existing method.

Then we delve into the details of the dynamics learning and policy learning part, especially our
designs of the loss function and Q-weighting. We have the following ablation studies:

A3: No Cycle Transition Loss Here, the dynamics model follows the dynamics learning of the
proposed MOBODY, but without the cycle transition loss. We hope to evaluate the effectiveness of
our proposed cycle transition loss. Table 2 illustrates that the A3 suffers degradations compared with
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our MOBODY in most of the settings. This indicates that the cycle transition loss helps learn a better
state representation in our proposed MOBODY method.

A4: No Q-weighted Similar to the A3, we compare our MOBODY with a variant without the
Q-weighted behavior cloning loss. We keep the same dynamics learning method as our proposed
MOBODY and replace the Q-weighted behavior cloning loss with the vanilla behavior cloning loss.
In Table 2, our method outperforms the method without the Q-weighted behavior cloning in Walker2d.
The A4 underperforms MOBODY in most of the settings except the Walker2d 2.0 level, where all
settings have similar performance. This suggests that our proposed Q-weighted approach can help
regularize the policy learning in the off-dynamics offline RL scenarios.

Table 2: Performance of the ablation study of our proposed MOBODY method. A1-A4 represent four
different ablation studies detailed in Section 4.3. The experiments are conducted on the Walker2d en-
vironments under the medium-level with dynamics shifts in gravity and friction in {0.1, 0.5, 2.0, 5.0}
shift levels. The source domains are the original environments, and the target domains are the envi-
ronments with dynamic shifts. We report the normalized scores in the target domain with the mean
and standard deviation across three random seeds. The higher scores indicate better performance.
More experimental results on Hopper are in Table 6 in Appendix C.4.

Env Level Algorithm Ablation Loss Ablation MOBODY
A1 A2 A3 A4

Walker2d
Gravity

0.1 55.23± 10.22 55.43± 5.31 35.34± 10.97 19.53± 4.68 65.85± 5.08
0.5 35.66± 3.11 39.98± 1.32 30.63± 2.92 24.44± 1.91 43.57± 2.32
2.0 31.94± 5.32 28.58± 5.59 34.42± 3.60 47.13± 2.44 44.32± 4.58
5.0 3.56± 0.79 11.37± 3.91 4.42± 1.20 6.43± 0.32 46.05± 20.73

Walker2d
Friction

0.1 24.34± 10.33 25.73± 2.43 21.42± 3.85 19.48± 4.32 28.23± 9.13
0.5 56.31± 7.17 73.23± 3.73 68.53± 4.14 61.38± 6.84 76.96± 1.99
2.0 60.52± 5.82 71.14± 2.59 67.98± 6.96 76.44± 6.43 73.74± 0.49
5.0 4.32± 0.85 18.32± 2.18 5.42± 0.82 7.89± 1.33 27.38± 3.87

4.3.2 COMPARISON AMONG DIFFERENT DYNAMICS LEARNING APPROACHES

As a model-based method, MOBODY learns target dynamics that generate higher-quality transitions
and yield lower estimation error. We compare against three dynamics-learning baselines: (1) target-
only training, (2) combined source+target training, and (3) pretrain-finetune (pretraining on source,
then finetuning on target). For a fair comparison, all methods share MOBODY’s architecture but use
a single action encoder and omit the cycle-transition loss. We evaluate the learned dynamics by the
rollout MSE under the MOBODY policy at 1M training steps.

Table 3: Performance comparison using different dynamics learning models. First row: evaluation
MSE of the rollout trajectories using different MOBODY policy, second row: normalized score of the
policy. We see that MOBODY outperforms the baseline dynamics learning methods in both dynamics
learning and overall performance.

Metric Task Trained only on target data Combined data Pretrained-finetune MOBODY

MSE

Walker2d-friction-0.5 2.23 ± 0.26 1.96 ± 0.68 2.21 ± 0.19 1.25 ± 0.39
Walker2d-gravity-0.5 2.11 ± 0.48 1.87 ± 0.32 2.32 ± 0.23 1.93 ± 0.34
Ant-friction-0.5 2.99 ± 0.51 2.01 ± 0.24 2.14 ± 0.19 1.88 ± 0.18
Ant-gravity-0.5 1.57 ± 0.39 1.53 ± 0.39 1.73 ± 0.43 1.46 ± 0.26

Normalized Score

Walker2d-friction-0.5 56.31 ± 7.17 41.38 ± 5.12 62.93 ± 5.43 76.96 ± 1.99
Walker2d-gravity-0.5 39.71 ± 3.29 42.13 ± 3.98 38.13 ± 3.12 43.57 ± 2.32
Ant-friction-0.5 48.13 ± 4.43 46.23 ± 6.85 51.09 ± 1.93 62.41 ± 4.10
Ant-gravity-0.5 28.32 ± 3.87 31.39 ± 3.80 29.69 ± 7.23 37.44 ± 2.79

Table 3 reports both policy performance and rollout MSE for different dynamics-learning strategies,
and shows that MOBODY consistently outperforms all baselines in both MSE and reward. This is
mainly because: (1) the target-only dataset is too small to learn accurate dynamics, (2) training on
combined source+target data yields a model whose dynamics lie between the two domains rather
than matching the target, and (3) the pretrain–finetune paradigm, while effective in supervised
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domain adaptation, is less suitable for off-dynamics RL, where the conditional next state s′ | (s, a)
fundamentally differs across domains. In contrast, MOBODY explicitly learns shared structure while
using separate action encoders to capture the dynamics differences between source and target.

4.3.3 MODEL-BASED ROLLOUT IS THE MAIN DRIVER OF IMPROVEMENT, AND TARGET-Q
WEIGHTED BC IS ESSENTIAL

300

350

400

450

500

Sc
or

e

B1: AWR BC weight, w/o rollout (IQL)
B2: AWR BC weight, w/ rollout
B3: Target-Q BC weight, w/o rollout
B4: Target-Q BC weight, w/ rollout (MOBODY)

Figure 4: Comparison of different BC
losses with and without dynamics learn-
ing shows that MOBODY’s performance
gains primarily stem from its novel dy-
namics learning and model-based roll-
outs.

To demonstrate that the main performance gains come
from dynamics learning, model-based rollouts, and ex-
ploration, we compare AWR/IQL-style policy learning
with and without MOBODY’s rollouts. In Figure 4, we
report results for four variants: (B1) IQL-style policy learn-
ing without model-based rollouts, (B2) AWR-weighted
BC with MOBODY rollouts, (B3) Target-Q–weighted BC
without rollouts, and (B4) the full MOBODY method.

By comparing (B1) vs. (B2) and (B3) vs.(B4)—which
differ only in whether model-based rollouts are used—we
observe substantial gains from incorporating MOBODY’s
rollouts, highlighting the effectiveness of our learned dy-
namics. In contrast, comparing (B1) vs. (B3), which differ
only in the BC weighting (IQL vs. target-Q), shows no
substantial improvement from using target-Q–weighted
BC alone, indicating that this auxiliary term is not the
main source of performance gains.

However, we still want to highlight that the improvements
arise from the full algorithm working in concert rather
than from any single component in isolation, and each component is important. As further supported
by Section 4.3.1, where removing the BC weight for the MOBODY will lead to a significant drop.

4.3.4 EMPIRICAL VALIDATION OF THE TARGET-Q WEIGHTED BC LOSS

In Figure 4, comparing (B2) and (B4), which differ only in the BC weighting, shows a clear
performance gain for the target-Q-weighted BC used in MOBODY. AWR is well-suited for policy
improvement (as in IQL), but might be less effective as a regularizer in off-dynamics RL: it is more
important to bias the policy toward actions with high target-domain Q-values than high advantages,
and when advantages shrink toward zero, it provides little supervision for the BC loss. In addition,
the target-Q-weighted BC loss has a simpler form, whereas AWR/IQL requires training an extra value
network, complicating optimization in the model-based setting. These results empirically support
our choice of target-Q-weighted BC, and we provide a more detailed comparison with AWR/IQL in
Appendix C.4.2.

5 CONCLUSION

In this work, we study the off-dynamics offline reinforcement learning problem through a model-
based offline RL method. We introduce MOBODY, a model-based offline RL algorithm that enables
policy exploration in the target domain via learned dynamics models. By leveraging shared latent
representations across domains, MOBODY effectively learns target dynamics using both source
and limited target data. Additionally, we propose a Q-weighted behavior cloning strategy that
favors actions with high target Q value, further improving policy learning. Experimental results
on MuJoCo and Adroit benchmarks demonstrate that MOBODY consistently outperforms prior
methods, particularly in scenarios with significant dynamic mismatches, highlighting its robustness
and generalization capabilities. Our method shows the potential of data augmentation in policy
learning with a carefully learned dynamics model. Future work includes further investigation on
improving the dynamics learning as well as investigation on sparse reward and goal-conditional RL
settings .
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REPRODUCIBILITY STATEMENT

Our codes are available at: https://anonymous.4open.science/r/off-dynamics-model-based-rl-
D53D/README.md. The implementation of the method is based on the ODRL benchmark repository
(Lyu et al., 2024b), which provides the comprehensive dataset and baseline method for evaluation. For
our algorithm, we provide detailed information on the training loss for the dynamics learning and the
policy optimization in the main text as well as the Algorithm 1 for dynamics learning and Algorithm 2
for policy optimization in Appendix B. We also provide hyperparameter analysis and rule-of-thumb
hyperparameters in Appendix C.4, as well as the hyperparameters and model architecture that we
used for tuning in Table 11.
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A RELATED WORK

Off-dynamics RL. Off-dynamics RL aims to transfer the policy learned in the source domain to
the target domain. One line of work is to regularize the reward of the source data with the target
data using the domain classifier. Following this idea, DARC (Eysenbach et al., 2020) and DARAIL
(Guo et al., 2024) solve the off-dynamics RL problem in the online paradigm, while DARA (Liu
et al., 2022) and RADT (Wang et al., 2024) use the reward regularization techniques in the offline
RL setting. Similarly, BOSA (Liu et al., 2024) regularizes the policy by two support-constrained
objectives. SRPO (Xue et al., 2023) regularize the policy through the state visitation frequency on
source and target domain. PAR (Lyu et al., 2024a) learns the representation to measure the deviation
of dynamic mismatch via the state and state-action encoder to modify the reward. Another line of
work is utilizing the data filter method, including the VGDF (Xu et al., 2023) and IGDF (Wen et al.,
2024), which filter out the trajectories similar to the target domain and train the RL policies on filtered
data. These data filtering or reward regularization methods in off-dynamics offline RL settings cannot
explore the target domain substantially, while we propose a novel model-based method that can
explore the target domain with the learned target dynamics.

Model-based Offline RL. Model-based offline RL leverages the strengths of model-based methods
in the offline RL paradigm. MOReL (Kidambi et al., 2020) and MOPO (Yu et al., 2020) modify
reward functions based on uncertainty estimations derived from ensembles of models. VI-LCB
(Rashidinejad et al., 2021) leverages pessimistic value iteration, incorporating penalty functions into
value estimation to discourage poorly-covered state-action pairs. COMBO (Yu et al., 2021) provides
a conservative estimation without explicitly computing uncertainty, using adversarial training to
optimize conservative value estimates. RAMBO (Rigter et al., 2022) further builds upon adversarial
techniques by directly training models adversarially with conservatively modified dynamics to reduce
distributional shifts. These methods are designed for one domain instead of an off-dynamics RL
setting. In this paper, we propose a novel dynamics learning and policy optimization method for an
off-dynamics RL setting.

Representation Learning in RL. Representation learning (Botteghi et al., 2025) is actively explored
in image-based reinforcement learning tasks (Kostrikov et al., 2021b; Yarats et al., 2022; Liu et al.,
2021; Zhu et al., 2020) to learn the representation of the image. For model-based RL, to improve
sample efficiency, representation has been widely applied to learn the latent dynamics modeling (Karl
et al., 2017; Hansen et al., 2022a), latent state representation learning (Barreto et al., 2017; Fujimoto
et al., 2021), or latent state-action representation learning (Ota et al., 2020; Ye et al., 2021; Hansen
et al., 2022b; Fujimoto et al., 2023). While previous works on representation learning seek to boost
the performance through learning the state/state-action representation with representation constraint,
such methods might not be suitable or cannot be directly applied to the off-dynamics RL settings as
many of them learn the representation without considering transitions or only learns single domain
transitions. Thus, in our paper, we learn the shared representation of the state and transition to aid the
target dynamics learning with source domain data.

B ALGORITHM DETAILS

Reward learning Note that the reward is modeled as a function of (s, a, s′) tuple, as in many tasks,
the reward is also related to the next state as mentioned in the Section 2. Also, recall that the reward
function in the source and target domain remains the same. Thus, we can learn the reward function
with source and target domain data together via the following loss function.

Lreward =
1

2
EDsrc∪Dtrg

[
r(s, a, s′)− r̂(s, a, s′)

]2
+

1

2
EDsrc∪Dtrg

[
r(s, a, s′)− r̂(s, a, ŝ′)

]2
, (9)

where ŝ′ is the predicted next state. Here, we use both the true next state and the predicted next state
from the dynamics model to learn the reward model, as during inference, we do not have the true
next state and only have a predicted next state.

Uncertainty quantification (UQ) of the transition To capture the uncertainty of the model,
we learn blueN = 7 ensemble transition models, with each model trained independently via
Eq.equation 6. We design the UQ of the reward estimation as u(s, a) := maxi Std(ŝ′j) =

maxi

√
1/N

∑N
j=1(ŝ

′
j − E(ŝ′))2, which is the largest standard deviation among all the state dimen-

sions. This simple and intuitive uncertainty quantification using the ensemble model has been proven
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simple and effective in many machine learning literature (Parker, 2013) and also model-based RL al-
gorithms (Yu et al., 2020). We find it sufficient to achieve good performance in our experiments by em-
ploying the penalized reward r̃ for the downstream policy learning: r̃(s, a, s′) = r̂(s, a, s′)−βu(s, a).

Algorithm 1 Dynamics Learning via separate action encoders and the representation learning.

1: Input: Offline datasets Dsrc = {(s, a, r, s′)}, Dtrg = {(s, a, r, s′)}, number of model learning
steps Nmodel, target training frequency K.

2: Initialize: State encoder model ϕE , transition model ϕT , source state action encoder ψsrc, target
state action encoder ψtrg, reward model r̂.

3: for i = 1 to Nmodel do
4: Sample mini-batch:
5: if i%K = 0 then
6: Sample mini-batch {(s, a, r, s′)} from Dtrg
7: else
8: Sample mini-batch {(s, a, r, s′)} from Dsrc
9: end if

10: Predict the next state with Eq. equation 1, and equation 2 with mini-batch data.
11: Optimize the dynamics with the transition loss in Eq.equation 3, encoder loss in Eq.equation 4,

cycle transition loss in Eq.equation 5 and reward loss in Eq.equation 9 with mini-batch data.
12: end for

Algorithm 2 MOBODY: Model-Based Off-dynamics Offline Reinforcement Learning

1: Input: Offline dataset Dsrc = {(s, a, r, s′)} and Dtrg = {(s, a, r, s′)}, Dfake = {}, number of
model learning steps Nmodel, policy training steps Npolicy.

2: Initialize: Dynamics model, policy πθ, rollout length Lrollout.
Dynamics Training

3: Learn target dynamics and reward estimation: T̂trg, r̂trg ← Call Algorithm 1
Offline Policy Learning

4: Regularize source data Dsrc_aug = {(s, a, r + η∆r, s′)} with DARA.
5: for j = 1 to Npolicy do
6: Collect rollout data from T̂ and r̂trg starting from state in Dsrc_aug and Dtrg. Add batch data to

replay buffer Dfake.
7: Sample batch (s, a, s′, r)fake from Dfake, (s, a, s′, r)trg from Dtrg and (s, a, s′, r)trg_aug from
Dsrc_aug. Concatenate them as (s, a, s′, r)train.

8: Learn the Q value function with Eq.equation 7
9: Update policy πθ with Eq. equation 8

10: end for
11: Return: Learned policy πθ

C EXPERIMENTAL DETAILS

C.1 THE DARA REGULARIZATION FOR SOURCE DATA USED IN MOBODY

Note that in MOBODY, we use DARA to regularize the reward in the source data. In this section, we
introduce the details of DARA.

DARA (Liu et al., 2022), the offline version of DARC (Eysenbach et al., 2020), trains the domain
classifiers to calculate the reward penalty term ∆r(s, a, s′) and regularize the rewards in the source
domain dataset via:

r̂DARA(s, a, s
′) = r(s, a, s′) + η∆r(s, a, s′),

where η is the penalty coefficient, where we set to 0.1 following the ODRL benchmark (Lyu et al.,
2024b).
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Estimation of the ∆r. Following the DARC (Eysenbach et al., 2020; Liu et al., 2022), the re-
ward regularization ∆r can be estimated with the following two binary classifiers p(trg|st, at) and
p(trg|st, at, st+1) with Bayes’ rules:

p(trg|st, at, st+1) = ptrg(st+1|st, at)p(st, at|trg)p(trg)/p(st, at, st+1), (10)

p(st, at|trg) = p(trg|st, at)p(st, at)/p(trg). (11)

Replacing the p(st, at|trg) in Eq. equation 10 with Eq. equation 11, we obtain:

ptrg(st+1|st, at) =
p(trg|st, at, st+1)p(st, at, st+1)

p(trg|st, at)p(st, at)
.

Similarly, we can obtain the psrc(st+1|st, at) = p(src|st,at,st+1)p(st,at,st+1)
p(src|st,at)p(st,at) .

We can calculate the ∆r(st, at, st+1) following:

∆r(st, at, st+1) = log

(
ptrg(st+1|st, at)
psrc(st+1|st, at)

)
= log p(trg|st, at, st+1)− log p(trg|st, at) + log p(src|st, at, st+1)− log p(src|st, at).

Training the Classifier p(trg|st, at) and p(trg|st, at, st+1). The two classifiers are parameterized
bu θSA and θSAS. To update the two classifiers, we sample one mini-batch of data from the source
replay buffer Dsrc and the target replay buffer Dsrc respectively. Imbalanced data is considered here
as each time we sample the same amount of data from the source and target domain buffer. Then, the
parameters are learned by minimizing the standard cross-entropy loss:

LSAS = −EDsrc [log pθSAS(trg|st, at, st+1)]− EDtrg [log pθSAS(trg|st, at, st+1)] ,

LSA = −EDsrc [log pθSA(trg|st, at, st+1)]− EDtrg [log pθSA(trg|st, at, st+1)] .

Thus, θ = (θSAS, θSA) is obtained from:

θ = argmin
θ
LCE(Dsrc,Dtrg)

= argmin
θ

[LSAS + LSA].

C.2 TECHNICAL DETAILS ABOUT BASELINE ALGORITHMS

In this section, we introduce the baselines in detail and the implementation follows the ODRL
benchmark (Lyu et al., 2024b).

BOSA (Liu et al., 2024). BOSA shows a distribution shift issue might exist when learning policies
from the two domain offline data under dynamics mismatch. It handles the out-of-distribution (OOD)
state actions pair through a supported policy optimization and addresses the OOD dynamics issue
through a supported value optimization by data filtering. Specifically, the policy is updated with:

Lactor = Es∼Dsrc∪Dtrg, a∼πϕ(s) [Q(s, a)] , s.t. Es∼Dsrc∪Dtrg [π̂θoffline(πθ(s) | s)] > ϵ.

Here, the ϵ is the threshold, π̂θoffline is the learned policy for the combined offline dataset. The value
function is updated with:

Lcritic = E(s,a)∼Dsrc [Q(s, a)]

+ E(s,a,r,s′)∼Dsrc∪Dtrg, a′∼πϕ(·|s)
[
I (p̂trg(s

′|s, a) > ϵ′) (Qθi(s, a)− y)2
]
,

where I(·) is the indicator function, p̂trg(s
′|s, a) = argmaxE(s,a,s′)∼Dtrg [log p̂trg(s

′|s, a)] is the
estimated target domain dynamics, ϵ′ is the threshold.

IQL (Kostrikov et al., 2021a). IQL learns the state value function and state-action value function
simultaneously by expectile regression:

LV = E(s,a)∼Dsrc∪Dtrg [L
τ
2(Qθ(s, a)− Vψ(s))]
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where Lτ2(u) = |τ − I(u < 0)||u|2, I(·) is the indicator function, and θ is the target network
parameter. The state-action value function is then updated by:

LQ = E(s,a,r,s′)∼Dsrc∪Dtrg

[
(r(s, a) + γVψ(s

′)−Qθ(s, a))
2
]
.

The advantage function is A(s, a) = Q(s, a) − V (s). The policy is optimized by the advantage-
weighted behavior cloning:

Lactor = E(s,a)∼Dsrc∪Dtrg [exp(β ·A(s, a)) log πϕ(a|s)] ,

where β is the inverse temperature coefficient.

TD3-BC (Fujimoto & Gu, 2021). TD3-BC is an effective model-free offline RL approach that
incorporates a behavior cloning regularization term to the objective function of the vanilla TD3,
which gives:

Lactor = λ · Es∼Dsrc∪Dtrg [Q(s, πθ(s))] + E(s,a)∼Dsrc∪Dtrg

[
(a− πθ(s))2

]
,

where
λ =

ν
1
N

∑
(sj ,aj)

Q(sj , aj)
and ν ∈ R+

is the normalization coefficient.

MOPO (Yu et al., 2020). MOPO is a standard model-based offline policy optimization method, which
learns dynamics first and penalizes rewards by the uncertainty of the dynamics. Lastly, it optimizes
a policy with the SAC (Haarnoja et al., 2018). Specifically, following previous off-dynamics work
(Eysenbach et al., 2020) in the online setting that applies MBPO as a baseline, we learn the dynamics
with the combined offline source and target data. We follow the implementation in OfflineRL-kit.

DARA (Liu et al., 2022). We refer to the Appendix C.1 for the details. We follow the implementation
in ODRL (Lyu et al., 2024b).

SRPO (Xue et al., 2023). SRPO proposes state-level regularization by leveraging the observation
that optimal policies across related dynamics often induce similar stationary state distributions. We
follow the practical implementation in SRPO (Xue et al., 2023) to train a discriminator to distinguish
high-value states from low-value states and then augment the reward. A simplified core objective of
SRPO can be written as:

max
π

Eτ∼π
[ ∞∑
t=0

γtr(st, at)
]

s.t. DKL

(
dπ(·) ∥ ζ(·)

)
≤ ε,

which, via Lagrangian relaxation, leads to a reward-shaped objective:

L(π) = Eτ∼π

[ ∞∑
t=0

γt
(
r(st, at) + λ log

ζ(st)

dπ(st)

)]
.

In practice, the density ratio ζ(s)
dπ(s)

is estimated with a discriminator D(s) trained in a GAN, yielding:

ζ(s)

dπ(s)
≈ D(s)

1−D(s)
.

RADT (Wang et al., 2024). RADT proposes that reward augmentation methods can not be directly
applied to return-conditioned supervised learning methods like DT (Chen et al., 2021). It introduces
a return matching method to address this problem. We follow the description in RADT to implement
the methods.

πS = argmin
π
L̂(π) := −

∑
τ∈DS

H∑
t=1

log π
(
at | st, ψ(g(τ))

)
,

where g(τ) =
∑H
t=1 rt is the original cumulative return of trajectory τ , and ψ(·) is the return

augmentation function chosen so that πS approximates the optimal policy in the target domain.
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Using dynamics-aware reward augmentation (DARA), RADT-DARA defines a per-state transformed
return-to-go at step t as:

ψ
(
gt(τ)

)
:=

H∑
h=t

rh + η

H∑
h=t

∆r(sh, ah, sh+1).

C.3 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional results on various types of dynamic shifts, including Kinematic
shift (kin) and Morphology shift (morph), on Mujoco and Adroit, following the ODRL benchmark.
We present the results in Table 4 and Table 5, which are the detailed results of the Figure 3. We observe
that our method outperforms the baseline methods in most cases, indicating that it is applicable to
various types of dynamic shifts and environments.

Table 4: Performance comparison on HalfCheetah, Ant, Walker2d, and Hopper environments with
kinematic and morphology shift. Our method performs best in 26 out of 32 total tasks and receives an
overall 25% improvement over baselines. We use M and H to represent the medium and hard levels
of the dynamics shift.

Env Type Level BOSA IQL TD3-BC DARA MOPO MOBODY

HalfCheetah

morph-thigh M 22.83 ± 0.03 20.49 ± 0.50 19.49 ± 0.50 10.90 ± 0.43 17.32 ± 1.80 27.18 ± 6.80
H 20.77 ± 0.66 21.69 ± 0.58 22.19 ± 1.08 10.35 ± 2.10 25.33 ± 2.23 28.51 ± 9.20

morph-torso M 1.67 ± 0.87 1.87 ± 0.80 5.86 ± 0.21 2.91 ± 0.08 10.65 ± 4.86 23.92 ± 12.24
H 17.09 ± 15.71 27.81 ± 3.14 2.73 ± 1.25 29.41 ± 7.88 32.78 ± 4.19 40.45 ± 1.26

kin-footjnt M 36.79 ± 0.92 34.71 ± 0.72 30.19 ± 3.73 33.48 ± 0.34 32.49 ± 4.02 31.88 ± 3.70
H 14.70 ± 0.92 31.68 ± 2.35 14.05 ± 2.96 31.19 ± 4.08 33.47 ± 5.61 18.51 ± 7.30

kin-thighjnt M 14.92 ± 0.01 41.27 ± 3.16 41.77 ± 2.66 15.47 ± 0.62 38.33 ± 8.68 59.17 ± 0.85
H 31.72 ± 0.17 31.60 ± 9.36 31.10 ± 9.86 31.46 ± 2.31 30.35 ± 2.93 56.72 ± 0.08

Ant

morph-halflegs M 49.94 ± 5.98 73.65 ± 2.70 46.60 ± 6.24 70.66 ± 3.36 66.32 ± 5.29 79.25 ± 0.61
H 58.40 ± 3.41 57.51 ± 1.25 45.07 ± 2.82 58.46 ± 4.45 39.44 ± 8.57 63.76 ± 3.27

morph-alllegs M 72.02 ± 3.57 61.12 ± 9.73 47.18 ± 6.89 64.83 ± 4.49 49.19 ± 5.32 75.24 ± 7.85
H 18.50 ± 4.33 10.44 ± 0.51 14.53 ± 3.74 4.47 ± 6.18 12.71 ± 1.66 24.13 ± 0.10

kin-anklejnt M 72.06 ± 4.63 77.60 ± 3.35 44.72 ± 15.96 75.43 ± 2.03 74.31 ± 1.92 74.92 ± 6.46
H 63.78 ± 7.97 62.95 ± 7.88 66.22 ± 26.98 61.06 ± 4.92 63.28 ± 11.01 76.97 ± 8.36

kin-hipjnt M 38.52 ± 5.88 60.97 ± 1.72 26.85 ± 4.26 55.73 ± 1.93 48.91 ± 12.65 54.75 ± 4.58
H 50.57 ± 4.89 59.31 ± 2.92 33.85 ± 5.59 58.47 ± 3.42 52.87 ± 2.99 59.61 ± 3.11

Walker

morph-torso M 8.26 ± 4.83 12.35 ± 1.45 18.93 ± 9.36 15.79 ± 1.33 22.81 ± 13.78 38.67 ± 2.05
H 1.61 ± 0.12 2.30 ± 0.58 1.54 ± 0.44 3.32 ± 1.13 9.92 ± 3.36 11.96 ± 5.41

morph-leg M 46.70 ± 8.39 41.12 ± 13.58 22.24 ± 9.95 39.71 ± 13.67 44.33 ± 6.66 57.57 ± 2.00
H 14.37 ± 3.34 16.15 ± 3.70 49.07 ± 2.38 13.13 ± 1.24 19.62 ± 0.71 49.12 ± 0.52

kin-footjnt M 17.99 ± 1.15 56.62 ± 12.10 43.31 ± 20.48 55.81 ± 1.36 57.92 ± 5.95 67.56 ± 3.05
H 25.76 ± 15.99 6.52 ± 1.61 26.34 ± 13.24 9.63 ± 0.91 37.21 ± 20.52 57.93 ± 0.37

kin-thighjnt M 47.63 ± 27.26 61.28 ± 14.24 35.64 ± 11.74 56.28 ± 13.79 68.11 ± 3.60 69.48 ± 4.22
H 48.66 ± 14.73 51.66 ± 2.05 43.88 ± 11.54 63.76 ± 2.06 73.52 ± 7.92 78.14 ± 2.50

Hopper

morph-foot M 12.67 ± 0.00 32.99 ± 0.16 12.69 ± 0.43 40.61 ± 1.64 12.96 ± 0.14 13.05 ± 0.48
H 10.13 ± 0.62 11.78 ± 0.09 14.15 ± 4.30 13.32 ± 1.48 47.19 ± 12.77 65.02 ± 11.98

morph-torso M 15.88 ± 1.18 13.38 ± 0.05 13.94 ± 0.75 13.29 ± 0.19 14.04 ± 0.35 20.23 ± 1.29
H 11.73 ± 0.33 7.77 ± 3.73 11.54 ± 0.81 4.15 ± 0.05 11.83 ± 0.28 12.34 ± 0.20

kin-legjnt M 36.51 ± 1.51 42.28 ± 0.08 11.76 ± 4.60 44.67 ± 0.58 43.57 ± 0.80 54.89 ± 0.26
H 36.13 ± 1.70 45.02 ± 4.08 18.87 ± 1.46 65.44 ± 4.10 50.38 ± 3.74 56.88 ± 3.68

kin-footjnt M 14.92 ± 0.01 15.58 ± 0.11 17.09 ± 0.04 15.47 ± 0.62 31.33 ± 16.25 33.94 ± 14.81
H 31.72 ± 0.17 32.41 ± 0.16 32.21 ± 0.00 32.99 ± 0.78 33.21 ± 0.07 33.35 ± 0.89

Total 964.95 1123.88 865.60 1101.65 1205.70 1515.10

Figure 5 summarizes the normalized scores across all environments under different shift levels
on MuJoco gravity and friction shift settings. In Figure 5a, MOBODY consistently outperforms
baselines under gravity shifts, with especially large gains at the more challenging and larger shift
levels on 0.1 and 5.0, as MOBODY can explore more of the environment with the learned dynamics.
A similar trend is observed in Figure 5b, where MOBODY again outperforms all baselines, with
greater improvements in the larger shift (0.1 and 5.0) compared to the smaller ones (0.5 and 2.0).
Existing methods, DARA and BOSA, fail in large shift settings as the reward regularization methods
cannot account for the large shift, as they are mainly trained with source data with regularization,
thus usually receive high rewards in the source domain, but don’t really adapt to the target domain,
especially in large shifts, as the policy gets different rewards. Also, they lack the exploration of the
target domain.
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Table 5: Performance comparison on Pen and Door tasks. Our method performs the best compared
with the baselines and receives an overall 10% improvement. We use M and H to represent the
medium and hard levels of the dynamics shift.

Env Type Level BOSA IQL TD3-BC DARA MOPO MOBODY

Pen
kin-broken-jnt M 30.63 ± 9.01 24.34 ± 15.49 6.86 ± 6.63 38.60 ± 3.44 37.99 ± 7.46 37.67 ± 4.54

H 7.18 ± 2.02 7.74 ± 3.48 1.31 ± 1.29 9.41 ± 6.06 8.14 ± 2.92 13.73 ± 6.32

morph-shrink-finger M 10.72 ± 6.65 13.75 ± 4.91 2.20 ± 1.71 8.72 ± 3.12 3.48 ± 0.85 16.48 ± 10.46
H 11.78 ± 6.57 32.16 ± 1.14 9.12 ± 9.03 22.17 ± 3.90 28.89 ± 2.48 37.80 ± 1.18

Door
kin-broken-joint M 25.42 ± 22.04 37.43 ± 12.76 -0.23 ± 0.01 20.18 ± 5.29 27.90 ± 7.92 39.26 ± 3.72

H 30.64 ± 26.87 56.02 ± 7.74 -0.12 ± 0.02 58.22 ± 9.91 57.45 ± 9.58 61.61 ± 9.84

morph-shrink-finger M 41.59 ± 5.95 60.74 ± 12.83 -0.19 ± 0.01 50.32 ± 4.78 52.02 ± 1.74 63.67 ± 9.52
H 26.97 ± 8.62 68.64 ± 8.34 -0.20 ± 0.02 44.22 ± 7.19 67.06 ± 1.96 62.88 ± 5.25

Total 184.93 300.82 18.75 251.84 282.93 333.10
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Figure 5: Performance of our MOBODY and baselines in different dynamics shift with various
shift levels {0.1, 0.5, 2.0, 5.0}. The scores are summed over all the environments (HalfCheetah,
Ant, Walker2D, and Hopper) in the target domain. We directly compare the algorithms in the same
dynamics shift levels. The higher scores indicate better performance. We can observe a larger
improvement for larger shift cases (0.1 and 5.0).

C.4 ADDITIONAL ABLATION STUDY RESULTS

In this section, we provide additional ablation studies to empirically justify the design of each
component and the effectiveness of MOBODY.

C.4.1 ADDITIONAL RESULTS ON SECTION 4.3

First, we present additional ablation studies results on Hopper as we mentioned in Section 4.3. Same
as Table 2, we evaluate the overall effectiveness of each component (A1 and A2) and then analyze
specific design choices (A3 and A4). For dynamics learning, we assess the impact of the cycle
transition loss and representation learning. For policy learning, we examine the effectiveness of the
Q-weighted loss. We draw the same conclusion as Section 4.3.

C.4.2 COMPARISON OF USING IQL WEIGHT AND TARGET Q WEIGHTED FOR BC LOSS.

We empirically justify our target Q-weighted BC loss and conduct additional experiments showing
that target-Q weighted BC performs better than IQL weight.

The target Q-weighted BC loss is inspired by the advantage-weighted regression (AWR) (Kostrikov
et al., 2021a) and the reward-weighted regression (RWR) (Peters et al., 2010). While the AWR is
built on the RWR and we follow the idea of RWR by replacing the Monte-Carlo estimation on the
reward with the target Q value.

Here, we test a more standard IQL-style weighting, which is the advantage-weighted regression
built on reward-weighted regression, i.e., using IQL weights exp(β(Q(s, a)− V (s))), and report the
results in the following table. We see that our Q-weighted BC loss slightly improves the performance.
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Table 6: Performance of ablation study of our proposed MOBODY method. The experiments are
conducted on the Hopper environments under the medium-level with dynamics shifts in gravity and
friction in {0.1, 0.5, 2.0, 5.0} shift levels. The source domains are the original environments and the
target domains are the environments with dynamics shifts. We report the normalized scores in the
target domain with the mean and standard deviation across three random seeds. The higher scores
indicate better performance.

Env Level Algorithm Ablation Loss Ablation MOBODY
A1 A2 A3 A4

Hopper
Gravity

0.1 14.53± 2.81 28.07± 4.12 33.65± 3.21 11.54± 1.12 36.25± 1.50
0.5 28.83± 3.32 25.70± 1.86 23.52± 3.33 20.11± 1.26 33.57± 6.71
2.0 10.64± 1.92 12.32± 5.21 10.90± 1.29 16.40± 4.12 23.79± 2.09
5.0 8.12± 0.69 8.23± 1.92 8.79± 0.94 8.89± 1.01 8.06± 0.03

Hopper
Friction

0.1 26.09± 4.75 35.14± 7.97 24.42± 2.86 20.07± 10.32 51.19± 2.56
0.5 22.42± 3.32 31.31± 5.08 29.26± 6.02 27.07± 3.73 41.34± 0.49
2.0 10.64± 0.32 9.41± 1.03 10.31± 0.12 8.47± 1.13 11.00± 0.14
5.0 8.43± 1.32 7.52± 0.29 8.14± 0.91 7.55± 1.02 8.07± 0.04

Table 7: Comparison of using IQL-style weights for the BC loss versus the target-Q-weighted BC
loss (MOBODY).

Env Shift IQL weight for BC MOBODY

Halfcheetah gravity-0.5 45.13± 2.21 47.18± 1.23
Halfcheetah gravity-2.0 40.42± 3.63 41.46± 7.35
Halfcheetah friction-0.5 64.82± 1.53 69.54± 0.48
Halfcheetah friction-2.0 51.30± 2.53 50.02± 3.26
Walker2d gravity-0.5 48.45± 2.33 43.57± 2.32
Walker2d gravity-2.0 39.67± 3.21 44.32± 4.58
Walker2d friction-0.5 63.47± 5.01 76.96± 1.99
Walker2d friction-2.0 71.39± 1.81 73.74± 0.49

The reason might be 1) training an extra value network here using model-based rollout introduces
more complexity and noise, leading to worse performance.

Since the IQL-style weighting (AWR) is worse empirically while requiring training an additional
value network (thus increasing complexity), we adopt a simpler exponential weighting directly on
the Q-value, inspired by IQL and reward-weighted regression (RWR). We further normalize Q by its
average absolute value, following TD3-BC, because the trade-off between policy optimization and
BC is highly sensitive to the scale of rewards and Q-values; this normalization yields a more stable
and comparable weighting across tasks.

C.4.3 COMPARISON OF DIFFERENT TARGET DATA SIZE

In Table 8, we further provide additional experimental results with varying amounts of target data,
including 500, 1,000, 2,000, and 5,000 transitions. We observe performance degradation in MOBODY
as the target dataset size decreases. But this decrease is not that significant, showing our method also
works well when the target data size is small.

C.5 HYPERPARAMETERS ANALYSIS AND COMPUTATIONAL COST

Hyperparameter Analysis. We conducted two hyperparameter analyses: the BC loss weight and
uncertainty penalty of the model-based method in the policy learning part, as detailed in Table 9. We
can see that these parameters are important in the performance of BC loss and need to be tuned across
different tasks and environments. It is interesting to note that even the suboptimal parameters (0.05)
in Table 9 outperform the baseline algorithms.
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Table 8: Performance of MOBODY under different numbers of target transitions in HalfCheetah.
“5,000” corresponds to the original setting in the paper and the data size used in the ODRL benchmark.

Shift-Level/data size 5,000 2,000 1,000 500

gravity-0.5 47.18± 1.23 42.72± 2.05 39.29± 2.52 40.65± 3.09
gravity-2.0 41.46± 7.35 28.31± 5.47 28.69± 5.95 26.78± 6.31
friction-0.5 69.54± 0.48 69.62± 1.08 67.56± 1.52 64.14± 1.90
friction-2.0 50.02± 3.26 46.66± 2.92 44.26± 3.31 44.70± 3.53

Table 9: Hyperparameters of the policy learning. Our method is not very sensitive to the hyperparam-
eters.

Task BC-Weight /
Uncertainty Penalty 1 5 10

Walker2d-Friction-0.5
0.05 76.96 ± 1.99 55.67 ± 21.18 51.43 ± 19.37
0.1 75.64 ± 11.05 70.49 ± 2.81 62.54 ± 5.49
1 75.63 ± 2.57 82.91 ± 4.43 62.50 ± 6.83

Walker2d-kin-footjnt-medium
0.05 67.56±3.05 56.88±1.47 65.14±2.57
0.1 62.19±5.27 64.17±3.62 66.30±0.01
1 59.33±5.15 62.69±5.00 62.56±1.09

Walker2d-kin-footjnt-hard
0.05 40.96±1.58 57.75±0.34 57.59±0.47
0.1 57.93±0.37 56.27±1.12 43.13±15.51
1 34.31±21.12 53.92±3.74 43.74±14.06

Walker2d-kin-thighjnt-medium
0.05 69.48±4.22 60.40±4.27 66.85±6.90
0.1 65.13±3.72 65.24±2.10 64.19±1.22
1 64.17±1.83 62.10±5.88 70.39±0.28

Walker2d-kin-thighjnt-hard
0.05 78.14±2.50 59.21±4.79 70.20±2.71
0.1 76.50±1.49 61.96±6.71 55.95±16.29
1 69.45±1.78 66.92±0.04 71.38±5.42

Rule of thumb hyperparameters. We notice that there is no universal set of hyperparameters that
works well across all tasks with different environments, shift types, and levels. Even without the
dynamics shift, model-based RL methods typically require different hyperparameters for different
environments. But empirically, we could have a set of hyperparameters that generally receives a
relatively good performance for most tasks, i.e., weight of BC = 0.1 and MOPO penalty = 5. From
there, we primarily tune the BC loss weight based on the convergence behavior of the policy. In most
cases, using a MOPO penalty of 5 and a BC loss weight selected from the range 0.05, 0.1, 1, 2 yields
strong performance. Overall, the number of hyperparameters is modest compared to those commonly
required in offline model-based RL methods.

Computational Resources We run all experiments on a single GPU (NVIDIA RTX A5000, 24,564
MiB) paired with 8 CPUs (AMD Ryzen Threadripper 3960X, 24-Core). Each experiment requires
approximately 12 GB of RAM and 20 GB of available disk space for data storage.

Computational Cost We provide an estimated running time of MOPO, DARA, BOSA and our
method in Appendix C.5. The running time of MOBODY requires approximately 25% more time to
run 1 million steps compared to model-free DARA and is faster than the BOSA. The extra running
time is due to the dynamic learning and generation of rollouts. On the other hand, MOPO and
MOBODY have similar running times. This demonstrates that we have a similar computational cost
and running time compared to the existing model-based method, as the additional loss calculation
doesn’t significantly increase the computation time.

C.6 ENVIRONMENT SETTING

Gravity Shift. Following the ODRL benchmark (Lyu et al., 2024b), we modify the gravity of the
environment by editing the gravity attribute. For example, the gravity of the HalfCheetah in the target
is modified to 0.5 times the gravity in the source domain with the following code.
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Table 10: Running time comparison on A5000, AMD Ryzen Threadripper 3960X 24-Core Processor.
.

Walker2d-Gravity-0.5 HalfCheetah-Gravity-0.5
BOSA ∼3 hours ∼3.5 hours
DARA ∼2 hours ∼2.5 hours
MOPO ∼2.5 hours ∼3 hours
MOBODY ∼2.5 hours ∼3 hours

# gravity
<option gravity="0 0 -4.905" timestep="0.01"/>

Friction Shift The friction shift is generated by modifying the friction attribute in the geom elements.
The frictional components are adjusted to {0.1, 0.5, 2.0, 5.0} times the frictional components in the
source domain, respectively.

Kinematic Shift The kinematics shift is simulated through broken joints by limiting the rotation
ranges of some hand joints. We consider the broken ankle joint, hip joint, foot joint, etc, for Mujoco
and Adroit environments.

Morphology Shift The morphology shift is achieved by modifying the size of specific limbs or torsos
of the simulated robot in Mujoco and shrink the finger size in the manipulation task, without altering
the state space and action space.

D LIMITATION AND FUTURE WORK

MOBODY relies on the assumption that the source and target domains share a common state
representation ϕE and transition ϕT that map the unified latent state action representation to the
next state. We believe this assumption is reasonable in our setting: the source and target domains
share underlying structure, and MOBODY is designed to exploit this while allowing domain-specific
differences via separate action encoders for the two domains. Empirically, we evaluate MOBODY
under various types and levels of dynamics shift, and observe that it outperforms or matches recent
ODRL baselines across almost all benchmark settings. In particular, in large-shift cases where
existing methods fail, MOBODY performs significantly better than the baselines. This suggests that
our shared-mapping assumption is not overly restrictive and remains applicable in many off-dynamics
RL scenarios.

In extreme cases where the shift is so large that this shared-structure assumption breaks down, the
key assumptions of existing baselines (e.g., DARA’s low-shift-region assumption) would also fail. In
such regimes, more advanced techniques such as stronger domain adaptation or zero-shot transfer
may be needed, which we see as an interesting direction for future work.

Also, similar to baselines, our method also struggles with the sparse-reward settings like Antmaze.
We believe that tackling sparse-reward off-dynamics RL is an important and challenging future
research direction that requires substantially different methods from those in the current literature.

USAGE OF LLM

All ideas and research are conducted by the author, and the paper itself is written by the author. The
LLM is used as a tool for polishing the written content of the paper and checking the grammar errors.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 11: Hyperparameter of the MOBODY and baselines.

Hyperparameter Value
Shared

Actor network (256, 256)
Critic network (256, 256)
Learning rate 3× 10−4

Optimizer Adam
Discount factor 0.99
Replay buffer size 106

Nonlinearity ReLU
Target update rate 5× 10−3

Source domain Batch size 128
Target domain Batch size 128

MOBODY
Latent dimensions 16
State encoder (256, 256)
State action encoder (32)
Transition (256, 256)
Representation penalty λrep 1
Rollout length 1, 2 or 3
MOPO-Style Reward Penalty β 1,5 or 10
Q-weighted behavior cloning 0.05, 0.1 or 1
Classifier Network (256, 256)
Reward penalty coefficient λ 0.1

DARA
Temperature coefficient 0.2
Maximum log std 2
Minimum log std −20
Classifier Network (256, 256)
Reward penalty coefficient λ 0.1

BOSA
Temperature coefficient 0.2
Maximum log std 2
Minimum log std −20
Policy regularization coefficient λpolicy 0.1
Transition coefficient λtransition 0.1
Threshold parameter ϵ, ϵ′ log(0.01)
Value weight ω 0.1
CVAE ensemble size 1 for the behavior policy, 5 for the dynamics model

IQL
Temperature coefficient 0.2
Maximum log std 2
Minimum log std −20
Inverse temperature parameter β 3.0
Expectile parameter τ 0.7

TD3_BC
Normalization coefficient ν 2.5
BC regularization loss 0.05, 0.1 or 1

MOPO
Transition (256,256,256)
Maximum log std 2
Minimum log std −20
Reward penalty τ 1, 5 or 10
Rollout Length 1, 2 or 3
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