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ABSTRACT

We study off-dynamics offline reinforcement learning, where the goal is to learn a
policy from offline source and limited target datasets with mismatched dynamics.
Existing methods either penalize the reward or discard source transitions occurring
in parts of the transition space with high dynamics shift. As a result, they optimize
the policy using data from low-shift regions, limiting exploration of high-reward
states in the target domain that do not fall within these regions. Consequently,
such methods often fail when the dynamics shift is significant or the optimal trajec-
tories lie outside the low-shift regions. To overcome this limitation, we propose
MOBODY, a Model-Based Off-Dynamics Offline RL algorithm that optimizes a
policy using learned target dynamics transitions to explore the target domain, rather
than only being trained with the low dynamics-shift transitions. For the dynamics
learning, built on the observation that achieving the same next state requires taking
different actions in different domains, MOBODY employs separate action encoders
for each domain to encode different actions to the shared latent space while sharing
a unified representation of states and a common transition function. We further
introduce a target Q-weighted behavior cloning loss in policy optimization to
avoid out-of-distribution actions, which push the policy toward actions with high
target-domain Q-values, rather than high source domain Q-values or uniformly
imitating all actions in the offline dataset. We evaluate MOBODY on a wide range
of MuJoCo and Adroit benchmarks, demonstrating that it outperforms state-of-
the-art off-dynamics RL baselines as well as policy learning methods based on
different dynamics learning baselines, with especially pronounced improvements
in challenging scenarios where existing methods struggle.

1 INTRODUCTION

Reinforcement learning (RL) (Kaelbling et al.l [1996; [Lil 2017) aims to learn a policy that maximizes
cumulative reward by interacting with an environment and collecting the corresponding rewards.
While RL has led to impressive successes in many domains, such as autonomous driving (Kiran
et al.| 2021)) and healthcare (Lee et al2023), it faces significant constraints on interaction with the
environment due to safety or cost concerns. One solution is to learn a policy from a pre-collected
offline dataset (Levine et al.,|2020). Still, when the offline dataset is insufficient, data from another
environment, such as a simulator with potentially mismatched dynamics, may be needed, but requires
further domain adaptation. In our paper, we study a specific type of domain adaptation in RL, called
off-dynamics offline RL (Liu et al., [2022; 2024; [Lyu et al., |2024b), where the simulator (source) and
real/deployed (target) environments differ in their transitions. The agent is not allowed to interact
with the environment but only has access to offline data that is pre-collected from the two domains
with mismatched dynamics and trains a policy with the offline data.

Existing works on off-dynamics offline RL solve the problem by 1) reward regularization methods
(Liu et al.| [2022; 2024} |Wang et al., 2024])) or 2) data filtering methods (Xu et al., [ 2023; |Wen et al.,
2024) that penalize or filter out source transitions with high dynamics shift. As a result, the policy is
mostly optimized with the transitions from the low shift regions, limiting exploration of high-reward
states in the target domain that do not fall within these regions. Consequently, such methods often fail
when the dynamics shift is significant or the optimal/high-reward trajectories lie outside the low-shift
regions. So we wonder, can we directly optimize the policy with the target transition, instead of only
the low-shift regions to allow for more exploration of the high target reward and large shift region?
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Motivated by this, we propose a Model-Based Off-Dynamics RL algorithm (MOBODY) that learns
target domain dynamics through representation learning and optimizes the policy with exploratory
rollout from the learned dynamics instead of only the low-shift region data. Existing dynamics
learning methods, such as learning with limited target data, learning with combined source and target
data, and pretraining on source and finetuning on the target domain, are infeasible in the off-dynamics
RL setting due to the intrinsic dynamics difference in this problem. This is because 1) the dynamics
learned from the combined dataset is not the accurate target dynamics, but the dynamics resemble the
source one as the source transitions dominate the dataset, 2) the pretrain-finetune method still doesn’t
capture what is the difference between source and target dynamics using the same dynamics model,
but only tries to learn the target domain based on the source transition.

To learn the target dynamics, we leverage shared Ant, Target Gravity x5 Ant, Target Gravity x0.1
structural knowledge across domains, such as the 0
high-level robot motion and position in a robotics
task, while employing separate modules to account
for domain-specific dynamics differences. Specifi-
cally, we observe that to achieve the same next state
starting from the same state, different actions are re-
quired in two domains. Based on this, we propose to
learn separate action encoders for the two dynamics
to encode actions into a unified action representation,
and also learn a unified transition and state encoder to
map the unified latent state and action representation
to the next state. And such shared representation and
transition functions can be learned with the auxiliary
of the source data through representation learning. In
this way, MOBODY learns separate transition func-
tions for two domains but utilizes the source data
to provide shared structure knowledge regarding the
transitions. As shown in Figure |[I} MOPO that di-
rectly learns dynamics with combined source and target data significantly underperforms MOBODY,
which is specifically optimized to learn the farget dynamics.
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Figure 1: Comparison between DARA (Liu
et al.| 2022) (a SOTA model-free reward reg-
ularization method for offline off-dynamics
RL), MOPO (Yu et al.,[2020) (a vanilla model-
based offline RL), and MOBODY on two Mu-
JoCo tasks. We show that 1) the model-free
method DARA receives low reward compared
with model-based MOBODY due to a lack
of exploration in the target domain, and 2)
MOPO fails as it cannot learn a good transi-
tion for exploration with a combined source
and target dataset.

We further propose a practical and useful target Q-weighted behavior cloning regularization in the
policy learning to avoid out-of-distribution and high source Q value (but low target Q value) actions,
inspired by the advantage-weighted regression (Peters & Schaall, 2007; [Kostrikov et al.||2021a)). The
vanilla behavior cloning loss (Fujimoto & Gul2021) will push the policy to favor the action in the
source data, but the action in the source data might not perform well in the target domain due to the
dynamics shift. To overcome this issue, the target Q-weight behavior cloning loss regularization will
up-weight action with the high targer Q value.

Our contribution can be summarized as follows:

* We propose a novel paradigm for off-dynamics offline RL, called model-based off-dynamics offline
RL, that can explore the target domain with the learned target transitions instead of optimizing the
policy only with the low-shift transitions.

* We propose a novel framework for learning the farget dynamics with source data and limited target
data by learning separate action encoders for the two domains while also learning a shared state
and the transition in the latent space. We also incorporate a Q-weighted behavior cloning loss for
policy optimization that is simple, efficient, and more suitable for off-dynamics offline RL settings
than vanilla behavior cloning loss.

* We evaluate our method on MuJoCo and Adroit environments in the offline setting with different
types and levels of off-dynamics shifts and demonstrate the superiority of our model with an
average 58% improvement over baseline methods on the gravity and friction settings and 25% on
the kinematic and morphology shift settings.

2 BACKGROUND

Off-dynamics offline reinforcement learning. We consider two Markov Decision Processes (MDPs):
the source domain M. = (S, A, R, ps.,7) and the target domain My, = (S, A, R, pug, 7). The
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difference between the two domains lies in the transition dynamics p, i.e., Pyc 7# Pug Or more
specifically, pyc(s’ | s,a) # pue(s’ | s,a). Following existing literature on off-dynamics RL
(Eysenbach et al., [2020; Liu et al., [2022; |[Lyu et al., 20244} |Guo et al., 2024} |Lyu et al., |2024b;
Wen et al.| 2024), we assume that reward functions are the same across the domains, which is
modeled by the state, action, and next state, i.e., ryc(S,a,5") = ry(s,a,s’). The dependency
of the reward on s’ is well-justified in many simulation environments and applications, such as
the Ant environment in MuJoCo, where the reward is based on how far the Ant moves forward,
measured by the change in its x-coordinate (i.e., the difference between the x-coordinate after and
before taking action). The goal is to learn a policy 7 with source domain data (s, a, s’,7)s. and
limited target domain data (s, a, s’, )y, that maximize the cumulative reward in the target domain
maxy Ex p. [, V'7ug(5¢, ar)]. In the offline setting, we are provided with static datasets from a
source and a target domain Dy, = {(s,a, s, 7)gc} and Dyy = {(5, a, 8’,7)ug }, which consist of the
transitions/trajectories collected by some unknown behavior policy. Note that in the off-dynamics

setting, the number of transitions from the target domain is significantly smaller than the source, i.e.,
| Dyg| < | Dgre|, and normally the ratio \g['ll can vary from 10 to 200. In our paper, we follow the

ODRL benchmark (Lyu et al.| 2024b)) in which the ratio is 200.

Model-based offline reinforcement learning. Model-based RL learns a transition function
T'(s',r|s,a) by maximizing the the likelihood 7" = maxy Ep,, [logT(s',7|s,a)]. Then, the al-
gorithm rolls out new transition data to optimize the policy and take u(s, a) as the uncertainty
quantification to obtain a conservative transition, i.e., (s, a, s’, 7 — au(s, a)). The policy with offline
data Dyfaine and online rollout (s, a, s', 7 — au(s, a)). However, different from traditional model-
based offline RL, we only have very limited target domain data and source data with dynamics shift.
There is no existing model-based solution for off-dynamics RL, which calls for novel methodology
development both in dynamics learning and policy learning.

Detailed discussions of related work are in Appendix[A]due to space limit.

3 MOBODY: MODEL-BASED OFF-DYNAMICS OFFLINE REINFORCEMENT
LEARNING

In this section, we present our algorithm, MOBODY,
for the off-dynamics offline RL problem setting. We
first present how we learn the rarget dynamics with
very limited target domain data Dy, and source do-
main data Dg.. Secondly, for policy learning, we in-
corporate a target Q-weighted behavior cloning loss
to regularize the policy, where the target Q value is
learned from enhanced target data, including reward
regularized source data, target data, and rollout data
from learned dynamics. The algorithm is summarized

S5— ¢(s)

Figure 2: Architecture of the dynamics model.

in Algorithm 2} MOBODY encodes the state with ¢ and
state action with 1, outputs the next state
3.1 LEARNING THE TARGET DYNAMICS through ¢, and learns the dynamics for both

domains by transition loss shown in purple
double arrow <. It learns the state action
representation by matching the state action
representation z, with the next state repre-

Decomposition of the dynamics. In general, the
dynamics can be modeled as s’ = ¢(s,a) or ' =
@*(s,a) and s’ = ¢"8(s,a) for the two domains.

Although the dynamics are different, the transitions
share some structured knowledge that we can utilize.
Also, from another perspective, for the two domains,
to achieve the same next state, different action is

sentation 2z, through encoder loss shown in
the green double arrow < and the state repre-
sentation through cycle transition loss shown
in orange double arrow <.

required, i.e., (8, Gsre, §)src ANd (S, Ayg, 8" ) g Based
on this, we propose using separate action encoders to encode actions from the two domains into the
shared latent space. So the source and target domains can share a unified representation of states and
a common transition function with the latent action.

We define the z; as the state representation, 25~ and 292 as the state-action representations from the
action encoder for source and target dynamics, respectively. Specifically, we model the state and state



Under review as a conference paper at ICLR 2026

action representation through z; = ¢(s), 2s5 = Yug(2s, @) and 25 = (25, a), so that we can
obtain a separate state action representation for two domains. So, with the learned representation
zs and z,,, we have the dynamics modeled as s’ = ¢7(zs,¥(2s,a)), where ¢ is the transition
function. For simplicity and to reduce the model parameters, we choose to directly add the state and
state action representation together and feed into the transition function s’ = ¢7(zs + ¥(zs,a)). We
show the flow of the dynamics learning component in Figure[2| And our dynamics model is:

source dynamics :zs = ¢5(5), Zsa = 2s + Pac(2s,a), 5 = ¢1(2sa), €))
target dynamics :z5 = ¢ (s), 2sa = 2s + VYue(2s,a), 8 = 1 (2sa), 2

where ¢ is the state encoder, ¢ is the transition, and 1) and 1)y, are the state action encoders for
source and target, respectively. Equation (I) and Equation (2) show that we use different modules
(action encoder 1) and 1)) for the source and target domains, but with shared state representation
from state encoder ¢ and unified transition function ¢p. We now discuss how representation
learning techniques, utilizing several loss functions, enable us to learn representation and dynamics.

Transition Loss. The transition loss minimizes the Mean Squared Error of the predicted next state
and the ground truth next state as shown in a purple two-way arrow in Figure [2| The goal of the
transition loss is to learn the shared transition knowledge ¢ using both source and target data.

N

src rg 1

ayn = % Zi\]:l ||S/ - ¢T(zs + wSTC(ZS7 a’))||27 L::lyn = N Z HS/ - ¢T(zs + wlfg(237 a))HQ (3)
=1

Encoder Loss (Learning separate action encoder g and ty,). The ¢ can map the latent state
action representation to the next state for both domains, we use encoder loss to learn the separate
action encoders for the two domains to map different actions to the unified latent space that served
as the input to the ¢7. Specifically, we adopt a general assumption in representation learning that
the representation of the state action should be close to the next state (Ye et al.,[2021; Hansen et al.|
2022b), where the predicted representation of the current state-action pair (s, a) incorporates the
transition information to be close to the next state representation ¢z (s’). This encourages the action
encoder to further encode the difference of the dynamics information for the two domains, thereby
improving the efficiency of learning the dynamics model. The encoder loss is formulated as:

L = 5 it Mz lx = (s + dae(zs, ) 1%, Ly = & 0L lll2wrlx = (2 + Yua(za, ), @)

zs = ¢pr(s’) is the next state representation encoded with ¢ and | - | is the stopping gradient.
Here, N is the batch size. The encoder loss is shown in a green two-way arrow in Figure

Cycle Transition Loss (Learning shared ¢ and ¢7). To further improve the state representation
quality and avoid mode collapse in the encoder loss, we include a “cycle transition loss” through
VAE-style (Kingma et al.l 2013) learning. The dynamics function maps the state action to the next
state through the state action representation. Then, from one perspective, by setting ¢/ to 0, the
dynamics only input the state into the dynamics learning framework, and no action will be taken. The
output of the dynamics will be the same state, i.e., (s, 0, s), which is the same for two domains. So
when the v is set to 0, the state is predicted as: § = ¢ (¢g(s) + 0). Then we can explicitly learn the
state representation with the state in the offline dataset by minimizing: ||¢r(¢g(s)) — s||2. From this
perspective, we can view ¢ g as an encoder and ¢ as a decoder, and we propose using a Variational
AutoEncoder (VAE) (Kingma et al., 2013) to learn the state representation.

Let z, be expressed as zy = fi;(5) + 04 (5) © €, with € ~ N(0,1) and j14,(5) and o4, are the
output of state encoder network ¢ . Let d, be the dimension of the latent representation, the loss for
learning the state representation is:

_ 1 N d 2 2 2 1 N A
Leyele = 537 D 2im1 Djor (ui;+oi;—logoi; —1) + % >y llsi — il (5)
The cycle transition loss is shown in an orange two-way arrow in Figure[2]

Unlike previous VAE-based dynamics learning methods, which are not tailored for off-dynamics RL,
we introduce a cycle transition loss alongside the encoder loss to jointly learn state representations
and shared transition functions across domains, rather than just learning state representations. The
VAE representation also mitigates mode collapse that arises when trained solely on the encoder loss.
The decoder, serving as a shared transition function, maps the unified state-action representation
from separate action encoders to the next state, providing additional supervision signals for learning
cross-domain dynamics. In conclusion, our method learns the unified transition function ¢ for both
domains, while using the ). and v to learn the distinct information of the two dynamics.
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Reward learning and uncertainty quantification (UQ) of the learned dynamics. Given that the
reward is modeled as a function of (s, a, s’) tuple and the reward function is the same across domains,
we learn the reward function (s, a, s") as a function of the (s, a, s’) tuple with the combined source
and target dataset through the MSE loss Liewarg. This is further described in the Appendix Also,
we follow the standard model-based approach (Yu et al.| 2020) for the UQ of the dynamics, by
penalizing the estimated reward 7 with the uncertainty in predicting the next state: 7(s,a,s’) =
7(s,a,s") — Bu(s, a) where u(s, a) the uncertainty of the next state and 3 is the scale parameter. We
refer to the details in Appendix B}

To summarize, the dynamics learning loss is:
min ]F‘Duc Lzr;n + IED“,g L:]rfn + ]EDS,CUD“»E [Lreward + )\rep(Lcycle + Lrep)]7 (6)
where Ap is a scalar that controls the weight of the representation learning term and is set to be 1 in

the experiments, as we notice there is no significant performance difference with different Ar,. We
summarize the dynamics learning algorithm in Algorithm

3.2 PoOLICY LEARNING WITH THE TARGET-Q-WEIGHTED BEHAVIOR CLONING LOSS

After we learn the target dynamics, we perform model-based offline RL training. During the policy
optimization, we roll out new target data from the learned target dynamics with the current policy and
state in the offline data and keep the rollout data in the Dgy.. Also, we want to utilize the source data
to optimize the policy. We follow the previous work by DARA (Liu et al.,[2022)) on off-dynamics
offline RL. This approach first performs reward regularization on the source data, which learns
domain classifiers to penalize the large shift in the source data. Details of the DARA are referred to
in Appendix@ Our enhanced target data is Dyr_yug U Dirg U Draie.-

Learning the Q function We learn the Q functions following standard temporal difference learning
with enhanced target data:

min Lo = minEp,, y,0mupu, (1 + 7 maxe Qp- (', @) — Qo(s,a))°] ™

Policy optimization with target Q-weighted behavior cloning. In offline RL, a central challenge

is exploration error, as out-of-distribution actions cannot be reliably evaluated—an issue exacerbated
under off-dynamics settings. Behavior cloning (Fujimoto & Gul 2021} |Goecks et al.| 2019) offers
a simple and effective regularization by biasing the policy toward actions in the offline dataset, by
pushing actions close to the actions in the offline dataset. However, in off-dynamics RL, naively
cloning source-domain actions can harm performance: actions in the source dataset may perform
poorly in the target domain due to the dynamics shift, so vanilla behavior cloning alone in TD3-BC
(Fujimoto & Gu, [2021)) is insufficient for policy regularization.

Instead, inspired by the advantage weighted regression and the IQL (Kostrikov et al., [2021a)), i.e.
Lr(6) = E(s.0)en [exp (8(Qo(s,a) — Viy(s))) log me(a | s)} , which re-weight the log likelihood
of the offline data with the advantage, we can re-weight the behavior cloning loss with the target Q
value, namely a Q weighted behavior cloning loss, where the target Q value is learned with enhanced
target data, so that this Q value approximates the Q value in the target domain. Intuitively, the target
Q-weighted behavior cloning loss up-weights the policy’s loss with higher target Q-values, guiding

the policy toward actions expected to perform better under target dynamics. The policy loss with Q
weighted behavior cloning loss is:

T =arg mﬂin —E(s,a)eDS,U“.guD[,.gquke [)‘Q(Sv W(s))}
Q) Yy o]
Bt | 59 (s e ) (r(s) '] ®

is the scaler A that balance the behavior regularization error and ()

where the A = m
loss and « is a hyper parameters. We summarize the MOBODY in Algorithm R]in the Appendix

4 EXPERIMENTS

In this section, we empirically evaluate MOBODY in off-dynamics offline RL settings using four
MulJoCo environments from the ODRL benchmark: HalfCheetah-v2, Ant-v2, Walker2d-v2, and
Hopper-v2 and manipulation tasks in Adroit: Pen and Door. We also perform comprehensive ablation
studies to justify the importance of each component of MOBODY.
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4.1 EXPERIMENTAL SETUP

Environments, Tasks, and Datasets. We evaluate MOBODY on the MuJoCo and Adroit environ-
ments from the ODRL benchmark (Lyu et al.l [2024b). For the MuJoCo environment, we set the
source domain unchanged and consider several types of dynamics shifts for the target domain, 1)
gravity and friction, each scaled at four levels: {0.1,0.5,2.0, 5.0} by multiplying the original values
in MuJoCo, and 2) kinematics and morphology shift, each is achieved by constraining the rotation
angle ranges of certain joints or modifying the size of specific limbs or the torsos of the robot. We
also consider the Adroit task with kinematics and morphology shift, scaled to medium and hard shift
levels, to demonstrate that our method applies to a wide range of environments and shift types/levels.
We use the medium-level offline datasets collected by the ODRL benchmark, using an SAC-trained
behavior policy tuned to achieve about 50% of expert performance. The target data contains only
5,000 transitions, whereas the source data contains 1 million transitions.

We evaluate the performance with the Normalized Score, defined as: normalized_score =

score—random,_score x 100, where the random_score is achieved by the random policy and
expert_score—random_score

the expert_score is achieved by the SAC (Haarnoja et al., [2018]) trained to the expert level in the
target domain. We also conduct hyperparameter and computational cost analysis in the Appendix
to demonstrate that our method is not overly sensitive to hyperparameters.

Baselines. We compare MOBODY with several baseline methods, including the model-free offline
RL algorithms, model-based offline RL algorithms, and off-dynamics offline RL algorithms. For the
model-free offline RL methods, we choose the IQL (Kostrikov et al.;,2021a) and TD3-BC (Fujimoto
& Gul 2021)) as they demonstrate good performance without any modification designed for solving
off-dynamics offline RL problems. We directly train these baselines on the combined offline dataset
with the source and target data. We select the MOPO (Yu et al.l 2020) as the model-based offline RL
baselines. Since directly training dynamics on the target domain has poor performance, we train the
dynamics model of MOPO on the combined dataset and train the RL policy with the dynamics model
and the combined dataset, which is also a widely used model-based baseline in previous off-dynamics
RL works (Eysenbach et al.,[2020). We also incorporate the well-established off-dynamics offline
RL methods, including DARA (Liu et al.| [2022) and BOSA (Liu et al., 2024). We also conduct
experiments comparing with different dynamics learning methods in Section 4.4]

4.2 MAIN RESULTS

Result on MuJoco gravity/friction shift. In Table[I] we show the detailed results and highlight the
best and second-best scores of the MuJoco gravity and friction shift problems. In the last column,
we report the percentage improvement or drop of our method compared to the best-performing
baseline. Our proposed MOBODY outperforms baselines in 28 out of 32 settings, with competitive
performance in the remaining four.

In detail, our MOBODY achieves 58.35% improvements compared with the best baseline methods,
which is significantly better than the baselines and significantly outperforms baselines in hard settings,
where other methods achieve extremely poor performance. In the last row of Table[T} we sum the
normalized scores in total. We find that DARA and BOSA do not have significant improvements
compared with IQL, and IQL achieves the best performance among the baselines in the total score.
These empirical results underscore the superior performance of MOBODY in solving the off-dynamics
offline RL problem and the potential in real-world applications where dynamics shifts are large.

Result on MuJoco kinematics/morphology shift. We also conduct experiments on MuJoco and
Adroit with kinematics shift and morphology shift. Due to page limit, we summarize the results
in Figure 3] by summing the normalized score across different tasks. We observe that MOBODY
receives a higher overall score. We also present all the experimental results for each task in Table ]
and Table5]in Appendix showing that our method performs the best in 32 out of 40 tasks and
achieves an overall 25% improvement in all tasks.

MOBODY improves more when the dynamics shift is larger. Additionally, in larger shift sce-
narios, such as HalfCheetah-Friction-0.1, Ant-Friction-5.0, and Walker2d-Friction-5.0, MOBODY
achieves significant improvement over baseline methods, which receive very low rewards in the target
domain. We also summarize the performance comparison under different shift levels in Figure []
in Appendix Existing methods, DARA and BOSA, fail in large shift settings as the reward
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Table 1: Performance of MOBODY and baselines on MuJoCo tasks (HalfCheetah, Ant, Walker2D,
Hopper) under medium-level offline dataset with dynamics shifts in gravity and friction at levels
0.1,0.5,2.0,5.0. Source domains remain unchanged; target domains are shifted. We report nor-
malized target-domain scores (mean =+ std over three seeds). Improvements are marked in 1 and
degradations in | in the last column. Best and second-best scores are highlighted in cyan and

, respectively.

Env ‘ Level ‘ BOSA QL TD3-BC MOPO DARA ‘ MOBODY ‘ 1
0.1 9.31 £1.94 9.62 £4.27 6.90 £ 0.34 6.28 £0.22 12.90 £ 1.01 14.18 +1.06 9.92%1
HalfCheetah | 0.5 43.96 £ 5.68 44.23 £2.93 6.38 £3.91 4020 £7.20  46.11 £1.93 47.18 £1.23 2.32%1
Gravity 2.0 27.86 £0.94 31.34+£1.68 29.29 + 3.62 21.89 +£10.49 31.85+1.31 41.60 + 7.35 30.61%1

5.0 17.95+11.97 44.00+23.13 73.75+14.11 57.754+18.92 27.67+17.01 | 83.05 £ 1.21 12.61%71

0.1 12.53 £+ 3.61 26.39 £ 11.35 8.95£0.71 28.32+£9.23 23.69+16.46 | 57.58 £2.49 | 103.14%71

HalfCheetah | 0.5 68.93+0.35 = 69.80 £ 0.64 49.43 £9.91 54.98 £5.91  64.89 £3.04 69.54 £ 0.48 0.37%]
Friction 2.0 46.53 £0.37 46.04 £+ 2.04 43.51£0.74 42334389  46.25+2.36 | 50.02+3.26 | 45.00%7T

5.0 44.07 £9.07 44.96 £6.78 35.83 £6.65 42.39+10.22  40.06 £7.87 | 59.20 &+ 4.91 31.67%1

0.1 25.58 £2.21 1253+ 1.11 13.23 +2.61 8.93£1.23 11.03+1.24 | 37.09+2.12 | 45.00%71

Ant 0.5 19.03 +4.41 10.09 £ 2.00 12.91 £2.85 12.28 £ 3.88 9.04 £1.35 37.44£2.79 96.74%1
Gravity 2.0 41.77 £ 1.52 37.17+£0.96 34.04 £4.12 3543 £3.22  36.64 £0.82 45.83 £ 1.71 9.72%%

5.0 31.94 £ 0.69 31.59 £ 0.35 6.37 £0.45 28.97+£5.93 31.01+0.39 | 65.45+3.23 | 104.92%71

0.1 58.95+£0.71  55.56 = 0.46 49.20 £ 2.55 49.86 £5.99  55.12+0.24 58.79 £0.11 0.27%]
Ant 0.5 59.72 £ 3.57 59.28 £ 0.80 2521 £7.17 32284325 58.92+0.80 | 62.41+4.10 4.50%1
Friction 2.0 20.18 £3.79 19.84 4+ 3.20 22.69 £ 8.10 15.93 +£0.87  17.54+£2.47 | 47.41 £4.40 | 108.95%%
5.0 9.07 £0.88 7.75+£0.25 10.06 + 4.16 13.89 £ 3.2 7.80£0.12 31.17 £5.57 | 124.41%%

0.1 18.75+£12.02  16.04 £ 7.60 36.48 £0.95 41.984+10.13 20.12+5.74 | 65.85 £ 5.08 56.86%1

Walker2d 0.5 40.09 £20.37  42.05 £ 10.52 27.43 £3.92 40.32£8.78  29.72+16.02 | 43.57 & 2.32 3.61%1
Gravity 2.0 8.91 £2.28 25.69 +10.70 11.88 £9.38 28.79+£3.07 3220 £1.05 44.32 £ 4.58 37.64%1

5.0 5.25 £0.50 5.42+£0.29 5.12+£0.18 5.65 £ 0.99 5.44+0.08 | 46.05 £ 20.73 | 715.04%71

0.1 7.88+1.88 5.72+£0.23 29.60 £ 24.90 27.99+2.11 5.65 £ 0.06 28.23 £9.13 1.63%
Walker2d 0.5 63.94 £20.40  66.26 £ 3.03 45.01 £18.98 60.81 £3.04  68.81 £1.12 76.96 + 1.99 11.84%71
Friction 2.0 39.06 £17.36 6540 £7.13 67.89 £ 1.66 68.38 £1.09  72.91£0.37 73.74 + 0.49 1.14%1

5.0 10.07 +£4.91 5.39+0.03 5.76 £0.84 5.34 £+ 1.61 5.36 £ 0.28 27.38 £3.87 | 171.90%1
0.1 27.82+£1341 13.10+£0.98 15.59 £ 6.09 2249+3.71 2340+11.62 | 36.25 %+ 1.50 30.30%1
Hopper 0.5 28.54 £12.77  16.24 £7.89 23.00 £ 14.87 23.92+1.91 12.86 £0.18 | 33.57 +6.71 17.62%71
Gravity 2.0 11.84 +2.37 16.10 4 1.64 18.62 + 6.88 11.76 £0.32  14.65 +£2.47 | 23.79 & 2.09 27.77%1
5.0 7.36 +£0.13 8.12£0.16 9.08 +1.15 7.77+0.31 7.90 £1.27 8.06 £0.03 11.23%]
0.1 25.55 £ 2.69 24.16 +4.50 18.64 £+ 3.37 34324+6.79 26.13+4.24 | 51.19+2.56 | 49.16%7T

Hopper 0.5 2522 £4.48 23.56 £+ 1.68 19.60 £ 15.45 12.324+3.96  26.94+2.86 | 41.34+0.49 53.45%71
Friction 2.0 10.32 £ 0.06 10.15 £+ 0.06 9.89 £0.20 1099 £0.76  10.154+0.03 11.00 +0.14 0.09%1
5.0 7.90 + 0.06 7.93+£0.01 7.80 +1.04 7.68+0.19 7.86 £0.05 8.07 £+ 0.04 1.77%1

Total | | 875.88 901.52 779.14 893.22 890.62 \ 1427.26 58.35%1

regularization methods are mainly trained with source data with regularization, resulting in optimizing
the policy with the low dynamics-shift transitions and cannot adapt to the large shift target domain, as
we mentioned earlier. Thus, such methods lack exploration of high-reward states in the target domain
that do not fall within these low dynamics-shift regions, which is more frequent when shift is large.
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Figure 3: Aggregation experimental results on MuJoco kinematic and morphology shift task, and
Manipulation tasks. Our method outperforms the baselines. Detailed results of each environment,
shift type, and shift level are referred to Table [d]and Table [5]in the Appendix [C.3]

4.3 ABLATION STUDY

In this section, we conduct ablation studies on two main components of MOBODY: dynamics learning
and policy learning. We first evaluate the overall effectiveness of each component, then analyze
specific design choices. For dynamic learning, we assess the impact of the cycle transition loss and
representation learning. For policy learning, we examine the effectiveness of the Q-weighted loss.
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We evaluate on the Walker2d environments as discussed in Section[4.1] The ablation study results are
shown in Table 2] We defer more ablation study results on Hopper to Appendix [C.4]

We first evaluate the performance of our proposed dynamics learning and policy learning by replacing
the dynamics learning with the existing dynamics learning model or the policy learning with the
existing offline RL algorithm. We denote the two ablation studies as follows:

Al: Replace dynamics learning We compare our MOBODY with a variant replacing the dynamics
learning with the existing model-based method. We use a black-box dynamics model trained on
target data only, while the policy learning follows the same method as in MOBODY. Table
demonstrates that the A1 variant is significantly degraded compared with our proposed MOBODY
algorithm in Walker2d. This indicates that only using the existing dynamics models trained on the
target data is insufficient to rollout trajectories in the target domain. This motivates us to propose a
novel dynamics model learning method.

A2: Replace policy learning Similar to the A1, we replace the policy learning with the existing
offline RL algorithm. We adopt the same dynamics learning approach as in MOBODY and use
Conservative Q-Learning (CQL) (Kumar et al., 2020) for policy learning. Table [2] shows that our
proposed MOBODY outperforms the A2 variant in Walker2d. This demonstrates that the policy
learning part of our proposed MOBODY with Q-weight behavior cloning can better utilize the
dynamics model compared with the existing method.

Then we delve into the details of the dynamics learning and policy learning part, especially our
designs of the loss function and Q-weighting. We have the following ablation studies:

A3: No Cycle Transition Loss Here, the dynamics model follows the dynamics learning of the
proposed MOBODY, but without the cycle transition loss. We hope to evaluate the effectiveness of
our proposed cycle transition loss. Table [2]illustrates that the A3 suffers degradations compared with
our MOBODY in most of the settings. This indicates that the cycle transition loss helps learn a better
state representation in our proposed MOBODY method.

A4: No Q-weighted Similar to the A3, we compare our MOBODY with a variant without the
Q-weighted behavior cloning loss. We keep the same dynamics learning method as our proposed
MOBODY and replace the Q-weighted behavior cloning loss with the vanilla behavior cloning loss.
In Table 2] our method outperforms the method without the Q-weighted behavior cloning in Walker2d.
The A4 underperforms MOBODY in most of the settings except the Walker2d 2.0 level, where all
settings have similar performance. This suggests that our proposed Q-weighted approach can help
regularize the policy learning in the off-dynamics offline RL scenarios.

Table 2: Performance of the ablation study of our proposed MOBODY method. A1-A4 represent four
different ablation studies detailed in Section 4.3] The experiments are conducted on the Walker2d en-
vironments under the medium-level with dynamics shifts in gravity and friction in {0.1, 0.5, 2.0, 5.0}
shift levels. The source domains are the original environments, and the target domains are the envi-
ronments with dynamic shifts. We report the normalized scores in the target domain with the mean
and standard deviation across three random seeds. The higher scores indicate better performance.

Env Level Algorithm Ablation Loss Ablation MOBODY
Al A2 A3 A4

0.1  55.23+10.22 5543+531 35.34+1097 19.53+4.68 65.85+5.08

Walker2d 0.5 35.66 £3.11 39.98+1.32 30.63+£2.92 24.44+191 43.57+2.32
Gravity 2.0 31.94+5.32 28.58+5.59 34.42+3.60 47.13+£2.44 44.32+4.58
5.0 3.56£0.79 11.37+£391 4.42+1.20 6.43+0.32  46.05+20.73

0.1 24.34+10.33 25.73+2.43 21.42+3.85 19.48+4.32 28.23+9.13

Walker2d 0.5 56.31 £7.17 73.23+3.73 6853+4.14 61.384+6.84 76.96+1.99
Friction 2.0 60.52+5.82 71.14+2.59 67.98+6.96 76.44+6.43 73.74+0.49
5.0 4.32+0.85 18324218 5.42+0.82 7.89+£1.33 27.38+£3.87
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4.4 COMPARISON AMONG DIFFERENT DYNAMICS LEARNING APPROACHES

As a model-based approach, MOBODY ’s learned target dynamics is capable of generating higher
quality transitions and demonstrates superior estimation error. Here we compare our MOBODY
with model-based approaches with different dynamics learning baselines, including 1) target only:
learning dynamics with target data only, 2) combined data: learning dynamics with combined source
and target data, and 3) pretrain-finetune learning the dynamics by first pretrain dynamics with source
data and then finetune it with the target dataset. For a fair comparison in terms of dynamics learning,
we use the same model architecture as MOBODY, except that we use the same action encoder for
both domains and we do not use a cycle transition loss. We also evaluate the learned dynamics model
with the MSE of the rollout trajectories using the policy learned by MOBODY at different steps
(0.25M, 0.5M, 0.75M and 1M steps).

Table 3: Performance comparison using different dynamics learning models. First row: evaluation
MSE of the rollout trajectories using different MOBODY policy, second row: normalized score of the
policy. We see that MOBODY outperforms the baseline dynamics learning methods in both dynamics
learning and overall performance.

Metric Task | Trained only on target data | Combined data | Pretrained-finetune | MOBODY
Walker2d-friction-0.5 223 £0.26 1.96 £+ 0.68 221 £0.19 1.25 £ 0.39

MSE Walker2d-gravity-0.5 2.11 £0.48 1.87 £0.32 232+£023 1.93 +£0.34
Ant-friction-0.5 299 £0.51 2.01 £0.24 2.14 £0.19 1.88 + 0.18

Ant-gravity-0.5 1.57 £ 0.39 1.53 £0.39 1.73 £043 1.46 + 0.26
‘Walker2d-friction-0.5 56.31 £7.17 41.38 +£5.12 62.93 +£5.43 76.96 + 1.99
Normalized Scor Walker2d-gravity-0.5 39.71 £ 3.29 42.13 £3.98 38.13 £3.12 43.57 +2.32
OrMAUZEESCOe Ant-friction-0.5 48.13 £ 4.43 46.23 £ 6.85 5L09+£193 | 62.41+4.10
Ant-gravity-0.5 28.32 £ 3.87 31.39 £3.80 29.69 £+ 7.23 37.44 £ 2.79

Table 3] shows the policy optimization performance and the evaluation MSE of the different learned
dynamics. We can observe that the proposed MOBODY outperforms the baseline dynamics learning
methods. The reason can be summarized as follows: 1) the target only dataset is very small, thus
not sufficient to learn the dynamics well, 2) the dynamics learned by the combined dataset can be
biased towards a dynamics in between the source and target domains, and 3) pretrain-finetune training
paradigm treat source and target domains using the same model but does not capture the difference
and the shared structure of the two domains. Specifically, although the pretrain—finetune paradigm
has achieved notable success in supervised domain adaptation tasks, such as domain-adaptive image
classification, it is less effective in the off-dynamics RL setting. In image classification, it is possible
to first extract a broad range of features through pretraining from the source and then finetune on
the target domain to focus on generalizable features. However, when learning the dynamics, the
learning target, which is the next state s’ conditioned on (s, a), differs fundamentally across domains.
This mismatch makes it difficult to directly adapt to the target domain through finetuning alone,
without explicitly considering the difference in the dynamics model of the two domains in the initial
representation learning. Thus, our method seeks to learn the shared information for both domains,
while also learn the separate action encoder to account for the dynamics difference across domains.

5 CONCLUSION

In this work, we study the off-dynamics offline reinforcement learning problem through a model-
based offline RL method. We introduce MOBODY, a model-based offline RL algorithm that enables
policy exploration in the target domain via learned dynamics models. By leveraging shared latent
representations across domains, MOBODY effectively learns target dynamics using both source
and limited target data. Additionally, we propose a Q-weighted behavior cloning strategy that
favors actions with high target Q value, further improving policy learning. Experimental results
on MuJoCo and Adroit benchmarks demonstrate that MOBODY consistently outperforms prior
methods, particularly in scenarios with significant dynamic mismatches, highlighting its robustness
and generalization capabilities. Our method shows the potential of data augmentation in policy
learning with a carefully learned dynamics model. Future work includes further investigation on
improving the dynamics learning.
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REPRODUCIBILITY STATEMENT

Our codes are available at: |https://anonymous.4open.science/r/off-dynamics-model-based-rl{
D353D/README.md] The implementation of the method is based on the ODRL benchmark repository
(Lyu et al.,|2024b), which provides the comprehensive dataset and baseline method for evaluation. For
our algorithm, we provide detailed information on the training loss for the dynamics learning and the
policy optimization in the main text as well as the Algorithm|T|for dynamics learning and Algorithm [2]
for policy optimization in Appendix Bl We also provide hyperparameter analysis and rule-of-thumb
hyperparameters in Appendix [C.4} as well as the hyperparameters and model architecture that we
used for tuning in Table 9]
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A RELATED WORK

Off-dynamics RL. Off-dynamics RL aims to transfer the policy learned in the source domain to
the target domain. One line of work is to regularize the reward of the source data with the target
data using the domain classifier. Following this idea, DARC (Eysenbach et al., |2020) and DARAIL
(Guo et al.l [2024) solve the off-dynamics RL problem in the online paradigm, while DARA (Liu
et al., |2022) and RADT (Wang et al., [2024) use the reward regularization techniques in the offline
RL setting. Similarly, BOSA (Liu et al., 2024) regularizes the policy by two support-constrained
objectives. PAR (Lyu et al.|2024a) learns the representation to measure the deviation of dynamic
mismatch via the state and state-action encoder to modify the reward. Another line of work is utilizing
the data filter method, including the VGDF (Xu et al., [2023) and IGDF (Wen et al., [2024), which
filter out the trajectories similar to the target domain and train the RL policies on filtered data. These
data filtering or reward regularization methods in off-dynamics offline RL settings cannot explore
the target domain substantially, while we propose a novel model-based method that can explore the
target domain with the learned farget dynamics.

Model-based Offline RL. Model-based offline RL leverages the strengths of model-based methods
in the offline RL paradigm. MOReL (Kidambi et al.| [2020) and MOPO (Yu et al.l [2020) modify
reward functions based on uncertainty estimations derived from ensembles of models. VI-LCB
(Rashidinejad et al., [2021)) leverages pessimistic value iteration, incorporating penalty functions into
value estimation to discourage poorly-covered state-action pairs. COMBO (Yu et al., 2021) provides
a conservative estimation without explicitly computing uncertainty, using adversarial training to
optimize conservative value estimates. RAMBO (Rigter et al.|[2022) further builds upon adversarial
techniques by directly training models adversarially with conservatively modified dynamics to reduce
distributional shifts. These methods are designed for one domain instead of an off-dynamics RL
setting. In this paper, we propose a novel dynamics learning and policy optimization method for an
off-dynamics RL setting.

Representation Learning in RL. Representation learning (Botteghi et al.,[2025)) is actively explored
in image-based reinforcement learning tasks (Kostrikov et al., 2021b; |Yarats et al.,|[2022; [Liu et al.,
20215 [Zhu et al [2020)) to learn the representation of the image. For model-based RL, to improve
sample efficiency, representation has been widely applied to learn the latent dynamics modeling (Karl
et al.,2017; Hansen et al., 2022a), latent state representation learning (Barreto et al.| [2017; Fujimoto
et al.| 2021), or latent state-action representation learning (Ye et al.l 2021} Hansen et al.| |2022bj Ota
et al.,[2020; [Fujimoto et al.,[2023)). In our paper, we learn the shared representation of the state and
transition to auxiliary the target dynamics learning with source domain data.

B ALGORITHM DETAILS

Reward learning Note that the reward is modeled as a function of (s, a, s’) tuple, as in many tasks,
the reward is also related to the next state as mentioned in the Section[2] Also, recall that the reward
function in the source and target domain remains the same. Thus, we can learn the reward function
with source and target domain data together via the following loss function.

1 N 2 1 . N7 2
Lreward = E]EDschDlrg [T(87 a, S/) - 7'(8, a, S/)] + EEDSFCUDIIQ [T(S’ a, S/) - T(57 a, S/)] ) (9)
where §' is the predicted next state. Here, we use both the true next state and the predicted next state
from the dynamics model to learn the reward model, as during inference, we do not have the true
next state and only have a predicted next state.

Uncertainty quantification (UQ) of the transition To capture the uncertainty of the model, we learn
N ensemble transition models, with each model trained independently via Eq.equation [o] We design

the UQ of the reward estimation as u(s, a) := max; Std(8}) = max; \/1/N Zjvﬂ(y] —E(§))3,
which is the largest standard deviation among all the state dimensions. This simple and intuitive
uncertainty quantification using the ensemble model has been proven simple and effective in many
machine learning literature (Parker} |2013)) and also model-based RL algorithms (Yu et al.} 2020). We
find it sufficient to achieve good performance in our experiments by employing the penalized reward
7 for the downstream policy learning: 7(s, a, s') = 7(s, a, s') — Bu(s, a).

13
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Algorithm 1 Dynamics Learning via separate action encoders and the representation learning.

1:

N

—_—

,_
N

TeYRIADIUNRE®

Input: Offline datasets Dy, = {(s,a,7,5)}, Dye = {(s,0a,r,s")}, number of model learning
steps Nmodel, target training frequency K.
Initialize: State encoder model ¢, transition model ¢, source state action encoder v, target
state action encoder ), reward model 7.
for : = 1 to Nyodel do
Sample mini-batch:
if i%K = 0 then
Sample mini-batch {(s,a,r,s")} from Dy,
else
Sample mini-batch {(s,a,r, s')} from Dy,
end if
Predict the next state with Eq. equation|[I] and equation [2] with mini-batch data.
Optimize the dynamics with the transition loss in Eq.equation[3] encoder loss in Eq.equationfd]
cycle transition loss in Eq.equation [5]and reward loss in Eq.equation [0] with mini-batch data.
end for

Algorithm 2 MOBODY: Model-Based Off-dynamics Offline Reinforcement Learning

1:

2:

Input: Offline dataset Dy, = {(s,a,7,s")} and Dy, = {(s,a,7,5")}, Drae = {}, number of
model learning steps Npodel, policy training steps Npoticy-

Initialize: Dynamics model, policy 7y, rollout length Loy

Dynamics Training

Learn target dynamics and reward estimation: Ttrg, Fig < Call Algorithm

Offline Policy Learning

Regularize source data Dy aug = {(5, a, 7 + nAr, s’)} with DARA.

5: for j = 1 to Npylicy do

10:
11:

Collect rollout data from 7' and i Starting from state in Dgc_aue and Dy,. Add batch data to

replay buffer Dyye.

Sample batch (s,a, s', 7)fake from Diye, (5, a, ', 7) g from Dy, and (s, a, 8", 7)irg_aug from
Dy aug- Concatenate them as (s, a, s, 1) ain-

Learn the Q value function with Eq.equation [7]

Update policy g with Eq. equation
end for
Return: Learned policy 7y

14
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C EXPERIMENTAL DETAILS

C.1 THE DARA REGULARIZATION FOR SOURCE DATA USED IN MOBODY

Note that in MOBODY, we use DARA to regularize the reward in the source data. In this section, we
introduce the details of DARA.

DARA (Liu et al.|[2022), the offline version of DARC (Eysenbach et al.| 2020), trains the domain
classifiers to calculate the reward penalty term Ar(s, a, s’) and regularize the rewards in the source
domain dataset via:

Ppara(S,a, ') =r(s,a,s’) +nAr(s,a,s’),
where 7 is the penalty coefficient, where we set to 0.1 following the ODRL benchmark (Lyu et al.|
2024b).

Estimation of the Ar. Following the DARC (Eysenbach et al.l [2020; [Liu et al. [2022), the re-
ward regularization Ar can be estimated with the following two binary classifiers p(trg|s¢, a;) and
p(trg|se, ay, s¢1) with Bayes’ rules:

p(trg|se, g, se41) = ptrg(5t+1|sta at)p(st, at|trg)p(trg) /p(se, as, St41), (10)
p(st, arltrg) = p(trg|ss, ar)p(se, ar) /p(trg). (11)

Replacing the p(s;, a;|trg) in Eq. equation[10|with Eq. equation[11} we obtain:
p(trg[se, at, se+1)p(st; at, Se+1)
p(trg|se, ar)p(se, ar)

p(sre|se,ae,5¢41)p(5t,0¢,5¢+1)
P(STC‘St«,Gt)P(SuGt)

ptrg(st—i-l |5t; at) =

Similarly, we can obtain the pgc(si11]8t, at) =

We can calculate the Ar (s, at, s¢11) following:
Ar(sy, ar, si41) = log (pug(StHISt7 at))
psrc(5t+1 |5t7 at)
= log p(trg|st, ar, s141) — log p(trg|se, ar) + log p(src|sy, ar, s41) — log p(sre|se, ay).
Training the Classifier p(trg|s;, a;) and p(trg|s;, a;, s¢+1). The two classifiers are parameterized
bu Osa and Osas. To update the two classifiers, we sample one mini-batch of data from the source
replay buffer Dy, and the target replay buffer Dg, respectively. Imbalanced data is considered here

as each time we sample the same amount of data from the source and target domain buffer. Then, the
parameters are learned by minimizing the standard cross-entropy loss:

Lsas = —Ep, [log pog,s (trg|se, at, si+1)] — Ep,, [10g pog,s (trg|se, at, si+1)]
Lsa = —Ep,, [logpos, (trg|st, at, se+1)] — Ep,, [log peg, (trg|se, at, se1)] -
Thus, 8 = (fsas, Osa ) is obtained from:

0= argemin ACCE (Dsrm Dlrg)

= arg min[Lsas + Lsa)-
9

C.2 TECHNICAL DETAILS ABOUT BASELINE ALGORITHMS

In this section, we introduce the baselines in detail and the implementation follows the ODRL
benchmark (Lyu et al., 2024b)).

BOSA (Liu et al.| 2024). BOSA shows a distribution shift issue might exist when learning policies
from the two domain offline data under dynamics mismatch. It handles the out-of-distribution (OOD)
state actions pair through a supported policy optimization and addresses the OOD dynamics issue
through a supported value optimization by data filtering. Specifically, the policy is updated with:

£act0r = ]ESNDS,CU’D[@, a~Ty(s) [Q(57 a)] A ESNDSrCUDtrg [ﬁgofﬂine (71—9 (5) | 5)] > €.
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Here, the € is the threshold, 7
function is updated with:

£critic = IE(s,a)NDsrc [Q(S, a)}
+ E(s,a,r,s/)NDmuDu-g, a’~mg(-|s) [I (ﬁlrg(8/|sv a) > 6/) (QGz (s» a) - y)2] ’

is the learned policy for the combined offline dataset. The value

offline

where I(-) is the indicator function, pu(s’|s,a) = argmax E(, 4 o)~ Dy, [108 Pirg(5']5, )] is the
estimated target domain dynamics, € is the threshold.

IQL (Kostrikov et al.l[2021a). IQL learns the state value function and state-action value function
simultaneously by expectile regression:

Ly = E(s,a)~Douny [L3(Q0(5; @) = Vip(s))]

where LT (u) = |7 — I(u < 0)||ul?, I(-) is the indicator function, and 6 is the target network
parameter. The state-action value function is then updated by:

£0 = E(sans)~Dainy |(1(5:0) +7Vi(s) = Qo(s,0))° .

The advantage function is A(s,a) = Q(s,a) — V(s). The policy is optimized by the advantage-
weighted behavior cloning:

Lactor = E(s,a)NDmuDug [exp(ﬁ : A(Sa a)) log T (CL‘S)] ’

where ( is the inverse temperature coefficient.

TD3-BC (Fujimoto & Gu, 2021). TD3-BC is an effective model-free offline RL approach that
incorporates a behavior cloning regularization term to the objective function of the vanilla TD3,
which gives:

Lacior = A - ESNDmuDug [Q(& o (3))] + E(s,a)NDS,CuD“g [(a — To (5))2] s

where
v

=1
N Z(sj-,aj) Q(Sj7 aj)
is the normalization coefficient.

MOPO (Yu et al.,[2020). MOPO is a standard model-based offline policy optimization method, which
learns dynamics first and penalizes rewards by the uncertainty of the dynamics. Lastly, it optimizes
a policy with the SAC (Haarnoja et al.L2018])). Specifically, following previous off-dynamics work
(Eysenbach et al.,2020) in the online setting that applies MBPO as a baseline, we learn the dynamics
with the combined offline source and target data. We follow the implementation in OfflineRL-kit.

DARA (Liu et al.|, [2022). We refer to the Appendix for the details. We follow the implementation
in ODRL (Lyu et al., 2024b).

A and v eR"

C.3 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional results on various types of dynamic shifts, including Kinematic
shift (kin) and Morphology shift (morph), on Mujoco and Adroit, following the ODRL benchmark.
We present the results in Table[d]and Table[5] which are the detailed results of the Figure[3] We observe
that our method outperforms the baseline methods in most cases, indicating that it is applicable to
various types of dynamic shifts and environments.

Figure [4] summarizes the normalized scores across all environments under different shift levels
on MuJoco gravity and friction shift settings. In Figure [dal MOBODY consistently outperforms
baselines under gravity shifts, with especially large gains at the more challenging and larger shift
levels on 0.1 and 5.0, as MOBODY can explore more of the environment with the learned dynamics.
A similar trend is observed in Figure @ where MOBODY again outperforms all baselines, with
greater improvements in the larger shift (0.1 and 5.0) compared to the smaller ones (0.5 and 2.0).
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Table 4: Performance comparison on HalfCheetah, Ant, Walker2d, and Hopper environments with
kinematic and morphology shift. Our method performs best in 26 out of 32 total tasks and receives an
overall 25% improvement over baselines. We use M and H to represent the medium and hard levels
of the dynamics shift.

Env Type Level BOSA 1QL TD3-BC DARA MOPO MOBODY
mophethigh M 22834003 2049+£050 1949+050 1090 +043 1732+ 1.80 | 27.18 + 6.80
H 20.77+0.66 2169058 22194108 1035+£210 25334223  28.51+9.20
mophtose M 1.67+087 1874080 586 +021  291+£008 1065486 23.92+ 1224
HalfCheetah H 17090 £ 1571 27814314 2734125 2941+7.88 3278 +4.19 4045+ 1.26
Kin-footjnt M 3679 £092  34714+072 30194373 3348+034 32494402 31.88+3.70
H 1470 £092  31.68+235 14054296 31.19+4.08 | 3347£5.61 1851 +7.30
Kin-thighjnt M 1492 £001 41274316 41774266 15474062 3833868 = 59.17 £ 0.85
H 31724017  31.60+936 31.10+9.86 3146+231 3035+293  56.72 + 0.08
morph-halfiegs M 4994 +598 73654270 46.60+624 70.66+336 66324529 7925+ 0.61
H 5840 +£341 57512125 450742282 5846+445 3944 +857 = 63.76 + 3.27
morph-alliegs M 72024357 61124973 4718689 6483449 49194532 7524 +7.85
Ant H 1850 £4.33 1044 +051 14534374 4474618 1271+ 1.66 = 24.13 £ 0.10
Kinankleint M 7206 £4.63 7760335 447241596 75434203 7431+£192 7492+ 6.46
H 6378797 6295+788 662242698 61.06+492 6328+ 11.01 | 7697 %836
Kin-hipnt M 3852+£588 | 60.97 L 172 2685+:426 55734193 4891+ 1265 5475+4.58
H 5057489 59314292 3385+£559 58474342 52874299 | 59.61+3.11
mophitoso M 826+48 12354145 18934£936 1579133 22811378  38.67£2.05
H 161£012  230+£058 1544044 3324113 9924336 1196+ 5.41
morphleg M 4670 £839 411241358 22244995 3971+ 13.67 4433 +£6.66 57.57 £ 2.00
Walker H 14374334 16154370 49.07+£238 1313124 19624071 = 49.12 + 0.52
Kin-footint M 1799 £ 115 56.62+12.10 433142048 5581 +1.36 57924595  67.56 + 3.05
H 2576 1599 652161 26341324 963091 37.21£2052 57.93+0.37
Kin-thighjnt M 476342726 612841424 356441174 562841379 68.11+£360 69.48 & 4.22
H 48.66 £ 14.73 51.66+2.05 4388+11.54 63.76+£206 73524792 78.14 £ 2.50
M 1267 £0.00 3299+0.16 12.69+043 40.61 +1.64 1296+0.14 13.05+048
morph-foot H 10.13+£0.62 11784009 1415+430 1332+ 148 47.19+12.77 | 65.02 +11.98
mophitoso M 1588+ 1.18 13384005 13944075 13294019 1404+035 2023 + 1.29
Honoer H 11734033 7774373 11544081  4.15+005 11.83+£028 12.34 +0.20
PP Kinleaint M 36514151 42284008 1176460 44674058 4357080 = 54.89 & 0.26
n-legin H 36.13+£ 170  4502+4.08 18.87+146 6544 +£4.10 5038 +3.74  56.88 +3.68
Kin-footjnt M 1492 £001 1558011 17094004 1547062 31.33+1625 33.94 + 14.81
H 31724017  32414£0.16 3221£000 32994078 3321+£007 33.35 % 0.89

Total 964.95 1123.88 865.60 1101.65 1205.70 1515.10

Table 5: Performance comparison on Pen and Door tasks. Our method performs the best compared
with the baselines and receives an overall 10% improvement. We use M and H to represent the
medium and hard levels of the dynamics shift.

Env  Type Level BOSA 1QL TD3-BC DARA MOPO MOBODY
30.63+9.01 2434+1549 6.86+6.63  38.60 +3.44 37994746 37.67+454

kin-broken-jnt

Pen H 7184202 7744348 1314129 941+606 8144292 13.73+£6.32
shrinkf M 10.72£6.65 1375+£491 220+171 872+3.12 348085  16.48 £ 10.46
mOrph-shrini-Iinger ¢y 11.78 £ 657 3216+ 1.14  9.12+£9.03 22.17+£3.90 28.89+248 37.80 + 1.18
Kinbroken-ioint M 254242204 3743+£1276 -023+£001 20184529 27.90+7.92 = 39.26 &+ 3.72
Door J H 30.64 £ 2687  56.02+7.74 -0.124+002 5822+£991 57.454+9.58 6161 9.84
norohshrinkfinger M 4159+£595 6074 +12.83 -0.19+£001 5032+4.78 5202+ 1.74 | 63.67 & 9.52
P g [ 2697 £8.62  68.64 834 -020+£0.02 4422+7.19 67.06+1.96 62.88 +525

Total 184.93 300.82 18.75 251.84 282.93 333.10

Existing methods, DARA and BOSA, fail in large shift settings as the reward regularization methods
cannot account for the large shift, as they are mainly trained with source data with regularization,
thus usually receive high rewards in the source domain, but don’t really adapt to the target domain,
especially in large shifts, as the policy gets different rewards. Also, they lack the exploration of the
target domain.

C.4 ADDITIONAL ABLATION STUDY RESULTS

In this section, we present additional ablation studies results on Hopper as we mentioned in Section[4.3]
Same as Table |2} we evaluate the overall effectiveness of each component (Al and A2) and then
analyze specific design choices (A3 and A4). For dynamics learning, we assess the impact of the
cycle transition loss and representation learning. For policy learning, we examine the effectiveness of
the Q-weighted loss. We draw the same conclusion as Section[4.3]
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Figure 4: Performance of our MOBODY and baselines in different dynamics shift with various
shift levels {0.1,0.5,2.0,5.0}. The scores are summed over all the environments (HalfCheetah,
Ant, Walker2D, and Hopper) in the target domain. We directly compare the algorithms in the same
dynamics shift levels. The higher scores indicate better performance. We can observe a larger
improvement for larger shift cases (0.1 and 5.0).

Table 6: Performance of ablation study of our proposed MOBODY method. The experiments are
conducted on the Hopper environments under the medium-level with dynamics shifts in gravity and
friction in {0.1, 0.5, 2.0, 5.0} shift levels. The source domains are the original environments and the
target domains are the environments with dynamics shifts. We report the normalized scores in the
target domain with the mean and standard deviation across three random seeds. The higher scores
indicate better performance.

Env Level Algorithm Ablation Loss Ablation MOBODY
Al A2 A3 A4
0.1 1453+281 28.07+4.12 33.65+£3.21 11.54+1.12 36.25+1.50
Hopper 05 28.83+3.32 25.70+1.86 23.52+3.33 20.11+1.26 33.57+6.71
Gravity 2.0 10.64£1.92 1232+£5.21 1090+1.29 16.40+4.12 23.79+2.09
5.0 8.12+£0.69 823+£1.92 8.79£0.94 8.89+1.01 8.06 £0.03
0.1 26.09 £ 4.75 35.14£797 24424286 20.07+10.32 51.19+2.56
Hopper 0.5 2242+3.32 31.31+£5.08 29.26+6.02 27.07+3.73 41.344+0.49
Friction 2.0 10.64+£0.32 9.414+1.03 10.31+£0.12 847+1.13 11.00+0.14
5.0 8.43 +1.32 7.524+0.29 8.14 +0.91 7.55 4+ 1.02 8.07 £ 0.04

Hyperparameter Analysis. We conducted two hyperparameter analyses: the BC loss weight and
uncertainty penalty of the model-based method in the policy learning part, as detailed in Table|/} We
can see that these parameters are important in the performance of BC loss and need to be tuned across
different tasks and environments. It is interesting to note that even the suboptimal parameters (0.05)
in Table 7] outperform the baseline algorithms.

Rule of thumb hyperparameters. We notice that there is no universal set of hyperparameters that
works well across all tasks with different environments, shift types, and levels. Even without the
dynamics shift, model-based RL methods typically require different hyperparameters for different
environments. But empirically, we could have a set of hyperparameters that generally receives a
relatively good performance for most tasks, i.e., weight of BC = 0.1 and MOPO penalty = 5. From
there, we primarily tune the BC loss weight based on the convergence behavior of the policy. In most
cases, using a MOPO penalty of 5 and a BC loss weight selected from the range 0.05, 0.1, 1, 2 yields
strong performance. Overall, the number of hyperparameters is modest compared to those commonly
required in offline model-based RL methods.

Computational Resources We run all experiments on a single GPU (NVIDIA RTX A5000, 24,564
MiB) paired with 8 CPUs (AMD Ryzen Threadripper 3960X, 24-Core). Each experiment requires
approximately 12 GB of RAM and 20 GB of available disk space for data storage.

Computational Cost We provide an estimated running time of MOPO, DARA, BOSA and our
method in Appendix [C.4] The running time of MOBODY requires approximately 25% more time to
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Table 7: Hyperparameters of the policy learning. Our method is not very sensitive to the hyperparam-

eters.
BC-Weight /
Task Uncertainty Penalty ! > 10
0.05 76.96 £1.99 55.67 £21.18 51.43 £19.37
Walker2d-Friction-0.5 0.1 75.64 £11.05 7049 £2.81  62.54 +£5.49
1 75.63 £2.57 8291 +£443 62.50+6.83
0.05 67.56+3.05 56.88+1.47 65.14£2.57
Walker2d-kin-footjnt-medium 0.1 62.19+£5.27 64.17+£3.62 66.30£0.01
1 59.33+5.15 62.69+5.00 62.56+1.09
0.05 40.96+1.58 57.75+0.34 57.594+0.47
Walker2d-kin-footjnt-hard 0.1 57.93+0.37 56.27+1.12 43.13+15.51
1 34.31£21.12 53.92+3.74 43.74+14.06
0.05 69.48+4.22 60.40+4.27 66.8516.90
Walker2d-kin-thighjnt-medium 0.1 65.13+3.72 65.244+2.10 64.19+1.22
1 64.17£1.83 62.10£5.88 70.39£0.28
0.05 78.14+2.50 59.21+4.79 70.20£2.71
Walker2d-kin-thighjnt-hard 0.1 76.50+1.49 61.961+6.71 55.954+16.29
1 69.45£1.78 66.92+0.04 71.38+£5.42

run 1 million steps compared to model-free DARA and is faster than the BOSA. The extra running
time is due to the dynamic learning and generation of rollouts. On the other hand, MOPO and
MOBODY have similar running times. This demonstrates that we have a similar computational cost
and running time compared to the existing model-based method, as the additional loss calculation
doesn’t significantly increase the computation time.

Table 8: Running time comparison on A5000, AMD Ryzen Threadripper 3960X 24-Core Processor. .

Walker2d-Gravity-0.5 HalfCheetah-Gravity-0.5

BOSA ~3 hours ~3.5 hours
DARA ~2 hours ~2.5 hours
MOPO ~2.5 hours ~3 hours
MOBODY ~2.5 hours ~3 hours

C.5 ENVIRONMENT SETTING

Gravity Shift. Following the ODRL benchmark (Lyu et al., 2024b), we modify the gravity of the
environment by editing the gravity attribute. For example, the gravity of the HalfCheetah in the target
is modified to 0.5 times the gravity in the source domain with the following code.

# gravity
<option gravity="0 0 -4.905" timestep="0.01"/>

Friction Shift The friction shift is generated by modifying the friction attribute in the geom elements.
The frictional components are adjusted to {0.1,0.5, 2.0, 5.0} times the frictional components in the
source domain, respectively.

Kinematic Shift The kinematics shift is simulated through broken joints by limiting the rotation
ranges of some hand joints. We consider the broken ankle joint, hip joint, foot joint, etc, for Mujoco
and Adroit environments.

Morphology Shift The morphology shift is achieved by modifying the size of specific limbs or torsos
of the simulated robot in Mujoco and shrink the finger size in the manipulation task, without altering
the state space and action space.
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D LIMITATION

MOBODY relies on the assumption that the source and target domains share a common state
representation ¢ g and transition ¢ that map the unified latent state action representation to the next
state. In future work, we plan to explore how to effectively learn a dynamics model for the target
domain when this assumption does not hold.

USAGE OF LLM

All ideas and research are conducted by the author, and the paper itself is written by the author. The
LLM is used as a tool for polishing the written content of the paper and checking the grammar erorrs.
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Table 9: Hyperparameter of the MOBODY and baselines.

Hyperparameter Value

Shared
Actor network (256, 256)
Critic network (256, 256)
Learning rate 3x 1074
Optimizer Adam
Discount factor 0.99
Replay buffer size 108
Nonlinearity ReLU
Target update rate 5x 1073
Source domain Batch size 128
Target domain Batch size 128

MOBODY
Latent dimensions 16
State encoder (256, 256)
State action encoder (32)
Transition (256, 256)
Representation penalty Aep 1
Rollout length 1,20r3
MOPO-Style Reward Penalty 3 1,50r 10
Q-weighted behavior cloning 0.05,0.10r1
Classifier Network (256, 256)
Reward penalty coefficient A 0.1

DARA
Temperature coefficient 0.2
Maximum log std 2
Minimum log std —20
Classifier Network (256, 256)
Reward penalty coefficient A 0.1

BOSA
Temperature coefficient 0.2
Maximum log std 2
Minimum log std —20
Policy regularization coefficient Apolicy 0.1
Transition coefficient Agansition 0.1
Threshold parameter €, €’ log(0.01)
Value weight w 0.1

CVAE ensemble size

1 for the behavior policy, 5 for the dynamics model

IQL

Temperature coefficient 0.2

Maximum log std 2

Minimum log std —20

Inverse temperature parameter 3.0

Expectile parameter 7 0.7
TD3_BC

Normalization coefficient v 2.5

BC regularization loss 0.05,0.10r1
MOPO

Transition (256,256,256)

Maximum log std 2

Minimum log std —20

Reward penalty 7 1,50r 10

Rollout Length 1,20r3
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