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Abstract

Table-centric AI systems, such as NL2SQL agents, RAG-over-tables, and ETL plan-
ners, turn model outputs into real database effects. Yet common defenses (filters,
sandboxes, post-hoc audits) lack planner-to-DB, query-level ex-ante guarantees.
We present EAM-SQL, a lightweight, HMAC (Hash-based Message Authentication
Code)-only authorization layer that attaches a cryptographically verifiable “safety
envelope” to every statement. EAM-SQL introduces (i) SQL-aware caveats over op-
erations, tables/columns, joins, row predicates, and rate/time; (ii) normalized SQL
content binding via hashes of a canonical AST (WHERE/PROJECTION/FROM
graph), preventing prompt-level rewrites from smuggling different queries; and
(iii) transaction-sequence integrity via a chained transaction hash that enforces
order and blocks replay or splicing. A sidecar proxy performs mandatory parame-
terization, canonicalization with content-hash verification, caveat checking, and
tamper-evident auditing, all at microsecond scale. On a SQL attack harness (800
attempts spanning injection, query splicing, unauthorized access, join escalation,
broad exfiltration, replay, and tag manipulation), EAM-SQL achieved 0% unau-
thorized execution with 6–50 s detection and <2 ms P99.9 verification overhead.
By cryptographically binding statement content, scope, and order - rather than
relying on mutable roles or heuristic filters - EAM-SQL provides verifiable safety
for NL interfaces to databases, RAG-over-relational retrieval, and bounded ETL in
enterprise and regulated settings.

1 Introduction

Problem. Table-centric AI, such as NL2SQL agents, RAG-over-tables, and ETL planners, now issues
database statements with real effects. Yet prevailing defenses (filters, sandboxes, post-hoc audits)
do not provide planner→DB, per-statement ex-ante guarantees. In particular, they do not (i) bind
a statement’s canonical content and scope to policy, nor (ii) enforce order across multi-statement
workflows. As a result, systems remain exposed to prompt/data injection, query splicing, replay, and
reordering even in the presence of RBAC/RLS and parameterization [10, 5]. The stakes are acute in
analytics and regulated domains where narrow, verifiable access is mandatory.

Why this is hard in practice. In deployed NL2SQL and RAG-over-tables systems, a single planner
mistake can have immediate, real-world consequences. For instance, in a customer-analytics workflow,
an intended query such as “SELECT revenue FROM sales WHERE region = ?” can be silently
transformed into a broad JOIN that leaks customer-level data, or into a predicate-free scan that
violates regulatory access bounds. These failures occur despite RBAC/RLS and parameterization
because nothing constrains the structure or scope of the executed SQL itself. As AI-driven data
access becomes common in finance, healthcare, and internal analytics platforms, the lack of verifiable,
per-statement guarantees leaves organizations exposed to subtle but high-impact errors.
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Our approach. We introduce EAM-SQL, a lightweight authorization layer that attaches
a cryptographically verifiable safety envelope to each SQL statement. EAM-SQL special-
izes macaroons [3] to SQL by (a) expressing conjunctive, append-only caveats over opera-
tions/tables/columns/joins/predicates/rate/time, (b) binding canonical structure via hashes of a nor-
malized AST (including WHERE, projection, and FROM-graph), and (c) enforcing sequence integrity
with a chained transaction hash. Verification is HMAC-only [7, 2], so checks run in microseconds
and compose cleanly with existing DB controls.

Why this matters. Rather than trusting planners and observing behavior after the fact, EAM-SQL
makes execution contingent on cryptographic predicates that must verify before the DB is touched.
This yields verifiable least-privilege at the planner–executor boundary for NL2SQL and RAG-over-
relational stores—turning table QA/analytics workflows from best-effort into provably bounded
execution, without heavyweight policy engines or public-key costs.

Contributions.

• Construction. A practical, HMAC-only scheme that binds SQL content (canonical AST),
scope (SQL-aware caveats), and order (hash-chained sequencing) to each statement, with
mandatory parameterization.

• System. A sidecar proxy that canonicalizes SQL, verifies caveats, enforces se-
quence/replay/rate limits, and emits tamper-evident, re-verifiable audit records; policies are
authored as human-readable YAML and compiled to caveats.1

• Evidence. A SQL-focused attack harness shows 0% unauthorized execution, microsec-
ond detection, and <2ms P99.9 verification overhead on commodity hardware, covering
injection, splicing, unauthorized access, join escalation, replay, and tag manipulation.

2 Related Work

Capability security and macaroons. Capability systems address confused-deputy failures by
binding authority to tokens [6]. Macaroons refine capabilities with attenuating caveats realized
as an HMAC chain, enabling decentralized, append-only restriction with low verification cost [3].
Compared to signature-based schemes, HMAC verification offers microsecond-scale checks while
retaining unforgeability under standard assumptions [7, 2]. Prior uses emphasize delegation in general
agents; they do not specialize caveat vocabularies to SQL structure nor bind per-statement content
and sequence. EAM-SQL contributes precisely that specialization for table-centric pipelines.

Planner–executor LLM pipelines. Contemporary NL2SQL, table-QA/RAG over relational stores,
and agentic data workflows instantiate a planner→executor loop where model outputs are executed
as SQL over real schemas [15, 12, 9]. Multi-agent orchestration and tool-augmented reasoning
(e.g., AutoGen, Tree-of-Thoughts, Reflexion) improve planning by iteration or debate, but execution
control typically relies on sandboxing, logging, or heuristic filters [13, 14, 11]. These are valuable
yet lack cryptographic, per-statement constraints over content/scope/order. EAM-SQL treats the
planner–executor handoff as a security boundary and requires verifiable envelopes for each action
before execution.

Prompt injection and confused deputy. Prompt- and data-injection attacks can steer agents and
tools toward unintended actions [10, 5]. Parameterization mitigates raw literal injection but does not
bind structure (e.g., FROM-graph, WHERE template) nor workflow order. EAM-SQL closes this gap
by hashing canonical structure and chaining transactions, so injected rewrites or reordered steps fail
verification by construction.

DB-native controls and auditing. RBAC/ABAC and row-level security remain necessary but are
coarse or mutable and cannot attest that a specific statement’s canonical structure was in scope,
nor enforce cross-statement order or freshness. Tamper-evident logging (e.g., transparency trees)
improves post-hoc accountability [4, 8], but does not prevent execution. EAM-SQL is preventative
and audit-aligned: it refuses non-conforming statements ex-ante and produces re-verifiable logs,
supporting traceability and oversight requirements (e.g., EU AI Act) [1].

1All code is available at https://github.com/SusannaDiV/eam-sql.
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3 EAM-SQL: Cryptographic Execution Authorization for Table-Centric AI
Systems

We instantiate Execution Authorization Macaroons (EAMs) for table-centric AI systems—including
NL2SQL agents, RAG-over-tables, and ETL pipelines—by introducing EAM-SQL, a lightweight,
HMAC-only capability system that attaches a verifiable “safety envelope” to every database statement.
An EAM-SQL envelope combines (i) SQL-aware caveats over operation class, schema/table/column
access, row-predicates, aggregates/joins, time window, and rate; (ii) normalized SQL content binding
to prevent trivial prompt rewrites from smuggling different queries; (iii) transaction sequence integrity
with prev_tx_hash across multi-statement workflows; (iv) microsecond-scale verification before
forwarding to the database; and (v) tamper-evident audit logs that attribute each query to a bounded
capability.

Design highlights. EAM-SQL is SQLfirst: caveats speak operations/tables/columns/predicates;
queries are canonicalized to an AST and structurehashed (sql_content_hash, with optional
where_predicate_hash/from_graph_hash/projection_hash); mandatory parameterization
eliminates literal injection; and hashchained sequencing with prev_tx_hash enforces perplan
order and freshness (Figure 1). The safety envelope uses HMACSHA256 only (no public keys),
yielding µsscale verification and tamperevident, MACed audit records. Deployment is a side-
car proxy with optional distributed plan sharding and health telemetry. Details: canonicaliza-
tion/sequence/enforcement in App. A.3, audit predicates in App. C.1, deployment/ops in App. A.7,
caveat glossary and policy→crypto mapping in App. A.4–A.5.

Scenario Attempts Unauthorized Exec.

Attack harness (8 classes) ≥800 0%
Ablations (9 variants) 9×100 Increases; restored to 0% when re-enabled
Distributed (2–N shards) 200 0%
Failure handling (crash/replay/clock) 120 0%
Perf (steady load) – P50<1 ms; P99.9<5 ms

Table 1: Experiment coverage at a glance.

SQL-aware caveats. Capabilities constrain the SQL surface ex ante via caveats over operation
(SELECT/UPDATE/...), tables/columns, explicit join constraints, row limits, rate limits, and expiry.
Optional caveats bind canonicalized WHERE predicates to prevent silent broadening of queries. We
also include explicit shape flags (e.g., UNION/CTE/subquery/multi-statement/STAR/comments) to
default-deny risky constructs. (See the full vocabulary and examples in App. A.4–A.5.)

Normalized SQL content binding & mandatory parameterization. We parse SQL to an AST,
emit a canonical form, and bind its hash as sql_content_hash. Values must be parameter place-
holders (no raw literals); only structure is hashed. Canonicalization defeats column-order tricks,
whitespace/comments, implicit joins, and homoglyphs (procedure in App. A.3). Governance profiles
in YAML compile to caveats; representative analytics/ETL profiles appear in App. A.5.

Per-query tokens and transaction sequencing. Each statement attenuates the plan-level macaroon
with a fresh nonce, the sql_content_hash, and a CAS-protected prev_tx_hash; the verifier
maintains a rolling transaction hash and rejects reordering or reuse. (See App. A.3 for the sequencing
rule and CAS semantics.)

Gateway enforcement. A sidecar proxy (or in-process library) enforces, in order: parameterization
and AST canonicalization; caveat checks over operation/tables/columns/joins and shape flags; content-
hash recomputation; prev_tx_hash CAS and nonce replay checks; then DB execution and an
append-only audit record. (Enforcement checklist in App. A.3; verification predicates and audit
format in App. C.1.)

Audit trail. Every allow/deny decision yields a MACed, tamper-evident record suitable for enter-
prise governance and incident response; schema and checks are summarized in App. C.1.
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4 Security evaluation on tabular threats

Table 2 evaluates EAM-SQL on a SQL-aware attack suite spanning prompt injection (NL→SQL),
query splicing (multi-statement), unauthorized table/column access, join escalation, broad exfiltration,
replay, and tag manipulation; representative SQL patterns are listed in Table 10. We compare
EAM-SQL against two natural baselines, per-statement MACs and per-statement signatures, which
allow 36–100% and 73–100% unauthorized executions, respectively (see Table 6). Thus the
benchmark is not trivial: dropping a single caveat (e.g., sql_content_hash, prev_tx_hash, or
where_predicate_hash) immediately reintroduces 36–100% failure rates (Table 7). EAM-SQL
achieves 0% unauthorized execution across all attack classes because the combined caveats jointly
eliminate structural, scope, and ordering attack surfaces. Detection times (0.09–0.62 ms) correspond
to the microsecond-scale gateway checks and show that enforcement remains negligible compared to
normal OLTP/analytics latency. Methodology and harness details appear in App. A.8.

Table 2: EAM-SQL adversarial outcomes (lower is better). Baselines (MAC-only and signature-only)
permit 36–100% unauthorized executions depending on attack class; see Table 6 for details.

Attack Class Attempts Successes Success Rate Avg Detect (ms)

Prompt injection (NL→SQL) 100 0 0.00% 0.24
Query splicing (multi-stmt) 100 0 0.00% 0.09
Unauthorized table access 100 0 0.00% 0.44
Unauthorized column access 100 0 0.00% 0.62
Join escalation 100 0 0.00% 0.59
Data exfiltration (broad read) 100 0 0.00% 0.60
Replay 100 0 0.00% 0.38
HMAC manipulation 100 0 0.00% 0.32

Overall 800 0 0.0% –

Performance. Verification runs in the µs range; added pre-DB latency is sub-millisecond me-
dian and stays under a few milliseconds at P99.9 in our profiles (see App. A.6). Because typical
OLTP/analytics latency dwarfs this overhead, the marginal cost of EAM–SQL is negligible for
table-centric QA/analytics loops.

4.1 Comparison to alternatives

EAM-SQL RBAC/ABAC Query Firewalls Policy Engines

Ex-ante guarantees cryptographic ×× mutable pattern post-hoc
SQL awareness native ×× coarse regex indirect
Audit trail tamper-evident mutable ×× limited mutable
Latency footprint ≪2 ms comparable comparable ×× often high
Deployment surface sidecar wide inline ×× heavy

Security properties. EAM–SQL provides (i) origin integrity via an HMAC-based caveat chain, (ii)
anti-replay via per-statement nonces, (iii) monotonic attenuation of authority, (iv) sequence integrity
via a hash-chained transaction history, and (v) SQL-scoped capability bounding using canonical AST
hashing. These properties jointly explain the 0% unauthorized-execution rate across all attack classes
in Table 2. Formal definitions and proof sketches appear in Appendix B.

Use cases. EAM-SQL secures (i) NL2SQL analytics under tenant bounds; (ii) RAG over structured
stores; and (iii) ETL pipelines with bounded updates. Execution is conditioned on a token that binds
query structure and scope, with sequence, replay, and rate checks enforced at machine speed. Across
the NL2SQL/RAG-style intents in Table 11 and the relational schema in Table 8, EAM–SQL prevents
unauthorized execution ex ante by binding canonical structure, scope (tables/columns/predicates), and
sequence to each query. In practice, this means benign analytics flows pass while injected rewrites,
broadened WHEREs, and reorders are blocked before the DB is touched.
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SQL-focused limitations EAM-SQL prevents unauthorized execution by construction but
does not prove semantic correctness of planner-generated SQL. For sensitive changes, use
requires_human_sig, DB-native row-level security, and monitoring. Time-based caveats require a
trusted clock; keys must be rotated/revoked per best practices. Timing/covert-channel exfiltration is
out of scope; rate limits reduce bandwidth but cannot eliminate such channels. Extended notes in
App. C.3.

5 Conclusion

EAM–SQL shifts table–centric AI from heuristic, best-effort defenses to cryptographically enforced
execution. By attaching a verifiable safety envelope to each statement—binding canonical content,
scope, and sequence—and verifying it at microsecond scale, EAM–SQL delivers ex-ante guarantees
against injection, splicing, replay, and reordering while producing tamper-evident audits. Our results
show zero unauthorized executions across an extensive SQL attack suite with negligible latency
overhead, making the design practical for fast planner→DB loops in enterprise and regulated settings.
Its intentionally minimal, HMAC-only construction integrates cleanly with existing RBAC/RLS
and deployment models (sidecar or in-process). Promising directions for future work include:
standardized SQL caveat vocabularies and policy templates to ease adoption and audit; deeper
DB-native integrations (e.g., planner hooks and logical/physical plan hashing) and coverage for
non-relational tabular stores (e.g., DuckDB, BigQuery); extending envelopes beyond SQL to tabular
adjacencies such as files, object stores, and CDC/queues for end-to-end agent workflows; and
operational studies on usability, policy drift, human-in-the-loop overrides, and incident response in
long-running deployments.
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A Protocol Description

Algorithm 1: Execution Authorization Macaroons for SQL (EAM-SQL)
Assumptions: HMAC-SHA-256 is a PRF; SHA-256 is collision-resistant.
Canonical encoding enc(·) is deterministic (e.g., CBOR/JSON with sorted keys).
Executor maintains per-plan state: trusted clock; replay cacheR keyed by (ctx, plid, pid, nonce);
per-scope rate counters; and prev_tx_hash initialized to p0 = 0256.
Required per-query caveats: sql_content_hash, prev_tx_hash, nonce. Caveat list C is an ordered
list; iteration is in append order.
Parameters: Context ctx; planner ID plid; plan ID pid. Caveats may include: schema, tables, columns,

where_predicate_hash, allow_aggregates, max_rows, disallow_join_with,
tenant_id, expires/not_before, max_rate, sql_content_hash, prev_tx_hash,
nonce, optional requires_human_sig.

1 Function INITPLANSTATE(ctx, plid, pid):
2 state.prev_tx_hash← 0256; state.counters← zeros
3 return state

4 Function KEYSETUP(P,E):
5 generate X25519 keypairs for P and E;
6 z ← X25519(skP , pkE) // ECDH
7 K ← HKDF(z, info = ctx ∥ plid ∥ pid)
8 return K

9 Function ROOTTAG(K, ctx, plid, pid, salt):
10 return t0 ← HMACK(ctx ∥ plid ∥ pid ∥ salt)
11 Function MINTROOT(K, ctx, plid, pid, C0):
12 salt← fresh random
13 t← ROOTTAG(K, ctx, plid, pid, salt)
14 foreach c ∈ C0 do
15 t← HMACt(enc(c))

16 Tok ← (ver = v1, plid, pid, salt, C = C0, tag = t)
17 return Tok

18 Function ATTENUATE(Tok,Cadd):
19 t← tag(Tok); C ← C(Tok)
20 foreach c ∈ Cadd do
21 t← HMACt(enc(c));
22 C.append(c)

23 update Tok with C and t;
24 return Tok

25 Function SQLCONTENTHASH(q):
26 return h← SHA-256(canonicalize(q))

27 Function DERIVEPERQUERY(Toki−1, qi, state):
28 hi ← SQLCONTENTHASH(qi); ν ← fresh random nonce
29 Cadd ← [sql_content_hash = hi, prev_tx_hash = state.prev_tx_hash, nonce =

ν, issued_at = now]
30 Toki ← ATTENUATE(Toki−1, Cadd)
31 pi ← SHA-256(state.prev_tx_hash ∥ hi)
32 return (Toki, pi)
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Algorithm 2: SQL Caveat Verification Routine (SQLCAVEATSHOLD)
1 Function SQLCAVEATSHOLD(Tok, q, state):
2 C ← C(Tok)

// –- Temporal and rate caveats –-
3 if (∃ expires ∈ C and now > C[expires]) ∨ (∃ not_before ∈ C and now < C[not_before])

∨ (∃ max_rate ∈ C and ¬WITHINRATE(C[max_rate], state.counters)) then
4 return false

// –- Structural access caveats –-
5 if (∃ schema ∈ C and ¬ INSCHEMA(q, C[schema])) ∨ (∃ tables ∈ C and

¬ INTABLES(q, C[tables])) ∨ (∃ columns ∈ C and ¬ INCOLUMNS(q, C[columns])) ∨ (∃
disallow_join_with ∈ C and ¬NODISALLOWEDJOINS(q, C[disallow_join_with])) then

6 return false
// –- Predicate and aggregation caveats –-

7 if (∃ where_predicate_hash ∈ C and ¬WHEREMATCHES(q, C[where_predicate_hash])) ∨
(∃ allow_aggregates ∈ C and ¬ALLOWAGGREGATES(q, C[allow_aggregates])) then

8 return false
// –- Hash binding and replay caveats –-

9 if (sql_content_hash /∈ C or C[sql_content_hash] ̸= SQLCONTENTHASH(q)) ∨
(prev_tx_hash /∈ C or C[prev_tx_hash] ̸= state.prev_tx_hash) ∨ (nonce /∈ C or
(ctx, plid(Tok), pid(Tok), C[nonce]) ∈ R) then

10 return false
// –- Optional human verification –-

11 if ∃ requires_human_sig ∈ C and ¬VERIFYHUMANSIG(Tok) then
12 return false
13 return true

Algorithm 3: EAM-SQL VERIFY & EXECUTE

1 Function VERIFY(K, ctx, Tok, q, state):
2 t← ROOTTAG(K, ctx, plid(Tok), pid(Tok), salt(Tok))
3 foreach c ∈ C(Tok) do
4 t← HMACt(enc(c))

5 if t ̸= tag(Tok) then
6 return false

// Reject if caveat stripping/reordering
7 if ¬ SQLCAVEATSHOLD(Tok, q, state) then
8 return false

// SQL-specific checks
9 return true

10 Function EXECUTESQL(K, ctx, Toki, qi, state):
11 if ¬VERIFY(K, ctx, Toki, qi, state) then
12 AUDIT(Toki, qi,decision=deny); returnDENY
13 R ← R∪ {(ctx, plid(Toki), pid(Toki), C(Toki)[nonce])}
14 BUMPRATECOUNTERS(Toki, state.counters) pi ← SHA-256(state.prev_tx_hash ∥

SQLCONTENTHASH(qi))
15 state.prev_tx_hash← pi
16 AUDIT(Toki, qi,decision=allow) return(ALLOW,pi)

A.1 Why not just per-action MACs?

A natural baseline is to derive a shared session key and authenticate each SQL query using a per-
query MAC, e.g., ti = HMACK(qi) (as seen in Table 3). While this ensures origin integrity,
it has three limitations: (i) no binding to SQL scope, timing, or risk constraints; (ii) no replay
prevention without extra mechanisms such as nonces or counters; and (iii) no natural support for
delegation or staged approval. Public-key signatures (e.g., Ed25519) ensure origin integrity without a
shared secret, but they add millisecond-scale verification cost and still lack native support for replay
prevention or append-only caveats, requiring external policy engines to provide these features. In
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contrast, Execution Authorization Macaroons for SQL (EAM-SQL) encode explicit SQL caveats
(e.g., table/column restrictions, WHERE clause binding, transaction sequence integrity, aggregate
permissions) directly into the cryptographic token via chained HMACs. This ensures each SQL query
carries its own verifiable safety envelope, enabling replay resistance, staged approval, and audit-ready
logs without extra infrastructure.

Table 3: Comparison of SQL enforcement mechanisms

Mechanism Policy Expressiveness Verification Cost Replay / Delegation Support

Plain MACs None (integrity only) µs Manual, ad-hoc
Signatures External policy binding ms (public key ops) Manual, ad-hoc
EAM-SQL (ours) Built-in SQL caveats µs (HMAC chain) Automatic, append-only

A.2 NL2SQL model benchmark.

While our main evaluation uses a simulated SQL attack harness rather than a live NL2SQL or RAG
deployment, we additionally integrated EAM–SQL with an off-the-shelf text-to-SQL model (T5-base
fine-tuned on WikiSQL) using the schema from Table 8. On 300 benign and 100 adversarial prompts,
EAM–SQL again achieved 0% unauthorized execution and verification latencies in the same range
as our main results, suggesting that the simulated harness is representative of a realistic NL2SQL
pipeline.

A.3 Engineering Extensions for Production

Beyond the core protocol, our implementation includes engineering features that make EAM-SQL
robust in production deployments.

Gateway hardening (enforcement details). The proxy performs additional pre-DB checks at
microsecond scale:

• Mandatory parameterization: deny raw string/number literals; only placeholders are
allowed ($1, ?, :name).

• Shape validation: default-deny UNION, CTEs, subqueries, multi-statement, wildcard *, and
comments unless explicitly enabled by caveats.

• Content binding: recompute sql_content_hash from canonical AST (with Unicode
NFKC identifier normalization) and compare to the caveat.

• Sequence & replay: compare-and-set for prev_tx_hash; replay cache keyed by nonce
with TTL.

• Scope checks: allow-lists for operation/table/column; optional where_predicate_hash,
from_graph_hash, and projection_hash.

Canonicalization and content binding. The gateway parses SQL to an AST, re-emits a canonical
string, and hashes structure only:

sql_content_hash = H(canonical SQL)
where_predicate_hash = H(canonical WHERE AST)
from_graph_hash = H(sorted FROM+JOIN graph)
projection_hash = H(projection aggregates {DISTINCT})

Identifier normalization (Unicode NFKC) prevents homoglyph tricks. Canonicalization defeats
column reordering, whitespace/comments, and implicit join rewrites.

Sequencing and freshness. Each perquery token carries a fresh nonce and the previous transaction
hash:

tx_hash_i = H(tx_hash_{i-1} || sql_content_hash_i)
prev_tx_hash = tx_hash_{i-1} # presented by the caller, CAS-checked
nonce = 96-bit random; enforced via atomic replay cache (e.g., SETNX+TTL)
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Both reordering and replay fail by construction.

Distributed coordination (multi-planner, plan sharding). The system supports parallel execution
with cryptographic ordering and cross-shard joins:

• Plan sharding: independent transaction chains per shard (tx_hash(s)i ), aggregated under
one plan context.

• Multi-planner coordination: multiple planners can contribute per-shard queries; optional
safety-filter co-signer can append stricter caveats for high-risk ops.

• Cross-shard joins: joins proceed only if each shard’s token verifies and a join authorization
proof links the inputs to the consumer query’s sql_content_hash.

• Audit aggregation: shard-local logs are merged into a plan-level, append-only trail.

Failure handling and recovery. We add resilience without weakening guarantees:

• Write-Ahead Log (WAL): every allow/deny decision is durably recorded before execution;
on restart, the gateway reconstructs prev_tx_hash, rate counters, and the replay cache.

• Clock skew tolerance: NTP-synchronized clocks with a small grace window for
expires/not_before; skew status is exposed via health endpoints.

• Background maintenance: periodic eviction of expired nonces, rotation of WAL segments,
and validation of time sources.

Health & monitoring. We expose real-time observability primitives for operations and compliance:

{
"clock_skew": {"ntp_offset": 0.0, "policy": "grace_window"},
"sql_replay_cache": {"size": 0, "max_size": 100000},
"sql_wal": {"entries": 1042, "sequence_counter": 1042},
"sql_recovery": {"pending_operations": 0},
"rates": {"verify_qps": 1120, "deny_qps": 7}

}

A.4 Implementation Caveat Vocabulary (SQL)

Our SQL-aware caveats (normalized names) cover structure, scope, and pacing:

sql_content_hash # canonical AST hash (structure only, no values)
prev_tx_hash # chain binding for transaction order
where_predicate_hash # canonical WHERE AST hash (optional but recommended)
operation # SELECT / UPDATE / INSERT / DELETE
tables # allow-list of table names
columns # allow-list of column names
allow_aggregates # list or boolean
max_rows # upper bound on result size
max_rate # e.g., "120/min"
expires # absolute expiry
-- shape flags (default false unless explicitly set)
allow_union, allow_cte, allow_subquery, allow_multi_stmt, allow_star, allow_comments

A.5 Policy-to-Crypto Mapping

Human-readable policies (YAML) compile to caveats; below are compact examples.

Analytics read-only.

analytics_readonly_v1:
operation: "SELECT"
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tables: ["users", "orders", "products"]
columns: ["id", "name", "email", "amount", "tenant_id", "created_at"]
require_where: true
where_predicate_hash: "H(tenant_id = :tenant)"
allow_aggregates: [COUNT, SUM, AVG, MIN, MAX]
allow_union: false
allow_cte: false
allow_subqueries: false
disallow_functions: [COPY, pg_read_file]
disallow_settings: [search_path, role]
max_rows: 10000
max_rate: "120/min"
disallow_multi_statement: true

ETL bounded update.

etl_safe_update_v1:
operation: "UPDATE"
tables: ["inventory.stock"]
columns: ["qty"]
require_where: true
where_predicate_hash: "H(warehouse_id = :w AND sku = :s)"
max_rows: 500
requires_human_sig: true
disallow_multi_statement: true
max_rate: "30/min"

A.6 System-Level Performance

In a production-like deployment (sidecar proxy on commodity servers), verification overhead remains
small relative to DB latency:

• P50 < 1 ms, P95 < 2 ms, P99.9 < 5 ms added latency (verification path).
• Throughput > 1000 verified queries/s per node (steady-state).
• Attack-path detection executes in 6–50µs at the gateway (pre-DB), enabling real-time

blocking.

These system-level measurements complement the attack-suite timings reported in Sec. 4.

A.7 Deployment and Configuration

EAM-SQL ships as a sidecar/proxy alongside NL2SQL/RAG/ETL components; intercepts SQL,
enforces EAM, forwards to DB. No DB schema changes required; compatible with RBAC/RLS.

# Proxy (selected fields)
db_host: localhost
db_port: 5432
db_name: production_db
db_user: eam_user
audit_log_path: /var/log/eam_audit.log
verify_timeout_ms: 10
max_connections: 1000

# Clock skew policy
clock_skew:

policy: GRACE_WINDOW
grace_window_seconds: 300
ntp_servers: ["pool.ntp.org", "time.google.com"]
max_drift_seconds: 30
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A.8 Experimental Setup

We exercised the implementation with three complementary test suites:

• Attack harness: token tampering (caveat removal/reorder), replay, SQL flood, and unautho-
rized scope; the gateway rejects manipulated tokens before DB contact.

• Ablations: selectively disable sql_content_hash, prev_tx_hash, or
where_predicate_hash to confirm each component’s necessity; re-enabling restores full
defense-in-depth.

• Distributed scenarios: multi-planner plans with two shards, cross-shard joins, safety-filter
co-signing, crash/restart with WAL-based state reconstruction, and audit aggregation.

Concrete attack recipes and proxy checks appear in App. 6 (Table 6); ablation protocols and measured
success rates are summarized in App. 7 (Table 7). The schema, key relationships, and applicable
access policies are summarized in Table 8, with dataset sizes shown in Table 9. Benign-intent prompts
used to synthesize authorized NL→SQL queries follow the templates in Table 11. Testbed and
methodology. All experiments ran on a commodity x86 server (Intel Xeon E5-2686 v4, 16 cores @
2.3GHz, 64GB RAM) with PostgreSQL 15.4, Ubuntu 22.04 LTS. Performance metrics are averaged
over 5 independent runs with 95% confidence intervals; attack success rates represent exact counts
over 100 trials per attack class. The EAM-SQL proxy operates as a sidecar with 2GB heap allocation,
intercepting SQL traffic before database execution.

Threat classes. Prompt injection (NL→SQL), query splicing (multistatement), unauthorized ta-
ble/column access, join escalation, broad exfiltration, replay, token/tag manipulation, and flood/rate
abuse.

Harness. For each class (100 trials), the harness attempts to (i) alter SQL structure while preserving
intent (canonicalization catches), (ii) append second statements (multistmt denial), (iii) touch outofs-
cope tables/columns, (iv) broaden WHERE, (v) reorder statements or reuse tokens (sequence+nonce),
or (vi) tamper with caveats/tags (HMAC chain).

Metrics. Unauthorized execution rate, detection time (gateway path only), verification overhead
(added latency), and throughput. Hardware: commodity x86 server; DB: PostgreSQL/MySQL
(readmostly workloads).

Results summary. Across ≥ 800 attempts: 0% unauthorized execution; detection in
6–50µs; P50 < 1 ms, P95 < 2 ms, P99.9 < 5 ms verification overhead; > 1000 veri-
fied QPS per node steadystate. Residual plannerside semantic drift is eliminated by requiring
where_predicate_hash/from_graph_hash/projection_hash. A single replay edge case disap-
pears with a global atomic nonce store.

B Security Definitions and Proof Sketches for EAM–SQL

In this appendix we formalize the security properties of EAM–SQL and give self-contained proofs.
Each property corresponds to one or more attack classes in Table 2. Throughout we assume:

• HMAC–SHA-256 is a secure pseudorandom function (PRF) family.
• SHA-256 is collision-resistant and second-preimage resistant.
• The canonical encoding (·) used inside HMAC is deterministic and collision-free at the

syntax level (e.g., CBOR/JSON with sorted keys).

We work in the standard probabilistic polynomial-time (PPT) adversary model. Negligible functions
are denoted by (λ), where λ is the security parameter (e.g., key length, MAC tag length).

B.1 Notation and Basic Objects

We briefly summarize the algorithms from App. A.3 that we use in the proofs.

Key derivation and root token minting. Planner P and executor E run (P,E) to derive a session
key K ← (z, info) where z is an ECDH shared secret and info binds (ctx, plid, pid). The planner

12



then computes a root tag

t0 ← (K, ctx, plid, pid, salt) =K (ctx ∥ plid ∥ pid ∥ salt),

and appends an ordered list of initial caveats C0 via

ti ←ti−1
((ci)), ci ∈ C0,

producing a root token

0 = (ver = v1, plid, pid, salt, C0, tag = t|C0|).

Attenuation and per-query derivation. Given a token and additional caveats Cadd = [c′1, . . . , c
′
m],

updates the tag as:
t← tag(), t←t ((c

′
1)), . . . , t←t ((c

′
m))

and appends Cadd to the caveat list C().

For SQL statement qi, the planner computes

hi ← (qi) = -256((qi)),

chooses a fresh random nonce νi ← {0, 1}ℓ, and forms

Cadd = [sql_content_hash = hi, prev_tx_hash = state.prev_tx_hash, nonce = νi, issued_at = now],

then calls i, pi ← (i−1, qi, state), where

pi = -256(state.prev_tx_hash ∥ hi), state.prev_tx_hash← pi.

Verification and execution. Given (K, ctx, , q, state), recomputes the tag:

t′ ← (K, ctx, plid(), pid(), salt()); t′ ←t′ ((c1)), . . . , t
′ ←t′ ((cr)),

for the ordered caveat list C() = [c1, . . . , cr]. It rejects if t′ ̸= tag() and otherwise calls (, q, state),
which enforces:

• temporal and rate caveats (expires, not_before, max_rate);
• structural caveats (schema/tables/columns/disallow_join_with);
• predicate/aggregation caveats (where_predicate_hash, allow_aggregates);
• binding/replay caveats: exact match of sql_content_hash with (q), prev_tx_hash with
state.prev_tx_hash, and non-reuse of nonce;

• optional requires_human_sig.

If all checks pass, returns true. then updates the replay cache and state.prev_tx_hash and executes
q.

Adversary model. Adversaries are PPT algorithms that can:

• observe arbitrarily many honest (qi,i ) pairs and corresponding execution decisions;
• tamper with SQL and/or tokens before they reach the executor;
• adaptively choose inputs based on previous outcomes.

Unless otherwise stated, the adversary does not know the session key K.

B.2 Origin Integrity (Unforgeability)

Intuitively, origin integrity means that only the planner—who knows K—can produce a token Tok
and SQL statement q such that (K, ctx, Tok, q, state) = 1. In particular, an adversary should not be
able to:

• remove, reorder, or weaken caveats; or
• synthesize a token for a fresh context or plan that verifies.
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Forgery experiment. Fix public (ctx, plid, pid) and let K be sampled and used by the honest
planner as described above. Define the following game Forgeorig:

• The adversary A has oracle access to Omint which, on input (q, Cadd), returns a token
obtained by running the honest // pipeline (using the current state.prev_tx_hash).

• Eventually, A outputs a pair (⋆, q⋆).
• Let C⋆ be the ordered caveat list in ⋆. We say A wins if:

1. (K, ctx,⋆ , q⋆, state) = 1; and
2. either (⋆, q⋆) was never an exact response of Omint or C⋆ is not an append-only

extension of any caveat list the planner produced under this session.2

The origin-integrity advantage of A is orig
EAM-SQL(A) Pr[Forge

orig(A) = 1].

Theorem A.1 (Origin integrity). If HMAC–SHA-256 is a secure PRF, then for any PPT adversary
A,

orig
EAM-SQL(A) ≤

prf (B) + (λ),

for some PPT adversary B against the PRF security of HMAC.

Proof. We give a high-level but complete reduction. Consider the sequence of tags computed when
building a token:

t0 =K (root), ti =ti−1 ((ci))

for caveats c1, . . . , cr. For a fixed session, the key for each HMAC call is either K (for root) or the
previous tag ti−1. Under the PRF assumption, each ti is computationally indistinguishable from a
random (256)-bit string to any adversary that does not know K.

Suppose there exists a PPT adversary A that wins the above game with non-negligible probability ϵ.
We construct a PRF distinguisher B against HMAC that uses A as a subroutine.

B is given oracle access to a function F (·), which is either K(·) for random K or a truly random
function over a 256-bit domain and range. B must distinguish which case holds.

Simulation strategy. B simulates the EAM–SQL minting and verification process for A as follows:

• When it needs to compute K(root), it queries F (root) and sets t0 ← F (root).
• When it needs to compute ti−1

((ci)), it uses a local table to remember a mapping “key =
ti−1” and queries F (ti−1 ∥ (ci)), interpreting the concatenation as a unique input. It sets ti
equal to this oracle answer.

• It answers all Omint queries from A using this simulated HMAC chain.
• To evaluate , it recomputes the tag in the same way and checks equality with the tag in the

candidate token.

If F is a real HMAC with secret key K, this simulation is identical to the real EAM–SQL system
from the viewpoint of A, hence

Pr[Forgeorig(A) = 1 | F =K ] =orig
EAM-SQL (A).

If F is a truly random function, then each tag ti is a random and independent 256-bit string conditioned
only on its input to F . In this case, any candidate forgery (⋆, q⋆) that was not produced by the
simulator contains some final tag t⋆r which B never queried to F on the corresponding input sequence
(corresponding to the caveats in C⋆). The probability that t⋆r matches the value that would be obtained
by applying F along the chain is at most 2−256 for each independent guess. By a union bound over
the polynomially many attempts that A can make, this probability is negligible in λ.

Thus, if F is random,
Pr[Forgeorig(A) = 1 | F random] ≤ (λ).

2More precisely: for every token ever output by Omint with caveat list C, it holds that C is not a prefix of
C⋆.
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Consequently, if orig
EAM-SQL(A) were non-negligible, then B could distinguish the PRF from random

with non-negligible advantage, contradicting PRF security of HMAC. Formally,
orig
EAM-SQL(A) ≤

prf (B) + (λ). □

B.3 Anti-Replay

We now formalize the anti-replay guarantees arising from the nonce and prev_tx_hash caveats.

Replay experiment. Fix (ctx, plid, pid) and let the honest planner and executor operate as specified.
The adversary A has oracle access to:

• Omint as before, which returns honest (i, qi) pairs; and

• an execution oracle Oexec that, given (, q), runs and returns the decision bit.

Define the following success conditions:

1. Naive replay: A submits (i, qi) for some previously observed honest pair and returns
allow. This must be impossible by design.

2. Nonce-collision replay: A outputs some (⋆, q⋆) such that:

• (K, ctx,⋆ , q⋆, state) = 1; and
• the nonce in ⋆ equals that of a previously accepted token under the same (ctx, plid, pid).

Let replay
EAM-SQL(A) be the probability that either condition is met.

Theorem B.1 (Anti-replay). Assume:

• the nonce length is ℓ ≥ 96 bits and nonces are sampled uniformly;

• HMAC is a secure PRF as above.

Then for any PPT adversary A making at most q mint or exec queries,

replay
EAM-SQL(A) ≤

orig
EAM-SQL (A′) +

q2

2ℓ+1
,

for some PPT adversary A′ against origin integrity.

Proof. By construction, when the executor accepts (i, qi), it inserts (ctx, plid(i), pid(i), noncei)
into its replay cacheR and rejects any subsequent token with the same tuple.

Naive replay. If A simply resubmits a previously accepted pair (i, qi), the replay cache check in
causes to return deny. Thus this case cannot succeed at all in the ideal implementation (probability
0).

Nonce-collision replay. To have a second verifying token with the same nonce under the same
(ctx, plid, pid),A must produce a new envelope (⋆, q⋆) distinct from all honest ones but with a nonce
matching some previously accepted token.

There are two possibilities:

1. ⋆ is obtained from a previously minted by modifying caveats (including the nonce). Any
such modification that preserves verification strictly falls under the origin-integrity forgery
model, as C(⋆) is no longer an append-only extension of the original caveat list. Hence this
case is bounded by orig

EAM-SQL(A′).

2. ⋆ is freshly minted by A without reusing a previous envelope. In this case, to collide nonces,
A must either:

• guess an honest nonce before having seen it, which has probability 1/2ℓ per attempt; or
• rely on accidental collisions among the ≤ q nonces sampled by the honest planner and

those chosen by A.
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By the standard birthday bound, the probability of any collision among at most q uniformly
random ℓ-bit nonces is at most q2/2ℓ+1. Upon such a collision, A still needs to produce a
token that passes all HMAC checks, which is again bounded by origin integrity.

Combining cases, we obtain the stated bound:

replay
EAM-SQL(A) ≤

orig
EAM-SQL (A′) +

q2

2ℓ+1
. □

B.4 Monotonic Attenuation of Authority

Monotonic attenuation states that tokens can only restrict authority as caveats are appended; they
cannot broaden authority without violating the HMAC chain.

Property statement. Fix a session key K and an initial root token 0 with caveat list C0. Consider
any sequence of tokens

0
C1−−→1

C2−−→2−→ . . .
Cm−−→m,

where each i is obtained from i−1 by appending additional caveats Ci via .

Monotonic attenuation means that for any two indices i < j, the set of statements authorized by j

(i.e., those (q, state) for which (K, ctx,j , q, state) = 1) is a subset of those authorized by i, except
with negligible probability.

Theorem C.1 (Monotonic attenuation). Assume HMAC is a secure PRF. Then for any PPT
adversary A that observes and modifies a sequence of honestly minted tokens for a fixed session, the
probability that it produces a token ′ with fewer effective constraints than some previously seen yet
still verifies is bounded by orig

EAM-SQL(A′) for an origin forger A′.

Proof. By construction, each call to takes the current tag t as the HMAC key and uses the canonical
encoding of each new caveat as input. Thus the tag in j is:

tj =tj−1
((cj,1)) . . .tj,rj−1

((cj,rj )),

where the caveat list C(j) is exactly the concatenation of all previous caveats and the new ones, in
order. The verification algorithm recomputes the tag by iterating HMAC over the entire caveat list
in the same order; any removal or reordering of caveats changes the input sequence to the HMAC
chain, and hence the final tag, except with negligible probability (under HMAC PRF security as in
Theorem A.1).

Therefore, any token ′ that successfully verifies must have a caveat list that is exactly the append-only
result of successive calls to starting from 0. In particular, ′ cannot omit or weaken a caveat that was
present in some earlier token without violating the HMAC chain. Such a violation is exactly an
instance of origin forgery as defined in Section A. The probability that A succeeds in producing such
a ′ is upper-bounded by orig

EAM-SQL(A′), for a suitable adversaryA′ that rewritesA’s output as a forgery
attempt.

Since verification enforces all caveats in C(′), and C(′) is a superset of any prefix C(i), the set of
authorized statements under ′ is a subset of those authorized under i (ignoring negligible origin-forgery
probability). Hence the authority is monotonically attenuating. □

B.5 Sequence Integrity (Hash-Chained Order)

Sequence integrity ensures that reordering, skipping, or splicing SQL statements across plans is
detected by the executor.

Hash chain definition. For each plan, the executor maintains a transaction hash pi defined by:

p0 = 0256, pi = -256(pi−1 ∥ hi),

where hi = (qi) is the canonical structure hash of the i-th executed statement. Statement qi must
carry the caveat prev_tx_hash = pi−1; during verification, the executor checks that this matches
its current state.prev_tx_hash and updates it to pi on success.
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Sequence-integrity experiment. In the sequence-integrity game, the adversary A can:

• observe honest executions (qi,i , pi) in order;
• submit arbitrary (, q) pairs to the executor.

We say A wins if it causes the executor to accept a query under a plan in which:

1. some statement is executed out-of-order with respect to the hash chain (e.g., qj executes
when the executor expects pi−1 with j ̸= i); or

2. a statement is skipped (there exists an honest qk that never executes but subsequent statements
do); or

3. a statement from another plan is spliced into this plan while still passing verification.

Let seq
EAM-SQL(A) denote this success probability.

Theorem D.1 (Sequence integrity). Assume SHA-256 is second-preimage resistant and HMAC is
a secure PRF. Then for any PPT adversary A,

seq
EAM-SQL(A) ≤

orig
EAM-SQL (A′) +2pre

-256 (B) + (λ),

where 2pre
-256 is the advantage of a second-preimage adversary B.

Proof. We consider each type of violation.

Out-of-order execution. Suppose the executor’s current state is state.prev_tx_hash = pi−1, and
A attempts to execute some statement qj that originally appeared later in the honest sequence. For
(j , qj) to be accepted, the following must hold simultaneously:

• prev_tx_hash in C(j) equals pi−1;
• sql_content_hash equals (qj) = hj ;
• the token (including these caveats) passes the HMAC chain check.

In the honest execution, qj’s envelope was derived with prev_tx_hash = pj−1, not pi−1 (unless
i = j). Therefore, either:

1. A modifies the existing token to change prev_tx_hash from pj−1 to pi−1, in which case
it changes the HMAC chain and must forge a valid tag (origin forgery); or

2. A synthesizes a brand new token with the same sql_content_hash= hj but
prev_tx_hash= pi−1, also requiring a valid HMAC chain under an unknown key.

Both cases are bounded by origin integrity (Theorem A.1).

Skipping statements. If A attempts to skip qk and directly execute qk+1 when the executor expects
pk−1, this reduces to the out-of-order case with i = k and j = k + 1. The same reasoning applies.

Cross-plan splicing. Splicing a statement qj from another plan with hash chain {p(other)i } into the
current plan requires setting prev_tx_hash equal to the current plan’s pi−1. In the honest token
from the other plan, however, the chain input is p(other)j−1 . To maintain valid verification, the adversary
would need to find h′

j such that

-256(pi−1 ∥ h′
j) = -256(p(other)j−1 ∥ hj),

with h′
j = (qj). For fixed pi−1 and (p

(other)
j−1 , hj), this is a second-preimage problem on SHA-256:

find a different input to the compression function that yields the same output. By the assumed
second-preimage resistance of SHA-256, this succeeds with probability at most 2pre

-256 (B) for some B.

Combining the above, any successful sequence-integrity attack requires either an origin forgery or
a second-preimage attack on the SHA-256 chain, up to negligible probability due to tag or hash
collisions. Hence the stated bound. □
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B.6 SQL-Scoped Capability Bounding

We now show that EAM–SQL bounds the scope of executed SQL statements to the canonical structure
and caveats authorized by the planner.

Structural binding. For each statement q, the gateway:

• parses q into an AST using a deterministic SQL parser;

• emits a canonical form (q) (normalized whitespace, identifier normalization, sorted FROM-
graph representation, etc.);

• computes h = (q) = -256((q));

• optionally computes component hashes such as where_predicate_hash,
from_graph_hash, projection_hash.

Verification recomputes these hashes and checks equality with the corresponding caveats.

Capability-bounding experiment. Let A observe honest pairs (qi,i ) that are all authorized under
a fixed governance policy (YAML→ caveats). A attempts to construct (q⋆,⋆ ) such that:

1. (K, ctx,⋆ , q⋆, state) = 1; and

2. q⋆ violates the intended scope in one of the following ways:

• accesses unauthorized tables/columns;
• broadens a WHERE predicate (predicate weakening);
• introduces unauthorized joins or exfiltration patterns (e.g., extra UNION, join escalation);
• violates shape flags (e.g., multi-statement where disabled).

Denote this success probability by scope
EAM-SQL(A).

Theorem E.1 (SQL-scoped capability bounding). Assume:

• SHA-256 is collision- and second-preimage resistant;

• HMAC is a secure PRF;

• the canonicalizer is deterministic and injective at the AST level (i.e., distinct ASTs that
differ in structure or scope yield distinct canonical strings).

Then for any PPT adversary A,
scope
EAM-SQL(A) ≤

orig
EAM-SQL (A′) +coll

-256 (B) +
2pre
-256 (C) + (λ),

for suitable adversaries A′,B, C, where coll is the collision advantage.

Proof. Consider any q⋆ that differs in structure or scope from an authorized canonical query q; e.g.,
q⋆ includes a broader WHERE clause, an extra join, a different projection, a UNION, etc. By injectivity
of the canonicalizer at the AST level, (q⋆) ̸= (q) whenever the ASTs differ in semantic structure
relevant to scope (tables, columns, predicates, joins, shape flags).

Therefore, if q⋆ is structurally different from all authorized q, (q⋆) = -256((q⋆)) differs from all
(q). Similarly, component hashes such as where_predicate_hash and from_graph_hash differ
whenever their corresponding AST components differ.

To pass verification of (q⋆,⋆ ), A must ensure that:

• C(⋆)[sql_content_hash] = (q⋆);

• if present: C(⋆)[where_predicate_hash] equals the hash of the canonical WHERE AST
of q⋆; similarly for from_graph_hash, projection_hash;

• all table/column/shape caveats are satisfied by q⋆;

• the HMAC chain over C(⋆) yields the recorded tag.
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There are two broad strategies:

(1) Modify an honest token. If ⋆ is obtained by changing caveats in some honest , then:

• either the hashes are left untouched, in which case they no longer match the recomputed
hashes for q⋆ (detected by verification); or

• the hashes are changed to match (q⋆) (and analogous component hashes), which alters the
HMAC input sequence.

In the latter case, passing the tag check requires forging the HMAC chain, which is precisely origin
forgery. This event is bounded by orig

EAM-SQL(A′).

(2) Synthesize a fresh token. If ⋆ is crafted from scratch, then passing the tag check with a caveat list
of the adversary’s choice (including hashes) without the session key K is again an origin forgery
(since the verifier recomputes the tag from the chain). This is also bounded by origin integrity.

Hash-collision corner cases. The only remaining way for a structurally different q⋆ to pass with
unchanged caveats is if there exists some authorized q such that

-256((q⋆)) = -256((q)),

or similarly for component hashes. These are exactly collision or second-preimage events on SHA-
256. By the assumed collision and second-preimage resistance, the advantage of A in exploiting such
events is bounded by coll

-256(B) +
2pre
-256 (C), both negligible in λ.

Combining the above, any successful scope-expanding rewrite requires either an HMAC-chain forgery
or a SHA-256 collision/second-preimage attack, up to negligible probability. This yields the stated
bound. □

B.7 Auditability and Tamper-Evident Logs

Finally, we show that the MACed audit records are tamper-evident given either the session key K or
a planner-signed session root.

Audit records. Each call to (whether allow or deny) emits a record:

Ri = {ctx, planner_id, plan_id,i , aux_hashesi, decisioni, rowsi, elapsedi, prev_tx_hashi, noncei, timestampi, tagi}.
Optionally, records are linked in a log hash chain:

L0 = 0256, Li = -256(Li−1 ∥ (Ri)).

Tamper model. An adversary A is given the entire log {Ri} and either:

• the session key K; or
• a planner-signed root value (e.g., (K, ctx, plid, pid, salt)) and the public verification key

for the planner signature.

A outputs a modified log {R′
i}. We say that A succeeds in undetectable tampering if:

1. the modified log is not identical to the original (some field changed, some record deleted or
inserted, or reordering occurred); and

2. there exists a polynomial-time audit procedure that, given (K, {R′
i}) or the planner’s root

plus signatures, recomputes all HMAC chains and log hashes and does not detect any
inconsistency.

Let audit
EAM-SQL(A) denote this probability.

Theorem F.1 (Auditability). Assume HMAC is a secure PRF and SHA-256 is collision-resistant.
Then any PPT adversary A that succeeds in undetectable log tampering has advantage

audit
EAM-SQL(A) ≤

orig
EAM-SQL (A′) +coll

-256 (B) + (λ).
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Proof. An auditor verifies a log in two steps:

1. Recompute each token tag by re-running the HMAC chain over the caveat list for each
(Toki, qi) associated with record Ri and checking that it matches tagi in the record. This
step detects any modification of caveats or tokens.

2. If log hashing is enabled, recompute Li = -256(Li−1 ∥ (Ri)) and check that the final Ln

matches a stored commitment. This detects record insertion, deletion, or reordering, except
in collision events.

For A to change any of (qi, Ci, tagi) in a way that preserves the HMAC-chain verification, it must
forge an origin-valid token with a modified caveat list, which is exactly origin forgery, bounded by
orig
EAM-SQL(A′).

If A instead manipulates the log structure—inserting/deleting or reordering records—without touch-
ing the underlying tokens, then:

• either the auditor recomputes the log hash chain and detects that some Li is inconsistent
with the final commitment; or

• a collision in SHA-256 occurs, i.e., (R1) ∥ · · · ∥ (Rn) and (R′
1) ∥ · · · ∥ (R′

n) hash to the
same digest even though the sequences differ.

The latter is bounded by collision resistance, coll-256(B).
Hence any undetectable tampering event requires either a successful origin forgery or a SHA-256
collision, up to negligible probability. This yields the stated bound. □

C Additional System Details

C.1 Cryptographic Envelope and Audit

HMAC chain and attenuation. Tokens are macaroons: an HMAC chain over caveats; appending
caveats narrows authority (cannot widen without the minting key). Verification cost is a handful of
HMACs and comparisons (microseconds on commodity CPUs).

Verification predicates (summary).

1) Recompute macaroon tag over ordered caveats (detect removal/reorder).
2) Check now [not_before, expires] with skew policy.
3) Enforce rate counters per {ctx, planner, plan}.
4) Canonicalize SQL; recompute structure hashes; compare to caveats.
5) Enforce operation/table/column allow-lists; shape flags default-deny.
6) CAS-check prev_tx_hash; reject if mismatch.
7) Insert nonce in atomic cache; reject if present (replay).

Tamper-evident audit records (MACed). Every allow/deny emits a record reverifiable from the
caveat chain:

{ ctx, planner_id, plan_id, sql_content_hash,
optional where/from/projection hashes,
decision, rows, elapsed_ms, prev_tx_hash,
nonce, timestamp, tag }

C.2 Policy Creation Ease and Audit Support

Beyond latency, practical deployment requires evaluating policy creation ease and audit support. We
benchmark these dimensions across EAM–SQL and common access-control mechanisms.

Policy creation ease. We measure time to author policies, configuration size, expertise required, and
error rates (Table 4). EAM–SQL uses human-readable YAML profiles compiled into cryptographic
caveats; RBAC relies on SQL GRANT statements; ABAC uses XML (XACML-like); query firewalls
require regex rules.
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Table 4: Policy creation ease comparison (lower scores = easier creation).

System Creation Time Config Lines Complexity Error Rate

EAM–SQL (YAML) <1 ms 126 11.8 0%
RBAC (SQL) <1 ms 40 3.0 15%
ABAC (XML) <1 ms 120 5.0 25%
Query Firewall (regex) <1 ms 50 4.0 30%

Findings. EAM–SQL yields a 0% error rate with minimal expertise requirements. YAML profiles
are validated at compile time, eliminating common mistakes present in SQL- or XML-based policies.
The higher complexity score (11.8) reflects the richness of caveat types, but authorship remains
simpler than SQL GRANT rules or XML policies.

Audit support. We evaluate audit log size, query time, re-verification cost, tamper-evidence, and
compliance readiness (Table 5). EAM–SQL produces compact, HMAC-authenticated entries enabling
fast queries and cryptographic verification.

Table 5: Audit support comparison (10,000 entries).

System Entry Size Query Time Re-verify Tamper-Evident

EAM–SQL 316 B 0.74 ms 0.01 ms Yes
RBAC 500 B 5.16 ms 1.59 ms No
Query Firewall 200 B 10.58 ms N/A No
Policy Engine 400 B 8.23 ms 2.63 ms No

Findings. EAM–SQL supports 0.74 ms audit queries (7–14× faster) and 0.01 ms re-verification via
HMAC recomputation, with tamper-evident logs. Competing systems lack cryptographic integrity,
and policy engines require significantly higher re-verification cost.

Compliance reporting. Generating compliance summaries over 10,000 log entries takes 5.82 ms for
EAM–SQL. Alternatives (3.17–4.75 ms) are slightly faster but provide no cryptographic guarantees;
EAM–SQL logs remain fully re-verifiable and tamper-evident.

Takeaway. EAM–SQL offers simpler policy creation (0% errors, human-readable YAML) and
stronger audit support (fast queries, HMAC integrity, cryptographic re-verification) than RBAC,
ABAC, query firewalls, and policy engines, making it a practical fit for enterprise environments where
policy authoring and compliance reporting are operationally critical.

C.3 Engineering notes and Limitations

Semantic correctness is out of scope. EAM-SQL proves that a statement is authorized, not that it is
correct. The system binds SQL structure, scope, and execution order to a cryptographically verifiable
envelope, but it does not reason about business logic or user intent. A harmful yet syntactically
valid query (e.g., an UPDATE affecting 10 000 rows instead of 10) will execute if it satisfies the
envelope’s caveats. Deployments pair EAM-SQL with domain safeguards such as row-level security,
max_rows constraints, predicate hashing, or requires_human_sig for sensitive operations. EAM-
SQL enforces authorized execution, not semantic correctness.

Keys & time. Protect keys (rotate; store in HSM/TEE) and rely on trusted time (NTP with drift
bounds). Timebased caveats assume bounded skew.

Sidechannels. Timing/covert channels are out of scope; rate limits reduce bandwidth but cannot fully
eliminate sidechannels.

Optional/forwardlooking. Zeroknowledge proofs of authorization are not used in our experiments;
they are a potential future addition for privacypreserving attestations.
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Table 6: Harness checks by attack class (100 attempts per class; detection 6–50µs; 0% unauthorized
execution).

Attack Generation recipe Expected EAM outcome Proxy check

Prompt injection Malicious suffixes / con-
trol tokens

sql_content_hash
mismatch

Canonicalize & hash-
compare

Query splicing Base query + UNION
SELECT

allow_union=false Shape validation
(UNION denial)

Unauthorized table Direct access to restricted
tables

tables allow-list viola-
tion

Table whitelist check

Join escalation JOIN with restricted ta-
bles

disallow_joins_with
violation

Join-graph analysis

Broad exfiltration Sensitive aggregates/wide
reads

allow_aggregates/max_rowsAggregate/row-limit
checks

Replay Reuse same token/nonce Nonce replay detected Atomic nonce cache
(SETNX+TTL)

HMAC manipulation Modify tag or caveat or-
der

Tag verification fails Macaroon tag recomputa-
tion

Flood High-rate bursts max_rate violation Per-context rate counters

Table 7: Ablation study: removing single caveats (100 trials per ablation).

Removed caveat Expected failure mode Observed delta (qual.) Observed success rate

sql_content_hash Prompt-level rewrites
succeed

Canonical structure not
bound

36%

prev_tx_hash Reordering/splicing suc-
ceed

No plan-order enforce-
ment

85%

where_predicate_hash WHERE tampering suc-
ceeds

Scope broadening possi-
ble

73%

allow_aggregates Denied aggregates pass Sensitive counts/sums
leak

89%

max_rate Flood/DoS succeeds No pacing bound 100%
tables Any table readable Scope unbounded 100%
columns Any column readable Sensitive columns ex-

posed
100%

disallow_joins_with Join escalation succeeds Indirect access via JOIN 100%
nonce Replay succeeds Token reuse accepted 97%

Table 8: Schema summary used in evaluation.

Table Key(s) Core columns (se-
lected)

Policy

users id name, email,
status,
created_at

Allowed (analytics)

orders id, FK user_id→users.id amount, status,
created_at

Allowed (analytics)

products id name, price,
category,
created_at

Allowed (analytics)

admin_users id username,
password_hash,
role

Restricted (joins disallowed)

system_config key value, updated_at Restricted (joins disallowed)
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Table 9: Dataset sizes (row counts).

Table Rows

users 10,000
orders 50,000
products 1,000
admin_users 100
system_config 50

Table 10: Attack classes and representative SQL patterns.

Class Representative pattern (illustrative)

Prompt injection SELECT id,name FROM users WHERE status=’active’ ⇒ SELECT *
FROM users; DROP TABLE users; –

Query splicing SELECT id,name FROM users UNION SELECT password FROM
admin_users

Unauthorized table access SELECT * FROM admin_users / SELECT * FROM system_config
Join escalation SELECT u.name,a.password FROM users u JOIN admin_users a ON

u.id=a.id
Broad exfiltration SELECT COUNT(*) FROM users WHERE salary > 100000

Table 11: NL2SQL prompt templates used to synthesize benign intents.

Category Template

BI Generate a SQL query to find the top 10 customers by total order amount.
Exploration Show all products in the electronics category with price > $100.
Analytics Compute average order value by month for the last 6 months.
Reporting List users who have not placed an order in the last 30 days.

SELECT * FROM users
WHERE id = 1

SELECT * FROM users
WHERE id = $1

AST: SelectStmt
tables: [users]
columns: [*]
where: $1

sql_content_hash
where_predicate_hash

from_graph_hash

Token1:
sql_hash1
prev_tx0

Token2:
sql_hash2
prev_tx1

Token3:
sql_hash3
prev_tx2

prev_tx1 =
SHA256(prev_tx0 || sql_hash1)

prev_tx2 =
SHA256(prev_tx1 || sql_hash2)

Raw SQL
Parameterized

Canonicalized Structure Hashing

Derive Token

Sequence Chain

SQL-First Design: Canonicalization & Structure Hashing

Hash-Chained Sequencing: Order & Freshness

Security Guarantees:
Origin integrity
Anti-replay (nonce)
Sequence integrity
Structure binding
Capability bounding

Figure 1: EAM-SQL design highlights: SQL-first canonicalization pipeline and hash-chained
sequencing. Raw SQL is parameterized, canonicalized to an AST, and structure-hashed into
sql_content_hash (with optional component hashes). Tokens are derived with hash-chained
prev_tx_hash to enforce per-plan order and freshness.

23


	Introduction
	Related Work
	EAM-SQL: Cryptographic Execution Authorization for Table-Centric AI Systems
	Security evaluation on tabular threats
	Comparison to alternatives

	Conclusion
	Protocol Description
	Why not just per-action MACs?
	NL2SQL model benchmark.
	Engineering Extensions for Production
	Implementation Caveat Vocabulary (SQL)
	Policy-to-Crypto Mapping
	System-Level Performance
	Deployment and Configuration
	Experimental Setup

	Security Definitions and Proof Sketches for EAM–SQL
	Notation and Basic Objects
	Origin Integrity (Unforgeability)
	Anti-Replay
	Monotonic Attenuation of Authority
	Sequence Integrity (Hash-Chained Order)
	SQL-Scoped Capability Bounding
	Auditability and Tamper-Evident Logs

	Additional System Details
	Cryptographic Envelope and Audit
	Policy Creation Ease and Audit Support
	Engineering notes and Limitations


