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ABSTRACT

We inaugurate a new state-of-the-art real-time object detector YOLOv6, which
comprises a series of novel hardware-aware architectures accompanied by a set of
unique training schemes tailored for industrial scenarios. For a glimpse of perfor-
mance, our YOLOv6-N hits 37.5% AP on the COCO dataset at a throughput of
1187 FPS tested with an NVIDIA Tesla T4 GPU. YOLOv6-S strikes 45.0% AP at
484 FPS, outperforming other mainstream detectors at the same scale (YOLOv5-
S, YOLOv8-S, YOLOX-S and PPYOLOE-S). Meantime, YOLOv6-M and L
achieve better accuracy performance (50.0%/52.8% respectively) than other de-
tectors at a similar inference speed. Additionally, with an extended backbone and
neck design, our YOLOv6-L6 achieves the state-of-the-art accuracy in real-time
object detection. We carefully conducted extensive experiments to validate the
effectiveness of each proposed component.

1 INTRODUCTION

As a fundamental computer vision task, object detection has been studied in depth for decades. With
the rise of deep learning, object detectors are designed to supply ideal accuracy with high inference
speed, which forms a critical sub-task: real-time object detection. YOLO series (Redmon et al.,
2016; Redmon & Farhadi, 2017; 2018; Bochkovskiy et al., 2020; Glenn, 2022; Wang et al., 2022;
Glenn, 2023; Ge et al., 2021b; Xu et al., 2022) have been the most popular real-time detection
frameworks in industrial applications. These detectors are carefully designed to have advanced
network structures, training strategies, and loss functions in pursuit of an excellent balance between
speed and accuracy. Recent years have witnessed the development of anchor-free detectors (Law
& Deng, 2018; Tian et al., 2019; Zhou et al., 2019), which well-balances the accuracy and speed
performance as well.

Nevertheless, on the one hand, rare attention has been paid to extreme throughputs at deployment,
which causes a challenging bottleneck in handling ever-increasing data traffic. On the other hand,
training techniques that improve detection performance without impacting inference speed have
not been much investigated specifically for real-time object detection. In contrast, self-distillation
(Zhang et al., 2019; Mobahi et al., 2020; Zhang & Sabuncu, 2020) has been studied for years to
provide extra performance without introducing extra models and inference computation cost. Addi-
tionally, auxiliary training (Zhang et al., 2020a) equips the network with a set of auxiliary modules
in training to integrate knowledge from various perspectives.

With the aforementioned observations in mind, we bring the birth of YOLOv6. We specifically
design a series of powerful backbones that achieve excellent trade-offs in terms of throughput and
performance with the help of reparameterization techniques (Ding et al., 2021). We also particularly
devise an adaptive self-distillation strategy for the real-time object detector, in which the distillation
process can be divided into different stages where the student dynamically adjusts the proportion of
knowledge either from the hard labels or from the soft ones of the teacher. For large models, we
leverage Distribution Focal Loss (DFL) (Li et al., 2020) as the regression loss for localization dis-
tillation. Whereas for small models, we invent Decoupled Localization Distillation (DLD), which
adopts both a lightweight regression branch and another heavier regression branch for DFL in train-
ing. Only the lightweight one is retained after the training.
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Figure 1: Comparison of state-of-the-art efficient object detectors. Both latency and throughput (at
a batch size of 32) are given for a handy reference. All models are tested with TensorRT 7.

We analyzed the performance of detectors with either anchor-based or anchor-free paradigms
and further proposed an Anchor-aided Training strategy to integrate the advantages of both two
paradigms. Our contributions can be summarized as follows:

• We unveil a collection of architectures with different sizes tailored especially for in-
dustrial applications. The backbones are renovated with re-parameterization techniques.
Branch choices (single/multiple) are made for models at different scales. We introduce a
lightweight Bi-directional Concatenation (BiC) module and a SimCSPSPPF block to have
a refurbished neck called RepBi-PAN, which brings significant performance gains.

• We propose an anchor-aided training (AAT) strategy to enjoy the advantages of both
anchor-based and anchor-free paradigms without touching inference efficiency. A new
adaptive self-distillation strategy is invented to further boost the performance. For smaller
models, Decoupled Localization Distillation (DLD) is specifically schemed to avoid the
notable speed decline.

• We achieve a new state of the art on the COCO dataset in terms of throughput and perfor-
mance at all compared scales. The comparison is shown at a similar scale in Fig. 1, where
YOLOv6 of all sizes outperform other competitors considering accuracy and speed.

2 RELATED WORK

Real-time Object Detection Object detectors can be categorized as two-stage or one-stage detec-
tors. The representative methods of the former are R-CNN series (Girshick et al., 2014; Girshick,
2015; Ren et al., 2015). Real-time object detectors are usually one-stage methods providing faster
inference speed. The most popular one-stage methods are the YOLO series, the pioneering works
of which are YOLOv1-3 (Redmon et al., 2016; Redmon & Farhadi, 2017; 2018). They blaze a new
trail of one-stage detectors along with the later substantial improvements. YOLOv4 (Bochkovskiy
et al., 2020) reorganized the detection framework into several parts (backbone, neck, and head), and
verified bag-of-freebies and bag-of-specials at the time to design a framework suitable for training
on a single GPU. At present, YOLOv5 (Glenn, 2022), YOLOX (Ge et al., 2021b), PPYOLOE (Xu
et al., 2022), YOLOv7 (Wang et al., 2022) and most recently YOLOv8 (Glenn, 2023) are all the
competing candidates for efficient detectors to deploy.

Additionally, object detection methods are also classified into anchor-based or anchor-free detectors
based on whether the pre-defined proposals are used. Pre-defined proposals were considered valid to
improve the performance of detectors in early works of object detection (Ren et al., 2015; Redmon &
Farhadi, 2017). However, recent works that abandon anchors (Law & Deng, 2018; Tian et al., 2019;
Zhou et al., 2019) believe the hyperparameters brought by the anchors will impact the detection
accuracy. And the well-designed anchor-free detectors bridge the performance gap between anchor-
based detectors with even faster inference speed in the application.
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Auxiliary Training There are several prior works (Hao et al., 2020; Ma et al., 2021; RangiLyu,
2021; Wang et al., 2022) enhancing detection performance through auxiliary training without im-
pacting inference speed. In (Hao et al., 2020), auxiliary supervision is introduced by mapping
labels into latent embedding, which relies on an auxiliary module to encode ground-truth labels.
IQDet (Ma et al., 2021) adds a Quality Distribution Encoder as an auxiliary subnet to sample
high-quality training samples. The subnet is removed in the inference stage. NanoDet (Rangi-
Lyu, 2021) uses the auxiliary branch to give a better label assignment strategy. The auxiliary head in
YOLOv7 (Wang et al., 2022) is used to learn from the coarser labels providing additional supervision
signals to enhance the learning capacity.

Self-distillation Knowledge distillation is originally studied as a model compression tech-
nique (Hinton et al., 2015), which relies on an extra large teacher model to guide the learning of
the small student model. With the development of knowledge distillation, relevant methods can be
divided into three categories (Gou et al., 2021): (1) Response-based methods: the student model di-
rectly mimics the neural response of the last layer of the teacher model; (2) Feature-based methods:
the outputs of teacher model’s hidden layers are believed able to provide extra useful supervision sig-
nals; (3) Relation-based methods introduce relationship knowledge between different layers or data
samples besides the responses and features. Most recently, knowledge distillation methods (Chen
et al., 2017; Li et al., 2017; Wang et al., 2019; Dai et al., 2021; Guo et al., 2021; Zhixing et al., 2021;
Zheng et al., 2022) are specifically designed for object detection.

Particularly, self-distillation stands out among all knowledge distillation methods in which the stu-
dent model and the teacher model are the same one. It has attracted increasing attention considering
the application scenario where the high-performance large teacher model is not available. In Zhang
et al. (2019), the network are divided into multiple sections, and each section is deepened with ex-
tra layers as the teacher model. After that, there are several variants (Hou et al., 2019; Phuong &
Lampert, 2019; Zhang & Sabuncu, 2020; Mobahi et al., 2020; Zheng et al., 2022) of self-distillation
methods are proposed to achieve better performance.

3 METHOD

3.1 NETWORK DESIGN
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Figure 2: (a) RepBlock is composed of a stack of
RepVGG blocks with ReLU activations at training. (b)
During inference time, RepVGG block is converted to
RepConv. (c) CSPStackRep Block comprises three 1×1
convolutional layers and a stack of sub-blocks of double
RepConvs following the ReLU activations with a residual
connection.

Backbone It has been shown that
multi-branch networks (Szegedy et al.,
2015; 2016; He et al., 2016; Huang
et al., 2017) can often achieve better
classification performance than single-
path ones (Krizhevsky et al., 2012; Si-
monyan & Zisserman, 2014), but of-
ten it comes with the reduction of
the parallelism and results in an in-
crease of inference latency. On the
contrary, plain single-path networks
like VGG (Simonyan & Zisserman,
2014) take advantage of high par-
allelism and less memory footprint,
leading to higher inference efficiency.
Lately, in RepVGG (Ding et al., 2021),
a structural re-parameterization method
is proposed to decouple the training-
time multi-branch topology with an
inference-time plain architecture to achieve a better speed-accuracy trade-off.

Inspired by the above, we design an efficient re-parameterizable backbone denoted as EfficientRep.
For small models, the main component of the backbone is RepBlock during the training phase, as
shown in Fig. 2 (a). And each RepBlock is converted to stacks of 3 × 3 convolutional layers (de-
noted as RepConv) with ReLU activation functions during the inference phase, as shown in Fig. 2
(b). Typically a 3×3 convolution is highly optimized on mainstream GPUs and CPUs and it enjoys
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Figure 3: (a) The neck of YOLOv6 (N and S are shown). Note for M/L, RepBlocks is replaced with
CSPStackRep. (b) The structure of a BiC module. (c) A SimCSPSPPF block.

higher computational density. Consequently, EfficientRep backbone sufficiently utilizes the comput-
ing power of the hardware, resulting in a significant decrease in inference latency while enhancing
the representation ability in the meantime.

However, we notice that with the model capacity further expanded, the computation cost and the
number of parameters in the single-path plain network grow exponentially. To achieve a better
trade-off between the computation burden and accuracy, we revise a CSPStackRep Block to build the
backbone of medium and large networks. As shown in Fig. 2 (c), CSPStackRep Block is composed
of three 1×1 convolution layers and a stack of sub-blocks consisting of two RepVGG blocks (Ding
et al., 2021) or RepConv (at training or inference respectively) with a residual connection. Besides, a
cross stage partial (CSP) connection is adopted to boost performance without excessive computation
cost. Compared with CSPRepResStage (Xu et al., 2022), it comes with a more succinct outlook and
considers the balance between accuracy and speed.

Neck In practice, feature integration at multiple scales has been proven to be a critical and effective
component of object detection. Feature Pyramid Network (FPN) (Lin et al., 2017a) is proposed to
aggregate the high-level semantic features and low-level features via a top-down pathway, which
provides more accurate localization. Subsequently, there have been several works (Liu et al., 2018;
Tan et al., 2020; Ghiasi et al., 2019; Chen et al., 2021) on Bi-directional FPN to enhance the ability
of hierarchical feature representation. PANet (Liu et al., 2018) adds an extra bottom-up pathway
on top of FPN to shorten the information path of low-level and top-level features, which facilitates
the propagation of accurate signals from low-level features. BiFPN (Tan et al., 2020) introduces
learnable weights for different input features and simplifies PAN to achieve better performance with
high efficiency. PRB-FPN (Chen et al., 2021) is proposed to retain high-quality features for accurate
localization by a parallel FP structure with bi-directional fusion and associated improvements.

Motivated by the above, we adopt the modified PAN topology (Liu et al., 2018) from
YOLOv4 (Bochkovskiy et al., 2020) and YOLOv5 (Glenn, 2022) as the base of our detection neck.
We replace the CSP-Block used in YOLOv5 with RepBlock (for small models) or CSPStackRep
Block (for large models) and adjust the width and depth accordingly. Besides, we design an en-
hanced PAN as our detection neck. To augment localization signals without bringing in excessive
computation burden, we propose a Bi-directional Concatenation (BiC) module to integrate feature
maps of three adjacent layers, which fuses an extra low-level feature from backbone Ci−1 into Pi

(Fig. 3). In this case, more accurate localization signals can be preserved, which is significant for
the localization of small objects.

Moreover, we simplify the SPPF block (Glenn, 2022) to have a CSP-like version called SimCSP-
SPPF Block, which strengthens the representational ability. Particularly, we revise the SimSPPC-
SPC Block in (Wang et al., 2022) by shrinking the channels of hidden layers and retouching space
pyramid pooling. In addition, we upgrade the CSPBlock with RepBlock (for small models) or
CSPStackRep Block (for large models) and accordingly adjust the width and depth. The neck of
YOLOv6 is denoted as RepBi-PAN, the framework of which is shown in Fig. 3.

Lite models for mobile To meet the needs of mobile scenarios, we introduce YOLOv6-Lite series.
The backbones are a lightweight version of EfficientRep with scale factors (0.7, 1.1, 1.5 for S/M/L)
and reduced channels. The neck selectively adopts the separable convolution (Howard et al., 2017),
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and the head introduces the large-kernel (5×5) depthwise module. These models are designed to
cater to high, medium, and low-end mobile chips. The results are later shown in Table 2.

3.2 ANCHOR-AIDED TRAINING

Table 1: Anchor-based paradigm enjoys a great perfor-
mance boost on YOLOv6-N.

Paradigm APs APm APl

Anchor-free 16.0% 39.5% 51.0%
Anchor-based 17.2% (+1.2%) 39.8% (+0.3%) 52.1% (+1.1%)

Detectors are made anchor-free to pur-
sue a higher inference speed. However,
we experimentally find that the anchor-
based paradigm brings significant per-
formance gains on YOLOv6-N under
the same settings on small, medium
and large objects, as shown in Table 1.
In light of this, we conceive that the
anchor-based detector can learn from a different perspective from the anchor-free one in training
to obtain better performance. However, the better speed performance of the anchor-free paradigm
is of vital importance for real-time detectors. Therefore, we propose anchor-aided training (AAT),
in which the anchor-based auxiliary branches are introduced to combine the advantages of anchor-
based and anchor-free paradigms. They are applied both in the classification and the regression
head. Fig. 4 shows the detection head with the auxiliaries. During the training stage, the auxiliary
branches and the anchor-free branches learn from independent losses while signals are propagated
altogether. Therefore, additional embedded guidance information from auxiliary branches is inte-
grated into the main anchor-free heads. Worth mentioning that the auxiliary branches are removed
at inference, which boosts the accuracy without decreasing speed.

3.3 ADAPTIVE SELF-DISTILLATION

Figure 4: The detection head with anchor-based auxil-
iary branches during training. The auxiliary branches are
removed at inference. ‘af’ and ‘ab’ are short for ‘anchor-
free’ and ‘anchor-based’.

There are two sub-tasks in object de-
tection: classification and localiza-
tion. For classification, we apply the
vanilla knowledge distillation technique
by minimizing the KL-divergence be-
tween the class prediction of the teacher
and the student. As for localization, our
large models (i.e., YOLOv6-M/L) adopt
DFL (Li et al., 2020) as regression loss
for the convenience of performing self-
distillation on localization (Zheng et al.,
2022). The knowledge distillation loss
is formulated as:

LKD = KL(pclst ||pclss )+KL(pregt ||pregs ),
(1)

where pclst and pclss are class predictions of the teacher model and the student model respectively,
and accordingly pregt and pregs are box regression predictions. The overall loss function is,

Ltotal = Ldet + αLKD, (2)

where Ldet is the detection loss computed with predictions and labels. The hyperparameter α is
introduced to balance two losses. In the early stage of training, the soft labels from the teacher are
easier to learn. As the training continues, the performance of the student will match the teacher so
that the hard labels will help students more. We apply cosine weight decay to α to adaptively adjust
the information from hard labels and soft ones from the teacher. The formulation of α is:

α = −0.99 ∗ ((1− cos(π ∗ Ei/Emax))/2) + 1, (3)

where Ei denotes the current training epoch and Emax represents the maximum training epochs.

Notably, the introduction of DFL (Li et al., 2020) requires extra parameters for the regression branch,
which affects the inference speed of small models significantly. Therefore, we specifically design
the Decoupled Localization Distillation (DLD) for our small models (i.e., YOLOv6-N/S) to boost
performance without speed degradation. Specifically, we append a heavy auxiliary enhanced regres-
sion branch to incorporate DFL.
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Table 2: Comparisons with other YOLO-series and end-to-end detectors on COCO 2017 val.

Method Input Size APval APval
50 FPS FPS Latency Params FLOPs

(bs=1) (bs=32) (bs=1)

YOLOv5-N 640 28.0% 45.7% 602 735 1.7 ms 1.9 M 4.5 G
YOLOv5-S 640 37.4% 56.8% 376 444 2.7 ms 7.2 M 16.5 G
YOLOv5-M 640 45.4% 64.1% 182 209 5.5 ms 21.2 M 49.0 G
YOLOv5-L 640 49.0% 67.3% 113 126 8.8 ms 46.5 M 109.1 G

YOLOv5-N6 1280 36.0% 54.4% 172 175 5.8 ms 3.2 M 18.4 G
YOLOv5-S6 1280 44.8% 63.7% 103 103 9.7 ms 12.6 M 67.2 G
YOLOv5-M6 1280 51.3% 69.3% 49 48 20.1 ms 35.7 M 200.0 G
YOLOv5-L6 1280 53.7% 71.3% 32 30 31.3 ms 76.8 M 445.6 G
YOLOv5-X6 1280 55.0% 72.7% 17 17 58.6 ms 140.7 M 839.2 G

YOLOX-Tiny 416 32.8% 50.3%∗ 717 1143 1.4 ms 5.1 M 6.5 G
YOLOX-S 640 40.5% 59.3%∗ 333 396 3.0 ms 9.0 M 26.8 G
YOLOX-M 640 46.9% 65.6%∗ 155 179 6.4 ms 25.3 M 73.8 G
YOLOX-L 640 49.7% 68.0%∗ 94 103 10.6 ms 54.2 M 155.6 G

PPYOLOE-S 640 43.1% 59.6% 327 419 3.1 ms 7.9 M 17.4 G
PPYOLOE-M 640 49.0% 65.9% 152 189 6.6 ms 23.4 M 49.9 G
PPYOLOE-L 640 51.4% 68.6% 101 127 10.1 ms 52.2 M 110.1 G

YOLOv7-Tiny 416 33.3%∗ 49.9%∗ 787 1196 1.3 ms 6.2 M 5.8 G
YOLOv7-Tiny 640 37.4%∗ 55.2%∗ 424 519 2.4 ms 6.2 M 13.7 G∗

YOLOv7 640 51.2% 69.7%∗ 110 122 9.0 ms 36.9 M 104.7 G
YOLOv7-E6E 1280 56.8% 74.4%∗ 16 17 59.6 ms 151.7 M 843.2 G

YOLOv8-N 640 37.3% 52.6%∗ 561 734 1.8 ms 3.2 M 8.7 G
YOLOv8-S 640 44.9% 61.8%∗ 311 387 3.2 ms 11.2 M 28.6 G
YOLOv8-M 640 50.2% 67.2%∗ 143 176 7.0 ms 25.9 M 78.9 G
YOLOv8-L 640 52.9% 69.8%∗ 91 105 11.0 ms 43.7 M 165.2 G

DETR-DC5 (R50) 800×1333 43.3% 63.1% - - - 41 M 187 G
DETR-DC5 (R101) 800×1333 44.9% 64.7% - - - 60 M 253 G
Deformable-DETR 800×1333 46.2% 65.2% - - - 47 M 279 G

YOLOv6Lite-S 320×320 22.4% 34.3% - - 7.99 ms† 0.55 M 0.56 G
YOLOv6Lite-M 320×320 25.1% 38.1% - - 9.08 ms† 0.79 M 0.67 G
YOLOv6Lite-L 320×320 28.0% 41.9% - - 11.37 ms† 1.09 M 0.87 G

YOLOv6-N 640 37.0% / 37.5%‡ 52.7% / 53.1%‡ 779 1187 1.3 ms 4.7 M 11.4 G
YOLOv6-S 640 44.3% / 45.0%‡ 61.2% / 61.8%‡ 339 484 2.9 ms 18.5 M 45.3 G
YOLOv6-M 640 49.1% / 50.0%‡ 66.1% / 66.9%‡ 175 226 5.7 ms 34.9 M 85.8 G
YOLOv6-L 640 51.8% / 52.8%‡ 69.2% / 70.3%‡ 98 116 10.3 ms 59.6 M 150.7 G

YOLOv6-N6 1280 44.9% 61.5% 228 281 4.4 ms 10.4 M 49.8 G
YOLOv6-S6 1280 50.3% 67.7% 98 108 10.2 ms 41.4 M 198.0 G
YOLOv6-M6 1280 55.2%‡ 72.4%‡ 47 55 21.0 ms 79.6 M 379.5 G
YOLOv6-L6 1280 57.2%‡ 74.5%‡ 26 29 38.5 ms 140.4 M 673.4 G

a FPS and latency are measured in TensorRT FP16 on an NVIDIA Tesla T4 GPU. Both the accuracy and the
speed are evaluated with the input resolution of 640×640. Exception for YOLOv6Lite models†, which are
tested on Qualcomm 888 (sm8350) mobile chip with MNN with 2 threads.

b ‘‡’ represents that the proposed self-distillation method is utilized.
c ‘∗’ represents the re-evaluated result of the released model through the official code.
d The latency and throughput of DETRs are not tested being non real-time.

During the self-distillation, the student is equipped with a naı̈ve regression branch and the enhanced
regression branch while the teacher only uses the auxiliary branch. Note that the naı̈ve regression
branch is only trained with hard labels while the auxiliary is updated according to signals from both
the teacher and hard labels. After the distillation, the naı̈ve regression branch is retained whilst the
auxiliary branch is removed. With this strategy, the advantages of the heavy regression branch for
DFL in distillation are considerably maintained without impacting the inference efficiency.
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4 EXPERIMENTS

4.1 COMPARISON OF REAL-TIME DETECTORS

We compare with the state-of-the-art methods and the results are shown in Table 2 and Fig. 1. The
evaluation is focused on the throughput and the GPU latency at deployment. Generally, YOLOv6
comes with the best speed performance in terms of both throughput and latency. For detecting extra-
large objects, we follow (Glenn, 2022) to add an extra stage on the top of the backbone to have a
feature (C6) at a higher level, and the neck is expanded accordingly. Further, the image resolution
is adapted from 640 to 1280. The feature strides range from 8 to 64, which benefits the accurate
detection of rather small and extra-large objects in high-resolution images. The YOLOv6 of all sizes
with C6 features are named YOLOv6-N6/S6/M6/L6 respectively, which obtain significant gains in
accuracy. We also present our lightweight versions made for mobile devices. Also to note that
Transformer-based end-to-end detectors like DETR (Carion et al., 2020), Deformable-DETR (Zhu
et al., 2020) are less competitive compared to YOLO models at similar FLOPs.

4.2 DOWNSTREAM TASKS

Table 3: Comparison of YOLOv6-face and YOLO5-face
on WIDER FACE dataset. ∗: Originally reported.

Model Size Easy Medium Hard FPS FPS Params FLOPs
(bs=1) (bs=32) (M) (G)

MTCNN - 85.1 82.9 76.1 99∗ - - -

YOLOv5-face-S 640 94.3 92.6 83.2 464 622 7.06 15.2
YOLOv5-face-M 640 95.3 93.8 85.3 217 262 21.04 48.2
YOLOv5-face-L 640 95.9 94.4 84.5 132 149 46.6 110.6

YOLOv6-face-S 640 96.2 94.7 85.1 339 484 12.41 32.45
YOLOv6-face-M 640 97 95.3 86.3 188 240 24.85 70.59
YOLOv6-face-L 640 97.2 95.9 87.5 102 121 56.77 159.24

Face Keypoint We extend YOLOv6
to a face detector with landmarks super-
vision. The key modifications are sum-
marized as follows. Firstly, we add a re-
gression head for 5-keypoint landmarks
based on object regression branch. With
the extra supervision, it makes the face
detector more accurate. Secondly, we
modify the efficient decoupled head
with the same-channel strategy instead
of hybrid-channel, which increases the
capability to detect tiny faces. Consid-
ering dense scenes, the repulsion loss is
applied to improve detecting performance and reduce the sensitivity of NMS thresholds. We im-
plement a series of face detector models at S/M/L scales, and compare the performance with
YOLO5face (Qi et al., 2022) on WIDER FACE (Yang et al., 2016) validation set in table 3. We
see that YOLOv6-face outperforms YOLO5-face and MTCNN (Zhang et al., 2017b) on the easy,
medium, and hard subsets.

Table 4: Comparison of YOLOv6-seg with previous
methods on COCO val2017. ∗: Originally reported.

Model Size mAPbox mAPmask FPS Params FLOPs
(bs=1) (M) (G)

YOLACT 550 - 29.8 33.5∗ - -

YOLOv8-seg-N 640 36.7 30.5 521 3.4 12.6
YOLOv8-seg-S 640 44.6 36.8 286 11.8 42.6
YOLOv8-seg-M 640 49.9 40.8 137 27.3 110.2
YOLOv8-seg-L 640 52.3 42.6 88 46 220.5
YOLOv8-seg-X 640 53.4 43.4 56 71.8 344.1

RTMDet-Ins-S 640 44 38.7 243 10.2 21.5
RTMDet-Ins-M 640 48.8 42.1 116 27.6 54.1
RTMDet-Ins-L 640 51.2 43.7 70 57.4 106.6
RTMDet-Ins-X 640 52.4 44.6 40 102.7 182.7

YOLOv6-seg-N 640 35.3 31.2 645 4.9 14
YOLOv6-seg-S 640 44 38 292 19.6 55.5
YOLOv6-seg-M 640 48.2 41.3 148 37.1 108.5
YOLOv6-seg-L 640 51.1 43.7 93 63.6 191
YOLOv6-seg-X 640 52.2 44.8 47 119.1 351

Instance Segmentation Based on
YOLOv6, we add a mask branch,
paralleling to the regression branch,
which generates prototype masks,
following YOLACT (Bolya et al.,
2019). Besides, mask coefficients are
predicted on the regression branch by
adding extra two convolution kernels
after multi-level features. By linearly
multiplying the prototype masks with
mask coefficients, we can obtain the
final instance segmentation results.
In Table 4, we compare YOLOv6
n/s/m/l/x segmentation models on the
COCO validation dataset with other
real-time instance like YOLOv8 and
RTMDet-Ins (Lyu et al., 2022).

YOLOv6-seg models at full scales ob-
tain higher mask AP than YOLOv8-seg
models with similar inference speed. Specifically, YOLOv6x-seg achieves 44.8% mask AP, surpass-
ing the previous best practice RTMDet-Ins-x by 0.2% AP with 17.5% faster speed.
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4.3 ABLATION STUDY

4.3.1 NETWORK DESIGN

Table 5: Ablation study on backbones and necks.

Models Block CC APval FPS Params FLOPs
(bs=32)

YOLOv6-N RepBlock - 35.2% 1237 4.3M 11.1G
CSPStackRep Block 1/2 32.7% 1257 2.3M 5.6G

YOLOv6-S RepBlock - 43.2% 499 17.2M 44.2G
CSPStackRep Block 1/2 43.4% 511 11.5M 27.7G

YOLOv6-M
RepBlock - 47.9% 137 67.1M 175.6G

CSPStackRep Block 2/3 48.1% 237 34.3M 82.2G
CSPStackRep Block 1/2 47.3% 237 27.7M 68.4G

YOLOv6-L CSPStackRep Block 2/3 50.1% 149 54.7M 142.7G
CSPStackRep Block 1/2 50.1% 151 58.5M 144.0G

RepBlock and CSPStackRep Block
We compare the single-path structure
and multi-branch structure on back-
bones and necks, as well as the chan-
nel coefficient (denoted as CC) of CSP-
StackRep Block. All models described
in this part adopt TAL as the label as-
signment strategy, VFL as the classifi-
cation loss, and GIoU with DFL as the
regression loss. Results are shown in Ta-
ble 5. We find that the optimal network
structure for models with different sizes
should come up with different solutions.

For YOLOv6-N, the single-path structure outperforms the multi-branch structure in terms of both
accuracy and speed. Although the single-path structure has more FLOPs and parameters than the
multi-branch structure, it could run faster due to a relatively lower memory footprint and a higher
degree of parallelism. For YOLOv6-S, the two block styles bring similar performance. When it
comes to larger models, multi-branch structure achieves better performance in accuracy and speed.
We select the multi-branch with a channel coefficient of 2/3 for YOLOv6-M and 1/2 for YOLOv6-L.

Table 6: Effectiveness of the BiC module on
YOLOv6 models. BU: Bottom-up, TD: Top-down

Model BiC APval APs APm APl FPSBU TD (bs=32)

YOLOv6-S
43.1% 23.4% 48.0% 59.9% 513

! 43.7% 25.2% 48.7% 60.4% 492
! ! 43.7% 25.0% 48.7% 59.7% 485

YOLOv6-L
50.9% 32.4% 56.0% 68.0% 125

! 51.3% 34.2% 56.5% 67.6% 120
! ! 51.1% 33.6% 56.7% 67.9% 119

BiC We conducted a series of experi-
ments to verify the effectiveness of the
proposed BiC module. As can be seen
in Table 6, applying the BiC module
only on the top-down pathway of PAN
brings 0.6%/0.4% AP improvements on
YOLOv6-S/L respectively with negligi-
ble loss of efficiency. In contrast, when
we try to import the BiC module into
the bottom-up pathway, no positive gain
in accuracy is obtained. The probable
reason is that the BiC module on the
bottom-up pathway would lead to con-
fusion for detection heads about features
at different scales. Therefore, we merely adopt the BiC module on the top-down pathway. Besides,
the results indicate that the BiC module gives an impressive boost to the performance of small ob-
ject detection. For both YOLOv6-S and YOLOv6-L, the detection performance on small objects is
improved by 1.8%.

Table 7: Ablation study on SPP Blocks.

Model SPP Blocks APval FPS
(bs=32)

YOLOv6-N

SimSPPF 35.8% 1190
SimSPPF*3 35.9% 1072

SimSPPCSPC 37.4% 1078
SimCSPSPPF 36.9% 1176

YOLOv6-S

SimSPPF 43.7% 492
SimSPPF*3 43.6% 447

SimSPPCSPC 44.0% 432
SimCSPSPPF 44.1% 477

YOLOv6-M SimSPPF 48.6% 227
SimCSPSPPF 48.7% 218

YOLOv6-L SimSPPF 51.3% 120
SimCSPSPPF 51.1% 117

SimCSPSPPF Further, we explore the influence of
different types of SPP Blocks, including the simplified
variants of SPPF (Glenn, 2022) and SPPCSPC (Wang
et al., 2022) (denoted as SimSPPF and SimSPPCSPC
respectively) and our SimCSPSPPF blocks.

Additionally, we apply SimSPPF blocks on the top
three feature maps (P3, P4, and P5) of our backbone
to verify its effectiveness, which is denoted as Sim-
SPPF*3. Experimental results are shown in Table 7.
We observe that heavily adopting SimSPPF brings lit-
tle gain in accuracy with the increased computational
complexity. SimSPPCSPC outperforms SimSPPF by
1.6%/0.3% AP on YOLOv6-N/S respectively while
significantly decreasing inference speed. Compared
with SimSPPF, our SimCSPSPPF version can obtain
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1.1%/0.4%/0.1% performance gain for YOLOv6-N/S/M respectively. In terms of inference effi-
ciency, our SimCSPSPPF block runs nearly 10% faster than SimSPPCSPC and is slightly slower
than SimSPPF. For a better accuracy-efficiency trade-off, the SimCSPSPPF blocks are introduced in
YOLOv6-N/S. For YOLOv6-M/L, SimSPPF blocks are adopted.

4.3.2 ANCHOR-AIDED TRAINING Table 8: Ablation on Anchor-aided Training.

Method AAT APval APs APm APl

YOLOv6-N 36.9% 17.2% 41.1% 52.9%
! 36.9% 18.7% 41.2% 53.0%

YOLOv6-S 44.1% 24.7% 48.7% 61.1%
! 44.4% 25.4% 49.6% 60.2%

YOLOv6-M 48.6% 29.7% 53.7% 65.5%
! 49.1% 31.1% 54.0% 65.4%

YOLOv6-L 51.3% 34.2% 56.5% 67.6%
! 51.8% 33.4% 56.8% 68.8%

The advantages of the AAT are verified in
YOLOv6. As shown in Table 8, it brings about
0.3%/0.5%/0.5% AP gain for YOLOv6-S/M/L
respectively. Notably, the accuracy perfor-
mance on small objects (AP s) is significantly
enhanced for YOLOv6-N/S/M. For YOLOv6-
L, the performance on large objects (AP l) is
improved even further.

4.3.3 ADAPTIVE SELF-DISTILLATION

We firstly verify the proposed adaptive self-
distillation method on YOLOv6-L. For a fair comparison, we also verified the model performance
by doubling the training epochs besides the baseline since the self-distillation needs an extra train-
ing cycle to obtain the teacher model. As seen in Table 9, no performance improvement is attained
without the weight decay strategy compared with the baseline. Doubling the training epochs without
self-distillation is even worse due to overfitting. After the introduction of weight decay, the model
is boosted by 0.6% AP.

In addition, the DLD specifically designed for small models is ablated on YOLOv6-S. As per self-
distillation for large models, we also compare the results with the model trained with doubled
epochs. As shown in Table 10, YOLOv6-S with DLD gives 0.7% AP boost and performs 0.5%
better than that of training with doubled epochs.

These experiment results on both small and large models demonstrate that our self-distillation strat-
egy is more cost-effective than training for longer epochs. Please refer Appendix B for more con-
clusions about other design and technique choices.

Table 9: Ablation study on the self-
distillation on YOLOv6-L.

Model Weight Decay APval

Baseline % 51.8%
Double epochs % 51.7%

Self-distillation % 51.8%
! 52.4%

Table 10: Ablation study of DLD on
YOLOv6-S.

DLD Double epochs APval

% % 44.4%
% ! 44.6%
! % 45.1%

5 CONCLUSION

In a nutshell, YOLOv6 is built with a myriad of brand-new architectural compositions (namely Rep-
Block, CSPStackRep, RepBi-PAN, BiC, and SimCSPSPPF) and a suite of novel paralleled train-
ing schemes like anchor-aided training, adaptive self-distillation via a removable auxiliary regres-
sion branch, along with other carefully chosen techniques, altogether bringing it to a next level of
cutting-edge performance and speed. Downstream tasks like facial keypoint detection and instance
segmentation are easily implemented and enjoy significant improvement. We believe YOLOv6 at all
scales is a competitive real-time object detector and it will greatly facilitate real-world applications
on mobile, IoT, and high-end cloud computing devices.
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A ADDITIONAL DESIGNS AND CHOICES

A.1 NETWORK

Efficient decoupled head The detection head of YOLOv5 is a coupled head with parameters
shared between the classification and localization branches, while its counterparts in FCOS (Tian
et al., 2019) and YOLOX (Ge et al., 2021b) decouple the two branches, and additional two 3×3
convolutional layers are introduced in each branch to boost the performance.

In YOLOv6, we adopt a hybrid-channel strategy to build a more efficient decoupled head. Specifi-
cally, we reduce the number of the middle 3×3 convolutional layers to only one. The width of the
head is jointly scaled by the width multiplier for the backbone and the neck. These modifications
further reduce computation costs to achieve a lower inference latency.

Anchor-free Anchor-free detectors stand out because of their better generalization ability and sim-
plicity in decoding prediction results. The time cost of its post-processing is substantially reduced.
There are two types of anchor-free detectors: anchor point-based (Tian et al., 2019; Ge et al., 2021b)
and keypoint-based (Zhou et al., 2019; Law & Deng, 2018; Yang et al., 2019). In YOLOv6, we
adopt the anchor point-based paradigm, whose box regression branch actually predicts the distance
from the anchor point to the four sides of the bounding boxes.

A.2 LABEL ASSIGNMENT

Label assignment is responsible for assigning labels to predefined anchors during the training stage.
Previous work has proposed various label assignment strategies ranging from simple IoU-based
strategy and inside ground-truth method (Tian et al., 2019) to other more complex schemes (Zhang
et al., 2020b; Ge et al., 2021b; Feng et al., 2021; Li et al., 2022; Zand et al., 2022).

SimOTA OTA (Ge et al., 2021a) considers the label assignment in object detection as an optimal
transmission problem. It defines positive/negative training samples for each ground-truth object
from a global perspective. SimOTA (Ge et al., 2021b) is a simplified version of OTA (Ge et al.,
2021a), which reduces additional hyperparameters and maintains the performance. SimOTA was
utilized as the label assignment method in the early version of YOLOv6. However, in practice, we
find that introducing SimOTA will slow down the training process. And it is not rare to fall into
unstable training. Therefore, we desire a replacement for SimOTA.

Task alignment learning Task Alignment Learning (TAL) was first proposed in TOOD (Feng
et al., 2021), in which a unified metric of classification score and predicted box quality is designed.
The IoU is replaced by this metric to assign object labels. To a certain extent, the problem of the
misalignment of tasks (classification and box regression) is alleviated.

The other main contribution of TOOD is about the task-aligned head (T-head). T-head stacks con-
volutional layers to build interactive features, on top of which the Task-Aligned Predictor (TAP) is
used. PP-YOLOE (Xu et al., 2022) improved T-head by replacing the layer attention in T-head with
the lightweight ESE attention, forming ET-head. However, we find that the ET-head will deterio-
rate the inference speed in our models and it comes with no accuracy gain. Therefore, we retain
the design of our Efficient decoupled head. Furthermore, we observed that TAL could bring more
performance improvement than SimOTA and stabilize the training. Therefore, we adopt TAL as our
default label assignment strategy in YOLOv6.

A.3 LOSS FUNCTIONS

Object detection contains two sub-tasks: classification and localization, corresponding to two loss
functions: classification loss and box regression loss. For each sub-task, there are various loss
functions presented in recent years. In this section, we will introduce these loss functions and
describe how we select the best ones for YOLOv6.
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A.3.1 CLASSIFICATION LOSS

Improving the performance of the classifier is a crucial part of optimizing detectors. Focal Loss (Lin
et al., 2017b) modified the traditional cross-entropy loss to solve the problems of class imbalance
either between positive and negative examples, or hard and easy samples. To tackle the inconsistent
usage of the quality estimation and classification between training and inference, Quality Focal Loss
(QFL) (Li et al., 2020) further extended Focal Loss with a joint representation of the classification
score and the localization quality for the supervision in classification. Whereas VariFocal Loss
(VFL) (Zhang et al., 2021) is rooted from Focal Loss (Lin et al., 2017b), but it treats the positive
and negative samples asymmetrically. By considering positive and negative samples at different
degrees of importance, it balances learning signals from both samples. Poly Loss (Leng et al., 2022)
decomposes the commonly used classification loss into a series of weighted polynomial bases. It
tunes polynomial coefficients on different tasks and datasets, which is proved better than Cross-
entropy Loss and Focal Loss through experiments. We assess all these advanced classification losses
on YOLOv6 to finally adopt VFL (Zhang et al., 2021).

A.3.2 LOCALIZATION LOSS

Box Regression Loss Box regression loss provides significant learning signals localizing bound-
ing boxes precisely. L1 loss is the original box regression loss in early works. Progressively, a
variety of well-designed box regression losses have sprung up, such as IoU-series loss (Yu et al.,
2016; Zheng et al., 2020; Rezatofighi et al., 2019; Zheng et al., 2020; He et al., 2021; Gevorgyan,
2022) and probability loss (Li et al., 2020).

IoU-series Loss IoU loss (Yu et al., 2016) regresses the four bounds of a predicted box as a whole
unit. It has been proved to be effective because of its consistency with the evaluation metric. There
are many variants of IoU, such as GIoU (Rezatofighi et al., 2019), DIoU (Zheng et al., 2020),
CIoU (Zheng et al., 2020), α-IoU (He et al., 2021) and SIoU (Gevorgyan, 2022), etc, forming
relevant loss functions. We experiment with GIoU, CIoU and SIoU in this work. And SIoU is
applied to YOLOv6-N and YOLOv6-T, while others use GIoU.

Probability Loss Distribution Focal Loss (DFL) (Li et al., 2020) simplifies the underlying con-
tinuous distribution of box locations as a discretized probability distribution. It considers ambiguity
and uncertainty in data without introducing any other strong priors, which is helpful to improve
the box localization accuracy especially when the boundaries of the ground-truth boxes are blurred.
Upon DFL, DFLv2 (Li et al., 2021) develops a lightweight sub-network to leverage the close cor-
relation between distribution statistics and the real localization quality, which further boosts the
detection performance. However, DFL usually outputs 17× more regression values than general
box regression, leading to a substantial overhead. The extra computation cost significantly hinders
the training of small models. Whilst DFLv2 further increases the computation burden because of
the extra sub-network. In our experiments, DFLv2 brings similar performance gain to DFL on our
models. Consequently, we only adopt DFL in YOLOv6-M/L. Experimental details can be found
in Appendix B.3.

A.3.3 OBJECT LOSS

Object loss was first proposed in FCOS (Tian et al., 2019) to reduce the score of low-quality bound-
ing boxes so that they can be filtered out in post-processing. It was also used in YOLOX (Ge et al.,
2021b) to accelerate convergence and improve network accuracy. As an anchor-free framework like
FCOS and YOLOX, we have tried object loss into YOLOv6. Unfortunately, it doesn’t bring many
positive effects. Details are given in Section 4.

B DETAILED EXPERIMENTAL RESULTS

We demonstrate the detail ablation experimental results about the components of basic architecture
of YOLOv6 in this section.
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B.1 ABLATION ON NETWORK DESIGN

Combinations of convolutional layers and activation functions YOLO series adopted a wide
range of activation functions, ReLU Nair & Hinton (2010), LReLU Maas et al. (2013), Swish Ra-
machandran et al. (2017), SiLU Elfwing et al. (2018), Mish Misra (2019) and so on. Among these
activation functions, SiLU is the most used. Generally speaking, SiLU performs with better ac-
curacy and does not cause too much extra computation cost. However, when it comes to indus-
trial applications, especially for deploying models with TensorRT NVIDIA (2018) acceleration,
ReLU has a greater speed advantage because of its fusion into convolution. Moreover, we further
verify the effectiveness of combinations of RepConv/ordinary convolution (denoted as Conv) and
ReLU/SiLU/LReLU in networks of different sizes to achieve a better trade-off. As shown in Ta-
ble 12, Conv with SiLU performs the best in accuracy while the combination of RepConv and ReLU
achieves a better trade-off. We suggest users adopt RepConv with ReLU in latency-sensitive appli-
cations. We choose to use RepConv/ReLU combination in YOLOv6-N/T/S/M for higher inference
speed and use the Conv/SiLU combination in the large model YOLOv6-L to speed up training and
improve performance.

Width Depth APval FPS Params FLOPs
(bs=32)

[192, 384, 768] 5 50.8% 123 58.6 M 144.7 G
[128, 256, 512] 12 51.0% 122 58.5 M 144.0 G

Table 11: Ablation study on the neck settings of YOLOv6-L. SiLU is selected as the activation
function.

Miscellaneous design We also conduct a series of ablation on other network parts mentioned
in Section 3.1 based on YOLOv6-N. We choose YOLOv5-N as the baseline and add other com-
ponents incrementally. Results are shown in Table 13. Firstly, with decoupled head (denoted as
DH), our model is 1.4% more accurate with 5% increase in time cost. Secondly, we verify that the
anchor-free paradigm is 51% faster than the anchor-based one for its 3× less predefined anchors,
which results in less dimensionality of the output. Further, the unified modification of the back-
bone (EfficientRep Backbone) and the neck (Rep-PAN neck), denoted as EB+RN, brings 3.6% AP
improvements, and runs 21% faster. Finally, the optimized decoupled head (hybrid channels, HC)
brings 0.2% AP and 6.8% FPS improvements in accuracy and speed respectively.

B.2 ABLATION ON LABEL ASSIGNMENT

In Table 14, we analyze the effectiveness of mainstream label assign strategies. Experiments are
conducted on YOLOv6-N. As expected, we observe that SimOTA and TAL are the best two strate-

Model Conv. Act. APval FPS
(bs=32)

YOLOv6-N

Conv SiLU 36.6% 963
RepConv SiLU 36.5% 971

Conv ReLU 34.8% 1246
RepConv ReLU 35.2% 1233

Conv LReLU 35.4% 983
RepConv LReLU 35.6% 975

YOLOv6-M

Conv SiLU 48.9% 180
RepConv SiLU 48.9% 180

Conv ReLU 47.7% 235
RepConv ReLU 48.1% 236

Conv LReLU 48.0% 185
RepConv LReLU 48.1% 187

Table 12: Ablation study on combinations of different types of convolutional layers (denoted as
Conv.) and activation layers (denoted as Act.).
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DH AF EB+RN HC APval FPS
(bs=32)

% % % % 28.0% 672
! % % % 29.4% 637
! ! % % 30.7% 962
! ! ! % 34.3% 1163
! ! ! ! 34.5% 1242

Table 13: Ablation study on all network designs in an incremental way. FPS is tested with FP16-
precision and batch-size=32 on Tesla T4 GPUs.

Method APval

ATSS Zhang et al. (2020b) 32.5%
SimOTA Ge et al. (2021b) 34.5%
TAL Feng et al. (2021) 35.0%
DW Li et al. (2022) 33.4%
ObjectBox Zand et al. (2022) 30.1%

Table 14: Comparisons of label assignment methods.

gies. Compared with the ATSS, SimOTA can increase AP by 2.0%, and TAL brings 0.5% higher AP
than SimOTA. Considering the stable training and better accuracy performance of TAL, we adopt
TAL as our label assignment strategy.

In addition, the implementation of TOOD Feng et al. (2021) adopts ATSS Zhang et al. (2020b) as
the warm-up label assignment strategy during the early training epochs. We also retain the warm-up
strategy and further make some explorations on it. Details are shown in Table 15, and we can find
that without warm-up or warmed up by other strategies (i.e., SimOTA) it can also achieve the similar
performance.

B.3 ABLATION ON LOSS FUNCTIONS

In the object detection framework, the loss function is composed of a classification loss, a box
regression loss and an optional object loss, which can be formulated as follows:

Ldet = Lcls + λLreg + µLobj , (4)

where Lcls, Lreg and Lobj are classification loss, regression loss and object loss. λ and µ are
hyperparameters.

In this subsection, we evaluate each loss function on YOLOv6. Unless otherwise specified, the
baselines for YOLOv6-N, YOLOv6-S and YOLOv6-M are 35.0%, 42.9% and 48.0% trained with
TAL, Focal Loss and GIoU Loss.

Classification Loss We experiment Focal Loss Lin et al. (2017b), Poly lossLeng et al. (2022),
QFL Li et al. (2020) and VFL Zhang et al. (2021) on YOLOv6-N/S/M. As can be seen in Table 16,
VFL brings 0.2%/0.3%/0.1% AP improvements on YOLOv6-N/S/M respectively compared with
Focal Loss. We choose VFL as the classification loss function.

Warmup strategy APval

w/o 34.9%
ATSS Zhang et al. (2020b) 35.0%
SimOTA Ge et al. (2021b) 34.9%

Table 15: Comparisons of label assignment methods in warm-up stage.
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Model Classification Loss APval

YOLOv6-N

Focal Loss Lin et al. (2017b) 35.0%
Poly Loss Leng et al. (2022) 34.0%

QFL Li et al. (2020) 35.4%
VFL Zhang et al. (2021) 35.2%

YOLOv6-S

Focal Loss Lin et al. (2017b) 42.9%
Poly Loss Leng et al. (2022) 41.5%

QFL Li et al. (2020) 43.1%
VFL Zhang et al. (2021) 43.2%

YOLOv6-M

Focal Loss Lin et al. (2017b) 48.0%
Poly Loss Leng et al. (2022) 46.9%

QFL Li et al. (2020) 48.0%
VFL Zhang et al. (2021) 48.1%

Table 16: Ablation study on classification loss functions.

Regression Loss IoU-series and probability loss functions are both experimented with on
YOLOv6-N/S/M.

The latest IoU-series losses are utilized in YOLOv6-N/S/M. Experiment results in Table 17 show
that SIoU Loss outperforms others for YOLOv6-N and YOLOv6-T, while CIoU Loss performs
better on YOLOv6-M.

For probability losses, as listed in Table 18, introducing DFL can obtain 0.2%/0.1%/0.2% perfor-
mance gain for YOLOv6-N/S/M respectively. However, the inference speed is greatly affected for
small models. Therefore, DFL is only introduced in YOLOv6-M/L.

Model Loss APval

YOLOv6-N
GIoU Rezatofighi et al. (2019) 35.1%

CIoU Zheng et al. (2020) 35.1%
SIoU Gevorgyan (2022) 35.5%

YOLOv6-S
GIoU Rezatofighi et al. (2019) 43.1%

CIoU Zheng et al. (2020) 43.1%
SIoU Gevorgyan (2022) 43.3%

YOLOv6-M
GIoU Rezatofighi et al. (2019) 48.2%

CIoU Zheng et al. (2020) 48.3%
SIoU Gevorgyan (2022) 48.1%

Table 17: Ablation study on IoU-series box regression loss functions. The classification loss is
VFL Zhang et al. (2021).

Method Loss APval FPS
(bs=32)

YOLOv6-N
w/o 35.0% 1226

DFL Li et al. (2020) 35.2% 1022
DFLv2 Li et al. (2021) 35.2% 819

YOLOv6-S
w/o 42.9% 486

DFL Li et al. (2020) 43.0% 461
DFLv2 Li et al. (2021) 43.0% 422

YOLOv6-M
w/o 48.0% 233

DFL Li et al. (2020) 48.2% 236
DFLv2 Li et al. (2021) 48.3% 226

Table 18: Ablation study on probability loss functions.

Object Loss Object loss is also experimented with YOLOv6, as shown in Table 19. From Ta-
ble 19, we can see that object loss has negative effects on YOLOv6-N/S/M networks, where the
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Method Object Loss APval

YOLOv6-N % 35.0%
! 33.9%

YOLOv6-S % 42.9%
! 41.4%

YOLOv6-M % 48.0%
! 46.5%

Table 19: Effectiveness of object loss.

maximum decrease is 1.1% AP on YOLOv6-N. The negative gain may come from the conflict be-
tween the object branch and the other two branches in TAL. Specifically, in the training stage, IoU
between predicted boxes and ground-truth ones, as well as classification scores are used to jointly
build a metric as the criteria to assign labels. However, the introduced object branch extends the
number of tasks to be aligned from two to three, which obviously increases the difficulty. Based on
the experimental results and this analysis, the object loss is then discarded in YOLOv6.

B.4 EXPERIMENTAL SETUP

We use the same optimizer and the learning schedule as YOLOv5 (Glenn, 2022), i.e., stochastic
gradient descent (SGD) with momentum and cosine decay on the learning rate. Warm-up, grouped
weight decay strategy and the exponential moving average (EMA) are also utilized. We adopt two
strong data augmentations (Mosaic (Bochkovskiy et al., 2020; Glenn, 2022) and Mixup (Zhang
et al., 2017a)) following (Bochkovskiy et al., 2020; Glenn, 2022; Ge et al., 2021b). A complete list
of hyperparameter settings can be found in our released code. We train our models on the COCO
2017 (Lin et al., 2014) training set, and the accuracy is evaluated on the COCO 2017 validation set.
All our models are trained on 8 NVIDIA A100 GPUs, and the speed performance is measured on
an NVIDIA Tesla T4 GPU with TensorRT version 7.2 unless otherwise stated. All our models are
trained for 300 epochs without pre-training or any external data.

C DETAILED LATENCY AND THROUGHPUT BENCHMARK

Unless otherwise stated, all the reported latency is measured on an NVIDIA Tesla T4 GPU with
TensorRT version 7.2.1.6. Due to the large variance of the hardware and software settings, we re-
measure the latency and throughput of all the models under the same configuration (both hardware
and software). For a handy reference, we also switch TensorRT versions (Table 20) for consis-
tency check. Latency on a V100 GPU (Table 21) is included for convenient comparison. This
gives us a full spectrum view of state-of-the-art detectors. Comparisons about inference speed of
YOLOv6 with TensorRT 8.2 on T4 GPU are shown in Table 20. From the table, we can see the
throughput of YOLOv6 models still emulates their peers.

C.1 V100 GPU LATENCY TABLE

Throughout and latency on V100 GPU can be seen in Table 21. And the speed advantage of
YOLOv6 is largely maintained.

C.2 CPU LATENCY

We evaluate the performance of our models and other competitors on a 2.6 GHz Intel Core i7 CPU
using OpenCV Deep Neural Network (DNN), as shown in Table 22. Considering the actual ap-
plication scenario, we only compare the relatively small models (i.e., YOLOv6-N/S/M) with other
competitors of save scales.
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Method FPS FPS Latency
(bs=1) (bs=32) (bs=1)

YOLOv5-N Glenn (2022) 702 843 1.4 ms
YOLOv5-S Glenn (2022) 433 515 2.3 ms
YOLOv5-M Glenn (2022) 202 235 4.9 ms
YOLOv5-L Glenn (2022) 126 137 7.9 ms

YOLOX-Tiny Ge et al. (2021b) 766 1393 1.3 ms
YOLOX-S Ge et al. (2021b) 313 489 2.6 ms
YOLOX-M Ge et al. (2021b) 159 204 5.3 ms
YOLOX-L Ge et al. (2021b) 104 117 9.0 ms

PPYOLOE-S Xu et al. (2022) 357 493 2.8 ms
PPYOLOE-M Xu et al. (2022) 163 210 6.1 ms
PPYOLOE-L Xu et al. (2022) 110 145 9.1 ms

YOLOv7-Tiny Wang et al. (2022) 464 568 2.1 ms
YOLOv7 Wang et al. (2022) 128 135 7.6 ms

YOLOv6-N 785 1215 1.3 ms
YOLOv6-S 345 498 2.9 ms
YOLOv6-M 178 238 5.6 ms
YOLOv6-L 105 125 9.5 ms

Table 20: YOLO-series comparison of latency and throughput on a T4 GPU with a higher version
of TensorRT (8.2).

Method FPS FPS Latency
(bs=1) (bs=32) (bs=1)

YOLOv5-N Glenn (2022) 577 1727 1.4 ms
YOLOv5-S Glenn (2022) 449 1249 1.7 ms
YOLOv5-M Glenn (2022) 271 698 3.0 ms
YOLOv5-L Glenn (2022) 178 440 4.7 ms

YOLOX-Tiny Ge et al. (2021b) 569 2883 1.4 ms
YOLOX-S Ge et al. (2021b) 386 1206 2.0 ms
YOLOX-M Ge et al. (2021b) 245 600 3.4 ms
YOLOX-L Ge et al. (2021b) 149 361 5.6 ms

PPYOLOE-S Xu et al. (2022) 322 1050 2.4 ms
PPYOLOE-M Xu et al. (2022) 222 566 4.0 ms
PPYOLOE-L Xu et al. (2022) 153 406 5.5 ms

YOLOv7-Tiny Wang et al. (2022) 453 1565 1.7 ms
YOLOv7 Wang et al. (2022) 182 412 4.6 ms

YOLOv6-N 646 2660 1.2 ms
YOLOv6-S 399 1330 2.0 ms
YOLOv6-M 203 676 4.4 ms
YOLOv6-L 125 385 6.8 ms

Table 21: YOLO-series comparison of latency and throughput on a V100 GPU. We measure all
models at FP16-precision with the input size 640×640 in the exact same environment.
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Method Input Latency
(bs=1)

YOLOv5-N Glenn (2022) 640 118.9 ms
YOLOv5-S Glenn (2022) 640 202.2 ms

YOLOX-Tiny Ge et al. (2021b) 416 144.2 ms
YOLOX-S Ge et al. (2021b) 640 164.6 ms
YOLOX-M Ge et al. (2021b) 640 357.9 ms

YOLOv7-Tiny Wang et al. (2022) 640 137.5 ms

YOLOv6-N 640 60.3 ms
YOLOv6-S 640 148.0 ms
YOLOv6-M 640 269.3 ms

Table 22: YOLO-series comparison of latency on a typical CPU. We measure all models at FP32-
precision with the input size 640×640 in the exact same environment.
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