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ABSTRACT

Recently, extensive deep learning architectures and pretraining strategies have
been explored to support downstream protein applications. Additionally, domain-
specific models incorporating biological knowledge have been developed to en-
hance performance in specialized tasks. In this work, we introduce Protap, a
comprehensive benchmark that systematically compares backbone architectures,
pretraining strategies, and domain-specific models across diverse and realistic
downstream protein applications. Specifically, Protap covers five applications:
three general tasks and two novel specialized tasks, i.e., enzyme-catalyzed pro-
tein cleavage site prediction and targeted protein degradation, which are indus-
trially relevant yet missing from existing benchmarks. For each application,
Protap compares various domain-specific models and general architectures un-
der multiple pretraining settings. Our empirical studies imply that: (i) Though
large-scale pretraining encoders achieve great results, they often underperform
supervised encoders trained on small downstream training sets. (ii) Incorporating
structural information during downstream fine-tuning can match or even outper-
form protein language models pretrained on large-scale sequence corpora. (iii)
Domain-specific biological priors can enhance performance on specialized down-
stream tasks. Code is publicly available at https://anonymous.4open.
science/r/protap-1CC5.

1 INTRODUCTION

Proteins serve as the central executors of biological activities, regulating a wide range of critical
biological processes through their complex three-dimensional structures and dynamic properties. A
precise understanding of protein function and interactions is critical across many applications (Wong
et al., 2024; Anfinsen, 1973). For instance, directed evolution of enzymes can endow proteins with
novel functions (Austin et al., 2018). Accurate prediction of protein–ligand interactions (PLIs) can
largely accelerate drug discovery (Sadybekov et al., 2022; Zhang et al., 2025; Wu et al., 2024).
These application areas underscore the immense potential of deep learning in protein analysis.

Various deep learning approaches leveraging protein sequences and structures have been developed
for protein-related applications. For instance, general sequence models such as LSTM (Hochreiter &
Schmidhuber, 1997) and Transformer (Vaswani et al., 2017) have been employed to extract amino
acid sequence patterns for tasks like stability landscape prediction (Rao et al., 2019). Geometric
Graph Neural Networks (GNNs), including GVP-GNN (Jing et al., 2021) and EGNN (Satorras
et al., 2021), have demonstrated remarkable effectiveness in modeling 3D molecular structures.
Motivated by these successes, geometric GNNs have been further applied to structure-based protein
modeling tasks (Dauparas et al., 2022; Mikhael et al., 2024). Recently, Graphformer (Ying et al.,
2021) and Transformer-M (Luo et al., 2023a) have incorporated structural biases into transformer-
based architectures. These emerging sequence-structure hybrid models show promising ability in
the general protein representation learning.

Recently, the remarkable success of large-scale pretraining models in image and text has inspired
similar advances in protein modeling. Masked language modeling has been extended to predict the
masked amino acids in protein sequences, resulting in protein language models like ESM series mod-
els and ProteinBERT (Rives et al., 2021; Hayes et al., 2025; Brandes et al., 2022). GearNet (Zhang
et al., 2023) explores the multi-view contrastive learning on protein structures. Additionally, some
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methods, such as OntoProtein (Zhang et al., 2022), leverage functional annotations as supervision
signals for pretraining.

Apart from these general model architectures and pretraining tasks for protein modeling, signif-
icant progress has been made in developing domain-specific models tailored for various realistic
downstream protein applications. For instance, protein function prediction models such as DP-
Func (Wang et al., 2025) leverage sequence, structural, and domain-level information to enhance
the accuracy of predicting the Gene Ontology annotations of proteins. Additionally, to improve
enzyme modeling, UniZyme (Li et al., 2025) integrates the energy frustration matrix and enzyme
active-site knowledge into a transformer-based framework. In the domain of proteolysis-targeting
chimera (PROTAC) modeling, dedicated methods such as DeepProtacs (Li et al., 2022) and ETPro-
tacs (Cai et al., 2025) have been developed to accurately capture the ternary interactions essential
for targeted protein degradation.

Given the extensive variety of general model architectures, pretraining strategies, and domain-
specific models, there remains a gap in systematically benchmarking general pretrained models
alongside domain-specific models. With numerous architectures and pretraining strategies tailored
for real-world downstream tasks, a natural question arises: do existing architectures and strategies
exhibit distinct advantages across specific protein applications? However, current benchmarks pre-
dominantly focus on specific pretrained model categories, such as protein language models in (Xu
et al., 2022; Capel et al., 2022) and geometric GNNs in (Jamasb et al., 2024). As shown in Tab. 1,
they lack a comprehensive evaluation of general protein model architectures, pretraining strategies,
and domain-specific models across realistic biological applications. To address these gaps, we in-
troduce Protap, a standardized benchmark that systematically compares architectures, pre-training
strategies, and domain models on diverse realistic downstream applications. Our contributions are:

• We identify and integrate realistic applications from existing literature and databases to support
comprehensive evaluations. In addition to three general applications, Protap introduces two novel
specialized applications: enzyme-catalyzed protein cleavage site prediction and targeted protein
degradation by PROTACs, which are biological processes not covered by prior benchmarks.

• The proteins covered in the benchmark evaluation are comprehensive and diverse, which cover
enzymes, receptors, drugs, etc. The tasks are diverse, which include single protein modeling
(function, mutation), interaction modeling such as PLI, enzyme-substrate modeling, and complex
interaction process modeling (PROTACs).

• We compare a large number of protein pretraining models and domain models on five protein
applications. This offers insights into the development of protein foundation models and the
design of domain-specific models for downstream applications.

Table 1: Comparison of benchmark coverage for protein modeling. ♣ indicates the presence of
this dimension, while # denotes its absence. We compare across three dimensions: applications
(specialized vs. general), pretraining tasks, and model architectures (domain-specific vs. general).
Comparisons with ProteinGym and ProteinBench are not included because their focuses differ from
Protap. ProteinGym (Notin et al., 2023) primarily targets mutation effect prediction with task-
specific models. ProteinBench (YE et al., 2025) emphasizes generative design tasks, e.g., backbone
design and sequence-structure co-design, which are currently beyond Protap’s scope. We provide a
comprehensive literature review (Related Works) in Appendix B.

Protap
(Ours)

PEER
(Xu et al., 2022)

ProteinWorkshop
(Jamasb et al., 2024)

TAPE
(Rao et al., 2019)

ProteinGLUE
(Capel et al., 2022)

Specialized
Applications

Enzyme-catalyzed protein
cleavage site prediction ♣ # # # #

Targeted protein degradation
by Proteolysis-targeting chimeras ♣ # # # #

General
Applications

Protein–ligand interactions ♣ ♣ # # ♣
Function prediction ♣ ♣ ♣ # #
Mutation effect prediction ♣ ♣ # ♣ #

Pretraining
Tasks

Masked language modeling ♣ # ♣ ♣ ♣
Multi-view contrastive learning ♣ # # # #
Protein family prediction ♣ # # # #

General
Architectures

Protein language models ♣ ♣ # ♣ ♣
Geometric GNNs ♣ # ♣ # #
Sequence-structure hybrid models ♣ # # # #

Domain-specific
Architectures

Protein function models ♣ # # # #
Enzyme domain models ♣ # # # #
Ternary complexes models ♣ # # # #
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Table 2: Overview of models and datasets used in Protap.
(a) Pretraining models and domain models in our Protap. Models highlighted in (*) are trained from scratch,
while those in (*) use only publicly available pretrained weights.

Model Input Modalities Pretrain Data #Parameter Objective Source
Pretrain Models

EGNN AA Seq & 3D Coord Swiss-Prot 540k 10M MLM, MVCL, PFP ICML, 2021
SE(3) Transformer AA Seq & 3D Coord Swiss-Prot 540k 4M MLM, MVCL, PFP NeurIPS, 2020
GVP AA Seq & 3D Coord Swiss-Prot 540k 2M MLM, MVCL, PFP ICLR, 2021
ProteinBERT AA Seq Swiss-Prot 540k 72M MLM, MVCL, PFP Bioinformatics, 2022
D-Transformer AA Seq & 3D Coord Swiss-Prot 540k 3.5M MLM, MVCL, PFP NeurIPS, 2025, ICLR, 2023
ESM-2 AA Seq UR50 70M 650M MLM Science, 2023
ESM Cambrian AA Seq UR70, MGnify, JGI 3B 600M MLM Science, 2025
SaProt AA Seq & 3D Coord UR50 40M 650M MLM ICLR, 2024

Domain Specific Models
ClipZyme AA Seq & 3D Coord & SMILES – 14.8M PCS ICML, 2024
UniZyme AA Seq & 3D Coord Swiss-Prot 11k 15.5M PCS NeurIPS, 2025
DeepProtacs AA Seq & 3D Coord & SMILES – 0.1M PROTACs Nature Communications, 2022
ETProtacs AA Seq & 3D Coord & SMILES – 5.4M PROTACs Briefings in Bioinformatic, 2025
KDBNet AA Seq & 3D Coord & SMILES – 3.4M PLI Nature Machine Intelligence, 2023
MONN AA Seq & 3D Coord – 1.7M PLI Cell Systems, 2024
DeepFRI AA Seq & 3D Coord Pfam 10M 1.8M PFA Nature Communications, 2021
DPFunc AA Seq & 3D Coord & Protein Domain – 110M PFA Nature Communications, 2025

(b) Summary of datasets and metrics for various prediction tasks.

Application Category Data Source #Train #Test Metric
Pretraining — (Consortium, 2019) 542,378 — —
Protein Cleavage Site Prediction Specialized (Rawlings et al., 2014) 375 92 AUC, AUPR
Targeted Protein Degradation Specialized (Ge et al., 2025) 843 209 Acc, AUC
Protein–Ligand Interactions General (Luo et al., 2023b) 11,520 2,880 MSE, Pearson
Protein Function Annotation Prediction General (Gligorijević et al., 2021; Jamasb et al., 2024) 23,760 2,023 Fmax, AUPR
Mutation Effect Prediction General (Notin et al., 2023) — 2.4M AUC, Pearson

2 PROTEIN MODELING IN PROTAP

In this section, we present an overview of how proteins are represented, modeled, and utilized within
the Protap benchmark. We begin by outlining the fundamental definitions of protein sequences and
structures. We then introduce the three pretraining tasks employed in Protap: masked language
modeling, multi-view contrastive learning, and protein family prediction, followed by a summary of
the corresponding models. Finally, we describe the downstream applications supported by Protap,
which include two specialized tasks, namely Enzyme-Catalyzed Protein Cleavage Site Prediction
and Targeted Protein Degradation by Proteolysis-Targeting Chimeras, as well as three general tasks:
Protein–Ligand Interactions, Protein Function Annotation Prediction, and Mutation Effect Predic-
tion for Protein Optimization.

2.1 PRELIMINARIES OF PROTEINS

A protein is composed of an amino acid sequence that folds into 3D structures. We denote a protein
with a residue sequence of length n by P = (S, C), where S is the set of sequential residues
and C denotes the spatial coordinates of residues. Specifically, the residue sequence is defined as
S = [a1, a2, . . . , an], with each residue ai ∈ A, where A denotes the set of 20 standard amino
acids. The residue coordinates are given as C = [c1, c2, . . . , cn], where each ci = [xi, yi, zi]

⊤ ∈ R3

represents the 3D coordinate of the Cα atom 1 corresponding to residue ai. More information about
the sequence and structures of the proteins can be found in Appendix C.

2.2 PRETRAINING TASKS AND PRETRAINING MODELS

Recently, the pretraining paradigm has achieved remarkable success across text, images, and
graphs (Devlin et al., 2019; Achiam et al., 2023; Radford et al., 2021; Hu et al., 2020). To fa-
cilitate protein modeling, various pretraining strategies and model architectures have also been in-
vestigated (Rives et al., 2021; Lin et al., 2023; Brandes et al., 2022; Su et al., 2024). In this work, our
Protap conducts a comprehensive analysis of representative protein pretraining tasks and models to
systematically understand their capabilities and limitations in downstream applications. The models
and pretraining tasks provided in Protap are summarized in Tab. 2 and briefly introduced below.

1The Cα atom serves as a stable backbone reference for each residue, commonly used due to its consistency
and significance in protein structure modeling.
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(a) Illustration of pretraining tasks in our Protap. (I) Masked Language Modeling is a self-supervised objective
designed to recover masked residues in protein sequences; (II) Multi-View Contrastive Learning leverages
protein structural information by aligning representations of biologically correlated substructures. Given two
views of the same protein; (III) Protein Family Prediction introduces functional and structural supervision by
training models to predict family labels based on protein sequences and 3D structures.
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(b) Illustration of downstream applications in our Protap. (I) Biological process of the enzyme-catalyzed pro-
tein hydrolysis; (II) Biological process of targeted protein degradation by PROTACs, where PROTACs
form a ternary complex with the target protein and E3 ligase, leading to target protein ubiquitination and degra-
dation; (III) In protein-ligand interaction, the ligand binds to the protein pocket, blocking interactions with
other molecules; (IV) Protein function annotation prediction reveals the biological activities a protein par-
ticipates in; (V) Mutation effect prediction optimizes protein properties or functions for protein engineering.

Figure 1: Overview of pre-training and downstream tasks in Protap.

Pretraining Task 1: Masked Language Modeling (MLM). This pretext task is based on the se-
quence information. A protein’s amino acid sequence adheres to an inherent grammar that encodes
its structural and functional properties (Anfinsen, 1973). Therefore, inspired by the success of text
modeling, masked language modeling has been adopted to train the protein language model (Rives
et al., 2021) to capture patterns underlying residue sequences. Specifically, as Fig. 1a (a) shows,
MLM aims to fill in missing amino acids in protein sequences given the masked residue sequence
of a protein. ProteinBERT (Brandes et al., 2022), ESM2 (Lin et al., 2023), ESM Carbrain (Hayes
et al., 2025) and various other protein language models have been pretrained using this MLM task.

Pretraining Task 2: Multi-View Contrastive Learning (MVCL). This pretext task is based on the
structural information. Protein structure plays a vital role in determining its biological function. Fur-
thermore, the local structures (motifs) within a protein are biologically related (Ponting & Russell,
2002; Mackenzie & Grigoryan, 2017). Inspired by this, multi-view contrastive learning (MVCL)
has been extended to preserve the representation similarity between the correlated substructures of
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proteins (Zhang et al., 2023). As shown in Fig. 1a (b), given a protein P , we generate two views
G+seq and G+space from its amino acid sequence as positive samples. Views from unrelated proteins
serve as negative samples. The MVCL objective is to align positive samples while contrasting them
with negative samples in the hidden representation space.

Pretraining Task 3: Protein Family Prediction (PFP). Different from the MLM and MVLC, this
task leverages auxiliary protein knowledge to introduce functional and structural supervision into
protein representation learning. A protein family is a group of evolutionarily related proteins de-
scended from a common ancestor, typically sharing similar three-dimensional structures, functions,
and significant sequence similarities (Sillitoe et al., 2021; Bateman et al., 2004). Consequently, the
Protein Family Prediction (PFP) task has been utilized to learn structurally contextualized repre-
sentations (Min et al., 2021). As illustrated in Fig. 1a (c), Protap also deploys the protein family
prediction to predict the ground-truth family labels y given the sequence S and the coordinate C.

Pretraining Models. In Protap, we incorporate and evaluate the following three categories of model
architectures pretrained by the aforementioned pretext tasks: (i) Sequence-based model: Protein-
BERT (Brandes et al., 2022), ESM-2 (Lin et al., 2023) and ESM Carbrain (Hayes et al., 2025) treat
the protein sequences as biological languages and adopt the transformer (Vaswani et al., 2017) to
extract the sequential patterns. (ii) Structure-based model: Protap also implementes EGNN (Sator-
ras et al., 2021), SE(3) transformer (Fuchs et al., 2020), and GVP (Jing et al., 2021), which are
representative equivariant architectures for structural information encoding. (iii) Sequence-structure
hybrid model: SaProt (Su et al., 2024) enhances the protein language model with explicit structure
vocabulary. Additionally, inspired by Transformer-M (Luo et al., 2023a) and Unizyme (Li et al.,
2025), Protap implements a D-Transformer, which introduces the residue distance matrix into the
sequence attention computation as shown in Tab. 2. Protap pretrains ProteinBERT, EGNN, SE3
transformer, GVP, and D-Transformer on each aforementioned pretraining task with UniProt (Con-
sortium, 2019), yielding 15 pretraining models. For the ESM-2 and SaProt, we directly adopt their
publicly available pretrained weights for protein modeling. More details of pretraining model archi-
tectures, pretraining datasets, and other pretraining details are given in Appendix F.

2.3 APPLICATIONS AND DOMAIN MODELS

In this subsection, we introduce the applications adopted in Protap, categorized into specialized and
general. Specialized applications focus on specific proteins or biological processes, while general
applications broadly apply across diverse proteins. We briefly describe each application along with
representative domain models. A complete list of implemented domain models is provided in Tab. 2,
and detailed experimental setups including datasets and metrics are available in Appendix D.

Specialized Application 1: Enzyme-Catalyzed Protein Cleavage Site Prediction (PCS). As il-
lustrated in Fig. 1b, proteolytic enzymes will first recognize specific amino acid sequences or struc-
tural motifs within substrate proteins with the enzyme’s active sites. Then, the enzymes catalyze the
cleavage of peptide bonds at the cleavage site. This fundamental biological process regulates protein
activity, turnover, and signaling across diverse biological contexts. Predicting the protein cleavage
sites under the catalysis of enzymes has many crucial applications, such as enzyme engineering
and therapeutic target identification. For example, in the design of enzyme inhibitors or prodrugs,
identifying key cleavage peptides under the catalysis of the HIV enzyme could enhance drug speci-
ficity (Lv et al., 2015). The enzyme-catalyzed protein cleavage site prediction can be formulated
as a residue-level binary classification task. Specifically, let Ps and Pe denote the protein substrate
and enzyme. The cleavage site predictor aims to learn the following function:

f : (Ps,Pe)→ {0, 1}|P
s|. (1)

The majority of existing methods, such as Procleave (Li et al., 2020a), construct enzyme-specific
features to identify the cleavage sites under the enzyme of interest. Recently, UniZyme (Li et al.,
2025) has leveraged both enzyme and substrate encoders to build a unified cleavage site predictor
that generalizes across various enzymes.

Specialized Application 2: Targeted Protein Degradation by Proteolysis-Targeting Chimeras
(PROTACs). A Proteolysis-targeting chimeras (PROTAC) is a heterobifunctional molecule consist-
ing of three components: a ligand for the targeted protein (commonly referred to as the warhead),
a chemical linker, and a ligand that recruits an E3 ubiquitin ligase. PROTACs have emerged as
powerful tools for selectively degrading disease-associated proteins via the ubiquitin-proteasome
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system (Marei et al., 2022). As illustrated in Fig. 1b, the PROTAC-mediated degradation process
begins with simultaneous binding of the PROTAC to the target protein and an E3 ligase, resulting in
a ternary complex. This complex subsequently facilitates the transfer of ubiquitin from the E2 en-
zyme to the target protein, ultimately leading to its proteasomal degradation. PROTACs offer several
advantages over conventional treatments. First, due to their catalytic mode of action, PROTACs re-
main effective at lower doses, potentially reducing side effects (Neklesa et al., 2017; Toure & Crews,
2016). Second, unlike traditional drugs that rely on accessible binding pockets, PROTACs can tar-
get proteins previously considered undruggable and overcome resistance caused by mutations near
active sites (Garber, 2022; Edmondson et al., 2019). However, the flexible ternary structure of PRO-
TACs also introduces a more complex structure-activity relationship, making modeling this process
more challenging. Formally, the prediction of PROTAC-mediated degradation of a target protein Pt

by an E3 ligase can be defined as:

f : (Warhead, Linker, E3 ligand︸ ︷︷ ︸
PROTAC

, E3 ligase, Pt)→ {0, 1} (2)

To achieve the above task, initial efforts have been conducted to model the ternary complex for-
mation induced by PROTAC molecules (Li et al., 2022; Cai et al., 2025): DeepPROTACs employs
GCNs to encode the ternary complex. ET-PROTAC considers the cross-talk between the PROTAC,
target protein, and E3 ligase, which enables the modeling of the complex process in the targeted
protein degradation.

General Application 3: Protein–Ligand Interactions (PLI). As illustrated in Fig. 1b, pro-
tein–ligand binding refers to the highly specific and affinity-driven interaction between a protein
and a small molecule ligand, resulting in a stable complex that can block the binding of other
molecules (Miller & Dill, 1997). The binding affinity can be quantified by the Gibbs free energy
change ∆G of the protein-ligand complex, where a more negative ∆G indicates stronger bind-
ing affinity. Accurate prediction of protein–ligand binding affinity enables efficient identification
of promising drug candidates and accelerates the optimization of therapeutic molecules. For ex-
ample, kinases play critical roles in regulating cell growth and survival pathways implicated in
cancer. Thus, predicting kinase–ligand binding affinity facilitates the effective screening of kinase
inhibitors, which can selectively block these pathways. The screened kinase inhibitors are promising
candidates for targeted cancer therapy. Formally, predicting protein–ligand binding affinity can be
formulated as a regression task: f : (P,M)→ R, where P denotes the protein andM denotes the
ligand molecule. Some domain-specific methods, such as MONN (Li et al., 2020b), do not rely on
structural information. To mitigate the false positive issue, KDBNet (Luo et al., 2023b) applied an
uncertainty recalibration technique to refine the uncertainty estimates.

General Application 4: Protein Function Annotation Prediction (PFA). To systematically rep-
resent protein functions, the Gene Ontology (GO) annotation framework was developed (Ashburner
et al., 2000), providing structured annotations across Molecular Function (MF), Cellular Component
(CC), and Biological Process (BP). For instance, in the Molecular Function (MF) aspect, a protein
may be annotated with specific biochemical activities, such as immune Response or signal transduc-
tion. Among the known protein sequences, fewer than 1% have experimentally validated functional
annotations. Predicting the GO terms of proteins helps researchers better understand protein func-
tions and potentially guide the discovery and design of proteins with desired functional properties.
Protein function prediction is inherently a multi-label classification task. Early methods relied on
sequence alignment or direct modeling of the sequence. More recent approaches have progressively
integrated additional modalities. For example, DeepFRI (Gligorijević et al., 2021) combines protein
structure and pre-trained sequence embeddings using a GCN, DPFunc (Wang et al., 2025) further
incorporates domain-level information, and the PLM-based DeepGO-SE (Kulmanov et al., 2024).

General Application 5: Mutation Effect Prediction for Protein Optimization (MTP). Protein
mutations refer to the substitution, insertion, or deletion of amino acids within protein sequences.
As illustrated in Fig. 1b, mutations are frequently associated with changes in functional properties
such as stability, binding affinity, and pathogenicity. Computational models can explore the protein
fitness landscape to map sequences or structures to functional properties, which can enable protein
optimization with mutations. For example, mutations in antibodies or protein complexes can be
systematically explored to discover variants with enhanced binding affinity (Cai et al., 2024). MTP
can be formulated as estimating changes in target properties (e.g., stability changes measured by
∆∆G) resulting from protein mutations. Due to limited experimental annotations, mutation effect

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

prediction typically relies on a zero-shot learning setting. Recently, protein language models (PLMs)
have shown promise in mutation effect prediction due to their ability to capture patterns learned
from evolutionary data. PLMs tend to assign higher probabilities to mutations that are consistent
with evolutionary patterns, and these mutations are more likely to yield beneficial functional effects.
Details of the zero-shot mutation effective prediction with PLMs can be found in Appendix D.5.

3 EXPERIMENTS

In this section, we conduct empirical studies to compare domain models and various pretraining
frameworks and strategies on the downstream applications described in Sec. 2.3.

3.1 EXPERIMENTAL SETUP

Pre-training Dataset. For pre-training, we collect 542,378 protein structures from AlphaFold Pro-
tein Structure Database (AFDB) and obtain the corresponding amino acid sequences and protein
family labels from UniProt (Varadi et al., 2022; Consortium, 2019). This curated dataset spans di-
verse and non-redundant protein structures, enabling a comprehensive evaluation of different train-
ing strategies. ESM-2 and SaProt are trained on protein sequences from UniRef (Consortium,
2019), while ESM-C further incorporates sequences from MGnify (Richardson et al., 2023) and
the JGI (Nordberg et al., 2014). Additional dataset details are provided in Appendix F.2.

Downstream Application Dataset. Each downstream task uses the same dataset for both training-
from-scratch and fine-tuning to ensure fair comparison. All datasets are collected from peer-
reviewed sources and standardized through quality control and formatting, as detailed in Ap-
pendix D. Specifically, PROTACs data are from PROTAC-DB (Ge et al., 2025), cleavage data from
MEROPS (Rawlings et al., 2014), protein–ligand interactions from KDBNet, function prediction
from DeepFRI (Gligorijević et al., 2021) (with structural data from ProteinWorkshop (Jamasb et al.,
2024)), and mutation prediction from ProteinGym (Notin et al., 2023).

Downstream Task Training. Pretrained models serve as protein encoders in two settings: (i) Train-
ing from scratch, where all parameters are randomly initialized and trained end-to-end; (ii) Freeze
encoder fine-tuning, where encoders are initialized with pretrained weights and frozen, while only
task-specific heads are updated; (iii) Full parameter fine-tuning, where both encoders and task-
specific heads are updated. All domain-specific models are trained from scratch.

Molecular Encoders in Downstream Applications. The applications of PLI and PROTACs in-
volve various chemical molecules in the interactions with proteins, requiring a molecular encoder.
To maintain consistency across interaction tasks, molecular components, drugs in PLI, warheads,
linkers, and E3-ligands in PROTACs are encoded using randomly initialized GVP encoders. For
domain-specific models, molecular encoders follow their original implementations.

Model Setups. We use fixed random seeds 42, 128, 256, 512, 1024 for reproducibility, and report
mean ± standard deviation over five runs. All models are trained with the Adam optimizer. The
learning rate follows a linear warm-up over 10% of training steps, then cosine annealing to 1e-6,
with a peak of 1e-4. More training details are provided in Appendix D.

3.2 IMPACTS OF VARIOUS PRETRAINING ON DOWNSTREAM PERFORMANCE

Our experiments aim to make comparisons across the following three perspectives: (i) The scalabil-
ity of pretraining (e.g., ESM-2 vs. compact models like EGNN). (ii) The model architectures (e.g.,
structural models vs. protein language models). (iii) The strategies of pretraining. Therefore, we ex-
amine three pretraining tasks employed in Protap as described in Sec. 2.2, which are MLM, MVCL,
and PFP. We pre-train EGNN, SE(3) Transformer (SE(3) Trans), GVP, ProteiBERT (ProtBERT),
and D-Transformer (D-Trans) with all three tasks with 542k proteins to obtain pretraining encoders,
which are listed in Tab. 2 and are detailed in Appendix F. For ESM-2 and ESM-C, we testify to the
publicly released pretrained weights that are learned via MLM training on 70M proteins.

Here, we discuss on the training from scratch and the freeze encoder fine-tuning. The results are in
Tab. 3, and we answer the following research questions. Results under full parameter finetuning are
provided in Appendix A.2.

RQ1: Can frozen pretraining encoders outperform a supervised encoder that trained on the
downstream training set from scratch?

7
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Table 3: Performance comparison across model architectures under different training strategies.
The first line for each model (e.g., EGNN) denotes a randomly initialized protein encoder trained
purely with downstream task supervision. The subsequent lines (e.g., w/MLM) represent pretrained
encoders with frozen weights, where only the task-specific head is fine-tuned. Results under full
parameter finetuning are provided in Appendix A.2. Mutation effect prediction (MTP) is only ap-
plicable to masked language modeling.

Model
PCS PROTACs PLI PFA MTP

C14.005 M10.003 PROTACDB Davis MF DMS
AUC(%)↑ AUPR(%)↑ AUC(%)↑ AUPR(%)↑ Acc(%)↑ AUC(%)↑ MSE↓ Pear(%)↑ Fmax(%)↑ AUPR(%)↑ Pear(%)↑ AUC(%)↑

EGNN 95.51 ± 0.03 35.44 ± 0.06 90.24 ± 0.32 15.04 ± 1.18 80.19 ± 1.23 88.55 ± 1.78 0.492 ± 0.031 57.11 ± 1.11 4.03 ± 0.18 4.75 ± 0.08 – –
w/MLM 95.11 ± 0.31 19.61 ± 1.16 79.19 ± 0.11 4.12 ± 0.12 80.24 ± 1.20 88.19 ± 1.59 0.486 ± 0.058 56.56 ± 1.47 4.21 ± 0.01 6.52 ± 0.05 30.25 65.68
w/MVCL 94.80 ± 0.00 19.61 ± 1.16 82.84 ± 0.68 3.23 ± 0.13 78.78 ± 2.57 86.02 ± 1.00 0.510 ± 0.035 52.68 ± 5.15 4.13 ± 0.01 5.78 ± 0.00 – –
w/PFP 95.09 ± 0.41 27.95 ± 0.99 82.45 ± 0.73 5.43 ± 0.87 79.72 ± 1.44 87.64 ± 1.01 0.483 ± 0.013 55.74 ± 1.92 9.06 ± 0.18 8.23 ± 0.09 – –

SE(3) Trans 81.76 ± 3.11 2.07 ± 0.81 67.12 ± 0.05 1.01 ± 0.01 79.23 ± 1.03 87.59 ± 1.55 0.566 ± 0.137 55.91 ± 1.24 3.93 ± 0.00 4.10 ± 0.23 – –
w/MLM 67.65 ± 1.31 0.55 ± 0.03 66.81 ± 0.54 1.15 ± 0.11 80.56 ± 2.08 87.64 ± 1.45 0.536 ± 0.033 55.83 ± 1.51 3.42 ± 0.00 2.37 ± 0.03 20.63 59.87
w/MVCL 44.01 ± 0.72 0.20 ± 0.00 52.16 ± 2.50 0.53 ± 0.07 68.11 ± 5.57 77.84 ± 2.23 0.819 ± 0.164 48.42 ± 2.86 3.39 ± 0.00 2.38 ± 0.01 – –
w/PFP 69.27 ± 2.55 0.81 ± 0.17 66.24 ± 3.13 1.20 ± 0.16 79.24 ± 1.16 87.53 ± 1.07 0.539 ± 0.038 52.06 ± 2.30 3.55 ± 0.06 2.58 ± 0.10 – –

GVP 95.55 ± 0.46 17.99 ± 5.02 86.05 ± 1.68 5.40 ± 0.52 70.67 ± 1.42 77.58 ± 1.12 0.516 ± 0.007 49.52 ± 2.59 5.41 ± 0.11 2.15 ± 0.03 – –
w/MLM 93.23 ± 0.34 8.31 ± 0.87 80.94 ± 0.45 4.03 ± 0.11 70.03 ± 2.16 77.51 ± 1.07 0.524 ± 0.007 48.52 ± 2.62 9.21 ± 0.26 4.05 ± 0.12 20.78 60.65
w/MVCL 94.84 ± 0.25 8.74 ± 0.66 83.97 ± 0.27 3.69 ± 0.19 70.75 ± 2.15 78.45 ± 1.30 0.505 ± 0.006 51.15 ± 2.00 9.54 ± 0.59 4.89 ± 0.29 – –
w/PFP 62.12 ± 0.43 0.32 ± 0.01 57.60 ± 0.73 0.61 ± 0.02 70.83 ± 1.32 77.64 ± 1.32 0.518 ± 0.006 49.24 ± 1.15 10.12 ± 0.07 5.30 ± 0.02 – –

ProtBERT 95.49 ± 0.09 40.49 ± 0.25 89.83 ± 0.05 10.74 ± 0.12 75.38 ± 1.51 84.13 ± 1.89 0.521 ± 0.020 50.23 ± 1.24 3.39 ± 0.00 2.93 ± 0.01 – –
w/MLM 95.45 ± 0.10 9.37 ± 0.62 85.56 ± 0.76 7.12 ± 0.06 78.20 ± 1.14 86.75 ± 1.78 0.519 ± 0.033 52.67 ± 1.13 4.15 ± 0.01 4.27 ± 0.01 14.20 60.92
w/MVCL 95.78 ± 0.21 28.51 ± 0.06 86.13 ± 0.19 7.16 ± 0.39 79.06 ± 2.71 86.45 ± 1.08 0.553 ± 0.049 55.82 ± 1.67 3.51 ± 0.00 4.66 ± 0.03 – –
w/PFP 64.25 ± 0.35 0.36 ± 0.00 57.29 ± 0.10 0.67 ± 0.01 80.51 ± 1.03 87.46 ± 1.71 0.533 ± 0.048 54.81 ± 2.08 6.05 ± 0.05 5.64 ± 0.01 – –

D-Trans 97.60 ± 0.08 61.42 ± 1.30 88.28 ± 0.79 22.82 ± 2.95 80.08 ± 1.08 86.58 ± 0.28 0.416 ± 1.028 60.92 ± 0.22 19.57 ± 0.80 11.16 ± 0.67 – –
w/MLM 96.53 ± 0.52 20.12 ± 2.86 84.10 ± 0.66 11.73 ± 1.41 77.78 ± 1.93 85.16 ± 0.89 0.494 ± 1.116 55.79 ± 0.50 17.92 ± 0.14 9.85 ± 0.09 -0.09 56.84
w/MVCL 95.23 ± 0.46 41.26 ± 10.3 83.50 ± 0.79 15.85 ± 1.30 74.16 ± 1.44 82.32 ± 0.81 0.550 ± 2.620 54.21 ± 0.08 15.87 ± 0.26 8.00 ± 0.20 – –
w/PFP 96.40 ± 0.59 39.56 ± 5.55 85.51 ± 0.42 12.29 ± 1.26 74.76 ± 1.08 82.34 ± 0.09 0.445 ± 1.064 56.46 ± 0.01 17.46 ± 0.18 9.46 ± 0.12 – –

ESM-2 97.23 ± 0.06 41.22 ± 0.25 86.34 ± 0.12 6.16 ± 0.07 78.46 ± 3.03 85.74 ± 3.47 0.491 ± 4.823 53.25 ± 1.26 49.79 ± 0.03 43.44 ± 0.17 43.05 73.48

ESM-C 95.76 ± 0.01 38.28 ± 0.08 88.08 ± 0.00 8.06 ± 0.08 80.47 ± 0.90 86.74 ± 0.37 0.461 ± 0.037 53.41 ± 0.87 38.27 ± 0.16 30.31 ± 0.12 42.51 73.24

SaProt 96.16 ± 0.16 42.91 ± 0.27 89.18 ± 0.06 13.48 ± 0.03 73.44 ± 1.32 80.29 ± 0.70 0.473 ± 0.004 51.66 ± 0.67 33.06 ± 0.09 25.21 ± 0.11 49.22 76.89

Overall, supervised encoders trained from scratch tend to outperform the pretraining encoders even
when they are trained with large-scale datasets. For example, though ESM-2 (650M parameters)
already achieves competitive performance, ESM-2 is often worse than the EGNN (10M parameters)
encoder trained for the downstream tasks from scratch. This suggests a degree of mismatch between
the pretraining objectives and the downstream tasks, indicating that training from scratch enables
the model to learn task-specific representations that are more aligned with the requirements of the
downstream task.

RQ2: In what ways do variations in pretraining objectives impact the effectiveness of models
on downstream tasks?
No significant patterns were observed regarding the impact of different pretraining strategies on
downstream tasks. Various pretraining approaches do not exhibit a clear preference for specific
downstream tasks. However, excluding models trained from scratch, those pretrained with PFP
consistently achieve the best results on the PFA task compared to other pretraining methods, sup-
porting the claim that proteins within the same family often share similar biological functions, and
incorporating protein family information during pretraining aids functional prediction.

RQ3: Are models incorporating structures better than those purely using protein sequences?
Models that incorporate structural information generally achieve superior performance. Except for
the PFA task, models such as EGNN, SE(3)-Trans, and D-Trans, which integrate spatial features,
consistently outperform larger pretrained protein language models such as ESM-2 and ProtBERT.
This observation highlights two key insights: (i) The inclusion of three-dimensional structural in-
formation provides essential inductive biases that are absent in sequence-only architectures. (ii)
Architectural alignment with biochemical properties can be more important than the sheer size of
pretrained models in achieving strong performance on downstream protein-related tasks.

3.3 COMPARISON BETWEEN PRETRAINED MODELS AND DOMAIN-SPECIFIC MODELS

We compare the pretraining model architectures with eight domain-specific models, which are listed
in Tab. 2. Since the representative solution of mutation effect prediction is protein language models,
we omit the comparison on mutation effect prediction. For the pretraining model architectures, we
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Table 4: Comparisons between general and domain models across four downstream tasks.

(a) Comparisons between general and domain models on protein cleavage site prediction.

General Architecture Domain Model

Metrics EGNN SE3 GVP ProtBERT D-Transformer Clipzyme Unizyme

C14.005 AUC(%)↑ 95.51 ± 0.03 81.76 ± 3.11 95.55 ± 0.46 95.49 ± 0.09 97.60 ± 0.08 92.27 ± 0.40 96.23 ± 0.10
AUPR(%)↑ 35.44 ± 0.06 2.07 ± 0.81 17.99 ± 5.02 40.49 ± 0.25 61.42 ± 1.30 43.23 ± 1.00 52.20 ± 0.90

M10.003 AUC(%)↑ 90.24 ± 0.32 67.12 ± 0.05 86.05 ± 1.68 89.83 ± 0.05 88.28 ± 0.79 82.50 ± 0.30 87.04 ± 0.20
AUPR(%)↑ 15.04 ± 1.18 1.01 ± 0.01 5.40 ± 0.52 10.74 ± 0.12 22.82 ± 2.95 5.81 ± 0.20 7.28 ± 0.40

(b) Comparisons between general and domain models on PROTACs.

General Architecture Domain Model

Metrics EGNN SE3 w/MLM GVP w/MVCL ProtBERT w/PFP D-Transformer w/PFP DeepPROTACs ET-PROTACs

Acc(%)↑ 80.19 ± 1.23 80.56 ± 2.08 70.75 ± 2.15 80.51 ± 1.03 80.08 ± 1.08 70.12 ± 0.83 78.87 ± 0.88
AUC(%)↑ 88.55 ± 1.78 87.64 ± 1.45 78.45 ± 1.30 87.46 ± 1.71 86.58 ± 0.28 77.59 ± 1.22 78.64 ± 1.21

(c) Comparisons between general and domain models on Protein-Ligand Interaction.

General Architecture Domain Model

Metrics EGNN SE3 GVP w/MVCL ProtBERT w/MVCL D-Transformer KDBNet MONN

MSE↓ 0.492 ± 0.031 0.566 ± 0.137 0.505 ± 0.006 0.553 ± 0.049 0.416 ± 1.02 0.342 ± 0.018 0.750 ± 0.054
Pear(%)↑ 57.11 ± 1.11 55.91 ± 1.24 51.15 ± 2.00 55.82 ± 1.67 60.92 ± 0.22 70.97 ± 1.82 50.30 ± 3.60

(d) Comparisons between general and domain models on protein function prediction.

General Architecture Domain Model

Metrics EGNN w/PFP SE3 GVP w/PFP ProtBERT w/PFP D-Transformer DeepFRI Deepfunc

Fmax(%)↑ 9.06 ± 0.18 3.93 ± 0.00 10.12 ± 0.07 6.05 ± 0.05 19.57 ± 0.80 26.01 ± 0.45 45.40 ± 0.41
AUPR(%)↑ 8.23 ± 0.09 4.10 ± 0.23 5.30 ± 0.02 5.64 ± 0.01 11.16 ± 0.67 32.77 ± 0.58 50.84 ± 0.30

report the best training strategies according to Tab. 3. The comparison between pretrained model
architectures and domain-specific architectures is given in Tab. 4 (a)-(d). In particular, we aim to
answer the following research questions.

RQ4: How do the domain-specific models perform compared with general ones?
The performance of domain-specific models and pretrained models varies across different tasks.
We observe that on the protein-ligand interaction and protein function annotation prediction task,
the domain-specific models could outperform the general model architectures by a large margin.
However, for the applications of PROTACs that exhibit complex interaction processes, the general
framework EGNN exhibits great results. SaProt greatly outperforms other models in mutation ef-
fects prediction, including ESM-2. This is likely attributable to the Structure-Vocabulary, which
reduces local sequence ambiguity and mitigates semantic confusion.

RQ5: To what extent does incorporating biochemical inductive biases improve generalization
across Enzyme-Catalyzed Protein Cleavage Site Prediction?
EGNN, UniZyme, and D-Trans exhibit superior performance on the protein task, e.g., D-Trans
achieves 97.60 ± 0.08 on C14.005 while EGNN achieves 90.24 ± 0.32 on M10.003. UniZyme
obtains comparable results. These indicate that the use of biochemical priors, such as energy frus-
tration and distance matrix, facilitates improved detection of functional regions in proteins.

4 CONCLUSION AND FUTURE WORKS

We introduce Protap, a unified benchmark that brings together general-purpose pretraining archi-
tectures and domain-specific models to evaluate five key protein modeling applications under a
standard, reproducible framework. Our extensive experiments indicate that no single model or
pretraining objective can outperform all others across applications. The architecture and training
strategy must be chosen based on the specific characteristics of each task. There are two directions
that need further investigation: (i) We will further explore the scaling laws that govern how model
capacity and pretraining data volume translate into downstream gains. (ii) We will extend Protap to
holistically cover protein design tasks, e.g., peptide design, enzyme design.
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5 REPRODUCIBILITY STATEMENT

Our implementations are based on widely adopted architectures, pretraining strategies, and
downstream evaluation pipelines for protein modeling. The code is available at https://
anonymous.4open.science/r/protap-1CC5. To ensure reproducibility, we provide de-
tailed descriptions of the pretraining objectives in Section 2.2, along with the corresponding train-
ing configurations in Appendix F.2. Hyperparameters for all models, including learning rate
schedules, batch sizes, and optimization settings, are explicitly reported in Section 3 and Ap-
pendix F.2. The datasets used for both pretraining and downstream evaluation are publicly avail-
able at https://doi.org/10.5281/zenodo.17192817, and we specify their sources in
Tab. 2 (b), and provide more details in Appendix D. The exact evaluation metrics are specified in
Section Appendix D. These details, combined with the systematic comparison across architectures
and strategies presented in Tab. 3 and Tab. 4, allow independent researchers to reproduce our results
based on the manuscript alone.

6 ETHICS STATEMENT

We introduce Protap, a benchmark designed to systematically evaluate protein models on diverse
downstream tasks without additional training. Protap itself does not generate or modify proteins;
rather, it provides a standardized platform for assessing model capabilities. As such, the ethical
implications primarily depend on how insights from Protap are applied. Potentially beneficial appli-
cations include accelerating biomedical research, enabling more reliable drug discovery pipelines,
and supporting the development of sustainable biotechnologies. While there is a theoretical risk that
advances in model evaluation could indirectly inform harmful misuse, such risks are significantly
outweighed by the anticipated societal benefits of improving our understanding of protein modeling
and ensuring the responsible development of computational biology tools.
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A SUPPLEMENTAL EXPERIMENTS AND OBSERVATIONS

A.1 DESCRIPTIONS AND CATEGORIZATION OF DOMAIN-SPECIFIC MODELS

The primary distinction between domain models and general models lies in their task-specific de-
sign. Domain models are tailored for particular tasks by enabling interaction between represen-
tations of different components and incorporating biochemical priors to enhance the encoder. In
addition, domain models also leverage knowledge from other biochemical databases to preprocess
the data, enabling the extraction of task-relevant key regions. Below, we summarize the character-
istics of each domain model in relation to its respective tasks. Detailed task descriptions and model
architectures are found in Appendix D and Appendix E.

Table 5: Domain Model Categorization

Category Model

Biochemical Prior Enhancement UniZyme, CLIPZyme, KDBNet, DeepFRI
Cross-Component Interaction ET-PROTACs, DeepPROTACs
Hybrid DPFunc, MONN

Enzyme-Catalyzed Protein Cleavage Site Prediction (PCS)

• UniZyme. UniZyme (Li et al., 2025) not only incorporates pretraining for enzyme active site
prediction but also introduces energetic frustration, an intrinsic biophysical phenomenon that di-
rectly reflects active site properties and catalytic mechanisms. The integration of such biochemical
priors enhances the generalization capability of the enzyme encoder.

• ClipZyme. ClipZyme (Mikhael et al., 2024) formulates enzyme function prediction as a reaction-
centric retrieval task, aligning enzyme representations with chemical reaction embeddings in
a shared latent space. By explicitly modeling atom-mapped reaction graphs and constructing
pseudo-transition states, the framework integrates reaction mechanism information that is specific
to enzymatic catalysis.

Targeted Protein Degradation by Proteolysis-Targeting Chimeras (PRAOTACs)

• DeepPROTACs. DeepPROTACs (Li et al., 2022) circumvent explicit modeling of the ternary
complex by encoding different components of the Target protein–PROTAC–E3 ligase system us-
ing separate neural network modules.

• ET-PROTACs. ET-PROTACs (Cai et al., 2025) utilizes a cross-modal strategy and ternary atten-
tion mechanism, the model fully accounts for the cross-talk between PROTACs, target proteins,
and E3 ligases, enabling more accurate modeling of ternary complex interactions.

Protein–Ligand Interactions (PLI)

• KDBNet. KDBNet (Luo et al., 2023b) does not model the entire protein, instead, it defines
the binding pocket based on prior knowledge from the KLIFS database. In modeling kinases,
it incorporates both geometric and evolutionary features, including backbone torsion angles and
embeddings derived from the ESM language model.

• MONN. MONN (Li et al., 2020b) is a multi-objective neural network designed to simultaneously
predict non-covalent interactions and binding affinity between compounds and proteins, without
relying on structural information.

Protein Function Annotation Prediction (PFA)

• DeepFRI. DeepFRI (Gligorijević et al., 2021) employs graph convolutional networks
(GCNs) (Kipf & Welling, 2017) to process protein contact maps and integrates representations
pretrained on Pfam sequences.

• DPFunc. DPFunc (Wang et al., 2025) identifies key functional regions within protein structures
and precisely predicts their associated biological functions by leveraging protein domain informa-
tion.
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A.2 ADDITIONAL OBSERVATIONS

Table 6: Performance comparison across model architectures under different training strategies with
full parameter fine-tuning.

Model
PCS PROTACs PLI

C14.005 PROTACDB Davis
AUC(%)↑ AUPR(%)↑ Acc(%)↑ AUC(%)↑ MSE↓ Pear(%)↑

EGNN w/MLM 95.36 ± 0.06 19.23 ± 0.31 79.03 ± 0.61 88.50 ± 0.37 0.461 ± 0.010 57.56 ± 1.18
EGNN w/MVCL 94.80 ± 0.00 19.61 ± 1.16 76.89 ± 2.50 88.81 ± 0.50 0.484 ± 0.031 56.18 ± 0.12
EGNN w/PFP 95.09 ± 0.41 27.95 ± 0.99 79.01 ± 0.55 87.65 ± 0.33 0.523 ± 0.036 55.44 ± 2.72

SE(3) Trans w/MLM 67.65 ± 1.31 0.55 ± 0.03 77.54 ± 0.06 87.08 ± 1.79 0.681 ± 0.109 43.20 ± 4.63
SE(3) Trans w/MVCL 44.01 ± 0.72 0.20 ± 0.00 75.59 ± 2.54 83.70 ± 0.04 1.110 ± 0.074 34.34 ± 4.76
SE(3) Trans w/PFP 69.27 ± 2.55 0.81 ± 0.17 77.60 ± 0.39 87.06 ± 0.66 0.536 ± 0.047 47.94 ± 3.51

ProtBERT w/MLM 95.45 ± 0.10 9.37 ± 0.62 77.09 ± 0.36 85.83 ± 0.73 0.511 ± 0.011 49.81 ± 1.32
ProtBERT w/MVCL 95.78 ± 0.21 28.51 ± 0.06 73.58 ± 0.13 83.40 ± 0.33 0.511 ± 0.008 50.25 ± 1.76
ProtBERT w/PFP 64.25 ± 0.35 0.36 ± 0.00 78.79 ± 0.85 87.41 ± 1.00 0.529 ± 0.018 49.99 ± 1.77

GVP w/MLM 89.09 ± 0.00 11.76 ± 0.01 72.54 ± 0.06 79.03 ± 0.01 0.438 ± 0.013 47.28 ± 0.00
GVP w/MVCL 88.68 ± 0.00 10.96 ± 0.01 71.45 ± 0.42 78.19 ± 0.13 0.423 ± 0.011 59.31 ± 0.00
GVP w/PFP 71.83 ± 0.01 1.50 ± 0.00 72.72 ± 0.36 79.94 ± 0.58 0.431 ± 0.002 59.04 ± 0.00

D-Trans w/MLM 94.40 ± 1.13 29.93 ± 0.09 74.46 ± 0.78 81.44 ± 0.59 0.464 ± 0.023 55.79 ± 0.50
D-Trans w/MVCL 98.11 ± 0.28 36.50 ± 3.17 73.26 ± 0.18 81.25 ± 0.50 0.437 ± 0.002 59.91 ± 0.13
D-Trans w/PFP 96.65 ± 0.21 34.55 ± 2.53 73.50 ± 0.30 82.64 ± 0.05 0.441 ± 0.020 59.66 ± 0.75

ESM-2 93.10 ± 1.71 55.09 ± 0.22 81.25 ± 1.44 88.17 ± 1.10 0.416 ± 0.011 59.59 ± 0.35

ESM-C 94.42± 0.10 35.25 ± 2.48 79.81 ± 0.36 86.65 ± 0.37 0.461 ± 0.00 53.35 ± 0.84

SaProt 94.75 ± 0.00 57.35 ± 0.01 81.43 ± 0.90 87.16 ± 0.13 0.423 ± 0.008 58.81 ± 0.02

To provide a more comprehensive evaluation, we perform full parameter fine-tuning of the pretrained
models on three downstream tasks, namely PCS, PROTACs, and PLI, with all encoder parameters
updated during training. The corresponding results are presented in the Tab. 6.

Observation 1. Full-parameter fine-tuning has mixed effects across different models, but overall
leads to slightly lower performance compared to the encoder-freezing setting.

Table 7: Results on KIBA Dataset.

EGNN EGNN w/PFP SE(3) Trans SE(3) Trans w/MVCL ProtBERT ProtBERT w/MVCL ESM-2

MSE↓ 0.434 ± 0.007 0.396 ± 0.006 0.442 ± 0.034 0.473 ± 0.026 0.471 ± 0.005 0.393 ± 0.001 0.454 ± 0.004
Pear(%)↑ 65.09 ± 0.68 65.27 ± 0.15 63.19 ± 1.15 58.57 ± 1.84 60.89 ± 3.66 65.10 ± 0.76 58.14 ± 0.01

We additionally report the performance of EGNN, SE(3)-Transformer, ProteinBERT, and ESM-2 on
the PLI task using the KIBA dataset, as shown in Tab. 7. Compared with the result on the DAVIS
dataset, we observe that as the dataset size increases from 14,464 to 89,958, the performance of all
models on the PLI task improves to varying degrees. Notably, the SE(3) Transformer benefits little
from pretraining, whereas ProteinBERT shows a moderate performance gain due to pretraining.

Observation 2. Model performance on downstream tasks like PLI consistently improves with
increased data size, indicating a power-law-like scaling trend.

Furthermore, we visualize the relationship between model size and performance across four down-
stream tasks, as shown in Fig. 2 and Fig. 3. Our observation is summarized as follows:
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Observation 3. Large-scale models such as SaProt, ESM-2 and ESM-C demonstrate clear ad-
vantages on tasks that require only a single protein sequence as input, such as PFA and MTP.
However, when downstream tasks involve more complex inputs, e.g., the PROTACs task, which
implicitly requires the alignment between protein and compound representations, smaller mod-
els like D-Transformer and EGNN tend to perform better, suggesting their stronger capacity to
handle multi-modal integration despite having fewer parameters.

Observation 4. For domain-specific models, we do not observe clear evidence that larger model
size consistently leads to better performance across downstream tasks. In the PROTACs task,
both domain-specific models perform poorly. However, in the PLI and GO tasks, these models
achieve strong results despite their relatively small sizes, suggesting that domain knowledge may
play a more critical role than scale in certain contexts.

Training from Scratchw/Masked Language Modeling

w/Multi-View Contrastive Learning w/Protein Family Prediction

#Params (Million)

0.2M
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Model Category
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(a) Comparisons between general and domain models on protein cleavage site prediction (PCS).

Training from Scratchw/Masked Language Modeling

w/Multi-View Contrastive Learning w/Protein Family Prediction
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SE(3)-Trans

GVP

D-Trans
ProtBERT
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SE(3)-Trans

GVP

D-Trans
ProtBERT

ESM2

SaProt

EGNN

SE(3)-Trans

GVP

D-Trans
ProtBERT

EGNN

SE(3)-Trans

GVP

D-Trans
ProtBERT

78 80 82 84 86 88
AUC (%)

(b) Comparisons between general and domain models on targeted protein degradation by proteolysis-targeting
chimeras (PROTACs).

Figure 2: Visualization of model size and performance across two specialized tasks: (a) PCS and
(b) PROTACs. Each point represents a model, with size indicating parameter count and color inten-
sity reflecting task performance. Each point represents a model, with its size corresponding to the
number of parameters, ranging from 2M for GVP to 650M for ESM. Larger points indicate larger
models. The color intensity of each point indicates performance, with darker shades representing
stronger results. The dashed circular boundaries group models by category: models incorporating
geometric information in color, protein language models in color, and domain-specific models in
color.
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Training from Scratchw/Masked Language Modeling

w/Multi-View Contrastive Learning w/Protein Family Prediction
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(a) Comparisons between general and domain models on Protein-Ligand Interaction (PLI).
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(b) Comparisons between general and domain models on protein function prediction (PFA).

Figure 3: Visualization of model size and performance across two general tasks: (a) PLI and (b) PFA.
Each point represents a model, with size indicating parameter count and color intensity reflecting
task performance.
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B RELATED WORKS

Existing benchmarks for protein modeling primarily emphasize sequence-based models. TAPE (Rao
et al., 2019) introduces standardized sequence-centric tasks, including structure prediction and re-
mote homology detection. PEER (Xu et al., 2022) expands the sequence-based scope to cover pro-
tein–protein interactions and functional annotations. ProteinGLUE (Capel et al., 2022) is another
sequence-based benchmark designed to evaluate sequence pretraining methods. ProteinGym (Notin
et al., 2023) establishes an evaluation framework for mutation effect prediction with protein language
models. ProteinBench (YE et al., 2025) evaluates protein foundation models mainly in protein gen-
eration tasks. Among existing benchmarks, ProteinWorkshop (Jamasb et al., 2024) incorporates the
equivariant graph neural networks to evaluate the structure-based models. However, ProteinWork-
shop lacks a unified benchmarking pipeline that systematically compares sequence-based, structure-
based, and hybrid models within a standardized framework.

Furthermore, existing benchmarks predominantly focus on general model architectures such
as LSTMs (Hochreiter & Schmidhuber, 1997), Transformers (Vaswani et al., 2017), and EG-
NNs (Satorras et al., 2021). In contrast, Protap explores the advantages of domain-specific model
designs and the integration of domain knowledge. Our Protap systematically benchmarks domain-
specific models alongside pretrained models with general architectures. This can provide deeper
insights into effective model design and performance. Moreover, Protap introduces two novel spe-
cialized applications: enzyme-catalyzed protein cleavage site prediction and targeted protein degra-
dation by PROTACs, which are biological processes not considered by prior benchmarks. A more
comprehensive comparison between existing benchmarks is presented in Tab. 1.

C PRELIMINARIES

C.1 PROTEIN DATA

Proteins obtained through high-throughput sequencing are typically represented as sequences. How-
ever, using laboratory techniques such as X-ray crystallography, electron microscopy, XFEL, and
nuclear magnetic resonance, the 3D structures of proteins can be elucidated. Unlike Computer Vi-
sion and Natural Language Processing, proteins can be characterized using various descriptions,
such as 1D sequences, 2D graphs, and 3D structures.

Sequence. The most common representation is the amino acid sequence, typically in FASTA format
using single-letter codes. Sequence-based models, originally RNNs and CNNs, are now dominated
by Transformers due to their superior long-range modeling. Large pre-trained models such as ESM-
2 (Rives et al., 2021; Lin et al., 2023), ProteinBERT (Brandes et al., 2022), and ProtTrans (Elnaggar
et al., 2021) capture biochemical properties and evolutionary relationships, with structural informa-
tion implicitly encoded in their learned representations.

2D Graph.. Proteins can also be described as molecular graphs, with residues as nodes and chemical
or spatial relationships as edges. 2D graphs capture connectivity and topological features but lack
explicit spatial details. Contact maps and models like GraphFormer (Ying et al., 2021) encode
residue-residue proximity or graph connectivity into the attention mechanism, partially reflecting
structural information.

3D Structure. Many methods have been developed for modeling the 3D structures of proteins. 3D
CNNs employ convolutional neural networks to extract local spatial features of proteins. Graph
neural networks are widely used for representing protein and molecular structures, with examples
including proteinMPNN (Dauparas et al., 2022), SE(3)-Transformer (Fuchs et al., 2020), GVP (Jing
et al., 2021), and GearNet (Zhang et al., 2023). GearNet applies contrastive learning for the pre-
training of protein structures. Additionally, Transformer-M (Luo et al., 2023a) incorporates 3D in-
formation through distance matrices, enabling transformers to represent protein 3D structures while
maintaining invariance. More recently, some works have begun to include protein surface informa-
tion in modeling; for instance, ProteinINR (Lee et al., 2024) integrates sequence, 3D structure, and
surface information to enhance protein representations.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.2 TERMINOLOGY

This section provides detailed definitions of the professional terms used in the paper.

Protein Family. A protein family is a group of evolutionarily related proteins that typically share
similar amino acid sequences, three-dimensional structures, and biological functions. Most mem-
bers of a protein family are encoded by genes from a corresponding gene family, where each gene-
protein pair has a one-to-one relationship. To date, more than 60,000 protein families have been
identified, though exact numbers vary depending on the criteria and classification methods used.

Enzyme-catalyzed Protein Cleavage. Proteolytic enzymes first recognize short sequences or struc-
tural motifs within a substrate protein and then hydrolyze the peptide bond at the corresponding
cleavage site, thereby fragmenting the polypeptide chain. This tightly regulated process governs
protein maturation, turnover, and signaling, and its accurate in-silico prediction assists enzyme en-
gineering and therapeutic target identification.

Proteolysis-Targeting Chimeras (PROTACs). A PROTAC is a heterobifunctional small molecule
comprising (i) a warhead that binds the target (disease-relevant) protein, (ii) a chemical linker, and
(iii) an E3-ligase-recruiting ligand. By simultaneously engaging the target protein and an E3 ubiqui-
tin ligase, a PROTAC forms a ternary complex that drives poly-ubiquitination of the target, leading
to its proteasomal degradation. Because PROTACs act catalytically and do not rely on classical
active-site inhibition, they can eliminate previously “undruggable” proteins and often function at
lower doses than conventional inhibitors.

Protein-Ligand Binding Affinity. Protein–ligand binding denotes the selective, high-affinity asso-
ciation between a protein and a small-molecule ligand to form a stable complex. Binding strength
is quantified by the change in Gibbs free energy (∆G) or related measures such as the dissociation
constant (Kd); a more negative ∆G (or lower Kd) reflects stronger affinity. Reliable computational
estimation of binding affinity accelerates virtual screening and lead optimization in drug discovery
by prioritizing ligands most likely to bind their target proteins.

Gene Ontology (GO). Gene Ontology is a standardized vocabulary used to describe the functions
of genes and proteins in a consistent and structured way. It provides a common language that allows
researchers across different species and databases to describe what a gene product does, where it
does it, and what biological processes it is involved in. GO is organized into three main categories,
known as ontologies: (i) Biological Process (BP), which describes the broader biological goals that a
gene or protein contributes to. (ii) Molecular Function (MF), which defines the specific biochemical
activity of the gene product. (iii) Cellular Component (CC), which indicates the location within
the cell where the gene product is active. Each GO term is assigned a unique identifier, e.g., GO:
0003677 for “DNA binding”.

D DETAIL OF DOWNSTREAM APPLICATION AND DATASET

D.1 ENZYME-CATALYZED PROTEIN CLEAVAGE SITE PREDICTION

Task Definition. Cleavage site prediction is formulated as a large-scale, imbalanced, residue-level
binary classification problem. Let Ps denote a substrate protein of length |R|, and for each residue
rj (j = 1, . . . , |R|), let xj ∈ Rd be its feature vector. The objective is to learn a function

f : Rd −→ {0, 1}

that outputs 1 if rj is a cleavage site under catalysis by a given enzyme, and 0 otherwise. Formally,
each substrate Ps is associated with a label vector Y ∈ {0, 1}|R|, where Yj = 1 indicates cleavage
at residue j. Training proceeds over residue-level examples {(xj , Yj)} sampled from annotated
cleavage datasets, enabling model generalization to varied substrate contexts.

Settings. For all pretrained models, we retain the same architectural hyperparameters as used during
pretraining. During downstream training, we use a unified configuration across all models: the
number of training epochs is set to 50, the learning rate to 1 × 10−4, and the batch size to 24. A
cosine annealing scheduler is employed to adjust the learning rate over time. To ensure robustness
and reproducibility, we fix a set of five random seeds {42, 128, 256, 512, 1024}. For each model, we
report the mean and standard deviation of its performance across these five runs. All experiments
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were conducted using 8 NVIDIA L40 GPUs. The average training time varied depending on the
model size and task complexity, ranging from approximately 15 minutes to 5 hours.

Metric. The evaluation of enzyme-catalyzed protein cleavage site prediction is framed as a residue-
level binary classification task under substantial class imbalance. Accordingly, the area under the
receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPR)
are used as primary evaluation metrics. AUC quantifies the trade-off between true positive rate
(TPR) and false positive rate (FPR) across various classification thresholds, offering a global view
of discriminative ability. However, due to the rarity of cleavage sites, AUPR is considered more in-
formative, as it emphasizes the precision-recall behavior specific to the minority class. In particular,
AUPR reflects the expected precision over all recall levels, which is critical for the reliable detection
of enzymatic cleavage sites.

Dataset. The detailed information of the dataset is as follows:

• Data Source. The original data are from the MEROPS (Rawlings et al., 2014) database. This
dataset has a public website, available at the following address: http://cadd.zju.edu.
cn/protacdb/

• Pre-process.

– Prior studies (Rawlings et al., 2014) have shown that slight sequence variations among enzymes
within the same MEROPS category are negligible. As a result, we generalize the hydrolysis data
from a specific substrate-enzyme interaction to all enzymes in that category. This allowed us to
augment our dataset by linking each substrate not only to its originally annotated enzyme but
also to other enzymes classified in the same MEROPS group. Finally, we selected two enzyme
families, C14.003 and M10.003, for evaluation.

– We performed quality control on the raw data by filtering out entries with hydrolysis sites ex-
ceeding the maximum sequence length.

– We converted the structural data of proteins in the dataset into a dictionary format and stored it
in a .pickle file. The fields are as follows:

{
"Q5QJ38":{

"name": "Q5QJ38",
"seq": "MPQLLRNVLCVIETFHKYASEDSNGAT...",
"coords": [[[-0.432, 25.507, -8.242], ...], ...],
"cleave_site": [136]
}

}

• Data Format. The sequence and structure of substrate proteins are stored in a .pickle file.
The hydrolysis site information of substrate proteins is stored in a .pickle file as follows. It is
worth noting that the hydrolysis site positions are 1-based indexed.

{
"P31001_MER0000622": [110, 263],
"O00232_MER0000622": [276, 334, 19],
...
}

• Data Statistics. The statistics of the dataset after preprocessing are summarized in Table 8. The
training and test sets were split based on sequence similarity, ensuring that the sequence similarity
between the test and training sets is below 60%.

Table 8: Statistics of the dataset after preprocessing.

Enzyme Family #Train #Test Cleavage Sites (Train) Cleavage Sites (Test)

C14.005 468 117 656 159
M10.003 375 92 953 157
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• Usage. This dataset is used for a residue-level binary classification task. The goal is to predict the
hydrolysis sites of a protein by a given enzyme family, based on its sequence or structure.

• License. We release a preprocessed version of the dataset under the MIT License. The original
MEROPS database is provided under the terms of the GNU Library General Public License and
is available at: https://www.ebi.ac.uk/merops/about/availability.shtml.

D.2 TARGETED PROTEIN DEGRADATION BY PROTEOLYSIS-TARGETING CHIMERAS

Task Definition. This task is typically formulated as a binary classification problem. Given a PRO-
TAC candidate and its corresponding POI and recruited E3 ligase, the goal is to predict whether the
induced ternary complex will successfully trigger degradation. Formally, let the PROTAC molecule
be decomposed into three modular components: warhead w, linker l, and E3-ligand el. Along with
the protein of interest p and the E3 ligase eg, each component is processed through dedicated neural
encoders:

hp = fp(p), hw = fw(w), hl = fl(l), hel = fel(el), heg = feg(eg)

The resulting latent representations are concatenated to form a joint embedding that captures the
structural and biochemical context of the ternary complex:

hconcat = concat(hp,hw,hl,hel,heg)

This composite feature vector is passed through a multi-layer perceptron (MLP) with two fully
connected layers to output the degradation prediction score:

ŷ = σ(MLP(hconcat)) ∈ [0, 1]

where ŷ denotes the predicted probability of successful POI degradation. The model is trained using
binary cross-entropy loss, with ground truth labels indicating degradation activity.

Settings. For this task, we retain the same architectural hyperparameter configuration as used during
pretraining. To encode SMILES representations, we adopt the GVP (Jing et al., 2021) architecture
with a node dimensionality of 128, an edge dimensionality of 32, and a total of 3 layers. Models
are trained for 50 epochs with a learning rate of 5e-4, a batch size of 24, and the Adam optimizer.
We report the mean and standard deviation of performance across a fixed set of random seeds.
All experiments are conducted on NVIDIA L40 GPUs, with per-run training time ranging from
approximately 20 minutes to 6 hours, depending on the model and task complexity.

Metrics. The evaluation of PROTAC-induced protein degradation prediction is framed as a binary
classification task. Accordingly, we adopt two widely used classification metrics: Accuracy mea-
sures the proportion of correct predictions among all samples, providing a straightforward indica-
tion of overall model performance. Area Under the Receiver Operating Characteristic Curve (AUC)
quantifies the model’s ability to distinguish degraders from non-degraders across varying decision
thresholds.

Dataset. The detailed information of the dataset is as follows:

• Data Source. The original data was collected from the PROTAC-DB (Ge et al., 2025). This
dataset has a public website, available at the following address: http://cadd.zju.edu.
cn/protacdb/

• Pre-process.
– Following the processing strategy proposed by ET-PROTACs (Cai et al., 2025), we assign a

degradation label to each triplet in the dataset. Specifically, we first examine whether a PROTAC
entry contains DC50 measurements. If available, entries with DC50 values below 1000 nM are
labeled as active, while those equal to or above 1000 nM are labeled as inactive. For entries
lacking DC50 data, we instead inspect the reported degradation percentage of the target protein.
If available, samples with degradation rates of at least 70% are considered active, and those
below 70% are labeled as inactive. In cases where neither DC50 nor degradation percentage is
reported, we fall back to IC50 values. Similarly, entries with IC50 below 1000 nM are labeled
as active, and those above or equal to this threshold are labeled as inactive.

– For the target protein and E3 ligase, we retained only the entries with available structures in the
AFDB. We filtered out the target proteins with the following UniProt IDs: P36969, P03436,
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P0DTD1, Q12830, and G0R7E2. The structural data of the target proteins and E3 ligases are
obtained from AFDB. Following the approach in (Ingraham et al., 2019), we further convert the
format into a dictionary and store it in a .json file. The fields are as follows:

[
"Q8IWV7":{

"seq": "MADEEAGGTERMEISAELPQTPQRLASWWDQQVDFYTA...",
"coord": [[[21.9960, 68.3170,-49.9029], ...],...]

}
...

]
For each structure, coord is a nested list of shape (N× 4× 3), representing the 3D coordinates
of the backbone atoms N, Cα, C, and O for each residue in order, and N is the length of the
amino acid sequence.

– For the warhead, linker, and E3-ligand, we use their SMILES strings to generate 20 conformers
with RDKit’s ETKDGv3 method. The conformers are optimized using a force field, and the
lowest-energy conformer is selected. The final structure is saved in an SDF file.

• Data Format. The protein data, including the name, sequence, and coordinates, is stored in
.json format. The structures of the warhead, linker, and E3-ligand are stored in SDF files. The
label data is saved in a .txt file with the following format. The content below shows only key
fields; for the complete list of fields, please refer to the full file.
uniprot e3_ligase_structure linker_sdf warhead_sdf e3_ligand_sdf label
Q00987 Q96SW2 linker_2.sdf warhead_7.sdf e3_ligand_7.sdf 1
Q00987 Q96SW2 linker_2.sdf warhead_7.sdf e3_ligand_16.sdf 1
P10275 P40337 linker_13.sdf warhead_27.sdf e3_ligand_27.sdf 0
P10275 P40337 linker_33.sdf warhead_27.sdf e3_ligand_27.sdf 0

• Data Statistics. The number of each component in the dataset is summarized in Table 9. The
dataset was randomly split into a training set and a test set, with 80% used for training and 20%
for testing.

Table 9: Statistics of PROTACs dataset components.

Object Target Protein E3-Ligase Warhead Linker E3-Ligand Label: 1 Label: 0

Number 154 10 552 1,534 131 2,244 1,878

• Usage. Based on the preprocessed reaction labels, this dataset is used for a binary classification
task, where the goal is to predict the targeted degradation effect of PROTACs given the information
of the target protein, E3 ligase, and the PROTACs.

• License. We release a preprocessed version of the dataset under the MIT License. Please re-
fer to the usage license of the original data at: http://cadd.zju.edu.cn/protacdb/
downloads, and follow the original authors’ terms of use.

D.3 PROTEIN–LIGAND INTERACTIONS

Task Definition. Protein-ligand binding is the process by which proteins or various small molecules
interact with high specificity and affinity to form a particular complex. A thorough understanding of
the mechanisms underlying protein-ligand interactions is a prerequisite for gaining in-depth insights
into protein function. The goal of rational drug design is to leverage structural data and knowledge
of protein-ligand binding mechanisms to optimize the process of discovering new drugs. The driv-
ing force for protein-ligand binding arises from a combination of interactions and energy exchanges
among proteins, ligands, water molecules, and buffering ions. Because the extent of protein-ligand
binding is determined by the magnitude of negative ∆G, ∆G can be considered to determine the
stability of any given protein-ligand complex, or equivalently, the binding affinity of a ligand for a
given receptor. Experimentally measuring protein-ligand binding affinity is both time-consuming
and complex, making it impractical to rely solely on experimental approaches for drug discovery
from large compound libraries. In computational medicinal chemistry, predicting ligand binding
affinity remains an open challenge. Existing deep learning methods attempt to directly predict bind-
ing affinity using affinity data from databases such as PDBBind.
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From a machine learning perspective, protein-ligand affinity prediction is formulated as a regression
problem, where the goal is to learn a function

f : Rd → R

that maps the given input features Xi (e.g., protein structural or sequence data, ligand chemical
descriptors, etc.) to a continuous value yi ∈ R, representing the quantitative binding affinity. Con-
cretely, each protein-ligand pair (Pi, li) is associated with a feature vector Xi ∈ Rd and an affin-
ity value yi. The learning objective is to minimize the discrepancy between the predicted affinity
ŷi = f(Xi) and the experimentally measured (or otherwise ground-truth) value yi, typically via
metrics such as root mean squared error (RMSE) or mean absolute error (MAE). The function f can
be learned using a training dataset

{(Xi, yi)}ni=1,

and subsequently evaluated on unseen data to gauge its predictive performance and generalizability,
ultimately utilized for drug screening.

Settings. For this task, we retain the same architectural hyperparameter configuration as used during
pretraining. To encode SMILES representations, we adopt the GVP (Jing et al., 2021) architecture
with a node dimensionality of 128, an edge dimensionality of 32, and a total of 3 layers. The maxi-
mum length of the pocket amino acid sequence is set to 85 residues, with shorter sequences padded
and longer sequences truncated accordingly. Models are trained for 50 epochs with a learning rate of
5e-4, a batch size of 48 or 96, and the Adam optimizer. We report the mean and standard deviation
of performance across a fixed set of random seeds. All experiments are conducted on NVIDIA L40
GPUs, with per-run training times ranging from approximately 20 minutes to 5 hours, depending on
the model and task complexity.

Metrics. To assess a model’s ability to predict binding affinity accurately, we adopt two comple-
mentary metrics: Mean Squared Error (MSE) and Pearson correlation coefficient. A lower MSE
indicates more accurate regression of affinity values, while a higher Pearson coefficient reflects
stronger linear correlation between predicted and true affinities. These metrics jointly capture both
the precision and consistency of model predictions, providing a comprehensive evaluation of regres-
sion performance.

Dataset. The detailed information of the dataset is as follows:

• Original Data Source. The original data was collected from the KDBNet (Luo et al., 2023b). The
data is stored at https://www.dropbox.com/s/owc45bzbfn05ix4/data.tar.gz.
Based on the existing DAVIS (Davis et al., 2011) and KIBA (Tang et al., 2014) datasets, the
authors further extracted the binding pockets of proteins from protein-ligand complexes for use in
modeling this task.

• Preprocess.

– In the DAVIS portion of the KDBNet dataset, the protein 6FDY.U contains missing coordinate
values, which we filter out.

– Following the approach in (Ingraham et al., 2019), we convert the format of the protein struc-
tural data provided by the authors and store it as a dictionary in a JSON file:

[
"4WSQ.B":{

"uniprot_id": "Q2M2I8",
"seq": "EVLAEGGFAIVFLCALKRMVCKREIQIMRDLS...",
"coord": [[[6.6065,16.2524,52.3289], ...], ...]

}
...

]
For each structure, coords is a nested list of shape (N × 4 × 3), representing the 3D coordi-
nates of the backbone atoms N, Cα, C, and O for each residue in order, and N is the length of
the amino acid sequence.

• Format. The protein data, including the name, UniProt ID, sequence, and coordinates, is stored
in .json format. The label data is saved in a .txt file with the following format:
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drug protein Kd y protein_pdb
0 5291 AAK1 10000.0 5.0 4WSQ.B
1 5291 ABL1p 10000.0 5.0 3QRJ.B
2 5291 ABL2 10.0 7.99568 2XYN.C

The ligand data is stored in SDF format.
• Statistics. As shown in Table 10, DAVIS contains 226 proteins, 64 compounds, and 14,464

interaction pairs, while KIBA includes 160 proteins, 1,986 compounds, and 89,958 pairs. The
dataset was randomly split into a training set and a test set, with 80% used for training and 20%
for testing. These datasets vary in scale and compound diversity, providing a comprehensive
benchmark for model evaluation.

Table 10: Statistics of protein-ligand datasets.

Dataset Protein Ligand Pair
DAVIS 226 64 14,464
KIBA 160 1,986 89,958

• Usage. This dataset is used for a regression task, where the goal is to predict the binding affinity
for each protein-ligand pair.

• License. We release a preprocessed version of the dataset under the MIT License. The orig-
inal dataset, also licensed under the MIT License, is available at: https://github.com/
luoyunan/KDBNet/blob/main/LICENSE.

D.4 PROTEIN FUNCTION ANNOTATION PREDICTION

Task Definition. From a computational standpoint, protein function prediction is inherently a large-
scale, sparse, and imbalanced multi-label classification problem. The goal is to predict multiple
output labels from the given input features Xi. Let the set of labels be

L = {BP,MF,CC}

Thus, each protein Pi is associated with a label vector Yi ∈ {0, 1}|L|, where Yi[j] = 1 indicates that
protein Pi is annotated with the j-th label, and Yi[j] = 0 indicates it is not.

The goal is to learn a mapping function f(Xi) to predict the label vector Yi, i.e.:

f : Rd → {0, 1}|L|

This function can be learned using the training dataset {(Xi, Yi)}ni=1.

Settings. For this task, to rigorously assess the model’s generalization ability, we included only those
test sequences whose similarity to the training set was below 50%. we adopt the same architectural
hyperparameter settings as used during pretraining to ensure consistency. Each model is trained
for 50 epochs using the Adam optimizer with a learning rate of 5e-4 and a batch size of 24. To
ensure robustness, we report the average performance and standard deviation across a predefined
set of random seeds. All training is conducted on NVIDIA L40 GPUs, with individual runs taking
between 2 minutes and 10 hours, depending on the model architecture and task complexity.

Metrics. Given the inherent sparsity of function annotation labels, where each protein is typically
associated with only a small subset of possible functions, we evaluate model performance using
Fmax and AUPR (Area Under the Precision-Recall Curve). These metrics are particularly suited for
imbalanced multilabel classification tasks, where a higher Fmax and AUPR indicate better predictive
capability in accurately identifying relevant functional annotations.

Dataset. The detailed information of the dataset is as follows:

• Data Source. The original data are from DeepFRI (Gligorijević et al., 2021)(https://
github.com/flatironinstitute/DeepFRI), and the corresponding structural data are
collected by ProteinWorkshop (Jamasb et al., 2024)(https://zenodo.org/records/
8282470/files/GeneOntology.tar.gz?download=1).

• Pre-process.
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– We performed quality control on the raw data by filtering out entries with missing coordinates
or with all function labels equal to 0.

– Based on the label annotations and protein information provided in the original dataset, we
unified each protein entry into a dictionary format containing its name, sequence, coordinates,
and functional labels. The final data was saved in a .json file, with each entry structured as
follows:

[
{

"name": "2P1Z-A",
"seq": "SKKAELAELVKELAVYVDLRRATLHARASRLIGELLRELTADWDYVA...",
"coords": [[[6.4359, 51.3870, 15.4490], ...], ...],
"molecular_function": [0, 0, ...1,...],
"biological_process": [0, 0, ...0,...],
"cellular_component": [0, 0, ...1,...]

},
...

]

The fields molecular function, biological process, and
cellular component store one-hot encoded functional annotations. If you need Gene
Ontology term IDs corresponding to the functional labels, please refer to the label.tsv file.
The order of entries in this file strictly matches the position of each label in the one-hot vectors.

• Data Format. The protein name, sequence, coordinates, and functional labels are stored in a
.json file. The corresponding Gene Ontology terms for the functional labels are provided in the
label.tsv file.

• Data Statistics. Since molecular function defines the biological roles that a protein participates
in, we restrict our functional prediction evaluation to molecular function only. The following
Table 11 summarizes the label distribution across all proteins in the dataset. Label 1 refers to
the total number of positive functional labels associated with proteins. Label 0 refers to the total
number of functional labels not associated with the proteins.

Table 11: Statistics of positive and negative functional labels in the training and test sets.

Objective #Train #Test Label: 1 (Train) Label: 0 (Train) Label: 1 (Test) Label: 0 (Test)

Number 23760 202 121,650 11,496,990 17,709 971,538

• Usage. This dataset is used for a multi-label classification task, where the goal is to predict the
functional labels of each protein based on its sequence and structural information.

• License. We release a preprocessed version of the dataset under the MIT License.
The original dataset is available under a BSD 3 license at https://github.com/
flatironinstitute/DeepFRI/blob/master/LICENSE. And the protein structure
data is released under the CC BY 4.0 license and is available at: https://openreview.
net/pdf?id=sTYuRVrdK3

D.5 MUTATION EFFECT PREDICTION FOR PROTEIN OPTIMIZATION

Task definition. The log-ratio between wild-type and mutant amino acid probabilities has been
shown to be an effective estimator of mutational impact (Riesselman et al., 2018; Notin et al., 2022).
In the zero-shot setting, we do not access any label information. Instead, we perform inference
using a model pretrained with masked language modeling (MLM). The goal is to quantify the log-
likelihood of protein variants under the background. The calculation is shown in the equation.∑

t∈T

log p(xt = xmt
t |S−t)− log p(xt = xwt

t |S−t)

where T is a set of positions where multiple mutations exist in the same sequence, and S is the
wild-type sequence.
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Settings. In the zero-shot setting, we do not use any label information, nor do we perform further
training or fine-tuning. The prediction of mutation effects relies on the model’s estimated proba-
bilities for the mutant and wild-type amino acids at the mutation site. Therefore, pretraining meth-
ods whose models do not expose logits are unsuitable for this zero-shot setting, and no additional
domain-specific models are incorporated in this study. Other types of pretraining methods are not
suitable for this zero-shot scenario, and no additional domain-specific models are introduced in this
application.

Metrics. Due to the non-linear relationship between protein function and fitness, the Pearson corre-
lation coefficient is a suitable metric for evaluating model performance. Another evaluation metric is
AUC, which assesses the model’s ability to rank and discriminate between functionally neutral and
deleterious mutations. During AUC calculation, DMS Score Bin is used as the ground-truth label
(1 = positive, 0 = negative), while the model’s continuous prediction scores serve as the decision
function.

Dataset. The detailed information of the dataset is as follows:

• Data Source. The dataset we used to evaluate in this benchmark is from ProteinGym (Gligorijević
et al., 2021)(https://proteingym.org/)

• Pre-process. Structural data is predicted by OmegaFold (Wu et al., 2022), where the input se-
quences for structure prediction are the wild-type sequences. We removed samples for which
OmegaFold failed to generate structural predictions due to excessive sequence length.

• Data Format. The DMS substitution data provided by ProteinGym is formatted as shown be-
low. The first column contains the mutation information, using 1-based indexing. For example,
F1I indicates that the first amino acid in the wild-type sequence, originally phenylalanine (F), is
mutated to isoleucine (I).

mutant mutated_sequence DMS_score DMS_score_bin
F1I ITLIELMIVIAIVGILAAVALPAYQDYTA... -3.598 0
F1L LTLIELMIVIAIVGILAAVALPAYQDYTA... -0.678 0
F1V VTLIELMIVIAIVGILAAVALPAYQDYTA... 1.299 1
F1S STLIELMIVIAIVGILAAVALPAYQDYTA... -0.127 0
T2A FALIELMIVIAIVGILAAVALPAYQDYTA... 0.786 1

• Data Statistics. After preprocessing, the dataset contains 201 proteins and 2,413,913 mutations.
The detailed statistics of the preprocessed dataset are shown in Table 12.

Table 12: Overall statistics of the ProteinGym DMS substitution dataset.

Objective Proteins Mutants

Number 201 2,413,913

• Hosting. The ProteinGym dataset is well-organized, and aside from adding structural information
predicted by OmegaFold (while AlphaFold-predicted structures for DMS data are also available
on the ProteinGym website), we did not perform any additional preprocessing. Therefore, we do
not release a separate preprocessed version of the data.

• Usage. In the zero-shot setting, this evaluation involves no training process. Instead, it directly
infers and quantifies the log-likelihood of protein variants under both sequence and structural
context.

• License. The original dataset, ProteinGym, is available under a MIT license at https:
//github.com/OATML-Markslab/ProteinGym/blob/main/LICENSE.

E DOMAIN-SPECIFIC MODEL ARCHITECTURE

KDBNet. KDBNet (Luo et al., 2023b) is a graph neural network model designed for predicting
kinase–small molecule binding affinity. It constructs heterogeneous graph pairs from the 3D struc-
tures of protein binding pockets and small molecules, and employs two structure-aware GNNs to
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learn their respective representations. For the protein, the model focuses on 85 binding site residues
defined by the KLIFS database to build a structure graph Gp = (V ∗ p, E ∗ p), where nodes rep-
resent residues and edges are formed between C∗α atoms within 8 Å. Each residue node includes
three types of features: one-hot encoding of amino acid type, geometric features based on backbone
conformation (e.g., (sinϕi, sinψi, sinωi, cosϕi, cosψi, cosωi)), and evolutionary embeddings ob-
tained from the ESM language model. Edge features consist of four components: radial basis
function (RBF) encoding of distances, local frame-based projections of relative direction vectors,
rotational quaternions between residues, and relative position encodings using a Transformer-based
function E ∗pos(cj− ci). The small molecule is represented as a graph Gd = (Vd, Ed), where atoms
are nodes and edges connect atom pairs within 4.5 Å. Each atom node includes both 3D coordi-
nates and a 66-dimensional scalar feature vector describing chemical properties, while edge features
include unit directional vectors and RBF-encoded distances. For encoding protein structure, KDB-
Net uses a Graph Transformer, where each layer updates node features via the following attention
mechanism:

h
(ℓ)
i =W

(ℓ)
1 h

(ℓ−1)
i +

∑
j∈N (i)

αij

(
W

(ℓ)
2 h

(ℓ−1)
j +W

(ℓ)
3 eij

)
. (1)

With attention weights defined as:

αij = softmax


(
W

(ℓ)
4 h

(ℓ−1)
i

)⊤ (
W

(ℓ)
5 h

(ℓ−1)
j +W

(ℓ)
3 eij

)
√
dℓ

 . (2)

Three such graph convolution layers are stacked with Leaky ReLU activations, and global sum
pooling is applied to obtain the final protein embedding. For small molecules, KDBNet adopts
the GVP-GNN architecture, which jointly models vector and scalar features to maintain rotational
and translational equivariance. Each atom node is represented as a tuple (vvi , v

s
i ) and each edge as

(evij , e
s
ij), where the vector part allows direct alignment with atomic coordinates. The final protein

and drug embeddings are passed through fully connected layers to regress the binding affinity.

DeepPROTACs. DeepPROTAC (Li et al., 2022) is a deep learning framework designed to predict
the degradation efficacy of PROTAC molecules by integrating structural and chemical information
from multiple components: the protein of interest (POI), the E3 ligase, and the PROTAC compound
itself. The input includes five parts: the POI binding pocket, the E3 ligase binding pocket, the war-
head (the PROTAC moiety binding to the POI), the E3 ligand (binding to the E3 ligase), and the
linker represented as a SMILES string. For the four molecular structures (POI pocket, E3 pocket,
warhead, and E3 ligand), atom-level graphs are constructed and processed using Graph Convolu-
tional Layers (GCLs) followed by max pooling to obtain fixed-size feature embeddings. The linker
is embedded using an LSTM network to capture sequential chemical features. All five embeddings
are concatenated and passed through fully connected layers to yield a binary output: 1 indicates good
degradation (defined as DC50 ≤ 100 nM and Dmax ≥ 80%), while 0 indicates poor degradation
(DC50 > 100 nM or Dmax < 80%). This modular architecture enables DeepPROTACs to effec-
tively model ternary complex formation and predict degradation outcomes based on both structural
and sequential representations.

ET-PROTACs. ET-PROTACs (Cai et al., 2025) is an end-to-end deep learning model designed for
PROTAC degradation prediction, consisting of four main components: (i) initial PROTAC and pro-
tein featurization; (ii) representation learning using 3D graph-based and sequence-based encoders;
(iii) a cross-modal ternary attention block; and (iv) a final classifier. Each component is described
in detail below. Each PROTAC is represented as a 2D molecular graph G = (V, E) and associ-
ated with a 3D coordinate matrix X ∈ R|V|×3 using RDKit2. Nodes vi ∈ V represent atoms, and
edges aij ∈ E denote chemical bonds. Node features hi and edge features aij are encoded using
learned embeddings. Additionally, atomic 3D coordinates xi ∈ R3 are embedded to capture spatial
information. The input protein is given as a sequence P = {a1, a2, . . . , an} of 23 amino acids
(including one non-standard residue). Protein sequences are encoded by two embedding layers: a
learned character embedding of dimension 64, and a positional embedding of the same dimension.

2https://www.rdkit.org/
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The molecular graph and 3D coordinates are processed by an Equivariant Graph Neural Network
(EGNN), which is invariant to rotations and translations. Let hℓi , x

ℓ
i , and aij be the node features,

coordinates, and edge features at layer ℓ, respectively. The EGNN updates are as follows:

mij = ϕe(h
ℓ
i , h

ℓ
j , ∥xℓi − xℓj∥2, aij),

xℓ+1
i = xℓi + C

∑
j ̸=i

(xℓi − xℓj)ϕx(mij),

mi =
∑

j∈N (i)

mij ,

hℓ+1
i = ϕh(h

ℓ
i ,mi),

(1)

where C = 1/(M−1), ϕe, ϕx, and ϕh are learnable functions, andM is the number of atoms. Final
PROTAC embeddings are obtained by combining features of the warhead, linker, and E3 ligase
substructures. ET-PROTACs leverages CNNs to encode protein sequences directly from FASTA
format. The sequence embedding E is passed through three CNN layers to yield latent protein
features Pcnn ∈ Rd×f , where f is the number of filters in the last layer. Given feature matrices
D = {d1, . . . , dX} (PROTAC), P = {p1, . . . , pY } (protein), and L = {l1, . . . , lZ} (ligase), we
form composite pairs:

pdi = CONCAT(pj , di),
dlj = CONCAT(di, lk),

pdai = F (Wpd · pdi + b),

dlaj = F (Wdl · dlj + b),

(2)

where F is a non-linear activation, and Wpd,Wdl ∈ Rf×f are learned weights. The combined
attention is computed as:

Ai,j = F (Wa · (pdai + dlaj) + b),

Apd = σ (MEAN(A, 2)) ,

Adl = σ (MEAN(A, 1)) ,

(3)

where σ denotes the sigmoid function. The resulting outputs Vpd and Vdl are the attention-enriched
representations of PROTAC–protein and PROTAC–ligase interactions. The attention outputs are
pooled over sequence length and concatenated:

s = LeakyReLU(Ws · CONCAT(Vpd, Vdl) + bs), (4)

where Ws is a learnable weight matrix. Dropout is applied before and after each linear layer to
prevent overfitting.

DeepFRI. DeepFRI (Gligorijević et al., 2021) is a deep learning framework for protein function
prediction based solely on amino acid sequences. Given a protein sequence of length L, the input
is encoded as a binary matrix X = [x1, . . . , xL] ∈ {0, 1}L×26, where each xi is a one-hot vector
indicating the amino acid type at position i, including 20 standard residues, 5 non-standard residues,
and a gap symbol. This input is passed through a set of one-dimensional convolutional layers, each
consisting of fn = 512 filters of varying kernel lengths fl, followed by rectified linear unit (ReLU)
activation, ReLU(x) = max(x, 0), and a global max-pooling operation. The use of multiple filter
sizes enables the extraction of complementary local patterns from the sequence. Outputs from 16
such CNN layers are concatenated, resulting in an L× 8192 feature representation. Finally, a fully
connected layer with sigmoid activation outputs probabilities for either Gene Ontology (GO) terms
or Enzyme Commission (EC) classes. The output dimensionality is task-specific, corresponding to
|GO| or |EC| respectively.

DPFunc. DPFunc (Wang et al., 2025) is a structure-aware protein function prediction framework
that captures residue-level information by integrating 3D geometric structure and pretrained se-
quence embeddings. For a given protein of length l, a residue-level undirected graph is constructed
where each node represents a residue, and an edge is added between two residues if the distance
between their Cα atoms is less than 10 Å. This defines the adjacency matrix A ∈ {0, 1}l×l. Node
features are initialized using embeddings from a pretrained protein language model (ESM-1b), re-
sulting in X ∈ Rl×d. Two graph convolutional layers are then used to propagate structural informa-
tion, with residual connections added to facilitate gradient flow. The update rule for the k-th GCN
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layer is given by:

X(k+1) = X(k) + ReLU
(
D̃−1/2ÃD̃−1/2X(k)W (k)

)
, (1)

where Ã = A+I adds self-loops and D̃ is its corresponding degree matrix. After GCN propagation,
domain-level information is introduced to enhance residue representations. Protein domains are
annotated using InterProScan, and their one-hot encoding IPR ∈ {0, 1}1×m is mapped to dense
embeddings via two fully connected layers with ReLU activations:

H = ReLU ((ReLU(IPR ·Wemd)W1 + b1)W2 + b2) . (2)

A domain-guided attention mechanism, inspired by the Transformer encoder, is applied to model
the interaction between domain and residue representations. For each attention head i, the query,
key, and value matrices are computed as:

Qi = HWQ
i , Ki = XfinalW

K
i , Vi = XfinalW

V
i , (3)

and attention weights are derived as:

WA
i = Softmax

(
KiQ

⊤
i√
d

)
. (4)

The multi-head attention output is computed as:

Xmulti = LayerNorm
(
Concat(WA

1 V1, . . . ,W
A
n Vn)Wtrans +Xfinal

)
, (4)

followed by a feedforward transformation with residual connection:

Xout = LayerNorm (FF(Xmulti) +Xmulti) . (5)

Protein-level features are then obtained by summing across residues:

xpool =

l∑
i=1

Xout[i]. (6)

This representation is concatenated with the average of initial residue features:

xintegrate = Concat

(
xpool,

1

l

l∑
i=1

X[i]

)
, (7)

and passed through a multilayer perceptron with sigmoid activation to produce GO term probabili-
ties:

ŷ = Sigmoid(MLP(xintegrate)). (8)
To ensure consistency with the GO hierarchy, a postprocessing step enforces that if a child term is
predicted, all its ancestors are also predicted:

ŷpost
i = max (ŷi, ŷchild1 , . . . , ŷchildn) . (9)

This hierarchical correction is applied only after inference, without affecting training efficiency.

UniZyme. UniZyme (Li et al., 2025) is a biochemically informed framework designed to generalize
protein cleavage site prediction across diverse enzymes. It comprises an enzyme encoder and a sub-
strate encoder. The enzyme encoder integrates sequence-derived features with energetic frustration
and 3D structural information. Given an enzyme Pe = (X,R), where X are residue embeddings
and R are Cα coordinates, the pairwise frustration score is defined as:

F (i, j) =
E(i, j)− µrand(i, j)

σrand(i, j)
. (1)

To incorporate spatial and energetic cues into the self-attention mechanism, each residue pair is
encoded via Gaussian basis kernels:

Φenergy
i,j = MLP(ϕenergy(F (i, j))), Φdist

i,j = MLP(ϕdist(∥ri − rj∥2)). (2)
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These terms are added to the attention score matrix in the graph transformer:

Ak
i,j =

(hk−1
i WQ)(h

k−1
j WK)T

√
d

+Φenergy
i,j +Φdist

i,j . (3)

To guide the encoder toward catalytically relevant regions, an auxiliary active-site prediction is
introduced:

âi = σ(hi · wa). (4)

The predicted probabilities âi are then used in a soft attention-like pooling mechanism for enzyme
representation:

he =

N∑
i=1

f(âi)∑
j f(âj)

hi. (5)

For a substrate Ps, cleavage site prediction is formulated by concatenating local substrate represen-
tations Ht:t+l

s with the enzyme representation he:

ĉ(t)e,s = MLP(CONCAT(Ht:t+l
s , he)). (6)

The model is jointly optimized using binary cross-entropy losses for both tasks:

L = Lc(Dc) + λLa(Da). (7)

MONN. MONN (Li et al., 2020b) is composed of four interconnected modules: a graph convolu-
tional module for molecular representation, a CNN module for residue-level protein representation,
a pairwise interaction module for atom-residue interaction estimation, and an affinity prediction
module for compound-protein binding affinity estimation.

Given a molecular graph G = (V,E), each atom vi ∈ V is initially represented by an 82-
dimensional one-hot vector vinit

i encoding atomic features. These are projected into a hidden space
Rh1 by:

v0i = f(Winitv
init
i ), (1)

where f(x) = max(0, x) + 0.1min(0, x) is the leaky ReLU activation, and Winit ∈ Rh1×82. Bonds
ei,j ∈ E are represented by 6-dimensional one-hot vectors encoding bond type and topology.

For L graph convolutional iterations, features are updated by message passing and graph warp. At
each layer l, local messages are aggregated:

tli =
∑

vk∈N (vi)

f(W l
gather[v

l−1
k , ei,k]), (2)

followed by feature updates:
uli = f(W l

update[t
l
i, v

l−1
i ]). (3)

Global information is captured via a super node sl that interacts with all uli to yield the final atom
features {vLi } and compound feature sL.

Protein sequences are encoded by mapping residues to BLOSUM62 (Eddy, 2004) columns and
processed through a 1D CNN to obtain residue embeddings {rj} in Rh1 .

Atom-residue interactions are predicted by projecting atom and residue embeddings to a shared
space and computing their dot-product, followed by a sigmoid:

Pi,j = σ(f(Watomvi) · f(Wresiduerj)). (4)

For affinity prediction, atom, residue, and super node features are transformed via:

hv,i = f(Wvvi), hs = f(Wss), hr,j = f(Wrrj), (5)
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where Wv,Wr,Ws ∈ Rh2×h1 . A modified dual attention network uses the interaction matrix P to
compute attentions {αv,i}, {αr,j}, aggregating compound and protein representations as:

hc =
∑
i

αv,ihv,i, hp =
∑
j

αr,jhr,j . (6)

The binding affinity is predicted by a regression on the outer product between [hc, hs] and hp:

a =Waffinityf(flatten([hc, hs]⊗ hp)), (7)

where Waffinity ∈ R1×2h2
2 .

CLIPZyme. CLIPZyme (Mikhael et al., 2024) formulates enzyme screening as a retrieval task,
where a predefined set of enzymes is ranked based on their predicted ability to catalyze a given
chemical reaction. Each reaction R and enzyme P is encoded into a d-dimensional vector r, p ∈ Rd

using learned encoders frxn and fp, respectively. A scoring function s(r, p) computes the cosine
similarity between the two embeddings:

sij = s(ri, pj) =
ri · pj
∥ri∥∥pj∥

. (1)

To align reactions with their catalyzing enzymes, a symmetric contrastive loss is used:

Lij = −
1

2N

(
log

esij/τ∑
k e

sik/τ
+ log

esij/τ∑
k e

skj/τ

)
, (2)

where τ is a temperature parameter and negative samples are drawn from other enzymes in the batch.

To represent a reaction, atom-mapped molecular graphs of the reactantsGx and productsGy are first
encoded by a directed message passing neural network (Yang et al., 2019) (DMPNN) fmol, yielding
atom features ai and bond features bij :

ai, bij = fmol(Gx, Gy). (3)

A pseudo-transition state graph GTS is then constructed using shared atom features and summed
bond features:

v
(TS)
i = v

(x)
i = v

(y)
i , (3)

e
(TS)
ij = b

(x)
ij + b

(y)
ij . (4)

This graph is processed by a second DMPNN fTS , and the reaction embedding is obtained by
aggregating the learned node features:

a′i, b
′
ij = fTS(GTS), (4)

r =
∑
i

a′i. (5)

Each protein is modeled as a 3D graph Gp = (V,E) with node features hi, edge features eij , and
3D coordinates ci ∈ R3. Residue features are initialized using ESM-2 (650M) embeddings with
dimensionality 1280. An EGNN with coordinate updates is used to encode Gp into the final protein
embedding p = fp(Gp). Relative distances between residues are encoded using a sinusoidal basis
to enhance structural modeling.

F PRETRAIN MODEL ARCHITECTURE AND EXPERIMENTAL SETUP

F.1 MODEL ARCHITECTURE

This section details the models employed in this study.

Equivariant Graph Neural Networks (EGNN). EGNN (Satorras et al., 2021) is designed to pro-
cess graphs where each node is associated with both feature embeddings and spatial coordinates.
EGNN preserves equivariance under Euclidean transformations (translation and rotation) and node
permutations, making it well-suited for modeling molecular and protein structures.
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Given a graph G = (V, E), each node vi ∈ V has a feature vector hi ∈ Rdh and a coordinate xi ∈
Rn. The Equivariant Graph Convolutional Layer (EGCL) updates node features and coordinates as
follows:

mij = ϕe
(
hl
i, h

l
j , ∥xi − xj∥2, aij

)
, (1)

xl+1
i = xli + C

∑
j ̸=i

(xli − xl
j) · ϕx(mij), (2)

mi =
∑
j ̸=i

mij , (3)

hl+1
i = ϕh(hl

i,mi), (4)

where ϕe is an edge function that computes a message embedding from node features, squared
distance, and optional edge attributes aij . ϕx outputs a scalar weight for coordinate updates, based
on mij . ϕh is a node update function. C is a normalization constant, typically C = 1/(|V| − 1).

Eq. (2) ensures that the coordinate update is equivariant to rotations and translations by acting as a
learnable radial vector field. EGNN combines geometric awareness with standard message passing,
making it a powerful architecture for modeling 3D protein structures.

SE(3) Transformer. The SE(3) Transformer (Fuchs et al., 2020) is a neural architecture designed
to model geometric data such as molecules and point clouds while respecting SE(3) symmetries,
i.e., 3D rotations and translations. It achieves this through the integration of Tensor Field Networks
(TFNs) (Thomas et al., 2018) for equivariant message passing and invariant attention mechanisms
for weighted aggregation. This section presents a unified formulation of the SE(3) Transformer,
encompassing both TFN convolution and attention-based update steps.

Formally, each node i in the graph is associated with a position xi ∈ R3 and a set of typed features
fi =

⊕
ℓ≥0 fℓi , where fℓi ∈ R(2ℓ+1)×d denotes a rank-ℓ feature tensor (type-ℓ representation of SO(3))

with d channels.

The output features at node i and type ℓ are computed as:

fℓout,i = Wℓℓ
selff

ℓ
in,i +

∑
k≥0

∑
j∈Ni\{i}

αij Wℓk(xj − xi) fkin,j . (1)

The first term is a type-preserving self-interaction, and the second term aggregates messages from
neighbors j ∈ Ni via a convolution-like operation using TFN kernels Wℓk(xj − xi), modulated by
scalar attention weights αij ∈ R.

The kernel Wℓk : R3 → R(2ℓ+1)×(2k+1) is constructed to ensure SE(3)-equivariance, and is defined
as a linear combination of spherical harmonic projections:

Wℓk(x) =
ℓ+k∑

J=|ℓ−k|

φℓk
J (∥x∥)

J∑
m=−J

YJm(x̂)Qℓk
Jm, (2)

where x̂ = x/∥x∥, YJm is the m-th spherical harmonic of order J , φℓk
J is a learnable radial function,

and Qℓk
Jm are learnable matrices formed from Clebsch–Gordan coefficients. This construction guar-

antees equivariance under SE(3) transformations by disentangling radial and angular dependencies.

The attention weights αij are designed to be SE(3)-invariant and are computed via a dot-product
attention mechanism:

αij =
exp(⟨qi, kij⟩)∑

j′∈Ni\{i} exp(⟨qi, kij′⟩)
, (3)

where the query vector qi and key vector kij are both constructed from the input features through
learned TFN mappings:

qi =
⊕
ℓ≥0

∑
k≥0

Wℓk
Q fkin,i, kij =

⊕
ℓ≥0

∑
k≥0

Wℓk
K (xj − xi) fkin,j . (4)
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Here, Wℓk
Q and Wℓk

K are TFN-type filters that output representations in the same basis, ensuring that
the dot product is invariant under common SO(3) actions.

Equivariance is preserved in the message-passing path through the linear combination of TFN ker-
nels. The attention mechanism maintains invariance because it operates entirely in scalar (dot-
product) space between representations of the same type, which are invariant under group actions
due to orthonormality properties of spherical harmonics.

GVP. The Geometric Vector Perceptron (GVP) (Jing et al., 2021) is a neural module designed for
learning over geometric data, in which each entity (e.g., an amino acid residue or atom) is rep-
resented by both scalar and vector features. Formally, given a pair (s,V) where s ∈ Rn denotes
scalar features and V ∈ Rν×3 denotes geometric vector features, the GVP outputs a new pair
(s′,V′) ∈ Rm × Rµ×3. This transformation is designed to ensure that the scalar outputs remain
invariant while the vector outputs are equivariant with respect to rotations and reflections in R3.

The GVP proceeds via the following algorithm:

Algorithm 1 Geometric Vector Perceptron (GVP)
Input: Scalar features s ∈ Rn, vector features V ∈ Rν×3

Output: Updated features (s′,V′) ∈ Rm × Rµ×3

1: Vh ←WhV
2: Vµ ←WµVh

3: sh ← ∥Vh∥2 (row-wise)
4: vµ ← ∥Vµ∥2 (row-wise)
5: sh+n ← concat(sh, s)
6: sm ←Wmsh+n + b
7: s′ ← σ(sm)
8: V′ ← σ+(vµ)⊙ Vµ

9: return (s′,V′)

Here, Wh, Wµ, and Wm are learnable linear transformations, while σ and σ+ are nonlinear ac-
tivation functions (e.g., ReLU, GELU, or their variants). The vector norm computations ∥ · ∥2
are row-wise and used to extract invariant scalar information from the geometric vectors, which is
then injected into the scalar pathway before transformation. The final output V′ is modulated via
element-wise multiplication with a positive gating function σ+(vµ) to preserve equivariance.

The GVP-GNN updates node embeddings h(i)v via message passing:

h(j→i)
m = GVP

(
concat(h(j)v , h(j→i)

e )
)
, (1)

h(i)v ← LayerNorm

h(i)v +
1

k′

∑
j∈Ni

Dropout(h(j→i)
m )

 , (2)

Here, GVP(·) denotes a sequence of three GVPs. The embeddings h(i)v and h(j→i)
e correspond to

node i and edge (j → i), respectively, as previously defined. The message h(j→i)
m is computed

from these embeddings and represents the information passed from node j to node i. The variable
k

′
denotes the number of incoming messages, which equals k unless the protein contains fewer

than k amino acid residues. Then, a feed-forward point-wise layer is utilized to update the node
embeddings at all nodes i:

h(i)v ← LayerNorm
(
h(i)v + Dropout(GVP(h(i)v ))

)
, (3)

where GVP(·) is a sequence of two GVPs. This architecture allows for expressive, symmetry-aware
modeling of protein geometry with built-in equivariance, while remaining efficient and conceptually
simple.

ProteinBERT. ProteinBERT (Brandes et al., 2022) is a denoising autoencoder for proteins, inspired
by BERT (Devlin et al., 2019) but with a distinct architecture. It takes two inputs: amino acid se-
quences and GO annotations. The architecture consists of parallel local and global pathways. Local
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representations are 3D tensors of shapeB×L×dlocal (with dlocal = 128), and global representations
are 2D tensors of shape B × dglobal (with dglobal = 512).

Each input sequence is embedded into local features by a shared position-wise embedding layer,
while annotations are mapped into global features via a fully connected layer. The model applies six
transformer-like blocks (Vaswani et al., 2017), each updating local features using both narrow and
dilated convolutions (kernel size 9, dilation 1 and 5), followed by feedforward layers. The global
path consists of two fully connected layers per block.

Local-global interaction occurs via (1) a broadcast fully connected layer from global to local, and
(2) a global attention layer from local to global. Global attention has linear complexity and uses
trainable projection matrices Wq , Wk, and Wv (with dkey = 64, dvalue = 128), and nheads = 4 per
block. All activations use GELU (Hendrycks & Gimpel, 2016).

D-Transformer. D-Transformer augments the Transformer with 3D knowledge by adding pairwise
Cα distances to the self-attention scores, similar to Transformer-M (Luo et al., 2023a). For a protein
of length L, let X = [x1, . . . ,xL] ∈ RL×d be residue embeddings and D(i, j) = ∥ri − rj∥2 the
Euclidean distance between residues i and j.

Each distance is first expanded with a learnable Gaussian radial basis:

ϕdist(D(i, j)) =
[
exp
(
− (D(i,j)−µk)

2

2σ2
k

)]K
k=1

, (1)

where {µk, σk}Kk=1 are trainable parameters. A multilayer perceptron maps thisK-vector to a scalar
bias bij = MLP

(
ϕdist(D(i, j))

)
.

For one attention head, the unnormalised score is

Aij =
(hiWQ)(hjWK)⊤√

d
+ bij , (2)

with hi the hidden state at residue i and learned WQ,WK ∈ Rd×d. Because bij depends only on
distances, Aij is invariant to global rotations, translations, and residue permutations. Normalised
weights and value aggregation follow standard Transformer rules:

αij = softmaxj(Aij), zi =

L∑
j=1

αij(hjWV ), (3)

whereWV ∈Rd×d. A position-wise feed-forward network with residual connections completes each
layer, and stacking multiple such layers yields a lightweight architecture that leverages structural
information without coordinate updates.

ESM2. ESM-2 (Lin et al., 2023) is a family of transformer-based protein language models trained to
predict masked amino acids in protein sequences. Compared to its predecessor ESM-1b (Rives et al.,
2021), ESM-2 introduces architectural refinements, improved training procedures, and is scaled
across model sizes ranging from 8M to 15B parameters. The model is trained using a standard
masked language modeling (MLM) objective: for 15% randomly masked positions in a sequence,
the model predicts the identity of each masked amino acid based on its unmasked context.

Formally, the training objective is:

LMLM =
∑
i∈M

log p(xi | x\M ), (1)

where M is the set of masked positions and x\M denotes the observed amino acids. Training is
performed on ∼65 million sequences sampled from ∼43 million UniRef50 (Consortium, 2019)
clusters, covering ∼138 million UniRef90 entries.

Despite its unsupervised formulation, ESM-2 learns rich structural features purely from sequence
data. The model achieves state-of-the-art performance on several protein structure prediction bench-
marks and surpasses previous models, e.g., ESM-1b, ProteinBERT.
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Table 13: Hyperparameter setting of the EGNN pre-training.

MLM
Batch Size 48

Learning Rate 1e-3
Warmup Ratio 0.05

Mask Ratio 0.15
Hidden Dimension 512

Layer Depth 3
MVCL

Batch Size 96
Learning Rate 1e-3
Warmup Ratio 0.05

Subsequence Length 50
Max Node 50

Temperature 0.0099
Hidden Dimension 512

Layer Depth 3
PFP

Batch Size 48
Learning Rate 1e-3
Warmup Ratio 0.05
Temperature 0.01

Hidden Dimension 512
Layer Depth 3

Table 14: Hyperparameter setting of the SE(3) Transformer pre-training.

MLM
Batch Size 48

Learning Rate 1e-2
Warmup Ratio 0.05

Mask Ratio 0.15
Hidden Dimension 36

Layer Depth 2
MVCL

Batch Size 96
Learning Rate 1e-2
Warmup Ratio 0.05

Subsequence Length 50
Max Node 50

Temperature 0.0099
Hidden Dimension 36

Layer Depth 2
PFP

Batch Size 48
Learning Rate 1e-3
Warmup Ratio 0.05
Temperature 0.0099

Hidden Dimension 36
Layer Number 2

F.2 PRETRAIN MODEL EXPERIMENTAL SETUP

In this section, we provide more details about the pertaining.

Pre-training Data. The structural information used for pretraining is derived from the AFDB Swiss-
Prot dataset, while the functional and family annotations are obtained from UniProt Swiss-Prot.
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Table 15: Hyperparameter setting of the D-Transformer pre-training.

MLM
Batch Size 16

Learning Rate 1e-4
Warmup Ratio 0.1

Mask Ratio 0.15
Hidden Dimension 256

Layer Depth 6
MVCL

Batch Size 16
Learning Rate 1e-4
Warmup Ratio 0.1

Subsequence Length 50
Max Node 50

Temperature 0.01
Hidden Dimension 256

Layer Depth 6
PFP

Batch Size 16
Learning Rate 1e-4
Warmup Ratio 0.1
Temperature 0.01

Hidden Dimension 256
Layer Number 6

Table 16: Hyperparameter setting of the GVP pre-training.

MLM
Batch Size 64

Learning Rate 1e-4
Warmup Ratio 0.1

Mask Ratio 0.15
Node Dimension (155,16)

Layer Depth 3
MVCL

Batch Size 64
Learning Rate 1e-4
Warmup Ratio 0.1

Subsequence Length 50
Max Node 50

Temperature 0.01
Node Dimension (155,16)

Layer Depth 3
PFP

Batch Size 64
Learning Rate 1e-4
Warmup Ratio 0.1
Temperature 0.01

Node Dimension (155,16)
Layer Number 3

Swiss-Prot is a high-quality, manually curated protein sequence database within UniProt. Its goal
is to provide comprehensive and biologically meaningful annotations of protein sequences, such
as their functions, families, and maintain minimal redundancy. The AFDB Swiss-Prot dataset is a
subset of the AlphaFold Protein Structure Database that specifically contains structure predictions
for all protein sequences corresponding to UniProt Swiss-Prot entries. Currently, the dataset includes
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Table 17: Hyperparameter setting of the ProteinBERT pre-training.

MLM
Batch Size 48

Learning Rate 1e-4
Warmup Ratio 0.05

Mask Ratio 0.15
Hidden Dimension 512

Layer Depth 12
MVCL

Batch Size 96
Learning Rate 1e-4
Warmup Ratio 0.05

Subsequence Length 50
Max Node 50

Temperature 0.0099
Hidden Dimension 512

Layer Depth 12
PFP

Batch Size 48
Learning Rate 1e-4
Warmup Ratio 0.05
Temperature 0.0099

Hidden Dimension 512
Layer Depth 12

a total of 542,378 entries. ESM-2 and SaProt are pretrained on UniRef sequences clustered at
the 50% sequence identity level. ESM-C is also pretrained on UniRef but with clustering at the
70% sequence identity level, and further incorporates protein sequences from the MGnify and Joint
Genome Institute (JGI) databases, resulting in 83M, 372M, and 2B clusters for UniRef, MGnify,
and JGI, respectively.

Settings. We adopt task and architecture-specific training and model hyperparameters across differ-
ent pretraining tasks and model types. Detailed configurations are summarized in Tab. 13-17.

For the Multi-View Contrastive Learning (MVCL) task, we set the maximum length of sub-
sequences to 50. To extract substructures in 3D space, we randomly sample a central amino acid and
collect all residues within a 15 Å Euclidean radius, with the subspace length capped at 50 residues.
Temperature values used in the contrastive objective are adapted for each model architecture to en-
sure stable training dynamics.

For the Protein Family Prediction (PFP) task, we address the sparsity of family labels by adopting a
negative sampling strategy. During training, family labels are embedded into the same representation
space as proteins, and the model is optimized to align protein embeddings with their corresponding
family embeddings. Simultaneously, embeddings of proteins from other families within the same
batch are pushed apart, following a contrastive learning framework. A temperature coefficient is
introduced to scale the similarity scores and enhance training stability.

39


	Introduction
	Protein Modeling in Protap
	Preliminaries of Proteins
	Pretraining Tasks and Pretraining Models
	Applications and Domain Models

	Experiments
	Experimental Setup
	Impacts of Various Pretraining on Downstream Performance
	Comparison Between Pretrained Models and Domain-Specific Models

	Conclusion and Future Works
	Reproducibility Statement
	Ethics Statement
	Supplemental Experiments and Observations
	Descriptions and Categorization of Domain-Specific Models
	Additional Observations

	Related Works
	Preliminaries
	Protein Data
	Terminology

	Detail of Downstream Application and Dataset
	Enzyme-Catalyzed Protein Cleavage Site Prediction
	Targeted Protein Degradation by Proteolysis-Targeting Chimeras
	Protein–Ligand Interactions
	Protein Function Annotation Prediction
	Mutation Effect Prediction for Protein Optimization

	Domain-Specific Model Architecture
	Pretrain Model Architecture and Experimental Setup
	Model Architecture
	Pretrain Model Experimental Setup


