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ABSTRACT

Unlearning in large language models (LLMs) aims to remove specified data, but
its efficacy is typically assessed with task-level metrics like accuracy and per-
plexity. We demonstrate that these metrics are often misleading, as models can
appear to forget while their original behavior is easily restored through minimal
fine-tuning. This phenomenon of reversibility suggests that information is merely
suppressed, not genuinely erased. To address this critical evaluation gap, we intro-
duce a representation-level analysis framework. Our toolkit comprises PCA-based
similarity and shift, centered kernel alignment (CKA), and Fisher information,
complemented by a summary metric, the mean PCA distance, to measure repre-
sentational drift. Applying this framework across six unlearning methods, three
data domains, and two LLMs, we identify four distinct forgetting regimes based
on their reversibility and catastrophicity. Our analysis reveals that achieving the
ideal state–irreversible, non-catastrophic forgetting–is exceptionally challenging.
By probing the limits of unlearning, we identify a case of seemingly irreversible,
targeted forgetting, offering new insights for designing more robust erasure algo-
rithms. Our findings expose a fundamental gap in current evaluation practices and
establish a representation-level foundation for trustworthy unlearning.1

1 INTRODUCTION

Large language models (LLMs), trained on massive corpora, have achieved remarkable success across
diverse tasks, yet their capacity to memorize training snippets poses acute ethical, legal, and security
risks. Memorization can unintentionally disclose sensitive, harmful, or copyrighted text [30; 15; 39],
conflicting with emerging regulations, such as the EU’s Right to be Forgotten [9].

Machine unlearning seeks to address this challenge by algorithmically erasing the influence of
specified data, making a model behave as if it had never been trained on that data [2]. While
numerous unlearning methods have been developed for LLMs [44; 13; 32; 21; 20; 23; 41], their
efficacy is typically assessed using task-level metrics, such as accuracy on a held-out “forget set.”

However, these evaluations overlook a pivotal question: Does LLM unlearning achieve genuine
erasure, or merely suppress information that can resurface? If supposedly erased knowledge is
readily revived, unlearning constitutes a shallow perturbation with limited safety.

Emerging evidence indicates that many unlearning methods are superficially effective. After unlearn-
ing, models often show degraded performance on the forget set; yet, the “forgotten” knowledge can be
rapidly recovered through minimal fine-tuning even on unrelated data [26; 28] (see Figure 1), low-bit
quantization [48], or adversarial prompting [31; 25]. Although previous studies have identified
this reversibility and the risks of catastrophic forgetting under accumulated updates (of repeated
requests) [36], the representational dynamics governing these regimes have yet to be investigated.

This paper presents the first systematic, representation-level analysis of LLM unlearning re-
versibility. We demonstrate that task-level metrics (e.g., forget accuracy) are insufficient to distinguish
reversible forgetting from catastrophic failure, as surface-level performance collapse may occur while
internal representations remain intact. To move beyond surface effects, a unified diagnostic toolkit:
PCA subspace similarity and shift [49], centered kernel alignment (CKA) [17], and Fisher information

1https://anonymous.4open.science/r/Feature_tools_unlearning-BACA/
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Figure 1: (a) task-level accuracy and CKA subspaces of reversible (top) vs. irreversible (bottom)
catastrophic forgetting due to continual unlearning then relearning, (b) Our four diagnostic tools

(FIM) [3]. We further propose the mean PCA distance as a quantitative measure of representational
drift, helping reveal how different unlearning regimes emerge.

With our toolkit, we build a taxonomy characterizing unlearning along two axes: reversibility and
catastrophicity (collateral damage to retained knowledge). This allows us to distinguish four regimes:
1) Reversible, Catastrophic: Global performance collapse that is fully recoverable via relearning.
2) Reversible, Non-Catastrophic: Targeted performance modest degradation that is easily restored.
3) Irreversible, Catastrophic: Permanent and unrecoverable global performance collapse.
4) Irreversible, Non-Catastrophic: Ideally, permanent erasure of target data without collateral damage.

Crucially, alternative relearning strategies such as prompt attacks [31], jailbreaking [25], quanti-
zation [48], and in-context recovery (with five-shot demonstrations of the forget-set) “fail” once
the model enters reversible, catastrophic forgetting. Since these methods involve minimal or no
parameter updates (on unlearned models), they cannot restore the lost representations. Consequently,
we employ relearning as a robust probe to investigate unlearning behavior. This approach allows us
to unify single and continual unlearning under a single taxonomy, elucidating how distinct forgetting
regimes emerge from request volume, hyperparameters, and the unlearning method itself. By fur-
ther analyzing sample efficiency across data types, we conclude that genuine unlearning demands
irreversible, non-catastrophic erasure rather than superficial degradation in task-level metrics.

Contributions. We summarize our main contributions as follows:

• We present the first systematic study of reversibility in both single and continual LLM unlearning.
We introduce a representation-level diagnostic toolkit and a quantitative metric, the mean PCA
distance, to analyze representational drift and distinguish four regimes of forgetting.

• We conduct extensive experiments with six unlearning methods on multiple LLMs across three
distinct domains. Our results demonstrate that standard task-level metrics (e.g., accuracy, perplexity,
MIA susceptibility) are insufficient for assessing the true extent of unlearning. and we further find
that relearning exhibits different sample efficiencies depending on the type of data.

• We theoretically analyze weight perturbations to explain how widespread vs. localized parameter
changes relate to (ir)reversible forgetting. Small perturbations near the logits can distort task-level
metrics despite intact features, hence leading to misleading assessments.

• We identify a case of seemingly irreversible, non-catastrophic forgetting, offering insights for
designing more robust unlearning algorithms. We also highlight the potential for unlearning to
serve as a form of data augmentation, improving model representations upon relearning.

2 PRELIMINARIES AND OUR FORMULATION

LLM unlearning aims to remove the influence of specific data from a trained model to enhance
privacy, improve safety, or mitigate bias [44; 13; 32; 21; 20; 23]. The standard paradigm involves a
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Table 1: Four regimes of forgetting characterized by the reversibility and catastrophicity:  denotes
regimes commonly observed in practice, and G# denotes the ideal but elusive regime.

Regime Observed Description
Reversible, Catastrophic  Performance on both forget and retain sets collapses, but is recoverable via relearning.
Reversible, Non-Catastrophic  Targeted performance drops on the forget set, which can be easily restored.
Irreversible, Catastrophic  Global, unrecoverable performance collapse on both forget and retain sets.
Irreversible, Non-Catastrophic G# Targeted, permanent erasure of forget-set knowledge with no collateral damage.

training corpus D, from which Df ⊆ D is designated as the forget set. A model M is first trained on
D via an algorithm A. An unlearning procedure U then transforms M into unlearned Mf , which
should ideally behave as if it were trained only on the retain set Dr = D \ Df . Formally, the goal is
to statistically approximate the retrained model Mr: Mf = U(M,Df ) ≈ Mr = A(Dr).

Retraining LLMs is prohibitively costly, so most studies rely on empirical proxies rather than formal
statistically-indistinguishable guarantees [29; 21; 7]. Evaluations track forget quality on the forget
set, utility, and downstream task accuracy on the retain set, aiming to preserve both dimensions.

While current methods can achieve reasonable balances between forgetting and utility in single-shot
scenarios [1; 8], they often falter in the practical continual setting, where removal requests arrive
sequentially over time [1]. For a sequence of forget sets D(1)

f ,D(2)
f , . . . ,D(t)

f (the union is Df ), the

retain set is D(t)
r after t rounds. The model is then updated recursively: M(t)

f = U(M(t−1)
f ,D(t)

f ),

which should be similar to Mr = A
(
M,D(t)

r

)
,∀t. However, empirically, it often leads to catas-

trophic forgetting–a severe decline in performance on both forgotten and retained knowledge [1; 36].

Single-shot unlearning is “fragile:” fine-tuning, even on benign, unrelated data, can rapidly restore
the supposedly “forgotten” knowledge [1; 28; 26]. Such fragility persists in continual unlearning as
well. Prior work has noted this phenomenon but has not deeply investigated its underlying mechanics.

2.1 A TAXONOMY OF FORGETTING REGIMES

We hypothesize that this performance collapse does not necessarily equate to true information erasure;
the knowledge might merely become latent or suppressed. To formalize this hypothesis, we introduce
a taxonomy of forgetting based on two axes: catastrophicity (the extent of collateral damage to
retained knowledge) and reversibility (whether forgotten knowledge can be recovered).

Let θ0 be the initial model parameters, θu be the parameters after unlearning, and θr be the parameters
after a subsequent relearning phase (defined below). We use E(θ, T ) to denote a performance metric
(e.g., accuracy) evaluated on a task set T , which can be partitioned into a forget-related task Tf and a
retain-related task Tr. We define four distinct regimes of forgetting, summarized in Table 1.

Definition 1 (Four Regimes of Forgetting). Let ∆u(T ) = E(θ0, T )−E(θu, T ) be the performance
drop after unlearning, and ∆r(T ) = E(θ0, T )−E(θr, T ) be the residual drop after relearning. The
nature of forgetting is determined by these drops on the forget set (Tf ) and retain set (Tr).

Catastrophic vs. Non-Catastrophic: Forgetting is catastrophic if utility on the retain set degrades
significantly (both ∆u(Tr) and ∆u(Tu) ≫ 0) and non-catastrophic otherwise (∆u(Tr) ≈ 0).

Reversible vs. Irreversible: Forgetting is reversible if relearning almost recovers initial performance
on forget set (∆r(Tf ) ≈ 0) and irreversible if a significant performance drop persists (∆r(Tf ) ≫ 0).

The combination of these two properties yields four regimes, among which the irreversible, non-
catastrophic forgetting is deemed ideal, but remains challenging to achieve in practice.

Relearning Restriction. Comparative analysis (see Appendix A.4.1) reveals that only relearning
attacks reliably restore forgotten knowledge; we therefore employ relearning as our primary empirical
probe to investigate forgetting regimes. To rigorously test the reversibility, we define a constrained
relearning protocol that is distinct from full retraining. Given an unlearned model parameterized by
θu, we obtain the recovered model θr via brief fine-tuning on a restricted dataset, without access to the
raw pre-training corpus. The relearning budget is strictly matched to the forget set size (|Df |), with
data drawn from one of three sources: (i) the forget set Df itself (representing a worst-case recovery
scenario), (ii) a domain-aligned retain subset D(t)

r , or (iii) general out-of-distribution (or unreleated)
data. We further analyze how sample efficiency varies across these data types in Appendix A.4.2.
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Table 2: Yi-6B: MIA / F.Acc / R.Acc (%) simple task using three LRs under single unlearning, relearn
by fine-tuning once on the entire forget set

Phase Method LR=3×10−6 LR=4×10−6 LR=5×10−6

MIA F.Acc R.Acc MIA F.Acc R.Acc MIA F.Acc R.Acc

Original – 70.9 78.9 65.5 70.9 78.9 65.5 70.9 78.9 65.5

Unlearn

GA 45.5 65.4 54.0 43.8 62.4 52.3 41.2 60.3 50.9
GA+GD 65.4 75.1 64.6 58.2 73.8 65.8 55.3 68.5 63.5
GA+KL 48.9 71.0 58.5 47.6 70.6 58.1 44.8 68.4 55.4
NPO 67.2 76.2 64.7 65.2 75.8 62.8 62.2 75.2 62.7
NPO+KL 66.5 76.3 64.8 67.2 76.4 63.2 64.5 75.6 61.2
RLabel 69.6 77.7 64.7 69.2 76.5 64.5 68.7 75.4 63.3

Relearn

GA 67.2 76.6 65.2 68.6 77.6 62.8 67.6 76.9 65.5
GA+GD 68.6 77.0 65.3 68.8 76.9 65.3 68.8 77.2 65.3
GA+KL 67.9 77.6 65.3 68.3 75.5 65.2 67.7 77.2 65.2
NPO 68.2 77.1 65.3 68.2 77.2 65.2 68.3 77.0 65.1
NPO+KL 68.9 77.1 65.3 67.9 76.3 63.0 68.6 76.9 65.2
RLabel 68.3 78.8 65.6 68.9 76.4 65.3 68.8 78.9 65.2

3 CLASSIC (TASK-LEVEL) EVALUATION CAN BE DECEPTIVE

3.1 EXPERIMENT SETUP

Models and Datasets. We adopt two open-source LLMs: Yi-6B [45] and Qwen-2.5-7B [42]. To
assess the generality of our findings, we employ two distinct dataset types for unlearning: (i) simple
tasks, comprising arXiv abstracts and GitHub code from [44], and (ii) a complex task, NuminaMath-
1.5, a recent benchmark for mathematical reasoning [19]. All experiments are performed on NVIDIA
H100 GPUs. (Additional results on TOFU [29] and the Traditional-Chinese corpus2 are in Appendix.)

Unlearning algorithms. We evaluate six canonical unlearning methods, organized into three families.

1) Gradient-Ascent (GA) family. The unified goal is L = Lforget
(
Df

)
+ λLretain

(
Dr

)
, where Lforget

maximizes the loss on the forget set via GA, Lretain (optional) preserves utility on the retain set, and
λ > 0 balances the two. Choices for Lretain give three variants: i) GA (Lretain = 0), ii) GA+GD
(standard cross-entropy on Dr), and iii) GA+KL (KL divergence to the reference model on Dr) [44].

2) Negative Preference Optimization (NPO) family. GA is replaced by an NPO loss that penalizes
agreement with the forget set [47]: L = LNPO

(
Df

)
+ λLretain

(
Dr

)
, Variants mirror those above:

NPO (Lretain = 0) and NPO+KL (retain-set KL regularization).

3) Random Label (RLabel). To mimic a model that never saw Df , true labels are replaced with random
ones: L = LRLabel

(
Df

)
, inducing near-uniform predictions without GA/negative rewards [44].

Unlearning Scenarios. We consider two standard settings: i) Single unlearning: A trained model M
receives exactly one request to remove Df ⊂ D, and ii) Continual unlearning: The model processes
a stream of requests D(1)

f , . . . ,D(t)
f , yielding a sequence of models where M(t) = U(M(t−1),D(t)

f ).

For simple tasks, we benchmark all six algorithms. For the complex math reasoning task, where a
well-defined retain set is not available, we evaluate the core GA, NPO, and RLabel methods.

Evaluation Metrics. In single unlearning (simple tasks), we measure forget-set accuracy (F.Acc),
retain-set accuracy (R.Acc), and privacy leakage via min-k%-prob MIA AUC [35].

In continual unlearning (both task types), we provide a more comprehensive evaluation. For simple
tasks, we report: F.Acc / R.Acc, forget/retain perplexity (F.Ppl / R.Ppl), downstream accuracy on
CommonsenseQA (CSQA )and GSM8K0-shot [37; 4], and min-k%-prob MIA AUC. For the complex
task, we employ MATH0-shot [10] and GSM8K0-shot as the primary math utility benchmarks.

Relearning Setting. To assess the reversibility and of unlearning, each run is followed by a controlled
relearning phase. The unlearned model is briefly fine-tuned on specific data without access to
the full pre-training corpus. For single unlearning, we fine-tune once on the entire forget set Df .

2https://huggingface.co/datasets/taide/taide-bench
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Table 3: Yi-6B: MIA / F.Acc / R.Acc (%) for simple task under four unlearning settings. Bold
numbers indicate improvements over the Original baseline in F.Acc or R.Acc. The relearning phase
uses the cumulative forget set.

Phase Method LR=3×10−5, N=100 LR=5×10−6, N=100 LR=3×10−6, N=100 LR=3×10−5, N=6

MIA F.Acc R.Acc MIA F.Acc R.Acc MIA F.Acc R.Acc MIA F.Acc R.Acc

Original —— 70.8 78.9 65.5 70.8 78.9 65.5 70.8 78.9 65.5 70.8 78.9 65.5

Unlearn

GA 26.1 0.0 0.0 23.2 9.1 6.2 25.2 16.8 14.4 29.6 36.3 36.1
GA+GD 16.8 9.7 2.3 28.7 3.6 3.1 69.4 78.8 65.5 66.9 77.0 64.0
GA+KL 17.8 9.0 6.2 27.3 9.1 6.2 18.9 3.8 3.2 29.5 52.9 41.5
NPO 60.1 37.8 37.9 50.6 51.0 52.3 68.4 78.3 64.1 68.7 71.6 59.4
NPO+KL 59.0 64.3 55.9 65.4 77.6 64.3 66.7 78.8 65.5 67.9 67.6 56.1
RLabel 65.1 0.0 0.0 63.6 0.1 0.4 61.4 0.4 0.7 62.7 72.7 61.1

Relearn

GA 74.5 2.1 1.8 68.0 80.0 65.0 68.6 80.8 65.2 68.2 70.5 58.7
GA+GD 68.1 2.2 2.6 69.8 81.2 65.1 70.0 81.8 65.5 67.0 61.6 54.4
GA+KL 70.7 1.7 1.6 68.3 81.1 64.8 70.7 81.0 63.2 65.0 66.6 56.2
NPO 70.0 57.0 45.6 68.0 82.7 65.5 69.9 81.2 65.5 68.4 71.2 59.4
NPO+KL 67.7 60.7 54.2 69.5 83.8 65.6 69.9 83.8 65.5 69.0 67.6 56.1
RLabel 69.5 4.3 2.8 70.4 80.8 65.3 70.0 80.5 65.3 65.2 72.7 61.1

For continual unlearning, we evaluate three conditions: (i) the cumulative forget set
⋃

t D
(t)
f ,

representing a worst-case adversarial scenario, (ii) the corresponding retain subset D(t)
r , as a proxy for

the data distribution, and (iii) unrelated out-of-distribution data (general-domain samples explicitly
different from Df ). Each relearning dataset is size-matched to its corresponding unlearning request.

Hyperparameter Configuration. To comprehensively evaluate the effects of unlearning, we design
multiple hyperparameter configurations that vary both the learning rate and the number of unlearning
requests. For single unlearning we sweep the learning rate over LR ∈ {3, 4, 5}×10−6 while fixing
the request count to N = 1. For continual unlearning we vary both knobs: on the simple task (Yi-6B)
we test LR ∈ {3, 5}×10−6∪{3×10−5} with N ∈ {6 → 100}; on the complex task (Qwen-2.5-7B)
we use LR ∈ {3, 5}×10−6 and 3 × 10−5 together with N ∈ {6 → 100}. All runs adopt the
optimizer settings of [38]: AdamW [27] (β1 = 0.9, β2 = 0.95, ε = 10−8), a cosine schedule with
10% warm-up followed by decay to 10% of peak, weight decay 0.1, and gradient clipping at 1.0.

3.2 EVALUATION RESULTS

We report quantitative results for single and continual unlearning on Yi-6B and Qwen-2.5-7B under
various configurations. Complete results are provided in Appendix Tables 8 and 9.

Single Unlearning. On Yi-6B, all six methods successfully reduce MIA and F.Acc, indicating a
certain degree of forgetting (Table 2). The impact on the retain set is modest, with R.Acc dropping
by only 2–5%. However, relearning often restores original performance; for instance, GA+KL and
RLabel recover R.Acc to approximately 65% and F.Acc above 77%. These findings suggest that
single unlearning achieves superficial forgetting, as the underlying representations remain largely
intact (Section 4.2.1). This outcome characterizes the reversible, non-catastrophic forgetting regime.

Continual Unlearning. Post-relearning analysis (Tables 3, 8, and 9) reveals two forms of reversible
forgetting. In reversible, catastrophic forgetting, both utility (e.g., F.Acc, R.Acc) and privacy metrics
drop sharply during unlearning but are fully restored after relearning. This is observed in GA and
RLabel with moderate hyperparameters. Besides, reversible, non-catastrophic forgetting entails only
a mild, easily recoverable performance degradation, as seen with NPO at LR = 3× 10−5, N = 6.

Conversely, irreversible, catastrophic forgetting occurs when relearning fails to restore utility, leaving
F.Acc and R.Acc low despite partial MIA recovery. This pattern is common for GA and RLabel
under aggressive hyperparameters (e.g., LR = 3× 10−5, N = 100), where cumulative updates lead
to irreversible representational collapse. The MIA AUC metric behaves erratically in this regime:
it may fall below 50% during unlearning but misleadingly rebounds to high values after relearning,
even after the model’s capabilities have been permanently lost. These empirical results on single and
continual unlearning are consistent with the theoretical framework in Section 5, which shows that
small perturbations to the model weights can trigger disproportionately large drops in accuracy.
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Table 4: Single and continual unlearning results for GA across four models

Single unlearning: Qwen2.5-7B (GA) Continual unlearning: Qwen3-8B-Base (GA) Continual unlearning: Llama-3-8B (GA) Continual unlearning: Qwen2.5-3B (GA)
MATH GSM8K F.Acc R.Acc F.Acc R.Acc F.Acc R.Acc

Original model 9.00 80.10 Original model 78.28 62.96 Original model 76.41 63.50 Original model 76.37 61.39
3×10−6 (unlearn) 6.24 73.28 6×10−6 (unlearn) 0.45 0.21 6×10−6 (unlearn) 0.38 0.48 6×10−6 (unlearn) 1.45 2.56
3×10−6 (relearn) 8.97 78.29 6×10−6 (relearn) 79.72 62.66 6×10−6 (relearn) 76.49 63.21 6×10−6 (relearn) 79.61 61.45
6×10−6 (unlearn) 1.12 30.21 5×10−5 (unlearn) 0.02 0.02 5×10−5 (unlearn) 0.00 0.00 5×10−5 (unlearn) 0.01 0.01
6×10−6 (relearn) 8.62 77.63 5×10−5 (relearn) 0.03 0.03 5×10−5 (relearn) 0.02 0.04 5×10−5 (relearn) 3.58 4.27
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Figure 2: Layer-wise PCA Similarity and Shift for GA on Yi-6B (simple task). Vary LR {3 ×
10−6, 5 × 10−6, 3 × 10−5} at N = 100. Sustained low similarity or large shifts signal severe,
irreversible catastrophic forgetting, whereas partial similarity or small shifts indicate mild, reversible
catastrophic forgetting. Input queries are drawn from the forget set.

We conducted additional single-unlearning experiments on Qwen2.5-7B for the complex task, evalu-
ating GA under two learning rates. We also performed continual-unlearning experiments (N = 100)
on Llama-3-8B [6], Qwen2.5-3B [42], and Qwen3-8B-Base [43] for the simple task, again using GA
with the same learning-rate settings. As shown in Table 4, the results further suggest that task-level
metrics alone are insufficient to reliably assess the true reversibility of unlearning across different
settings. The observed behaviors remain consistent with those in Table 3 and Table 2.

4 REPRESENTATION-LEVEL EVALUATION

4.1 REPRESENTATIONAL ANALYSIS TOOLS

To analyze representational drift, we employ four hidden state diagnostics, as summarized in Fig-
ure 1(b). Their precise definitions and implementation details are deferred to Appendix A.3.

PCA Similarity, Shift, and Mean Distance. For each layer i, we collect activation matrices Horig
i ,

Hunl
i , and Hrel

i on a probe set X for the original, unlearned, and relearned models, respectively. Let
c
(∗)
i,1 and p

(∗)
i,12 be the first principal direction and its mean projection for state (∗)∈{orig, unl, rel}.

PCA Similarity is the cosine between corig
i,1 and c

(∗)
i,1 , while PCA Shift is the signed difference p

(∗)
i,12.

Small values for these metrics indicate stable features, whereas large, unrecovered shifts signify
irreversible changes [49]. We also introduce the mean PCA distance, the average Euclidean distance
on p

(∗)
i,12 across layers, to provide a single scalar measure of representation drift.

Centered Kernel Alignment (CKA). Given centered activation matrices Xorig
i and Y

(∗)
i , we compute

CKA(Xorig
i , Y

(∗)
i )∈ [0, 1]. Values ≈ 1 mean nearly identical subspaces, those ≈ 0 are orthogonal.

Fisher information (FIM). We estimate the diagonal of the empirical FIM by averaging squared
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gradients over the probe set X . Comparing FIMorig, FIMunl, and FIMrel reveals how unlearning
alters the loss landscape and whether relearning restores parameter importance [16; 11].

All diagnostics are computed not only on the forget set but also on the retain set and unrelated data to
distinguish targeted unlearning from general representational degradation.

4.2 REPRESENTATIONAL RESULTS

4.2.1 SINGLE UNLEARNING
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Figure 3: Single unlearning analysis on Yi-6B with GA un-
der a simple task. In reversible non-catastrophic forgetting,
PCA Similarity, PCA Shift, CKA, and FIM across layers
show only minor changes with slight accuracy drops. Input
queries are drawn from the forget set.

Figure 3 demonstrates feature-level
changes under single unlearning. (a)
PCA Similarity remains near 1.0 across
all layers, with minor, reversible dips,
indicating that dominant activation di-
rections are preserved. Slight dips in
shallow and final layers are rapidly re-
stored after relearning, suggesting min-
imal and reversible drift. (b) PCA shifts
are minimal, and relearned representa-
tions closely realign with the original.
(c) CKA values are nearly 1.0 for all
model states, confirming that subspace
structures remain intact. (d) FIM spec-
tra show only mild, temporary shifts that
are fully restored after relearning. These
results, combined with the task-level
evaluation in Section 3.2, demonstrate
that single unlearning induces reversible,
non-catastrophic forgetting. This high-
lights the limitation of classic (task-
level) metrics, which fail to capture the superficial nature of the forgetting.

4.2.2 CONTINUAL UNLEARNING

As shown in Figures 2 and 5, PCA Similarity and Shift offer complementary views of representational
change: similarity reflects global alignment, and shift is more sensitive to local variations. Relying
on PCA similarity alone can obscure subtle effects; employing both avoids overlooking fine-grained
distinctions, enabling a more comprehensive assessment. Higher learning rates or more requests
cause sharp drops in similarity and large, unrecovered shifts, which is characteristic of irreversible
catastrophic forgetting. In contrast, milder hyperparameters lead to high similarity and bounded shifts
that are restored after relearning, consistent with reversible, catastrophic forgetting. This pattern is
consistent across probe sets from forget set, retain set, and unrelated data (Figures 10 and 14).

Figure 4 integrates CKA (top) and FIM (bottom) analyses. CKA reveals that mild unlearning main-
tains stable alignment that recovers post-relearning, while aggressive unlearning causes irreversible
degradation. The FIM spectra complement this by showing that continual unlearning flattens the loss
landscape. Extreme hyperparameters induce a permanent leftward shift in sensitivity distributions,
whereas moderate settings permit recovery. Together, these diagnostics suggest that observed perfor-
mance loss is often due to temporary suppression rather than permanent erasure of knowledge. For
conciseness, we present results on forget-set queries in the main text; retain-set queries, which yield
similar conclusions under catastrophic forgetting, are in Appendix A.6 (e.g., Figures 12 and 10).

Mean PCA Distance Analysis. To quantify representation-level drift with a single metric, we use the
mean PCA distance. To assess the metric’s sensitivity, we compute its mean and standard deviation
across four random seeds, as well as shuffling the order of unlearning requests. As shown in Table 5,
higher learning rates consistently increase the mean PCA distance for both unlearned and relearned
models At a low learning rate (e.g., 3 × 10−6), the mean and variance of the distance remain low
after relearning, indicating stable and reproducible recovery. In contrast, a high learning rate (e.g.,
3× 10−5) sharply increases both values, reflecting greater variability and incomplete recovery.
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Figure 4: CKA for GA on Yi-6B, simple task. Vary LR {3 × 10−6, 5 × 10−6, 3 × 10−5} with
N = 100. High CKA ( 1) and concentrated FIM spectra indicates reversible catastrophic forgetting,
while persistently low CKA and large-shifted, flattened spectra denote severe representational drift
and irreversible catastrophic forgetting. Input queries are drawn from the forget set.

Table 5: Yi-6B (GA): Mean ± standard deviation of PCA distance on forget and retain sets across
varying learning rates and random seeds; the number of unlearning requests is fixed.

Model Learning Rate Phase Seed Mean PCA distance (forget set) Mean PCA distance (retain set)

Yi-6B (GA)

3 × 10−6 Unlearn 12, 22, 32, 42 9.62 ± 5.66 6.85 ± 4.10

3 × 10−6 Relearn 12, 22, 32, 42 2.11 ± 1.42 1.64 ± 1.12

5 × 10−6 Unlearn 12, 22, 32, 42 11.52 ± 6.19 8.79 ± 5.20

5 × 10−6 Relearn 12, 22, 32, 42 1.37 ± 0.74 1.05 ± 0.58

3 × 10−5 Unlearn 12, 22, 32, 42 133.20 ± 45.81 121.45 ± 38.60

3 × 10−5 Relearn 12, 22, 32, 42 104.58 ± 39.70 95.34 ± 32.40

Combining these empirical findings with the task-level results in Section 3, we further connect to
the theoretical analysis in Section 5, whose conclusions show that small weight perturbations induce
only limited changes in the feature space, thereby enabling recovery, whereas larger perturbations
accumulate into substantial representational drift that underlies irreversibility.

5 THEORETICAL ANALYSIS

5.1 A PERTURBATION MODEL OF UNLEARNING

To explain the empirical distinction between reversible and irreversible (catastrophic) forgetting,
we introduce a perturbation model that links unlearning updates to representational changes across
layers. Consider an L-layer feedforward network f(x) = σ(WL σ(· · ·σ(W1x) · · · )) with activation
σ and weights Wi

L
i=1. We model unlearning as a layer-wise perturbation W̃i = Wi +Ei, where the

magnitude of the error term, |Ei| = O(LR, N), scales with the learning rate (LR) and the number of
unlearning requests N . A Neumann-series expansion of the network’s output shows that the total
change f̃(x)− f(x) is defined as

∑
∅≠S⊆{1,...,L}(WL ◦ · · · ◦ Eik ◦ · · · ◦W1)(x).

When perturbations are small and localized to a few layers, first-order terms dominate, leading to
reversible (catastrophic) forgetting. In contrast, when comparable perturbations are distributed across
many layers, higher-order interaction terms accumulate, causing structural degradation that results in
irreversible (catastrophic) forgetting. We can formalize the impact on our diagnostic tools:
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Table 6: Yi-6B (GA+GD+WAGLE) performance under different relearning settings. F.Acc/R.Acc
are forget/retain accuracy, with mean PCA distances on the forget and retain sets.

Phase F.Acc R.Acc Mean PCA distance (forget set) Mean PCA distance (retain set)

Original model 78.9 65.5 0 0

LR=2 × 10−5, N = 50, relearned by retain set (N = 25)
Unlearn 37.8 55.9 11.84 6.28
Relearn 46.9 58.3 9.00 5.91

LR=4 × 10−5, N = 50, relearned by unrelated data (N = 50)
Unlearn 27.8 51.4 26.02 8.37
Relearn 31.5 53.5 24.56 8.12

Table 7: Relearning on Qwen3-8B-Base and Llama-3-8B (GA+GD+WAGLE) with unrelated data.
F.Acc/R.Acc is forget/retain accuracy, with mean PCA distances on the forget and retain sets.

Qwen3-8B-Base (relearned by unrelated data) Llama-3-8B (relearned by unrelated data)
Phase F.Acc R.Acc PCA dist (forget) PCA dist (retain) F.Acc R.Acc PCA dist (forget) PCA dist (retain)
Original model 78.28 62.96 0.00 0.00 76.41 63.50 0.00 0.00

Relearning by unrelated data (Qwen: LR=5× 10−6, N=50; Llama: LR=3× 10−6, N=50)
Unlearn 48.52 56.47 8.49 5.98 42.59 53.47 14.29 7.12
Relearn 53.21 59.16 6.57 4.32 49.78 56.24 11.47 6.21

PCA Similarity. Let Xi and Yi = Xi + E′
i be the centered activations at layer i before and after un-

learning. By the Davis–Kahan theorem [5], cos∠(corig
i , cupd

i ) ≈ 1−O(∥E′
i∥/(λ1,i−λ2,i)), with top

two eigenvalues λ1,i, λ2,i. The layer-averaged PCA similarity is S̄PCA ≈ 1−O((1/L)
∑

i ∥E′
i∥).

PCA Shift. Along the first principal component, the activation-centroid shift is expressed as
pi,12 = O(∥E′

i∥). Large perturbations ∥E′
i∥ propagating across multiple layers lead to irreversible

representational drift, whereas smaller perturbations remain localized and thus reversible.
CKA. Let K̃Yi

= K̃Xi
+ ∆Ki denote the perturbed Gram matrix at layer i. The corresponding

CKA score is computed as CKAi = 1 − O
(
∥∆Ki∥∗/∥K̃Xi

∥∗
)

. Averaging across layers yields

C̄ ≈ 1−O
(
1
L

∑
i ∥∆Ki∥∗

)
, where C̄ denotes the layer-averaged CKA.

Fisher Information. Given update δwi = O(∥Ei∥), the Fisher diagonal behaves as Fii(w + δw) =
Fii(w)+O(∥δwi∥), so the average Fisher becomes F̄ = (1/P )

∑
i Fii = F0−O((1/P )

∑
i ∥Ei∥).

5.2 BRIDGING REPRESENTATIONAL DRIFT AND TASK-LEVEL METRICS

Classic (task-level) metrics can be misleading. They are highly sensitive to small weights’ changes,
particularly in the final layers, which can cause large shifts in output probabilities without altering the
model’s deeper representations. For a softmax output, a small perturbation δθ to the model parameters
yields a large change in log-probability: log p(y|x; θ + δθ) ≈ log p(y|x; θ) +∇θ log p(y|x; θ)⊤δθ +
O(∥δθ∥2). A minor update to the logits can dominate this first-order term, causing a sharp drop in
accuracy that suggests catastrophic forgetting, even if the underlying geometry is preserved.

This aligns our theoretical model with the empirical findings in Sections 3 and 4.2. When LR or N
is small, changes are confined to first-order effects, feature spaces remain intact, and forgetting is
reversible. When LR or N is large, higher-order perturbations accumulate across layers, making
recovery impossible and leading to irreversible forgetting. Figure 2 illustrates such a transition.

Interestingly, relearning can sometimes lead to performance that exceeds the original model’s accuracy
on the forget set (Table 3). This suggests that unlearning can act as a form of contrastive regularization,
reinforcing salient features related to the forgotten data, which a brief relearning can then exploit.

5.3 PROBING THE LIMITS OF IRREVERSIBILITY

In our primary experiments, we did not observe irreversible non-catastrophic forgetting; even a
small fraction (e.g., 10%) of the forget set was sufficient to restore performance. To explore this
regime, we conducted extra experiments with more constrained relearning conditions. We used the
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GA+GD+WAGLE method [14], which selectively updates influential parameters, and limited the
relearning data to either (i) 50% of the retain set or (ii) an equal-sized, unrelated dataset (Table 6).

Under these conditions, the method exhibited seemingly irreversible, non-catastrophic forgetting. The
forget set showed large, unrecoverable PCA distances, while the retain set experienced only modest,
partially recoverable degradation. This demonstrates that achieving the ideal of targeted, permanent
unlearning without collateral damage remains an open challenge. Defining precise thresholds to
distinguish the forgetting regimes (reversible vs. irreversible and catastrophic vs. non-catastrophic)
is non-trivial, as they depend on the unlearning method, task complexity, and other factors.

To assess generality, we apply GA+GD+WAGLE to Qwen3-8B-Base and Llama-3-8B, using an unre-
lated dataset for the relearning phase. Table 7 again shows seemingly irreversible yet non-catastrophic
forgetting. We further find model-family differences in hyperparameter sensitivity when reaching
comparable behavioral regimes. Such sensitivity likely shapes the boundary between reversible and
irreversible forgetting and may guide future work on stable, irreversible, non-catastrophic unlearning.

6 DISCUSSION AND TAKEAWAYS

Beyond the diagnostic toolkit that identifies four regimes, representation-level signals provide a
foundation for understanding, predicting, and guiding unlearning behaviour and also uncover the
surprising possibility that unlearning can enhance performance rather than merely erase information.

(1) Diagnostic metrics reliably predict reversibility under a fixed protocol. Given a bounded
relearning budget and fixed data source, large layer-wise PCA shifts and high mean PCA distance
consistently predict recovery failure, whereas high CKA and concentrated Fisher spectra indicate
reversibility. These thresholds remain stable across models, datasets, and unlearning methods.

(2) Practical guidance for controlling unlearning behavior. Practitioners can track mean PCA
distance and CKA during unlearning to identify when to stop or adjust learning-rate and request
budgets before entering irreversible collapse. Drift metrics help tune learning-rate schedules and
request counts to deliberately target reversible or irreversible regimes. Fisher shifts and layer-wise drift
localize which layers can be safely updated while preserving retain-set and unrelated representations.

(3) Unlearning can enhance performance rather than merely erase information. In several
continual-unlearning runs, relearning on the forget set achieves accuracy that exceeds the original
model. This indicates that unlearning behaves not only as a deletion mechanism but also as an
implicit form of contrastive regularization. As discussed in Section 5, unlearning amplifies forget-
specific subspaces, and relearning on augmented variants strengthens semantic structure and improves
robustness, reorganizing representations toward more generalizable patterns.

7 CONCLUSION

This work demonstrates that class (task-level) evaluations of LLM unlearning are insufficient, as
performance collapse often masks the reversibility of forgetting. Models may appear to have erased
data while their internal representations remain intact and easily recoverable. Our representation-level
toolkit reveals that genuine forgetting requires substantial, coordinated weight perturbations. Minor
updates often create only a superficial, reversible effect. We find that achieving the ideal goal of
irreversible, non-catastrophic forgetting remains an open challenge, exposing a fundamental limitation
in current methods. Our findings call for a shift in evaluation, moving beyond surface-level metrics
to protocols that measure true representational change. This is essential for developing unlearning
algorithms that can provide meaningful and trustworthy guarantees of data removal.
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A APPENDIX

A.1 LIMITATIONS

Our experiments target two LLMs and a handful of tasks and unlearning methods; although our
diagnostic framework is model-agnostic and designed to scale, empirical validation on much larger
models and production-scale pipelines remains to be done. The constrained relearning protocol and
selected metrics provide clear insights into representational drift but are not exhaustive and do not
offer formal privacy guarantees. In this work, we primarily relied on four diagnostic tools—PCA
similarity, PCA shift, CKA, and Fisher information—to capture different aspects of representational
drift. Other feature-level methods, such as correlation-based approaches (e.g., SVCCA [33]), offer
similar perspectives on subspace similarity. Incorporating a broader suite of analytic tools is an
important direction for future work.

A.2 RELATED WORK

Machine Unlearning. Machine unlearning has emerged as a critical direction for addressing
privacy, safety, and bias in large language models (LLMs) [44; 13; 32; 21; 24; 8; 36; 41; 48; 46;
40; 2]. It is typically defined as either exact or approximate [2]. Exact unlearning requires the
resulting model to be indistinguishable from one retrained from scratch on the retain set, fully
eliminating any statistical trace of the forget set. Approximate unlearning relaxes this requirement
to distributional or behavioral similarity, demanding only comparable outputs (e.g., perplexity or
forget-set accuracy) between unlearned and retrained models [29; 36]. For modern LLMs, however,
exact unlearning is computationally infeasible, as full retraining or partition-based schemes scale
poorly [2]. Consequently, approximate methods dominate practice in LLMs.

Single-Shot Unlearning. Most existing approaches are designed for single deletion events.
Gradient-based strategies (e.g., GA) enforce forgetting directly but often incur significant util-
ity loss [44]. Recent advances such as WAGLE augment these methods with weight attribution
(e.g., GA+GD+WAGLE), selectively updating the most influential parameters to enhance forgetting
efficacy while mitigating utility degradation [14]. Prompt-based steering avoids parameter updates,
reducing cost, but typically achieves only superficial forgetting with vulnerability to reactivation [24].
Model-editing methods, such as AlphaEdit [22], are lightweight and potentially robust, yet their
behavior under sequential or heterogeneous requests remains underexplored.

Continual Unlearning. When unlearning requests arrive sequentially, naive extensions of single-
shot methods tend to compound damage, leading to catastrophic forgetting and unstable dynamics [1;
36]. Each request operates on an already modified model, magnifying utility loss. Recent work has
attempted to mitigate this through orthogonal updates (e.g., LoRA-based unlearning [12]) and OOD
detectors. ALKN [40] advances this line by providing a principled framework for continual unlearning,
introducing parameter-level interventions and adaptive modules to counteract accumulative decline.

Evaluations. Evaluating unlearning efficacy remains an open challenge. Existing studies rely on
three main classes of metrics. First, classic (task-level) metrics such as accuracy, perplexity [44; 21]
are widely used but can be misleading, since performance degradation does not guarantee removal
of knowledge. Second, memorization probes [18] assess verbatim recall, offering finer granularity
but failing to capture semantic or paraphrased knowledge. Third, robustness-based evaluations
examine vulnerabilities to jailbreaking [50; 25], relearning attacks [26], prompt attack [31] and
even quantization attacks [48]. For quantization attacks, low-bit compression restores forget-set
behavior without direct access to the forget. Lastly, RESTOR [34] evaluates whether an unlearning
algorithm can both remove the influence of the forget set and restore the model to the parameter state
it would have had if those datapoints had never been included in training. While existing approaches
expose weaknesses in reversibility, they often conflate forgetting with class task-level degradation
and lack structural insight. Our representation-level toolkit closes this gap by jointly diagnosing
reversibility and catastrophicity, yielding a more faithful understanding of what is truly forgotten.
We apply this toolkit to both single unlearning and continual unlearning, the latter of which has not
been systematically investigated despite being a more realistic scenario where deletion requests arrive
sequentially over a model’s lifecycle.
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A.3 DETAILED ANALYSIS TOOLS

PCA Similarity and PCA Shift. For each Transformer layer, we perform PCA on the hidden
activations of the original and updated models. Let corig

i,1 and cupd
i,1 denote the first principal component

(PC1) directions of layer i. The PCA Similarity is defined as

PCA-Sim(i) = cos
(
corig
i,1 , c

upd
i,1

)
=

(corig
i,1 )

⊤cupd
i,1

∥corig
i,1 ∥ ∥c

upd
i,1 ∥

∈ [−1, 1],

where values near 1 indicate stable directional alignment, and values near −1 suggest a near-
orthogonal shift in dominant directions.

To capture translational drift, we also compute the mean projection of activations along PC1 and PC2:

PC1 ∆(i) = ci,1
upd − ci,1

orig, PC2(i) = ci,2
upd, pi,12 = (PC1 ∆(i), PC2(i))

where pi,12 quantifies displacement along PC1 and captures orthogonal deviation along PC2. These
metrics reflect how the representation center drifts within the top subspace.

Centered Kernel Alignment (CKA). To assess subspace alignment, we use linear Centered Kernel
Alignment (CKA) [17], which compares activation matrices X,Y ∈ RN×D from before and after
unlearning. First, we compute the centered Gram matrices:

K̃X = HXX⊤H, K̃Y = HY Y ⊤H, H = IN − 1
N 11⊤.

The CKA score is then given by:

CKA(X,Y ) =
Tr(K̃XK̃Y )√

Tr(K̃2
X)

√
Tr(K̃2

Y )
∈ [0, 1],

where values near 1 indicate highly overlapping subspaces, and values near 0 signal near-
orthogonality.

Fisher Information. To measure parameter-level importance, we compute the diagonal of the
empirical Fisher Information Matrix (FIM). For each parameter wi and input distribution Ddis, the
diagonal entry is approximated as:

FIMii ≈ E(x,y)∼Ddis

[
(∂wi log p(y | x;w))

2
]
.

Larger values indicate that wi has a stronger influence on the model’s predictions. A substantial
leftward shift in the Fisher spectrum after unlearning implies a flattened loss landscape and diminished
parameter sensitivity.

Together, these tools form a feature-space diagnostic suite: FIM captures global sensitivity, CKA
measures subspace preservation, and PCA-based metrics expose fine-grained geometric drift across
layers—enabling a robust assessment of representational degradation during unlearning.

A.4 DIFFERENT TYPES OF RELEARNING AND SAMPLE EFFICIENCY

A.4.1 DIFFERENT TYPES OF RELEARNING

Beyond standard relearning, we further evaluated the unlearned Yi-6B model (GA-based setup) under
four alternative recovery strategies: quantization attacks [48], prompt attacks [31], jailbreaking [25],
and in-context recovery. For quantization, we applied Int4 quantization directly to the unlearned
model. For the other methods, which do not modify parameters, we adapted inputs to interface with
our PCA analysis: prompt attack used paraphrased variants of the original inputs; jailbreak attack
prepended the fixed prefix from [25]; in-context recovery supplied five demonstrations from the forget
set before evaluating the original inputs.

As shown in Table 11, none of these recovery strategies restore the forgotten knowledge. Once the
model enters the regime of reversible catastrophic forgetting, methods that do not explicitly update
parameters or introduce only minor perturbations (quantization) fail to recover lost representations.
This demonstrates that explicit relearning is necessary to reverse this particular forgetting state.
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Table 8: Yi-6B simple-task metrics under four (LR, N) settings. For each block: forget/retain per-
plexity (F.Ppl / R.Ppl), forget/retain accuracy (F.Acc / R.Acc), CommonsenseQA (CSQA), GSM8K,
and membership-inference AUC (MIA).

Phase Method F.Ppl R.Ppl F.Acc R.Acc CSQA GSM8K MIA

LR=3 × 10−5, N = 100
Original — 3.8 7.8 78.9 65.5 73.1 39.6 70.9

Unlearn

GA ∞ ∞ 0.0 0.0 19.3 0.0 26.1
GA+GD ∞ ∞ 9.7 2.3 19.7 0.0 16.8
GA+KL ∞ ∞ 9.0 6.2 19.6 0.0 17.8
NPO 31296.5 597.9 37.8 37.9 62.2 1.0 60.1
NPO+KL 348080.2 4482.0 64.3 55.9 64.9 1.4 59.0
Rlable 63791.7 65903.4 0.0 0.0 20.9 0.0 65.1

Relearn

GA 137094.5 758443.5 2.1 1.8 19.7 0.0 74.5
GA+GD 5274.5 9568.6 2.2 2.6 19.6 0.0 68.1
GA+KL 5037.1 15019.9 1.7 1.6 20.6 0.0 70.7
NPO 16.6 41.7 57.0 45.6 51.8 0.6 70.0
NPO+KL 21.8 16.2 60.7 54.3 48.0 0.9 67.7
Rlable 4056.1 15048.6 4.3 2.8 19.7 0.0 69.5

LR=5 × 10−6, N = 100

Unlearn

GA ∞ ∞ 9.1 6.2 19.6 0.0 23.2
GA+GD ∞ ∞ 3.6 3.1 24.5 0.0 28.7
GA+KL ∞ ∞ 9.1 6.2 19.6 0.0 27.3
NPO 3017.7 1110.6 50.1 52.3 72.9 37.5 50.6
NPO+KL 38.5 232.4 77.6 64.3 73.1 37.6 65.4
Rlable 57035.4 53377.1 0.1 0.4 19.1 0.0 63.6

Relearn

GA 3.7 7.8 80.0 64.9 70.2 39.9 68.0
GA+GD 3.6 7.6 81.2 65.1 72.1 39.0 69.8
GA+KL 3.6 8.4 81.1 64.8 71.6 40.7 68.3
NPO 3.5 7.6 82.7 65.5 74.0 39.7 68.0
NPO+KL 3.5 7.8 83.8 65.6 74.1 39.7 69.5
Rlable 3.6 7.7 80.8 65.3 71.8 39.2 70.3

LR=3 × 10−6, N = 100

Unlearn

GA ∞ ∞ 16.8 14.4 69.5 12.3 25.2
GA+GD 3.3 7.6 78.8 65.5 77.0 37.5 69.4
GA+KL ∞ ∞ 35.4 40.6 63.2 18.3 18.9
NPO 3.7 7.9 78.3 65.0 73.3 38.7 68.4
NPO+KL 3.8 8.1 78.4 65.1 73.6 38.6 66.7
Rlable 36794.7 32562.0 3.8 3.2 19.3 2.2 61.4

Relearn

GA 3.7 7.6 80.8 65.2 73.4 39.9 68.6
GA+GD 3.6 7.4 81.8 65.5 72.1 39.0 70.0
GA+KL 3.6 10.3 81.0 63.3 67.2 40.7 70.7
NPO 3.5 7.5 81.2 65.4 72.9 39.7 69.9
NPO+KL 3.5 7.5 83.8 65.5 73.0 39.7 69.9
Rlable 3.6 7.6 80.5 65.3 72.2 39.2 70.0

LR=3 × 10−5, N = 6

Unlearn

GA inf inf 36.3 36.1 69.1 5.8 29.6
GA+GD 209.3 20.6 77.0 64.0 70.0 37.8 66.9
GA+KL inf inf 53.0 41.5 68.3 2.0 29.5
NPO 12.3 10.7 71.6 59.4 71.7 24.7 68.7
NPO+KL 8.9 10.7 74.7 62.1 72.8 32.2 67.9
Rlable 51589.2 40622.9 0.4 0.7 19.8 0.0 62.6

Relearn

GA 6.8 11.4 70.5 58.7 64.5 18.4 68.2
GA+GD 12.3 11.5 61.6 54.4 61.3 7.3 67.1
GA+KL 17.1 11.6 66.6 56.2 60.6 3.0 65.0
NPO 6.0 11.6 71.2 59.4 59.4 2.0 68.4
NPO+KL 7.3 11.6 67.6 56.1 42.9 1.6 69.0
Rlable 6.4 11.4 72.7 61.1 67.5 28.9 65.2

A.4.2 SAMPLE EFFICIENCY

To examine sample efficiency, we extend our GA-based relearning experiments (LR = 6× 10−6,
N = 100) across three data sources—the forget set, retain set, and unrelated data (see Section 2 for
details). Each source is evaluated at 10%, 30%, 60%, and 100% of the original forget-set size.

As shown in Table 12, these experiments reveal a clear hierarchy in recovery efficiency. Relearning on
the forget set provides the strongest and fastest recovery, with PCA distances approaching those of the
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Table 9: Qwen-2.5-7B: MIA / MATH / GSM8K Accuracy (%) for complex task under four settings.
Bold numbers indicate improvements over the Original baseline in MATH or GSM8K.

Phase Method LR=3 × 10−5, N=6 LR=3 × 10−6, N=6 LR=5 × 10−6, N=6 LR=5 × 10−6, N=100

MIA MATH GSM8K MIA MATH GSM8K MIA MATH GSM8K MIA MATH GSM8K

Original —– 99.3 9.0 80.1 99.3 9.0 80.1 99.3 9.0 80.1 99.3 9.0 80.1

Unlearn
GA 5.9 0.0 0.0 0.9 0.0 0.0 3.8 0.0 0.0 5.5 0.0 0.0
NPO 95.9 0.0 0.2 97.4 21.5 74.1 67.4 24.1 71.8 94.7 0.0 0.4
RLabel 35.5 0.0 0.0 69.6 0.0 1.5 11.2 0.0 0.0 2.9 0.0 0.0

Relearn
GA 97.6 0.0 1.1 99.3 5.1 83.2 99.4 9.3 77.8 99.2 0.0 0.0
NPO 95.8 0.0 0.0 99.4 4.7 82.6 99.4 16.5 75.7 99.2 0.0 0.0
RLabel 99.5 0.0 0.0 99.3 5.3 83.3 99.3 10.0 77.2 99.6 0.0 0.0

Table 10: Yi-6B (GA): Mean PCA distance under different learning rates. The left block uses China
Taiwan for relearning only, while the right block uses TOFU for both unlearning and relearning.

Relearning with China Taiwan Unlearning + Relearning with TOFU

Learning Rate Phase Mean PCA distance (forget set) Phase Mean PCA distance (forget set)

3 × 10−6 Unlearn 17.12 Unlearn 0.51
3 × 10−6 Relearn 4.98 Relearn 0.27

5 × 10−6 Unlearn 20.27 Unlearn 2.41
5 × 10−6 Relearn 10.77 Relearn 1.08

3 × 10−5 Unlearn 193.13 Unlearn 11.96
3 × 10−5 Relearn 167.32 Relearn 11.02

original model even at moderate sample sizes. In contrast, relearning using the retain set or unrelated
data restores performance only gradually; both sources are substantially less sample-efficient and
yield slower improvements in representational alignment.

A.5 MEAN PCA DISTANCE UNDER DIFFERENT DATASET

To examine the role of distributional alignment, we evaluate unlearning and relearning under two
dataset settings. First, we use the TOFU benchmark [29], where both unlearning and relearning
occur within the same distribution. Second, treating different languages as out-of-distribution (OOD),
we include a Traditional-Chinese corpus for relearning. This setup enables us to probe whether
cross-lingual signals can drive effective recovery, and how their efficacy compares with in-distribution.

Table 10 confirms that cross-lingual relearning improves the model but achieves less complete
restoration than English data: mean PCA distance and related summary metrics move closer to
baseline values, yet remain substantially higher. Greater linguistic or domain dissimilarity therefore
reduces the efficacy of recovery, though partial restoration is still attainable.

For the TOFU dataset, the overall pattern holds: learning rate and the number of unlearning
requests (N ) effectively regulate feature drift and reversibility. However, the representational
shifts induced by TOFU are milder than those observed in our simple and complex tasks. We attribute
this to the smaller and less diverse nature of TOFU’s corpus; many entries are short and contain only
author metadata, making its impact on the model’s feature space comparatively limited.

A.6 DETAILED ANALYSIS RESULTS

A.6.1 PRINCIPAL COMPONENT ANALYSIS: SIMILARITY AND SHIFT

Across the same hyper-parameter grid, Figure 7 (PCA–Similarity) and Figure 11 (PCA–Shift) provide
complementary views of representational drift. For GA, higher learning rates drive unlearned states
(orange) far from the original (blue), while relearning (green) fails to return, producing long rays of
irreversible drift. GA+GD narrows the spread but still collapses at 3×10−5.

On Qwen-2.5-7B, GA shifts span thousands of PC1 units and drive PC2 to extreme negatives
(Figure 13c,f,i), consistent with the multi-layer perturbations predicted in Section 4. In complex tasks
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Table 11: Different recovery attempts on Yi-6B (GA, LR=6 × 10−6, N = 100). F.Acc and mean
PCA distance are computed on the forget set.

Setting (Yi-6B, GA, LR=6 × 10−6, N = 100) F.Acc Mean PCA distance (forget set)

Original model 78.90 0.00
Unlearned model 0.00 31.66
Quantization attack 0.00 32.21
In-context (num_demos = 5) 0.01 30.83
Prompt attack 0.03 29.14
Jailbreaking 0.03 30.04

Table 12: Relearning comparison on Yi-6B (GA, LR=6× 10−6, N = 100), evaluating the sample
efficiency of different relearning data sources (forget, retain, unrelated). The results show how varying
the amount and type of relearning data affects recovery performance and representational drift.

Setting (Yi-6B, GA, LR=6 × 10−6, N = 100) F.Acc Mean PCA distance (forget set)

Original model 78.90 0.00
Unlearned model 0.00 31.66

Relearned by forget set
10% 67.28 8.49
30% 75.77 6.42
60% 77.13 4.31
100% 79.20 2.16

Relearned by retain set
10% 0.05 30.57
30% 11.24 25.48
60% 45.24 14.69
100% 75.86 7.51

Relearned by unrelated data
10% 0.02 31.02
30% 6.48 27.74
60% 38.83 17.51
100% 65.66 9.14

such as mathematical reasoning, even small perturbations in hidden states can lead to substantial
performance differences. This is reflected in our PCA–Similarity analysis, where seemingly minor
changes in hidden state geometry correspond to meaningful behavioral variations. Besides, PCA-
Similarity captures global alignment, whereas PCA–Shift highlights fine-grained translational drift.
This distinction also explains why Figure 9h,i show only moderate misalignment under similarity
but reveal pronounced displacements under shift (cf. Figure 13). Using both metrics thus provides
a more complete characterization of reversibility. Overall, these results confirm that GA, with or
without GD or KL, induces large and often irreversible displacements, whereas NPO variants, and to
a lesser extent RLabel, constrain less shifts, consistent with our utility findings.

A.6.2 CENTERED KERNEL ALIGNMENT ANALYSIS

Figures 15–17 report layer-wise linear CKA between the original model and its unlearned or relearned
counterparts. Across both Yi-6B and Qwen-2.5-7B, GA stands out: as the learning rate or N increases,
its CKA curve drops close to zero in most layers and fails to recover, revealing a deep subspace
fracture consistent with the irreversible PCA trends. GA+GD and GA+KL mitigate this decline to
some extent but do not restore full alignment after relearning.

Task complexity does not alter the ordering but amplifies the differences. On the math-heavy Qwen
benchmark, GA’s tail layers fall almost to zero at high learning rates, whereas NPO maintains
significantly higher alignment. Taken together with the PCA-Shift results, these findings show that
GA-style objectives consistently break subspace alignment, NPO variants preserve much greater
stability, and RLabel induces moderate but partly recoverable distortions.

A.6.3 FISHER INFORMATION ANALYSIS

Figures 19–33 plot the empirical Fisher spectra layer by layer. Across both Yi-6B (simple) and
Qwen-2.5-7B (complex), GA and its variants exhibit a pronounced leftward shift of the diagonal
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Figure 5: Layer-wise PCA Similarity and Shift for GA on Yi-6B (simple task). vary N ∈ {6, 50, 100}
at LR = 3 × 10−5. Sustained low similarity or large shifts signal severe, irreversible catastrophic
forgetting, whereas partial similarity or small shifts indicate mild, reversible catastrophic forgetting.
Input queries are drawn from the forget set.

histogram as LR or N increase. The peaks move several orders of magnitude in middle and deep
layers, reflecting a flattened loss surface and diminished parameter salience. Crucially, these shifts
persist after relearning, marking the onset of irreversible forgetting.

NPO, NPO+KL, and RL produce smaller leftward displacements under moderate LR or N , and their
Fisher spectra recenter after relearning, indicating primarily reversible drift. Under extreme settings
(e.g., LR = 3× 10−5 or N = 100), these methods also show persistent displacement in some layers,
suggesting milder but still irreversible forgetting.

Figures 14, 10, 18, and 34 examine relearning dynamics when the fine-tuning data and input query are
drawn from the forget set, the retain set, or an unrelated data: i) across all sources, the overall trends
are similar: alignment can be partially restored, but recovery is consistently weaker with unrelated
data, underscoring that effective relearning depends on both the size and the relevance of the training
set; ii) the observed behavior also varies with the choice of input queries. In the case of reversible
catastrophic forgetting, all forget set, retain set, and unrelated data undergo the similar feature drifts.
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Figure 6: CKA and FIM for GA on Yi-6B, simple task. Vary LR = 3× 10−5 with N ∈ {6, 50, 100}.
High CKA ( 1) and concentrated FIM spectra indicates reversible catastrophic forgetting, while
persistently low CKA and large-shifted, flattened spectra denote severe representational drift and
irreversible catastrophic forgetting. Input queries are drawn from the forget set.
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Figure 7: PCA Similarity Across Layers. Each row shows results under different unlearning methods:
GA+GD (a–c), GA+KL (d–f), NPO (g–i), NPO+KL (j–l), and Rlable (m–o). All plots are for the
simple task on Yi-6B, using three learning rates {3×10−6, 5×10−6, 3×10−5} and fixed N = 100.
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Figure 8: PCA Similarity Across Layers. Each row shows results under different unlearning methods:
GA+GD (a–c), GA+KL (d–f), NPO (g–i), NPO+KL (j–l), and Rlable (m–o). Simple task on Yi-6B
with fixed learning rate LR = 3× 10−5 and varying unlearning requests N ∈ {6, 50, 100}.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 10 20
Layer

0

2
C

os
in

e 
Si

m
ila

ri
ty PCA Similarity

Unlearned
Relearned

(a) Complex (LR = 3 × 10−6, N = 6)

0 10 20
Layer

0

2

C
os

in
e 

Si
m

ila
ri

ty PCA Similarity

Unlearned
Relearned

(b) Complex (LR = 5 × 10−6, N = 6)

0 10 20
Layer

0

2

C
os

in
e 

Si
m

ila
ri

ty PCA Similarity

Unlearned
Relearned

(c) Complex (LR = 3 × 10−5, N = 6)

0 10 20
Layer

0

2

C
os

in
e 

Si
m

ila
ri

ty PCA Similarity

Unlearned
Relearned

(d) Complex (LR = 3 × 10−6, N = 6)

0 10 20
Layer

0

2

C
os

in
e 

Si
m

ila
ri

ty PCA Similarity

Unlearned
Relearned

(e) Complex (LR = 5 × 10−6, N = 6)

0 10 20
Layer

0

2

C
os

in
e 

Si
m

ila
ri

ty PCA Similarity

Unlearned
Relearned

(f) Complex (LR = 3 × 10−5, N = 6)

0 10 20
Layer

0

2

C
os

in
e 

Si
m

ila
ri

ty PCA Similarity

Unlearned
Relearned

(g) Complex (LR = 3 × 10−6, N = 6)

0 10 20
Layer

0

2

C
os

in
e 

Si
m

ila
ri

ty PCA Similarity

Unlearned
Relearned

(h) Complex (LR = 5 × 10−6, N = 6)

0 10 20
Layer

0

2

C
os

in
e 

Si
m

ila
ri

ty PCA Similarity

Unlearned
Relearned

(i) Complex (LR = 3 × 10−5, N = 6)

Figure 9: PCA Similarity Across Layers. Each row shows results under different unlearning methods:
GA (a-c) NPO (d–f), Rlable (g–j). All plots are for the complex task on Qwen2.5-7B, using three
learning rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 6.
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Figure 10: PCA Similarity Analysis for GA under Varied Relearning and Evaluation Inputs on Yi-6B
(Simple Task). (a–c): Relearning is performed using the forget set, retain set, or unrelated data
respectively. (d–f): PCA similarity is measured using the forget set, retain set, or unrelated data as
evaluation input.
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Figure 11: PCA Shift Across Layers. Each row shows results under different unlearning methods:
GA+GD (a–c), GA+KL (d–f), NPO (g–i), NPO+KL (j–l), and Rlable (m–o). All plots are for the
simple task on Yi-6B, using three learning rates {3×10−6, 5×10−6, 3×10−5} and fixed N = 100.
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Figure 12: PCA Shift Across Layers. Each row shows results under different unlearning methods:
GA+GD (a–c), GA+KL (d–f), NPO (g–i), NPO+KL (j–l), and Rlable (m–o). Simple task on Yi-6B
with fixed learning rate LR = 3× 10−5 and varying unlearning requests N ∈ {6, 50, 100}.
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Figure 13: PCA Shift Across Layers. Each row shows results under different unlearning methods:
GA (a-c) NPO (d–f), Rlable (g–j). All plots are for the complex task on Qwen2.5-7B, using three
learning rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 6.
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Figure 14: PCA Shift Analysis under Varied Relearning and Evaluation Inputs on Yi-6B (Simple
Task). (a–c): Relearning is performed using the forget set, retain set, or unrelated data respectively.
(d–f): PCA shift is measured using the forget set, retain set, or unrelated data as evaluation input.
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Figure 15: CKA Across Layers. Each row shows results under different unlearning methods: GA+GD
(a–c), GA+KL (d–f), NPO (g–i), NPO+KL (j–l), and Rlable (m–o). All plots are for the simple task
on Yi-6B, using three learning rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 100.
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Figure 16: CKA Across Layers. Each row shows results under different unlearning methods: GA+GD
(a–c), GA+KL (d–f), NPO (g–i), NPO+KL (j–l), and Rlable (m–o). Simple task on Yi-6B with fixed
learning rate LR = 3× 10−5 and varying unlearning requests N ∈ {6, 50, 100}.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25
Layer index

0

2
Li

ne
ar

 C
KA

CKA
Unlearned
Relearned

(a) Complex (LR = 3 × 10−6, N = 6)

0 5 10 15 20 25
Layer index

0

2

Li
ne

ar
 C

KA

CKA
Unlearned
Relearned

(b) Complex (LR = 5 × 10−6, N = 6)

0 5 10 15 20 25
Layer index

0

2

Li
ne

ar
 C

KA

CKA
Unlearned
Relearned

(c) Complex (LR = 3 × 10−5, N = 6)

0 5 10 15 20 25
Layer index

0

2

Li
ne

ar
 C

KA

CKA
Unlearned
Relearned

(d) Complex (LR = 3 × 10−6, N = 6)

0 5 10 15 20 25
Layer index

0

2

Li
ne

ar
 C

KA

CKA
Unlearned
Relearned

(e) Complex (LR = 5 × 10−6, N = 6)

0 5 10 15 20 25
Layer index

0

2

Li
ne

ar
 C

KA

CKA
Unlearned
Relearned

(f) Complex (LR = 3 × 10−5, N = 6)

0 5 10 15 20 25
Layer index

0

2

Li
ne

ar
 C

KA

CKA
Unlearned
Relearned

(g) Complex (LR = 3 × 10−6, N = 6)

0 5 10 15 20 25
Layer index

0

2

Li
ne

ar
 C

KA

CKA
Unlearned
Relearned

(h) Complex (LR = 5 × 10−6, N = 6)

0 5 10 15 20 25
Layer index

0

2

Li
ne

ar
 C

KA

CKA
Unlearned
Relearned

(i) Complex (LR = 3 × 10−5, N = 6)

Figure 17: CKA Across Layers. Each row shows results under different unlearning methods: GA
(a-c) NPO (d–f), Rlable (g–j). All plots are for the complex task on Qwen2.5-7B, using three learning
rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 6.
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Figure 18: CKA Analysis under Varied Relearning and Evaluation Inputs on Yi-6B (Simple Task).
(a–c): Relearning is performed using the forget set, retain set, or unrelated data respectively. (d–f):
CKA is measured using the forget set, retain set, or unrelated data as evaluation input.
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10 12 104 1020 1036

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 1

Original
Unlearned
Relearned

(m) Simple LR=3× 10−6, Layer 1

10 13 101 1015 1029

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 1

Original
Unlearned
Relearned

(n) Simple LR=5× 10−6, Layer 1

10 18 10 11 10 4 103

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 1

Original
Unlearned
Relearned

(o) Simple LR=3× 10−5, Layer 1

Figure 19: FIM for GA Across Layers. All plots are for the simple task on Yi-6B, using three learning
rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 100.
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(h) Simple LR=5× 10−6, Layer 22
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(i) Simple LR=3× 10−5, Layer 22

10 10 10 7 10 4 10 1

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 13

Original
Unlearned
Relearned

(j) Simple LR=3× 10−6, Layer 13
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(k) Simple LR=5× 10−6, Layer 13
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(l) Simple LR=3× 10−5, Layer 13
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(m) Simple LR=3× 10−6, Layer 4
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(n) Simple LR=5× 10−6, Layer 4
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(o) Simple LR=3× 10−5, Layer 4
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(p) Simple LR=3× 10−6, Layer 1
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(q) Simple LR=5× 10−6, Layer 1
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(r) Simple LR=3× 10−5, Layer 1

Figure 20: FIM for GA+GD Across Layers. All plots are for the simple task on Yi-6B, using three
learning rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 100.
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(a) Simple LR=3× 10−6, Layer 31
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(b) Simple LR=5× 10−6, Layer 31
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(c) Simple LR=3× 10−5, Layer 31
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(d) Simple LR=3× 10−6, Layer 28
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(e) Simple LR=5× 10−6, Layer 28
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(f) Simple LR=3× 10−5, Layer 28
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(g) Simple LR=3× 10−6, Layer 22
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(h) Simple LR=5× 10−6, Layer 22
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(i) Simple LR=3× 10−5, Layer 22
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(j) Simple LR=3× 10−6, Layer 13
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(k) Simple LR=5× 10−6, Layer 13
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(l) Simple LR=3× 10−5, Layer 13
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(m) Simple LR=3× 10−6, Layer 4
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(n) Simple LR=5× 10−6, Layer 4
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(o) Simple LR=3× 10−5, Layer 4
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(p) Simple LR=3× 10−6, Layer 1
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(q) Simple LR=5× 10−6, Layer 1
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(r) Simple LR=3× 10−5, Layer 1

Figure 21: FIM for GA+KL Across Layers. All plots are for the simple task on Yi-6B, using three
learning rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 100.
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(a) Simple LR=3× 10−6, Layer 31
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(b) Simple LR=5× 10−6, Layer 31
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(c) Simple LR=3× 10−5, Layer 31
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(d) Simple LR=3× 10−6, Layer 28
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(e) Simple LR=5× 10−6, Layer 28
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(f) Simple LR=3× 10−5, Layer 28
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(g) Simple LR=3× 10−6, Layer 22
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(h) Simple LR=5× 10−6, Layer 22
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(i) Simple LR=3× 10−5, Layer 22
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(j) Simple LR=3× 10−6, Layer 13
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(k) Simple LR=5× 10−6, Layer 13
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(l) Simple LR=3× 10−5, Layer 13
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(m) Simple LR=3× 10−6, Layer 4
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(n) Simple LR=5× 10−6, Layer 4
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(o) Simple LR=3× 10−5, Layer 4
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(p) Simple LR=3× 10−6, Layer 1
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(q) Simple LR=5× 10−6, Layer 1
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(r) Simple LR=3× 10−5, Layer 1

Figure 22: FIM for NPO Across Layers. All plots are for the simple task on Yi-6B, using three
learning rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 100.
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(a) Simple LR=3× 10−6, Layer 31
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(b) Simple LR=5× 10−6, Layer 31
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(c) Simple LR=3× 10−5, Layer 31
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(d) Simple LR=3× 10−6, Layer 28
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(e) Simple LR=5× 10−6, Layer 28
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(f) Simple LR=3× 10−5, Layer 28
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(g) Simple LR=3× 10−6, Layer 22
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(h) Simple LR=5× 10−6, Layer 22
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(i) Simple LR=3× 10−5, Layer 22
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(j) Simple LR=3× 10−6, Layer 13
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(k) Simple LR=5× 10−6, Layer 13
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(l) Simple LR=3× 10−5, Layer 13
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(m) Simple LR=3× 10−6, Layer 4
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(n) Simple LR=5× 10−6, Layer 4
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(o) Simple LR=3× 10−5, Layer 4
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(p) Simple LR=3× 10−6, Layer 1
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(q) Simple LR=5× 10−6, Layer 1
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(r) Simple LR=3× 10−5, Layer 1

Figure 23: FIM for NPO+KL Across Layers. All plots are for the simple task on Yi-6B, using three
learning rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 100.
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(a) Simple LR=3× 10−6, Layer 31
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(b) Simple LR=5× 10−6, Layer 31
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(c) Simple LR=3× 10−5, Layer 31
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(d) Simple LR=3× 10−6, Layer 28
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(e) Simple LR=5× 10−6, Layer 28
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(f) Simple LR=3× 10−5, Layer 28
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(g) Simple LR=3× 10−6, Layer 22
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(h) Simple LR=5× 10−6, Layer 22
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(i) Simple LR=3× 10−5, Layer 22
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(j) Simple LR=3× 10−6, Layer 13
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(k) Simple LR=5× 10−6, Layer 13
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(l) Simple LR=3× 10−5, Layer 13
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(m) Simple LR=3× 10−6, Layer 4
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(n) Simple LR=5× 10−6, Layer 4
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(o) Simple LR=3× 10−5, Layer 4
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(p) Simple LR=3× 10−6, Layer 1
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(q) Simple LR=5× 10−6, Layer 1
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(r) Simple LR=3× 10−5, Layer 1

Figure 24: FIM for Rlable Across Layers. All plots are for the simple task on Yi-6B, using three
learning rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 100.
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(a) Simple N = 6, Layer 28
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(b) Simple N = 50, Layer 28
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Figure 25: FIM for GA Across Layers. Simple task on Yi-6B with fixed learning rate LR = 3×10−5

and varying unlearning requests N ∈ {6, 50, 100}.
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Figure 26: FIM for GA+GD Across Layers. Simple task on Yi-6B with fixed learning rate LR =
3× 10−5 and varying unlearning requests N ∈ {6, 50, 100}.
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Figure 27: FIM for GA+KL Across Layers. Simple task on Yi-6B with fixed learning rate LR =
3× 10−5 and varying unlearning requests N ∈ {6, 50, 100}.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

10 10 10 7 10 4 10 1

Fisher Diagonal Value (log scale)

0

1

2
Fr

eq
ue

nc
y

1e8
FIM @ Layer 31

Original
Unlearned
Relearned

(a) Simple N = 6, Layer 31

10 10 10 7 10 4 10 1 102

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 31

Original
Unlearned
Relearned

(b) Simple N = 50, Layer 31

10 9 10 5 10 1 103

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 31

Original
Unlearned
Relearned

(c) Simple N = 100, Layer 31

10 11 10 9 10 7 10 5 10 3

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 28

Original
Unlearned
Relearned

(d) SimpleN = 6, Layer 28

10 11 10 8 10 5

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 28

Original
Unlearned
Relearned

(e) Simple N = 50, Layer 28

10 11 10 8 10 5 10 2

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 28

Original
Unlearned
Relearned

(f) Simple N = 100, Layer 28

10 11 10 8 10 5

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 22

Original
Unlearned
Relearned

(g) Simple N = 6, Layer 22

10 12 10 9 10 6 10 3

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 22

Original
Unlearned
Relearned

(h) Simple N = 50, Layer 22

10 12 10 8 10 4 100

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 22

Original
Unlearned
Relearned

(i) Simple N = 100, Layer 22

10 10 10 7 10 4

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 13

Original
Unlearned
Relearned

(j) Simple N = 6, Layer 13

10 10 10 7 10 4 10 1

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 13

Original
Unlearned
Relearned

(k) Simple N = 50, Layer 13

10 9 10 5 10 1 103

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 13

Original
Unlearned
Relearned

(l) Simple N = 100, Layer 13

10 16 10 11 10 6 10 1

Fisher Diagonal Value (log scale)

0.0

2.5

5.0

Fr
eq

ue
nc

y

1e8
FIM @ Layer 4

Original
Unlearned
Relearned

(m) Simple N = 6, Layer 4

10 16 10 11 10 6 10 1

Fisher Diagonal Value (log scale)

0.0

2.5

5.0

Fr
eq

ue
nc

y

1e8
FIM @ Layer 4

Original
Unlearned
Relearned

(n) Simple N = 50, Layer 4

10 15 10 9 10 3 103

Fisher Diagonal Value (log scale)

0.0

2.5

5.0

Fr
eq

ue
nc

y

1e8
FIM @ Layer 4

Original
Unlearned
Relearned

(o) Simple N = 100, Layer 4

10 20 10 14 10 8 10 2

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 1

Original
Unlearned
Relearned

(p) Simple N = 6, Layer 1

10 19 10 12 10 5 102

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 1

Original
Unlearned
Relearned

(q) Simple N = 50, Layer 1

10 18 10 11 10 4 103 1010

Fisher Diagonal Value (log scale)

0

1

2

Fr
eq

ue
nc

y

1e8
FIM @ Layer 1

Original
Unlearned
Relearned

(r) Simple N = 100, Layer 1

Figure 28: FIM for NPO Across Layers. Simple task on Yi-6B with fixed learning rate LR = 3×10−5

and varying unlearning requests N ∈ {6, 50, 100}.
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Figure 29: FIM for NPO+KL Across Layers. Simple task on Yi-6B with fixed learning rate LR =
3× 10−5 and varying unlearning requests N ∈ {6, 50, 100}.
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(e) Simple N = 50, Layer 28
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(f) Simple N = 100, Layer 28
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(g) Simple N = 6, Layer 22
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(h) Simple N = 50, Layer 22
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(i) Simple N = 100, Layer 22
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(j) Simple N = 6, Layer 13
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(k) Simple N = 50, Layer 13
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(l) Simple N = 100, Layer 13
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(m) Simple N = 6, Layer 4
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(n) Simple N = 50, Layer 4
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(o) Simple N = 100, Layer 4
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(p) Simple N = 6, Layer 1
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(q) Simple N = 50, Layer 1
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(r) Simple N = 100, Layer 1

Figure 30: FIM for Rlable Across Layers. Simple task on Yi-6B with fixed learning rate LR =
3× 10−5 and varying unlearning requests N ∈ {6, 50, 100}.
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(a) Complex LR=3× 10−6, Layer 28
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(b) Complex LR=5× 10−6, Layer 28
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(c) Complex LR=3× 10−5, Layer 28
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(d) Complex LR=3× 10−6, Layer 24
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(e) Complex LR=5× 10−6, Layer 24
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(f) Complex LR=3× 10−5, Layer 24
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(g) Complex LR=3× 10−6, Layer 12
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(h) Complex LR=5× 10−6, Layer 12
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(i) Complex LR=3× 10−5, Layer 12
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(j) Complex LR=3× 10−6, Layer 4
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(k) Complex LR=5× 10−6, Layer 4
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(l) Complex LR=3× 10−5, Layer 4
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(m) Complex LR=3× 10−6, Layer 1
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(n) Complex LR=5× 10−6, Layer 1
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(o) Complex LR=3× 10−5, Layer 1

Figure 31: FIM for GA Across Layers. All plots are for the complex task on Qwen2.5-7B, using
three learning rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 6.
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(a) Complex LR=3× 10−6, Layer 28
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(b) Complex LR=5× 10−6, Layer 28
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(c) Complex LR=3× 10−5, Layer 28
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(d) Complex LR=3× 10−6, Layer 24
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(e) Complex LR=5× 10−6, Layer 24
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(f) Complex LR=3× 10−5, Layer 24
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(g) Complex LR=3× 10−6, Layer 12
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(h) Complex LR=5× 10−6, Layer 12
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(i) Complex LR=3× 10−5, Layer 12
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(j) Complex LR=3× 10−6, Layer 4
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(k) Complex LR=5× 10−6, Layer 4
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(l) Complex LR=3× 10−5, Layer 4
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(m) Complex LR=3× 10−6, Layer 1
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(n) Complex LR=5× 10−6, Layer 1
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(o) Complex LR=3× 10−5, Layer 1

Figure 32: FIM for NPO Across Layers. All plots are for the complex task on Qwen2.5-7B, using
three learning rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 6.
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(a) Complex LR=3× 10−6, Layer 28
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(b) Complex LR=5× 10−6, Layer 28
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(c) Complex LR=3× 10−5, Layer 28
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(d) Complex LR=3× 10−6, Layer 24
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(e) Complex LR=5× 10−6, Layer 24
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(f) Complex LR=3× 10−5, Layer 24
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(g) Complex LR=3× 10−6, Layer 12
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(h) Complex LR=5× 10−6, Layer 12
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(i) Complex LR=3× 10−5, Layer 12
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(j) Complex LR=3× 10−6, Layer 4
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(k) Complex LR=5× 10−6, Layer 4
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(l) Complex LR=3× 10−5, Layer 4
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(m) Complex LR=3× 10−6, Layer 1
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(n) Complex LR=5× 10−6, Layer 1
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(o) Complex LR=3× 10−5, Layer 1

Figure 33: FIM for Rlable Across Layers. All plots are for the complex task on Qwen2.5-7B, using
three learning rates {3× 10−6, 5× 10−6, 3× 10−5} and fixed N = 6.
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(a) Simple (Relearned by forget set),
Layer 31
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(b) Simple (Relearned by retain set),
Layer 31
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(c) Simple (Relearned by unrelated
data), Layer 31
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(d) Simple (input data = forget set),
Layer 31
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(e) Simple (input data = retain set),
Layer 31
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data), Layer 31

Figure 34: FIM in layer 31 under Varied Relearning and Evaluation Inputs on Yi-6B (Simple Task).
(a–c): Relearning is performed using the forget set, retain set, or unrelated data respectively. (d–f):
FIM is measured using the forget set, retain set, or unrelated data as evaluation input.
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(b) Simple (Relearned by retain set),
Layer 25
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(c) Simple (Relearned by unrelated
data), Layer 25
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(d) Simple (input data = forget set),
Layer 25
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(e) Simple (input data = retain set),
Layer 25
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Figure 35: FIM in layer 25 under Varied Relearning and Evaluation Inputs on Yi-6B (Simple Task).
(a–c): Relearning is performed using the forget set, retain set, or unrelated data respectively. (d–f):
FIM is measured using the forget set, retain set, or unrelated data as evaluation input.
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(b) Simple (Relearned by retain set),
Layer 16
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(c) Simple (Relearned by unrelated
data), Layer 16
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(d) Simple (input data = forget set),
Layer 16
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(e) Simple (input data = retain set),
Layer 16
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data), Layer 16

Figure 36: FIM in layer 16 under Varied Relearning and Evaluation Inputs on Yi-6B (Simple Task).
(a–c): Relearning is performed using the forget set, retain set, or unrelated data respectively. (d–f):
FIM is measured using the forget set, retain set, or unrelated data as evaluation input.
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(b) Simple (Relearned by retain set),
Layer 4
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(c) Simple (Relearned by unrelated
data), Layer 4
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(d) Simple (input data = forget set),
Layer 4

10 15 10 9 10 3 103 109

Fisher Diagonal Value (log scale)

0.0

2.5

5.0

Fr
eq

ue
nc

y

1e8
FIM @ Layer 4

Original
Unlearned
Relearned

(e) Simple (input data = retain set),
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Figure 37: FIM in layer 4 under Varied Relearning and Evaluation Inputs on Yi-6B (Simple Task).
(a–c): Relearning is performed using the forget set, retain set, or unrelated data respectively. (d–f):
FIM is measured using the forget set, retain set, or unrelated data as evaluation input.
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(b) Simple (Relearned by retain set),
Layer 1
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(c) Simple (Relearned by unrelated
data), Layer 1
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(d) Simple (input data = forget set),
Layer 1
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Figure 38: FIM in layer 1 under Varied Relearning and Evaluation Inputs on Yi-6B (Simple Task).
(a–c): Relearning is performed using the forget set, retain set, or unrelated data respectively. (d–f):
FIM is measured using the forget set, retain set, or unrelated data as evaluation input.
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