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ABSTRACT

Understanding how populations of neurons represent information is a central chal-
lenge across machine learning and neuroscience. Recent work in both fields has
begun to characterize the representational geometry and functionality underly-
ing complex distributed activity. For example, artificial neural networks trained
on data with more features than neurons compress data by representing features
non-orthogonally in so-called superposition. However, the effect of time (or
memory), an additional capacity-constraining pressure, on underlying represen-
tational geometry in recurrent models is not well understood. Here, we study how
memory demands affect representational geometry in recurrent neural networks
(RNNs), introducing the concept of temporal superposition. We develop a theo-
retical framework in RNNs with linear recurrence trained on a delayed serial recall
task to better understand how properties of the data, task demands, and network
dimensionality lead to different representational strategies, and show that these
insights generalize to nonlinear RNNs. Through this, we identify an effectively
linear, dense regime and a sparse regime where RNNs utilize an interference-free
space, characterized by a phase transition in the angular distribution of features
and decrease in spectral radius. Finally, we analyze the interaction of spatial and
temporal superposition to observe how RNNs mediate different representational
tradeoffs. Overall, our work offers a mechanistic, geometric explanation of repre-
sentational strategies RNNs learn, how they depend on capacity and task demands,
and why.

1 INTRODUCTION

A major goal in both machine learning and neuroscience is to understand how populations of neu-
rons represent information, and why certain representational geometries are preferred in different
settings. Characterizing different strategies can lead to increased interpretability of artificial neural
networks (ANNs), as well as help us better understand the functionality of certain brain regions.

A prevalent theme in neuroscience has been the pursuit of highly-specialized functional components
in the brain. Much classical work aimed to demonstrate the functions of individual neurons (Yuste,
2015), such as simple and complex cells in the primary visual cortex (Hubel & Wiesel, 1962) or
place cells in the hippocampus (O’Keefe & Dostrovsky, 1971). More recently however, large scale
population recordings have revealed that neural computation is often distributed across many neu-
rons (Yuste, 2015; Saxena & Cunningham, 2019; Ebitz & Hayden, 2021). It’s thought that such
coding strategies are important for flexible, complex behavior (Fusi et al., 2016; Tye et al., 2024).

A parallel line of work has investigated representational geometry in ANNs. While earlier work
tried to develop models where neurons have specialized functions (disentangled representations or
monosemantic neurons) (Bengio et al., 2014; Olah et al., 2020; Cammarata et al., 2020), recent work
has focused on superposition, a phenomenon that characterizes a class of distributed representations.

In particular, ANNs are often challenging to interpret due to polysemanticity, where neurons respond
to many unrelated mixtures of inputs. One explanation for polysemanticity is the superposition
hypothesis (Elhage et al., 2022), which posits that ANNs utilize a compression strategy where they
represent more features (e.g., directions in activation space) than there are neurons by allowing
some interference (non-zero dot products) between them. Superposition is particularly effective
when features are sparse, although it leads to features no longer mapping onto individual neurons.
In the era of big data, even in models with millions of parameters, superposition appears ubiquitous
(Bricken et al., 2023; Templeton et al., 2024) – an effective strategy arising from the inherent sparsity
of features in real-world data. A major focus of mechanistic interpretability is now finding new
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techniques to extract such features from superposition. Fewer studies, however, have focused on
understanding the feature geometry induced by superposition (Sharkey et al., 2025).

Previous work in interpretability has not considered the effect of time (or memory) as a capacity-
constraining pressure. While less of an issue in feedforward and transformer architectures, this
pressure does arise with recurrence. Recurrent neural networks (RNNs) are important for learning
tasks with temporal dependencies and models of dynamical systems. They are commonly used
as cognitive models in neuroscience (Barak, 2017), as they often replicate the neural activity of
animals when trained on similar tasks (Vyas et al., 2020). Additionally, RNNs are increasingly
popular for long-range sequence modeling due to their computational and memory efficiency (Gu
et al., 2022b; Orvieto et al., 2023; Gu & Dao, 2024). Understanding the effect of capacity through
time on representational geometry is important, as it affects maintenance of long-range dependencies
and could have implications for cognition with limited resources, such as working memory.

In this work, we study how time, or task (memory) demands, affects representational geometry and
capacity in RNNs through the lens of feature superposition. We develop a theoretical framework
to better understand representational strategies employed by RNNs and how data and network di-
mensionality interacts with memory demands. Our results characterize and explain behavior across
different recurrent architectures and task settings, providing insight into what RNNs learn and why.
Our contributions are as follows:

• We introduce the concept of temporal superposition in RNNs.
• We distinguish two forms of interference – projection and composition interference – and

show how they impact behavior.
• We derive an expression for the loss on a simple recall task that decomposes into four

interpretable terms, allowing us to explain the geometric strategy employed by the RNN.
• We study the learning dynamics of RNNs in terms of changing representational geometry.
• In RNNs with ReLU nonlinearities, we identify the existence of an interference-free space

into which many feature directions can be tightly packed.
• We identify a phase transition in the geometry between the dense and sparse regimes.
• We study the interaction of spatial and temporal superposition, and how RNNs mediate this

tradeoff depending on task requirements.

2 KEY INTUITIONS: SPATIAL & TEMPORAL SUPERPOSITION

Here we introduce the key ideas we will develop formally in the remainder of the paper. First, we
review spatial superposition, which was studied extensively by Elhage et al. (2022) in feedforward
networks, and then extend these concepts to characterize temporal superposition in RNNs.

Spatial superposition. We follow the linear representation hypothesis and assume that features
(loosely defined as interpretable properties of the input; see Elhage et al. (2022); Park et al. (2024))
are represented as directions in activation space. When there are more features of the data than
neurons and features are sparse (i.e., do not commonly co-occur), it becomes optimal for neurons to
represent features non-orthogonally (in shared dimensions of the activation space) so as to compress
more in (Figure 1a). This comes at the cost of possible interference between co-occurring features,
but if features are sufficiently sparse, this can be outweighed by the benefit of representing more
features. Spatial superposition only becomes viable in the presence of a nonlinearity that reduces
interference between features; linear networks instead learn a PCA of the most important features.

Temporal superposition. In addition to spatial superposition, we claim that RNNs exhibit another
form of superposition due to the axis of time and that this phenomenon is fundamentally different
from the feedforward case. In particular, in addition to having some spatial component, we can think
of each input feature as also having a temporal component dependent on its sequential position. This
means that features are represented differently depending on which timestep they occur at, even if
the input itself is the same. In other words, representations of features are now determined by
“when” just as much as “what”. For example, if an RNN receives an impulse of some feature A
as input at timestep t, the representation of this input will move through a set of distinct feature
directions as time goes on and the impulse grows older, until it ceases to be task-relevant (as in
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Figure 1: Spatial and temporal superposition both occur in RNNs and are characterized by
different representational strategies. (a) When there are more input features (5: A-E) than hidden
dimensions (2) and features are sparse, it becomes favorable to compress these features into the acti-
vation space non-orthogonally in spatial superposition. (b) When an input feature (A) must be held
in memory for more time (red: 0 timesteps old; green: 5 timesteps old) than hidden dimensions (2)
and features are temporally sparse, it becomes favorable to utilize temporal superposition to exploit
the interference-free space opposite the output feature. (c) Projection interference (red dashed line)
occurs when the activation of a feature (black) is read-out (blue arrow) as the activation of a dif-
ferent feature (gray). (d) Composition interference (red dashed line) occurs when the activation of
multiple features (black) is linearly combined into an activation that imitates another feature (gray).

Figure 1b). If features are held over longer periods of time (because they remain task-relevant),
more feature directions are compressed into the hidden state. The hidden state therefore acts as
a bottleneck, such that RNNs are forced to either forget features or represent more features than
dimensions (in superposition) as the length of the task-relevant input window increases. In addition
to compressing more features due to memory demands, features must also be read out at particular
timesteps, rather than being immediately available as in feedforward models, giving rise to different
behavior from that of spatial superposition. We distinguish temporal superposition as resulting
from representing features across a longer period of time (higher memory demand) in a lower-
dimensional activation space, whereas we refer to spatial superposition as representing more input
features (higher-dimensional data feature space) in a lower-dimensional activation space.

3 MATHEMATICAL SETUP

3.1 RNN MODEL

We study a RNN parameterized by matrices Wx ∈ RNh×Nx ,Wh ∈ RNh×Nh ,Wy ∈ RNh×Ny with
a hidden state ht ∈ RNh that receives an input xt ∈ RNx at each timestep t and produces an output
ŷt ∈ RNy . The RNN is given by

ht = Wxxt +Whσh(ht−1) ŷt = σy(W
⊤
y ht) (1)

where σ represents either a linear activation or ReLU, depending on the setting we consider (see
Appendix F.1 for discussion on applying the activation directly to ht−1). We refer to the model
with linear recurrence and readout as a linear RNN, the model with linear recurrence and nonlinear
readout as a state space model (SSM), and the model with nonlinear recurrence and readout as a
nonlinear RNN. We first focus on the setting where both σh, σy are linear and later consider cases
of nonlinearity. We initialize the hidden state h0 at 0. In the case where σ is linear, this yields

ht =

t∑
i=1

W t−i
h Wxxi (2)

3.2 FEATURE DIRECTIONS

We define s := t− i to indicate how many ‘recurrences’ an input from timestep i has undergone at
timestep t (or the ‘time window’ it has been in the RNN for). This allows us to account for a feature
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in terms of how long it has been in the RNN relative to a particular timestep. Letting Ws := W s
hWx,

we can rewrite the expression for the hidden state above as

ht =

t−1∑
s=0

W s
hWxxt−s =

t−1∑
s=0

Wsxt−s (3)

To isolate the effect of temporal superposition and make visualization easier, we first consider scalar
inputs and outputs (Nx = Ny = 1) and a two-dimensional hidden size (Nh = 2). After building a
thorough understanding of temporal superposition, in Section 4.5 we introduce spatial superposition
by increasing the dimensionality of the data (Nx = Ny = 5) and study its interaction with temporal
superposition. We note that our framework and main results naturally extend to multidimensional
inputs and outputs, and higher dimensional hidden spaces (Appendix G). For clarity, we refer to
Wy,Ws ∈ R2×1 as wy,ws to indicate that they are vectors, and to x,y, ŷ ∈ R1 as x, y, ŷ to
indicate they are scalars (the equations above remain otherwise the same).

In this form, we can see how each input feature xt−s is independently and linearly represented in
the hidden state in the direction given by ws (the feature direction). This makes it clear that, at time
t, the model has access to the entire history of t input features, but that for t > Nh, the hidden
state inevitably becomes bottlenecked. Further, this form illustrates the role of the readout wy in
the interference between different features. Although there are up to t feature directions (ws=0:t−1)
contained within the hidden state, only the feature directions that project onto wy at timestep t will
affect the RNN output ŷt. For visual clarity in our main figures, we tie the readout wy := ws=k (see
definition of k below; discussion and figures replicated without weight tying in Appendix I.2; full
experimental details in Appendix I).

3.3 K-DELAY TASK

In order to directly control for the time span for which features remain task-relevant, we consider
the k-delay task (Jaeger, 2002), in which the model is trained to reproduce the input sequence after
a fixed delay of k timesteps. In particular, the RNN is tasked with producing the target output
yt = xt−k at each timestep (yt = 0 for t ≤ k). Therefore k acts as a control parameter that specifies
how long an input feature must be maintained in the hidden state for successful task performance.
We note that this task is essentially an extension of the setup in Elhage et al. (2022) to the temporal
domain and that the two are identical for k = 0. We use a squared-error loss given by

L =

T∑
t=1

∥yt − ŷt∥2 =

k∑
t=1

∥0− ŷt∥2 +
T∑

t=k+1

∥xt−k − ŷt∥2 (4)

Task-relevant and irrelevant features. To provide some intuition about the k-delay task, we can
refer to features in terms of their utility. At each timestep t ≥ k + 1, there is an output feature
direction (ws=k) which functions to produce ŷt ≈ xt−k by projecting onto the readout wy . There
are also intermediate feature directions (ws for 0 ≤ s < k), which represent input features (xt−k+1 :
xt) from the relevant k-length memory window. These intermediate features are held in memory to
be read out at future timesteps. Both output features and intermediate features (k + 1 features in
total) are task-relevant features at timestep t. These features contribute to task performance either
immediately or in the future, so the model is incentivized to represent them as faithfully as possible.

There also potentially exist historical, task-irrelevant features. These correspond to features (xt−s

represented by ws) from the more distant (s > k) past. Being beyond the k (shift) window, these
features cannot contribute to current or future task performance. The model is therefore incentivized
to forget these features (which may otherwise interfere with other task-relevant features).

3.4 PROJECTION AND COMPOSITION INTERFERENCE

Now that we’ve defined feature directions, we can understand how they interact and potentially
interfere with each other. Here we introduce and define two forms of interference that occur in
RNNs: projection interference and composition interference.

Projection interference. Projection interference occurs when the activation of a feature is read-
out as an activation of a different feature, as shown in Figure 1c. This occurs when a feature is
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represented (ws) non-orthogonally to the readout (wy), causing an unintended non-zero projection
onto that read-out. For example, say feature direction ws=A and feature direction ws=B (A ̸= B)
are both non-orthogonal to the read-out wy . Then, an input (xt−A) from timestep t − A can be
mistakenly read-out as having been an input (xt−B) from timestep t−B, and vice versa.

Composition interference. Composition interference occurs when the activation of multiple fea-
tures is linearly combined into an activation that imitates another feature (Figure 1d). In the example
above, if the RNN receives inputs xt−A and xt−B , their feature directions (ws=A, ws=B) are co-
activated and linearly combine to form ws=A + ws=B . A consequence is that if there is another
feature direction ws=C similar to this combination, the activation for inputs xt−A and xt−B will be
indistinguishable from that of a single input xt−C from timestep t− C, which never occurred.

4 RESULTS

4.1 LOSS DECOMPOSITION REVEALS GEOMETRIC STRATEGY

In order to better understand how the learning problem incentivizes certain geometric strategies, we
begin by studying the loss of linear RNNs. By assuming temporal independence and sparsity of the
data (Appendix A), we derive (Appendix B) a form of the loss comprised of four terms.

E[L] =
T∑

t=k+1

(
pν
∥∥w⊤

y ws=k − 1
∥∥2

︸ ︷︷ ︸
task benefit

− 2p2µ2
t−1∑
s̸=k

w⊤
y ws︸ ︷︷ ︸

mean correction

)

+

T∑
t=1

(
pν

t−1∑
s ̸=k

(
w⊤

y ws

)2
︸ ︷︷ ︸

projection interference cost

+ p2µ2
t−1∑
s̸=s′

(
w⊤

y ws

)
·
(
w⊤

y ws′
)

︸ ︷︷ ︸
composition interference

) (5)

p controls temporal sparsity (how frequently features occur in time; smaller p corresponds to higher
sparsity), and µ and ν are the mean and variance of the input distribution, respectively. By studying
the terms above, we can understand the competing incentives in the loss.

First, the task benefit term is the value of successfully performing the task by aligning the feature
direction ws=k of the input xt−k to the readout wy . This corresponds to producing xt−k at time
t, as required by the task. The mean correction term acts to offset any non-zero mean of the input
distribution by exploiting projection interference – the RNN uses projection interference (w⊤

y ws ̸=k)
as a bias in the absence of one and, in fact, the term disappears if we include a bias term in the output
or trivially if the mean µ is 0.

Next, we can see the effects of interference in the loss. The projection interference cost introduces
a penalty on feature directions ws that project onto the readout wy at the incorrect time (s ̸= k).
Additionally, the composition interference term comes into play when there are multiple features
simultaneously active. Geometrically, this term penalizes positive correlations between ws vectors
while rewarding negative correlations, with respect to their projection onto wy , such that negative
(destructive) interference is preferred over positive (constructive) interference. This essentially en-
courages ws vectors to spread out in activation space as much as possible, ideally forming antipodal
pairs (similar to Elhage et al. (2022) and analogous to the form in Saxe et al. (2014)).

We train linear RNNs on the k-delay task and see that our expected value of the loss closely pre-
dicts the empirical loss (Figure 2 top; Appendix C for more discussion). We also observe several
different stages of learning, corresponding to unique changes in each of the loss terms that map
onto specific geometric configurations (Figure 2 bottom). In particular, the RNN initially aligns all
feature directions (ws) to the readout (wy) (quantified by output projection w⊤

y ws), corresponding
to a decrease in the task error term and increase in magnitude in the other three terms. After this
initial alignment, feature directions begin to spread out in activation space based on their temporal
ordering, causing the task error, mean correction, and composition interference terms to decrease
in magnitude, while projection interference increases. This appears to be analogous to the learning
phases of data eigenvector alignment (Atanasov et al., 2022) and scaling of eigenvalues (Saxe et al.,
2014; Proca et al., 2025). Furthermore, the ‘staircase’ loss is indicative of saddle-to-saddle dynamics
(Jacot et al., 2022) and geometric restructuring (Haputhanthri et al., 2024). The final arrangement
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Figure 2: Learning dynamics characterized by initial readout alignment, then separation of
feature directions. For a 2D linear RNN on the 3-delay task. (Top) The expected loss E[L] matches
the empirical loss curve. The four loss terms exhibit different dynamics during training correspond-
ing to the geometric configuration of feature directions. (Bottom left) Quantifying the projection
onto the readout for each feature direction via the output projection w⊤

y ws (for 0 ≤ s < 12), there
is an initial readout alignment followed by temporally-ordered separation. (Bottom right) The final
arrangement of ws vectors converges to a spiral, matched to the output projections. The output
feature ws=3 (star) has the highest projection onto wy .

of feature directions the RNN converges to is shown in Figure 3b. Here, in the linear case, the RNN
learns to downscale and rotate features with each recurrence (such that old features spiral into the
origin), implementing a ‘smooth’ forgetting. Indeed, in the 2D case, a spiral sink (e.g., spectral
radius ∥ws=0∥ < 1) is the optimal solution for a linear RNN in the k-delay task (Appendices D.2
and D.3), as old features gradually fade from the hidden state.

4.2 FEATURES GROUP INTO INTERFERENCE-FREE SPACE

Building on the previous section, here we consider the impact of adding a nonlinearity to the readout
wy (σy(·) = ReLU(·)). The nonlinear setting makes deriving analytic solutions to the loss more
challenging. We therefore approximate the expectation of the loss in the limit of high temporal
sparsity (Appendix E.1), yielding

E[L] ≈ pν

(
T∑

t=k+1

(ReLU(w⊤
y ws=k)− 1)2︸ ︷︷ ︸

task benefit

+

T∑
t=1

t−1∑
s ̸=k

ReLU(w⊤
y ws)

2

︸ ︷︷ ︸
projection interference cost

)
(6)

This expression resembles the one in the linear case, but the inclusion of the ReLU activation has a
significant impact on its geometric interpretation. Due to the ReLU, the model only produces output
for vectors that have a positive projection onto wy . Thus, all ws vectors in the half-space opposite
of wy do not contribute to projection interference. In fact, in the extremely sparse regime (where
composition interference becomes negligible), this half-space essentially becomes interference free.
This reveals a remarkable incentive for the model to take advantage of this phenomenon by packing
as many ws̸=k vectors into this half-space as possible (Figure 3a).

To test this prediction, we train linear RNNs with ReLU readouts (SSMs) on the k-delay task at
various levels of sparsity. Because the recurrence is still linear, isolation of feature directions ws̸=k

into this space is not always perfectly possible as ws can only be spaced equally (along an elliptical
spiral). Despite this, by looking at Figure 3c, we can see that when sparsity is high, models learn to
minimize projection interference by grouping the largest feature directions into the interference-free
space. The SSM employs an approximation of the strategy in which the largest feature directions
ws occupy the interference-free space while smaller feature directions lie outside of it. Within the

6
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(a) Theoretical (b) Linear (c) SSM (d) Nonlinear

LEGEND

Output feature
Interference-
free space

New −→ Old

Figure 3: Theoretical predictions match representational strategies of expressive models. (a)
A ReLU readout creates an interference-free space. In the panel, we display an idealized form,
where all intermediate feature directions group into the free space (gray shading) and only the
output feature direction lies outside of it (star). (b) Linear RNNs lack an interference-free space
and instead arrange old features to spiral into the origin (c) In the sparse regime, SSMs minimize
projection interference by grouping the largest feature directions into the interference-free space.
(d) Nonlinear RNNs are expressive enough to fully exploit the interference-free space by grouping
all of the intermediate features, separate from the output feature, and implement sharp forgetting.

constraints of linear recurrence, this strategy still minimizes projection interference by exploiting the
interference-free space. Additionally, we observe that the spectral radius (i.e., ∥ws=0∥) increases
with k, regardless of sparsity, in order to overcome projection interference (Appendix E.2 for addi-
tional simulations).

4.3 PHASE TRANSITION FROM DENSE TO SPARSE CONFIGURATION

By varying sparsity, we can observe the existence of two discrete regimes (Figure 4). When the
SSM is trained on data that is dense (low sparsity), it learns a ‘dense-regime’ solution where it
arranges features into a spiral sink, similar to the fully-linear RNN. Although it has a nonlinearity
on the readout, the SSM does not group the largest feature directions into the interference-free space
in this case. We speculate that this is due to the increased likelihood of composition interference
occurring when features are dense. In particular, if the SSM groups the largest feature directions into
the (negative) interference-free space (e.g., ws=A) and they additively sum with smaller (positive)
feature directions (ws=B), the ReLU will cause the model to output 0 (ReLU(ws=A+ws=B) = 0).
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Figure 4: There exists a phase
transition in optimal feature
geometry between dense and
sparse regimes. As temporal
sparsity increases, (bottom) the
angular distribution of feature di-
rections (kθ) exhibits a phase
transition, (top) accompanied by
a decrease in spectral radius (ρ).

Instead, when inputs are sparse, it is optimal for the SSM to
take advantage of the interference-free space, characterizing a
‘sparse-regime’ solution. The most noticeable difference in ge-
ometry between dense and sparse regimes is the angle that the
task-relevant feature directions span (kθ is the angle traversed
from ws=0 to ws=k), which exhibits a sharp change as sparsity
is varied. In the dense regime, task-relevant feature directions
group into a smaller cone (≈ 90◦). Instead, in the sparse regime,
task-relevant feature directions spread out into approximately
270◦ of the plane, traversing the entirety of the interference-free
space to reach the readout direction. By varying sparsity, we
can interpolate between these two regimes and observe a phase
transition in kθ, accompanied by a decrease in spectral radius
(ρ = ∥ws=0∥). The difference in spectral radius is likely be-
cause in the dense regime, the SSM uses larger feature directions
to compensate for projection interference (by having a large pro-
jection onto the readout that outweighs other projections). In
the sparse regime, projection interference is less prevalent and
therefore the SSM does not need a spectral radius as large.

4.4 NONLINEAR RNNS EXPLOIT INTERFERENCE-FREE SPACE

We’ve used RNNs with linear recurrence to build our understanding of behavior in analytically
tractable settings. However, these models have limited expressivity because their dynamics are con-
strained to a particular form, such as a spiral. Here, we consider models with nonlinear recurrence
and find that, in the sparse regime, they consistently implement our predicted ideal strategy of pack-
ing as many ws feature directions into the interference-free space as possible.
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We consider the nonlinear RNN model, now with both σh(·), σy(·) = ReLU(·). Although it’s not
possible to find a simplified expression for the feature direction ws analytically, it still acts as the
direction the input xt−s is represented in the limit of high sparsity (p → 0; Appendix F.2), Fur-
thermore, the interference-free space still exists and can be better exploited as the RNN can form
more optimal arrangements of ws vectors due to increased expressivity of the recurrence. In Fig-
ure 3d, we verify our predictions: nonlinear RNNs learn to pack the k intermediate features into the
interference-free space, with only ws=k lying outside (Appendix F.3 for more simulations). Often,
the vectors compress into a single quadrant. This is because the nonlinearity creates a privileged ba-
sis in the hidden state – positive activations are unaffected by the ReLU, while negative activations
will be set to zero in the next timestep. Hence, task-relevant feature directions arrange themselves
in the positive quadrant of ht.

While a RNN with linear recurrence can only implement smooth forgetting (with spectral radius
∥ws=0∥ < 1) by shrinking an input’s contribution to the hidden state over time, the ReLU activation
makes it possible to immediately forget a feature by sending it to the negative quadrant of ht. As
a result, the nonlinear RNN can implement sharp forgetting, which enables the model to represent
only task-relevant features (and remove the possibility of interference from the distant past).

4.5 INTERACTION OF SPATIAL AND TEMPORAL SUPERPOSITION

We’ve focused on the case of scalar inputs and outputs in 2D space to isolate the effects of temporal
superposition and for ease of visualization. We now study the interaction of spatial and temporal
superposition by considering vector inputs (to introduce spatial superposition) and changing k (tem-
poral superposition). Recall that for k = 0, the RNN is tasked with imitating a feedforward network
where it immediately outputs the input; hence, there is no need to represent features from earlier
timesteps and we recover the setting of pure spatial superposition from Elhage et al. (2022).

In Figure 5, as k increases, we see how a nonlinear RNN attempts to balance representing the most
important features (scaling of loss) across time (A being most important, E being least). Initially,
when k = 1, it represents features A, B, and C for 2 timesteps and drops D and E altogether. For
higher k, the RNN eventually drops all features except A. Hence, we can see a tradeoff between
the RNN’s incentive to represent multiple input features and the duration of time each must be
represented for. The RNN’s strategy is ‘all-or-none’: to gain any advantage from representing a
specific feature, the RNN must be able to maintain it in memory for all k + 1 timesteps – otherwise
it will not meaningfully contribute to decreasing the loss. If the RNN does not have sufficient
capacity to represent the feature for all k + 1 timesteps, it won’t represent the feature at all. This is
why we see k+1 feature directions for feature A for all k, while other features only occur for lower
k when the RNN has sufficient capacity.

Higher-dimensional hidden states. Up to now, we have restricted the hidden state (Nh) of our
models to 2 dimensions for easier visualization and interpretability. To extend our setting to higher-
dimensional hidden states, we train nonlinear RNNs on 10-dimensional input (Nx = 10) on the 2-
delay task, varying hidden size (Nh = 2, 5, 10), and measure the projection of each feature direction
onto the readout (W⊤

y Ws). Based on our previous results, we would expect W⊤
y Ws=2 to have a

diagonal of positive outputs (corresponding to the output feature directions positively projecting
onto the readout: for the correct output at the correct time). Moreover, we would expect the rest of
the entries in the matrix (as well as all of W⊤

y Ws̸=2) to be negative or 0, lying in the interference-
free space. Across all hidden sizes, we see this exact strategy (Figure 11 and Appendix G), with
RNNs with larger hidden sizes simply capturing more features along the diagonal of W⊤

y Ws=2 (i.e.,
the same all-or-none effect described above). Finally, we quantify this behavior by computing the
mean of the non-output feature direction projections onto the readout (i.e., mean(W⊤

y Ws̸=k)) which
should be negative in an optimal model, and the mean of the output feature direction projections onto
the readout (i.e., mean(diag(W⊤

y Ws=k))), with should be positive. We train RNNs with hidden size
100 on a 2-delay task with 75 features and find that the best performing models group the largest
feature directions into an interference-free space and project the output feature onto the readout at
the appropriate time, as predicted (Figure 12).

5 RELATED WORK

Representational geometry and interpretability. The study of representational geometry can
provide better understanding of how distributed activity encodes information for different behavior.
ANNs can exhibit different representational geometries, reflective of the tasks trained on (Johnston
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Figure 5: There exists a tradeoff between spatial and temporal superposition. By setting k =
0, we recover purely spatial superposition (as there is no memory demand) and all 5 features are
arranged in a pentagon (feature legend as in Figure 1; interference-free space indicated by blue
shading). As k and the corresponding memory demand increases, the RNN prioritizes the most
important features in an all-or-none fashion. There is a preference to represent one feature for all
k+1 relevant timesteps, as opposed to representing several different features for a shorter duration.

& Fusi, 2023; 2024), dataset size (Henighan et al., 2023), architecture (Jacot et al., 2018; Chizat
et al., 2019), and weight parameterization (Flesch et al., 2022; Braun et al., 2022). In addition to
advancing our understanding of the solutions ANNs learn in different settings, this can also help neu-
roscientists identify computational structures in the brain and understand their functional roles (Saxe
et al., 2020; Ostojic & Fusi, 2024). In this work, we introduce the concept of temporal superposi-
tion and study its effect on representational geometry. Our work is largely inspired by Elhage et al.
(2022), one of the first papers to formalize superposition in toy models and study it explicitly. Since
then, the field of mechanistic interpretability has centered around the problem of superposition and
developing methods to identify meaningful features from model activations (Bricken et al., 2023;
Templeton et al., 2024). While these techniques have continued to advance, there has been notably
less work devoted to understanding the feature geometry induced by superposition (Sharkey et al.,
2025). Here we expand the study of superposition to recurrent architectures to show how memory
acts as a capacity constraint, inducing superposition, and how this affects underlying geometry.

Recurrent neural networks. RNNs are important for modeling temporal data and studying dy-
namic processes. Recently, RNNs (SSMs) with linear recurrence have become popular due to their
computational and memory efficiency (Gu et al., 2022b; Orvieto et al., 2023; Gu & Dao, 2024), of-
ten initialized with complex-valued parameterizations (Gu et al., 2022a; Orvieto et al., 2023), with
increased expressivity (Ran-Milo et al., 2024; Orvieto et al., 2024). We find that complex eigen-
values support temporal superposition by rotating features within an interference-free space. We
also study a SSM, showing that it exploits the interference-free space in the sparse regime, but is
still constrained in expressivity compared to nonlinear RNNs, resulting in different geometries (and
smooth vs sharp forgetting). In neuroscience, RNNs are common for modeling (Barak, 2017), as the
brain’s connectivity is highly recurrent and RNNs often replicate neural activity recorded in animals
(Vyas et al., 2020; Khona & Fiete, 2021) and behavior (Ji-An et al., 2025) when trained on the same
tasks. Similar to the feature geometry we see here, previous work in RNNs has observed rotational
dynamics/sequential activity (Rajan et al., 2016; Orhan & Ma, 2019; Cueva et al., 2020; Zhang
et al., 2021) for tasks with fixed delay, thought to encode temporal information. Moreover, other
work has shown that RNNs trained on tasks with random delays instead exhibit persistent activity,
in the form of fixed point attractors (Orhan & Ma, 2019; Liu et al., 2021; Xie et al., 2022b), similar
to pure spatial superposition (for example, as we see when k = 0). Related to the interference-
free space we study in our model, RNNs trained in motor-preparation paradigms similarly develop
output-null subspaces where intermediate preparatory activity does not affect behavior (Schimel
et al., 2024). There’s been substantial theoretical work on RNNs, both by neuroscientists studying
properties of neural computation and by deep learning theorists (Dubreuil et al., 2022; Driscoll et al.,
2024; Schuessler et al., 2024; Zucchet & Orvieto, 2024; Proca et al., 2025). One important line of
theoretical work has studied low-rank RNNs (Mastrogiuseppe & Ostojic, 2018; Schuessler et al.,
2020a; Beirán et al., 2020; Dubreuil et al., 2022). These interpretable models have low-dimensional
recurrent dynamics, allowing their exact phase portraits to be visualized; furthermore, these dynam-
ics can be directly related to the underlying connectivity statistics. Related to our work, low-rank
connectivity also acts as a form of capacity constraint, although the effects of such constraints have
not been studied explicitly (but see Beirán et al. (2023) for comparison between low-versus full-rank
RNNs). However, there is less work studying feature geometry in the context of capacity constraints
induced by memory. Most work implicitly assumes an overparameterized regime (relative to task
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demands) when studying properties of RNNs (Cohen-Karlik et al., 2023). One exception is François
et al. (2025) which studied the k-delay task in an underparameterized linear RNN in the frequency
domain. While they focused on the dense (linear) regime, here we also study the sparse regime in
nonlinear RNNs, identifying novel behavior.

Memory capacity. Memory capacity has previously been studied in RNNs (White et al., 2004;
Dambre et al., 2012; Ballarin et al., 2024), most classically in echo-state networks (Jaeger, 2002)
(we refer to short-term memory and not other forms like associative memory). Memory capacity typ-
ically refers to a temporally-dense regime. It’s known that linear memory capacity is limited to the
number of neurons in the hidden state Nh, corresponding to a single neuron per feature (orthogonal-
ity/lack of superposition). Here, we consider how RNNs handle capacity constraints, transitioning
from temporally-dense to temporally-sparse regimes. We show how training with different task de-
mands leads to different geometric solutions, aimed at compression and increased (sparse-regime)
capacity. Hence, we provide a mechanistic interpretation of memory capacity under constraints.

Working memory and serial recall. Our work is related to working memory in cognitive neuro-
science – a cognitive function involving short-term maintenance and manipulation of information
for immediate use. Similar to the k-delay task, working memory is often studied using serial recall,
which has previously been modeled with RNNs (Botvinick & Plaut, 2006; Ganguli et al., 2008).
Two existing theories of sequence working memory involve: (1) activity slots (Luck & Vogel, 1997;
2013; Xie et al., 2022a), in which there exist a set of distinct neural subspaces for different sequence
items, and (2) a resource model (Alvarez & Cavanagh, 2004; Wilken & Ma, 2005; Bays & Husain,
2008), where working memory is a limited-capacity continuous resource that is shared between
items (more items leads to less capacity per item). Interestingly, in the setting we consider we ef-
fectively find both (Soni & Frank, 2025). RNNs arrange features from each timestep into separate
‘slots’ (directions) along which these features shift through time. In the case of superposition, slots
are not orthogonal (Xie et al., 2022a), but otherwise would be with sufficient capacity. Additionally,
we show that the hidden space is a continuous limited-capacity resource: as memory length (k) or
input features (Nx) increase, there is more demand and features are more likely to interfere. Further,
we show how limited capacity leads RNNs to represent important features, while others are dropped.

6 DISCUSSION

Summary of results. In this work, we study the effect of time on feature representations in RNNs,
introducing the concept of temporal superposition. We identify how features can interfere through
either projection or composition interference, and their corresponding effects. We derive an ana-
lytical form of the loss that decomposes into four interpretable terms, which we use to explain the
resulting learned geometry of RNNs. By deriving an approximation of the loss in the limit of high
temporal sparsity in nonlinear RNNs, we identify the existence of an interference-free space, which
RNNs exploit to minimize projection interference. By varying temporal sparsity, we see how SSMs
exhibit a phase transition from an effectively linear strategy to one that uses the free space, and that
this phase transition is reflected in the angular distribution of features and spectral radius. We further
show that nonlinear RNNs in the sparse regime exploit the interference-free space and implement
sharp forgetting. Finally, we study how spatial and temporal superposition interact as a result of
different task demands and capacity constraints, and how RNNs mediate this tradeoff.

Limitations and future work. We simplify our theoretical setting by assuming temporal indepen-
dence of features and studying small RNNs. We also study the sparse regime: while the assumption
of sparse input features appears to be reasonable (Elhage et al., 2022), the assumption of temporal
sparsity may be strong. This is dependent on the task and it’s an open question how the theoretical
setting considered here extends more generally. Related, we study the k-delay task, which requires
reproduction of a sequence with a delay. An important future direction will be to characterize ge-
ometry and behavior for tasks requiring manipulation of input information and varying memory de-
mands. Finally, we note that one major assumption of the superposition hypothesis is that features
are represented linearly, as directions in activation space (the linear representation hypothesis (Park
et al., 2024)). A possible objection may be to what extent this work captures realistic settings in
seemingly overparameterized modern-day models. Although we study a 2D case for simplicity (but
see Appendix G), memory demands decrease capacity linearly with time (Jelassi et al., 2024) and
consequently finite-width RNNs tasked with learning long-term dependencies will be constrained.
Moreover, superposition has already been demonstrated in LLMs (Bricken et al., 2023; Templeton
et al., 2024) and our study indicates that recurrence and memory will exacerbate it.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we provide code to replicate all of our experiments and
figures as supplementary material and include experimental details in Appendix I. For our theoretical
results, we include our assumptions about the data in Appendix A and full derivations and proofs in
Appendices B, D.1, E.1 and F.2. We also provide additional simulations to those in the main text in
Appendices C, D.2, D.3, E.2, F.3 and G.
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A ASSUMPTIONS ABOUT DATA

We make a few simplifying assumptions about the form of the data to make our setting analytically
tractable:

Assumption 1 (temporal independence): Inputs are generated from an IID stochastic process of
scalar random variables {Xt}t≥1.

Assumption 2 (temporal sparsity): Following Elhage et al. (2022), we let Xt = BtUt, where
Bt ∼ Bernoulli(p), Ut are identically distributed according to any distribution and all
{Bt}t≥1 ∪ {Ut}t≥1 are mutually independent.

Our second assumption allows us to explicitly control temporal sparsity by varying p: smaller
(larger) p corresponds to higher (lower) sparsity. Setting p = 1 recovers an arbitrary IID stochastic
process.

While temporal independence may be a strong assumption, it is standard in the literature on memory
capacity (Jaeger, 2002; Ballarin et al., 2024). Temporal sparsity may also be a strong assumption,
depending on the task or setting considered.

B DECOMPOSING THE k-DELAY LOSS

Here, we derive a simplified form of the loss of a linear RNN trained on the k-delay task in terms of
four interpretable terms.

B.1 DERIVATION

Under the assumptions in Appendix A, the expected value of the squared-error loss (Equation (4))
incurred by a linear RNN simplifies as follows:

E[L] = E

[
k∑

t=1

∥∥∥0− Ŷt

∥∥∥2 + T∑
t=k+1

∥∥∥Xt−k − Ŷt

∥∥∥2] (7)

= E

[
k∑

t=1

Ŷ 2
t

]
+ E

[
T∑

t=k+1

(
Xt−k − Ŷt

)2]
(8)

=

k∑
t=1

E
[
Ŷ 2
t

]
+

T∑
t=k+1

E
[(

Xt−k − Ŷt

)2]
(9)

=

T∑
t=1

E
[
Ŷ 2
t

]
+

T∑
t=k+1

E
[
X2

t−k

]
− 2

T∑
t=k+1

E
[
Xt−kŶt

]
+

T∑
t=k+1

E
[
Ŷ 2
t

]
(10)

=

T∑
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(
E
[
X2
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]
− 2E
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Xt−kŶt

])
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E
[
Ŷ 2
t

]
(11)

=
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E
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− 2E
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+
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y wsXt−s
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
(12)

We proceed by computing each of these expectations separately. Recalling that, by the temporal
sparsity assumption, Xt = BtUt, we let µ := E [Ut] and ν := E

[
U2
t

]
. Then, as {Xt}t≥1 are

assumed to be IID, the first expectation becomes

E
[
X2

t−k

]
= E

[
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2
t−k

]
= E

[
B2

t−k

]
E
[
U2
t−k

]
= E [Bt−k]E

[
U2
t−k

]
= pν (13)
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Next, in computing the second expectation, we must handle the case of s = k separately. This yields

E

[
Xt−k

t−1∑
s=0

w⊤
y wsXt−s

]
= E

[
X2

t−k

]
w⊤

y ws=k +

t−1∑
s=0
s̸=k

E [Xt−kXt−s]w
⊤
y ws (14)

= pνw⊤
y ws=k +
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s=0
s ̸=k
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⊤
y ws (15)

= pνw⊤
y ws=k + p2µ2
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s=0
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w⊤
y ws (16)

For the third expectation, we must handle the diagonal terms (where s = s′) separately:
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Substituting these expressions into equation 12, we obtain

E[L] =
T∑

t=k+1

pν − 2pνw⊤
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t−1∑
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Finally, we move every occurrence of the pν
(
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y w
2
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)2
term into the first summation:
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After factorizing, we arrive at the form:

E[L] =
T∑

t=k+1

pν
∥∥w⊤
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∥∥2︸ ︷︷ ︸
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− 2p2µ2
t−1∑
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︸ ︷︷ ︸
mean correction

 (24)
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(
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︸ ︷︷ ︸
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(
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)
·
(
w⊤
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)

︸ ︷︷ ︸
composition interference


(25)

We omit the 0 indexing of summations in the main text to reduce clutter.

B.2 DISCUSSION ON MEAN CORRECTION AND COMPOSITION INTERFERENCE TERMS

By looking at expectation of the loss, we can see that the mean correction and composition inter-
ference terms only exist when the data distribution has non-zero mean. However, we can also see
that the two terms are scaled by p2. This implies that, even for data with a non-zero mean, in the
sparse regime where we take the limit of p→ 0, the impact of these two terms on the loss becomes
negligible. The mean correction term disappears because, even though the underlying data distribu-
tion U has a fixed mean E[U ] = µ, the mean of the overall input Xt is proportional to its sparsity:
E[X] = E[B]E[U ] = pµ, so E[X] → 0 as p → 0 and sparse data does have an approximately zero
mean. Furthermore, the composition interference term disappears because the probability of two
or more temporal features simultaneously activating is O(p2), so composition interference becomes
negligible as p→ 0.

C GEOMETRIC INTERPRETATION OF LEARNING DYNAMICS

Building on earlier work in feedforward linear networks (Saxe et al., 2014), recent work has inves-
tigated the learning dynamics of RNNs (Schuessler et al., 2020b; Proca et al., 2025; van Rossem
& Saxe, 2025; Ger & Barak, 2025; Bordelon et al., 2025). It’s been shown that neural networks
initialized with small random weights appear to undergo an initial phase of eigenvector alignment
(Atanasov et al., 2022), followed by learning of the largest (and latest occurring) data correlation
singular values/eigenvalues (Saxe et al., 2014; Proca et al., 2025).

Having derived an exact expression of the expected loss in terms of four interpretable terms, here
we study their learning dynamics to better characterize the geometric evolution of the network (Fig-
ure 2). Additionally, we visualize the dynamics of the output projection (w⊤

y ws for 0 ≤ s < 12)
to better understand the functional behavior of the network throughout training. Taken together,
this analysis provides a direct connection between the model’s functionality/performance and its
representational geometry.

First, we observe that our predicted expectation of the loss (in red) closely matches the empirical
loss (light purple), corroborating our theoretical result. Interestingly, we see that the loss decreases
in a ‘staircase,’ consistent with Saxe et al. (2014); Proca et al. (2025). In particular, Saxe et al. (2014)
identified that in feedforward networks, the largest data correlation singular values are learned first,
corresponding to staircase-like drops in the loss, while Proca et al. (2025) extended this work to
RNNs and identified that task dynamics with singular/eigen-values that are large and occur later in
the trajectory are learned faster (i.e., stronger correlation with the most recent past). Work in feedfor-
ward networks has linked these stage-like learning curves to trajectories passing near saddle points
(saddle-to-saddle dynamics) (Jacot et al., 2022). In RNNs, a similar phenomenon has also been stud-
ied, linking abrupt learning to bifurcations caused by geometric restructuring (Haputhanthri et al.,
2024). Interestingly, our results indicate that such geometric restructuring can occur without the
emergence of attractors, as our model instead learns a spiral.
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By looking at the dynamics of the output projection, we see that initially the RNN tries to decrease
the loss by aligning all of the ws vectors to correlate positively with wy (R1 in Figure 2). This de-
creases task error and takes advantage of the mean correction term, providing an initial improvement
to the loss. All the vectors become positively correlated with each other (facing similar directions),
leading to increased interference. This appears closely related to the initial phase of eigenvector
alignment mentioned earlier (Atanasov et al., 2022).

Eventually, the mean correction term plateaus. Instead, we observe that the output projection for
w⊤

y ws=0 (the projection for the most recently-incoming feature) changes dramatically (R2-R3), fol-
lowed by a separation of the other feature directions approximately converging according in order of
newest to oldest feature directions (R3-R4). The model converges to its final geometric arrangement,
spreading the ws vectors out across the entire plane (R4). As part of this, w⊤

y ws=k becomes much
larger, causing a significant drop in task error (R3). Additionally, some of the other w⊤

y ws ̸=k also
increase in magnitude, causing projection interference to increase (R3-R4). As some of the w⊤

y ws

fall below zero, the model is less able to take advantage of mean correction, but instead, the even
distribution of vectors causes a drop in composition interference (R4). It’s not clear exactly how
the dynamics of the changing geometry correspond to the learning of data correlation eigenvalues
(Proca et al., 2025), but it is likely the two are linked.

D ANALYZING THE SPECTRAL RADIUS OF Wh

D.1 PROVING THE ECHO STATE PROPERTY

In this section, we prove that in our setting, achieving finite loss in the infinite time limit (T →∞) is
only possible in models with a spectral radius of Wh less than 1 (the so-called echo state property),
to demonstrate the optimality of certain solutions found by the networks we study. While there may
exist other solutions that perform well on short sequences with a spectral radius greater or equal to
1, we show that their performance will degrade as sequence length increases.

In particular, we consider models that satisfy

lim
T→∞

1

T
E[L(T )] <∞ (26)

where T refers to the sequence length and L(T ) is defined as per Equation (4). We prove that this
condition is only possible if the spectral radius of Wh is ρ(Wh) < 1.

Proof. Consider the expected loss over an entire sequence, E[L(T )], as a sum of terms,

E[L(T )] = Lt=1 + Lt=2 + · · ·+ Lt=T (27)

where Lt is the loss incurred by the model on timestep t. Then, for t > k, we have

Lt>k = pν
∥∥w⊤

y ws=k − 1
∥∥2 − 2p2µ2

t−1∑
s=0
s̸=k

w⊤
y ws (28)

+ pν

t−1∑
s=0
s̸=k

(
w⊤

y ws

)2
+ p2µ2

t−1∑
s,s′=0
s ̸=s′

(
w⊤

y ws

)
·
(
w⊤

y ws′
)

(29)

This rearranges to

Lt>k = (pν − p2µ2)

∥∥w⊤
y ws=k − 1

∥∥2 + t−1∑
s=0
s̸=k

(
w⊤

y ws

)2+ p2µ2

(
t−1∑
s=0

w⊤
y ws − 1

)2

(30)

whose terms are all non-negative as pν − p2µ2 = Var[Xt] ≥ 0.

If the loss incurred at large enough timesteps, Lt>k, diverges to∞ as t→∞, then the average loss
per timestep, 1

T E[L(T )], also diverges to infinity. Hence, for the average loss per timestep to remain
finite, we require Lt>k to remain finite.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Now, assume that ρ(Wh) ≥ 1 and that Lt>k does not diverge to infinity. As all terms in the
expression for Lt>k are non-negative, the series

∑∞
s̸=k

(
w⊤

y ws

)2
must be convergent. This implies

lims→∞ w⊤
y ws = 0. Expanding, we obtain

lim
s→∞

w⊤
y ws = lim

s→∞
w⊤

y W
s
hwx = w⊤

y

(
lim
s→∞

W s
h

)
wx = w⊤

y W
∞
h wx = 0 (31)

where we denote W∞
h = lims→∞ W s

h , which is non-zero as ρ(Wh) ≥ 1. The equality holds
precisely when

wx ∈ ker(W∞
h ) or wy ∈ ker

(
W∞

h
⊤
)

or wy ⊥W∞
h wx

Since W∞
h ̸= 0, we have rank(W∞

h ) = rank(W∞
h

⊤) > 0. Hence, by the rank-nullity theorem,
dim(ker(W∞

h )) = Nh − rank(W∞
h ) < Nh and dim(ker(W∞

h
⊤)) = Nh − rank(W∞

h
⊤) < Nh.

Thus both ker(W∞
h ) and ker(W∞

h
⊤) have Lebesgue measure zero.

If wx ̸∈ ker(W∞
h ), we require the third case, where W⊤

y must lie on the (Nh − 1)-dimensional
hyperplane orthogonal to W∞

h wx. This is again a proper subspace of RNh with measure zero.
Hence, if ρ(Wh) ≥ 1, then the set of solutions for which Lt>k remains finite has measure zero,
so Lt>k almost surely diverges to infinity. Taking the contrapositive, if Lt>k remains finite, then
ρ(Wh) < 1 almost surely.

Intuitively, we have shown that if ρ(Wh) ≥ 1, then Lt>k diverges to infinity except if wx, Wh

and wy precisely (not approximately) satisfy certain conditions. We can be confident that these
conditions are not satisfied by models in practice: it would require the optimizer to balance the
model parameters on an infinitely thin “knife edge”, which is practically impossible in floating-point
arithmetic. Hence we can safely restrict our attention to models satisfying ρ(Wh) < 1.

D.2 OPTIMALITY OF SPIRAL SINKS IN 2D

In the proof above, we have shown that ρ(Wh) < 1 in order to have finite loss as sequence length
T → ∞. This condition on the spectral radius is known as the echo state property and can be
interpreted as the model forgetting old inputs over time. This constraint guarantees the shrinking
aspect of a spiral sink. We now verify that the spiral behavior, specifically, is the optimal solution in
2 dimensions. To do this, we train linear RNNs parameterized such that the trace and determinant of
Wh ∈ R2×2 is fixed. Specifically, for each desired trace-determinant pair (τ, δ), we optimize over
the 2-dimensional manifold

M =
{
Wh ∈ R2×2 : tr(Wh) = τ,det(Wh) = δ

}
(32)

which we parameterize by (θ1, θ2) ∈ R2 using the map

φ(θ1, θ2) =

[
θ1

θ1(τ−θ1)−δ
exp(θ2)

exp(θ2) τ − θ1

]
where θ2 is exponentiated to ensure φ is bijective. We verify that

tr(φ(θ1, θ2)) = θ1 + τ − θ1 = τ (33)

det(φ(θ1, θ2)) = θ1(τ − θ1)−
θ1(τ − θ1)

exp(θ2)
exp(θ2) = δ (34)

We sweep through a grid of points in the square (τ, δ) ∈ [−2, 2]2 and for each point, we train a
linear RNN parameterized as above. The loss achieved by each model under various task conditions
is shown in Figure 7. Each plot can be thought of as a trace-determinant slice of the k-delay loss
landscape.

We note that in every case, the optimal solution (brightest point on the plot) is found in the region
that corresponds to spiral sinks. This provides strong empirical evidence that the globally optimal
solution must be a spiral sink. This makes intuitive sense: rotation is used to implement an approxi-
mate delay-line solution by shifting inputs through a sequence of positions in the hidden state, while
the gradual shrinking of vectors facilitates the forgetting of old inputs.
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Figure 6: Trace-determinant classification of 2-dimensional discrete linear dynamical systems.
Adapted from Galor (2007). Stable systems occupy the triangular region enclosed by the lines δ = 1,
δ = x− 1 and δ = −x− 1. Within this triangle, spiral sinks are found above the parabola δ = 1

4τ
2.

k
=

2

1− p = 0.7 1− p = 0.9

−2

−1

0

1

2

de
t(

W
h)

1− p = 0.999

−2 −1 0 1 2
tr(Wh)

k
=

4

−2 −1 0 1 2
tr(Wh)

−2

−1

0

1

2

de
t(

W
h)

−2 −1 0 1 2
tr(Wh)

1.0 1.5 2.0
Relative loss

Figure 7: Loss landscape of the 2-delay and 4-delay tasks. Shown in terms of tr(Wh) and
det(Wh) at 3 sparsity levels for linear RNNs with 2-dimensional Wh. At each point on the trace-
determinant plane a linear model with 2-dimensional hidden state was parameterized, as described
above, with a fixed trace and determinant. The final training loss is displayed as a multiple of (i.e.
relative to) the lowest training loss achieved by any of the models. The best-performing model for
each task is marked by a cross. Standard lines and curves used to classify discrete dynamical sys-
tems are overlaid in white; refer to Figure 6 for interpretation.
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Figure 8: Decomposed loss landscape of the 2-delay task in the trace-determinant plane.
Trace-determinant loss landscape of the 2-delay task at 0.7 sparsity for stable linear RNNs with
2-dimensional Wh, decomposed into interpretable terms. The best-performing model (in terms of
overall empirical loss) is marked with a cross and annotated with its value for each of the loss terms.

D.3 OPTIMALITY OF ACUTE-ANGLED SPIRAL SINKS

Interestingly, the plots become increasingly symmetric with increasing sparsity. In the low-sparsity
case for both the 2-delay and 4-delay tasks, the global optimum clearly has tr(Wh) > 0, which
implies an acute rotation angle. This can be seen by writing the eigenvalues of Wh as

λ1,2 =
t

2
± i

2

√
4δ − τ2 (35)

and observing that t < 0 corresponds to arg(λ1,2) ∈
(
π
2 ,

3π
2

)
(obtuse rotation angle) while t > 0

corresponds to arg(λ1,2) ∈
(
−π

2 ,
π
2

)
(acute rotation angle).

The asymmetry is most clearly visible in the figure for the 2-delay task at 0.7 sparsity. In Figure 8,
we decompose this particular loss landscape to investigate the reason for acute-angled rotation being
preferred. While none of the terms are perfectly symmetric in tr(Wh), it is clear that the mean
correction term is largely driving this behavior: for acute spirals, it can reduce loss, while for most
instances of obtuse spirals, it increases the loss. Unsurprisingly, there exists a trade-off between
this term and the others (in particular, composition interference largely seems positive where mean
correction is negative, and vice versa), but evidently the optimal balance is firmly in the acute spiral
region. Overall, there seems to be a region in which task error, mean correction and composition
interference are all relatively low, while projection interference is relatively high – this corresponds
precisely with the lowest-loss region in Figure 7 and is exactly the sacrifice we observe in Figure 2.

E STATE SPACE MODEL (LINEAR RECURRENCE, NONLINEAR READOUT)

E.1 APPROXIMATION OF LOSS UNDER HIGH SPARSITY

We now consider the SSM that produces its output through a ReLU activation function, correspond-
ing to σy = ReLU and σh = id. Due to the ReLU activation, such a model can only produce
non-negative outputs, so for the k-delay task, it is sensible to restrict the input distribution to be
non-negative as well (as we desire ŷt = ReLU(. . .) = xt−k). Recall that the input distribution is
Xt = BtUt, where Bt ∼ Bernoulli(p) and Ut is are identically distributed according to any distri-
bution. Then, since Bt ≥ 0, we require Ut ≥ 0 to ensure Xt ≥ 0. For example, the distribution
used by Elhage et al. (2022), where Ut ∼ Uniform[0, 1], would satisfy this requirement.
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We now prove some key results about the expected value of the ReLU function applied to functions
of a random variable Z ≥ 0. Firstly, we note that

E[ReLU(Z)] = E[Z] (36)

We now consider E[ReLU(V Z)] for an arbitrary random variable V ∈ R, which is permitted to be
negative. Since Z ≥ 0, we have

E[ReLU(V Z)] = E[ReLU(V )Z] = E[ReLU(V )]E[Z] (37)

In the special case of a constant V = v, this simplifies to E[ReLU(vZ)] = ReLU(v)E[Z].

Now, recalling that Bt, Ut, Xt ≥ 0 with E[Bt] = p, E[Ut] = µ and E[Xt] = pµ, we apply these
results to the expected model output given by

E[Yt] = E

[
ReLU

(
t−1∑
s=0

w⊤
y wsXt−s

)]
(38)

Previously, we were able to apply linearity of expectation to split the expectation of a sum into
a sum of expectations, but the ReLU non-linearity precludes using the same approach here. The
distribution of the interior weighted sum of uniformly distributed variables is known (Bradley &
Gupta, 2002), but its complexity explodes with increasing t. We therefore opt for an approximation.

Let ρ be the spectral radius of Wh. Then the feature xt−s is represented by the vector ws = W s
hwx

in the hidden state ht. For old features, corresponding to large s, we have ∥W s
h∥ ≈ ρs by Gelfand’s

formula. As argued in Appendix D.1, we are only concerned with the case of ρ < 1, so for any
ε > 0, there exists a “memory window” of length Tε = ⌈log(ε)/ log(ρ)⌉ such that for s ≥ Tε,
∥W s

h∥ ≈ ρs ≤ ρTε ≤ ε. Hence the contribution of any input older than Tε has magnitude of order
O(ε). Intuitively, this means that if we set ε small enough (and thus Tε large enough), we can ignore
inputs older than Tε time steps.

Therefore, the only inputs that can have a significant effect on the model’s behavior are those which
arrived in the last Tε time steps. Since each input is masked by a Bernoulli random variable, the num-
ber of non-zero inputs that arrive in Tε time steps is distributed according to Nε ∼ Binomial(Tε, p).
This quantity essentially counts the number of inputs actually “in play,” meaning that their effect on
the hidden state has magnitude larger than ε. Hence, the probability that there are two or more such
inputs is given by

Pr[Nε ≥ 2] = 1− (1− p)
Tε − pTε (1− p)

Tε−1 ≈ p2

2
Tε(Tε − 1), (39)

where the binomial approximation holds for small p. Therefore, if we are willing to ignore cases
that arise with probability less than some δ > 0, we can approximate the behavior of an RNN by
its behavior on input sequences with only one non-zero input for Pr[Nε ≥ 2] < δ. This occurs
when sparsity is high enough to make it vanishingly rare for two or more inputs to be “in play”
simultaneously. Specifically, the approximation is valid when

p <

√
2δ

Tε(Tε − 1)
<

√
2δ

log(1/ε)
log(1/ρ), (40)

or, equivalently,

ρ < exp

(
−p log(1/ε)√

2δ

)
= exp

(
p log(ε)√

2δ

)
= εp/

√
2δ. (41)

In particular, for arbitrarily tight δ, ε > 0, there always exists a p small enough to make the ap-
proximation valid for any given model with ρ < 1. Under this approximation, our analysis of the
ReLU-gated model becomes tractable, as we can ignore all cases that involve two or more non-zero
inputs. For instance, the expected model output becomes

E

[
ReLU

(
t−1∑
s=0

w⊤
y wsXt−s

)]
≈

t−1∑
s=0

E
[
ReLU

(
w⊤

y wsXt−s

)]
(42)
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=

t−1∑
s=0

E[Xt−s] ReLU
(
w⊤

y ws

)
(43)

= pµ

t−1∑
s=0

ReLU
(
w⊤

y ws

)
. (44)

We now follow the steps of Appendix B.1, applying this assumption to derive an interpretable ex-
pression for the expected squared-error loss E[L]. We begin with

E[L] =
T∑

t=k+1

(
E
[
X2

t−k

]
− 2E

[
Xt−k ReLU

(
t−1∑
s=0

w⊤
y wsXt−s

)])
(45)

+

T∑
t=1

E

ReLU(t−1∑
s=0

w⊤
y wsXt−s

)2
 (46)

As before, the first term is E
[
X2

t−k

]
= pν. To evaluate the second term, we again use the assumption

that no more than one of the inputs is non-zero. There are two cases: either Xt−k is zero, in which
case the entire term collapses to zero, or Xt−k is non-zero, in which case all other Xt−s are zero for
s ̸= k. Hence the second expectation simplifies to

E

[
Xt−k ReLU

(
t−1∑
s=0

w⊤
y wsXt−s

)]
≈ E

[
Xt−k ReLU(w⊤

y ws=kXt−k)
]

(47)

= E
[
X2

t−k

]
ReLU(w⊤

y ws=k) (48)

= pν ReLU(w⊤
y ws=k) (49)

Similarly, in the third expectation, the only non-zero summands are those on the “diagonal” (all
off-diagonal terms require two inputs to be non-zero, so we ignore them):

E

ReLU(t−1∑
s=0

w⊤
y wsXt−s

)2
 ≈ t−1∑

s=0

E
[
ReLU

(
w⊤

y wsXt−s

)2]
(50)

=

t−1∑
s=0

E
[
X2

t−s

]
ReLU(w⊤

y ws)
2 (51)

= pν

t−1∑
s=0

ReLU(w⊤
y ws)

2 (52)

Putting these together:

E[L] ≈
T∑

t=k+1

(
pν − 2pν ReLU(w⊤

y ws=k)
)
+

T∑
t=1

pν

t−1∑
s=0

ReLU(w⊤
y ws)

2 (53)

= pν

 T∑
t=k+1

(
ReLU(w⊤

y ws=k)− 1
)2

+

T∑
t=1

t−1∑
s=0
s̸=k

ReLU(w⊤
y ws)

2

 (54)

E.2 SIMULATIONS ACROSS k AND SPARSITY FOR NONLINEAR READOUT

In the SSM, we observe that the spectral radius (i.e., ∥ws=0∥) increases with k, regardless of sparsity
(Figure 9). This is simply because for larger k, the model must hold inputs in its memory for more
timesteps. If the spectral radius is too small, then the magnitude of ws=k in the hidden state will be
negligible relative to other ws̸=k and so any task-relevant signal will be overpowered by projection
interference from other features.
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k
=

2

ρ = 0.67, kθ = 79.4◦
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ρ = 0.56, kθ = 274.0◦

1− p = 0.9
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k
=

5

ρ = 0.84, kθ = 86.4◦ ρ = 0.90, kθ = 796.6◦ ρ = 0.76, kθ = 256.8◦ ρ = 0.50, kθ = 229.6◦ ρ = 0.48, kθ = 231.6◦

k
=

7
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Figure 9: Solutions to k-delay learned by linear models with ReLU read-out (SSMs). Rows
correspond to different values of k and columns correspond to different sparsity levels. The ws are
plotted after applying a conformal linear transformation such that the y-component of each ws is
w⊤

y ws, and wx = ws=0 points towards positive x. Thus the interference-free half-space is simply
given by y < 0. As before, the output feature, ws=k, is marked with a star. Note that the plots vary
significantly in scale, so it is not meaningful to compare the magnitude of a particular ws vector
between different plots. The angle θ is calculated as arg(λ1) where λ1 ∈ C is an eigenvalue of Wh.
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F NONLINEAR RNN (NONLINEAR RECURRENCE, NONLINEAR READOUT)

F.1 DISCUSSION ON APPLYING NONLINEARITY TO HIDDEN LAYER

Recall that we have defined the RNN architecture as

ht = Wxxt +Whσh(ht−1) ŷt = σy(W
⊤
y ht) (55)

While this is a slight departure from traditional RNN architecture in machine learning (with regards
to what we label as ht and how the output ŷt is computed), this form is standard in computational
neuroscience. Moreover, prior work has shown that these models are mathematically equivalent
(Miller & Fumarola, 2012).

ML ht = σh

Wxxt +Whht−1︸ ︷︷ ︸
our/neuro ht

 (56)

The motivation for using this form of RNN is that it allows us to study a nonlinear RNN for which
the linear representation hypothesis provably holds (under certain sparsity conditions), as shown in
Appendix F.2, and is the most direct extension of Elhage et al. (2022) to the recurrent setting.

F.2 NONLINEAR RNNS HAVE LINEAR FEATURE DIRECTIONS IN THE LIMIT OF HIGH
SPARSITY

Applying a non-linearity to the hidden state immediately breaks the linear representation hypothesis:
each feature would be represented along a (not necessarily smooth) curve rather than a straight line.
This massively complicates the study of non-linear recurrence in general.

For the case of linear recurrence, we have shown that for sufficiently sparse input sequences, we can
assume that there is at most one non-zero input “in play” within a model’s hidden state at any given
time. Fundamentally, this was based on the idea that there exists a memory window of length T such
that inputs older than T time steps cannot contribute significantly to the current hidden state. This
essentially arose from the proof in Appendix D.1 that RNNs with linear recurrence must satisfy the
echo state property in order to achieve reasonable loss.

We argue that a similar memory window should be expected in models with nonlinear recurrence.
Although it is much harder to prove that the echo state property is a requirement for good perfor-
mance in non-linear models, there exists plenty of evidence for the reverse statement: echo state
networks are, by definition, nonlinear models that satisfy the echo state property (Jaeger, 2002) and
have been shown to achieve strong performance on a variety of sequential processing tasks (Aceituno
et al., 2020). Clearly, the echo state property is not incompatible with strong task performance and
it is not implausible that the linear result – that the echo state property is actually required for tasks
like k-delay – carries over to the case of nonlinear recurrences, based on these empirical observa-
tions. Furthermore, it’s well known that RNNs with spectral radius over 1 cause exploding gradients
and training instability (Bengio et al., 1994; Hochreiter et al., 2001; Pascanu et al., 2012), and that
task dynamics with strong early correlations (producing a spectral radius over 1) result in network
instability (Proca et al., 2025). Therefore, we intuitively expect our reasoning to hold for nonlinear
recurrence: if the input sequence is made sufficiently sparse, we can approximate the model’s behav-
ior by ignoring situations where two or more inputs are non-zero, as historic features are gradually
forgotten by the RNN due to the shrinking effect of the spectral radius (ρ < 1).

Unrolling the hidden state, we see that an analysis of the general case is intractable:

ht = wxxt +Wh ReLU(ht−1)

= wxxt +Wh ReLU(wxxt−1 +Wh ReLU(ht−2))

...
= wxxt +Wh ReLU(wxxt−1 +Wh ReLU(· · ·Wh ReLU(wxx2 +Wh ReLU(wxx1)) · · · ))

Suppose, however, that for some s, only xt−s is non-zero and all other inputs are assumed to be zero,
as per our approximation. Recalling that in our setup, xt−s is scalar and non-negative, the hidden
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state simplifies as follows:

ht = wx(0) +Wh ReLU(wx(0) +Wh ReLU(· · ·Wh ReLU(wxxt−s +Wh(0)) · · · )) (57)
= Wh ReLU(Wh ReLU(· · ·Wh ReLU(wxxt−s) · · · )) (58)
= Wh ReLU(Wh ReLU(· · ·xt−sWh ReLU(wx) · · · )) (59)
= xt−s Wh ReLU(Wh ReLU(· · ·Wh ReLU(wx) · · · ))︸ ︷︷ ︸

ws

(60)

= wsxt−s (61)

Though it is not analytically possible to find a simplified expression for the vector ws, it nevertheless
is the direction in which the feature xt−s is represented in the limit of sparsity, as p → 0. Hence,
in the extremely sparse regime, the linear representation hypothesis holds for this model. This is
not a trivial result; it relies on both the piecewise linearity of ReLU for non-negative inputs and our
definition of ht as the hidden state prior to application of ReLU.

F.3 SIMULATIONS ACROSS k AND SPARSITY FOR NONLINEAR RECURRENCE

In the nonlinear RNN, we observe how the model learns to exploit the interference-free space as
sparsity increases and to implement sharp forgetting.

1− p = 0

k
=

2

1− p = 0.7 1− p = 0.9 1− p = 0.97 1− p = 0.99

k
=

3
k

=
5

k
=

7

Figure 10: Solutions to k-delay learned by nonlinear RNNs. Rows correspond to different values
of k and columns correspond to different sparsity levels. The ws are plotted after applying a confor-
mal linear transformation such that the y-component of each ws is w⊤

y ws, and wx = ws=0 points
towards positive x. Thus the interference-free half-space is simply given by y < 0. As before, the
output feature, ws=k, is marked with a star. Note that the plots vary significantly in scale, so it is
not meaningful to compare the magnitude of a particular ws vector between different plots.
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G HIGHER DIMENSIONAL RESULTS

G.1 DECOMPOSING THE LOSS FOR VECTOR INPUTS AND OUTPUTS (Nx > 1)

We can repeat the decomposition in Appendix B to obtain an expression for the expected value of the
squared-error loss incurred by linear models in the case of vector inputs and outputs (Nx = Ny > 1).
We recall that Xt, Ŷt ∈ RNx , Ws ∈ RNh×Nx and Wy ∈ RNh×Nx and proceed as before:

E[L] = E

[
k∑

t=1

∥∥∥0− Ŷt

∥∥∥2 + T∑
t=k+1

∥Xt−k − Ŷt∥2
]

(62)

=

k∑
t=1

E
[∥∥∥Ŷt

∥∥∥2]+ T∑
t=k+1

E
[∥∥∥Xt−k − Ŷt

∥∥∥2] (63)

=

k∑
t=1

E
[∥∥∥Ŷt

∥∥∥2]+ T∑
t=k+1

E
[
∥Xt−k∥2 − 2X⊤

t−kŶt +
∥∥∥Ŷt

∥∥∥2] (64)

=

T∑
t=k+1

(
E
[
∥Xt−k∥2

]
− 2E

[
X⊤

t−kŶt

])
+

T∑
t=1

E
[∥∥∥Ŷt

∥∥∥2] (65)

=

T∑
t=k+1

(
E
[
∥Xt−k∥2

]
− 2E

[
X⊤

t−k

t−1∑
s=0

W⊤
y WsXt−s

])
+

T∑
t=1

E

∥∥∥∥∥
t−1∑
s=0

W⊤
y WsXt−s

∥∥∥∥∥
2


(66)

We extend the temporal sparsity assumption to assume that each input feature follows the same
distribution, so that X(i)

t = B
(i)
t U

(i)
t with B

(i)
t ∼ Bernoulli(p), U (i)

t is identically distributed
according to any distribution and

{
B

(i)
t

}
∪
{
U

(i)
t

}
are mutually independent.

Then, with µ := E
[
U

(i)
t

]
and ν := E

[(
U

(i)
t

)2]
, we can simplify the first expectation to

E
[
∥Xt−k∥2

]
=

Nx∑
i=1

E
[(

X
(i)
t−k

)2]
=

Nx∑
i=1

E
[(

B
(i)
t−k

)2 (
U

(i)
t−k

)2]
=

Nx∑
i=1

pν = Nxpν (67)

In computing the second expectation, we must handle the case of s = k separately:

E

[
X⊤

t−k

t−1∑
s=0

W⊤
y WsXt−s

]

= E

[
tr

(
t−1∑
s=0

X⊤
t−kW

⊤
y WsXt−s

)]
(68)

=

t−1∑
s=0

tr
(
E
[
X⊤

t−kW
⊤
y WsXt−s

])
(69)

=

t−1∑
s=0

tr
(
W⊤

y WsE
[
Xt−sX

⊤
t−k

])
(70)

= tr
(
W⊤

y WkE
[
Xt−kX

⊤
t−k

])
+

t−1∑
s̸=k

tr
(
W⊤

y WsE
[
Xt−sX

⊤
t−k

])
(71)

= tr
(
W⊤

y WkE
[
Xt−kX

⊤
t−k

])
+ p2µ2

t−1∑
s̸=k

tr
(
W⊤

y Ws11
⊤) (72)
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=
[
p2µ21⊤W⊤

y Wk1+
(
pν − p2µ2

)
tr
(
W⊤

y Wk

)]
+ p2µ2

t−1∑
s̸=k

1⊤W⊤
y Ws1 (73)

=
(
pν − p2µ2

)
tr
(
W⊤

y Wk

)
+ p2µ2

t−1∑
s=0

1⊤W⊤
y Ws1 (74)

where we make use of the all-ones vector 1 = [1, 1, 1, . . .]⊤ ∈ RNx .

Finally, the third expectation simplifies as follows:

E

∥∥∥∥∥
t−1∑
s=0

W⊤
y WsXt−s

∥∥∥∥∥
2


= E

(t−1∑
s=0

W⊤
y WsXt−s

)⊤( t−1∑
s′=0

W⊤
y Ws′Xt−s′

) (75)

= E

[(
t−1∑
s=0

X⊤
t−sW

⊤
s Wy

)(
t−1∑
s′=0

W⊤
y Ws′Xt−s′

)]
(76)

=

t−1∑
s=0

t−1∑
s′=0

E
[
X⊤

t−sW
⊤
s WyW

⊤
y Ws′Xt−s′

]
(77)

=

t−1∑
s=0

t−1∑
s′=0

tr
(
W⊤

s WyW
⊤
y Ws′E

[
Xt−s′X

⊤
t−s

])
(78)

=

t−1∑
s=0

tr
(
W⊤

s WyW
⊤
y WsE

[
Xt−sX

⊤
t−s

])
+

t−1∑
s̸=s′

tr
(
W⊤

s WyW
⊤
y Ws′E

[
Xt−s′X

⊤
t−s

])
(79)

=

[
p2µ2

t−1∑
s=0

tr
(
W⊤

s WyW
⊤
y Ws11

⊤)+ (pν − p2µ2
) t−1∑
s=0

tr(W⊤
s WyW

⊤
y Ws)

]
(80)

+ p2µ2
t−1∑
s̸=s′

tr
(
W⊤

s WyW
⊤
y Ws′11

⊤) (81)

=
(
pν − p2µ2

) t−1∑
s=0

tr(W⊤
s WyW

⊤
y Ws) + p2µ2

t−1∑
s=0

t−1∑
s′=0

1⊤W⊤
s WyW

⊤
y Ws′1 (82)

=
(
pν − p2µ2

) t−1∑
s=0

∥∥W⊤
y Ws

∥∥2
F
+ p2µ2

∥∥∥∥∥
t−1∑
s=0

W⊤
y Ws1

∥∥∥∥∥
2

(83)

where ∥ · ∥F is the Frobenius norm.

Putting all the terms together yields

E[L] =
T∑

t=k+1

(
Nxpν − 2

[
(pν − p2µ2) tr(W⊤

y Wk) + p2µ2
t−1∑
s=0

1⊤W⊤
y Ws1

])
(84)

+

T∑
t=1

[
(pν − p2µ2)

t−1∑
s=0

∥W⊤
y Ws∥2F + p2µ2∥

t−1∑
s=0

W⊤
y Ws1∥2

]
(85)

G.2 ANALYZING HIGHER-DIMENSIONAL HIDDEN STATES (Nh > 2)

So far, for the purposes of feature geometry, we have restricted the hidden state of our models to 2
dimensions. In this section, we demonstrate that the results we have found generalize well to RNNs
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Figure 11: Projections of feature directions onto readouts in higher-dimensional hidden states.
Each model was trained on the 2-delay task over 10 features (hence there are also 10 readouts). Each
plot shows the values of W⊤

y Ws – the projections of feature directions corresponding to s-timestep-
old inputs onto each of the readout vectors. Specifically, each cell (i, j) represents the value of
W

(i)
y

⊤W
(j)
s , where W

(i)
y is the i-th column of Wy and W

(j)
s is the j-th column of Wj . Cells that

are red correspond to a positive projection onto the readout – this is desired only on the diagonal of
the s = 2 panel, where features are being read out into the correct outputs at the correct time; red
elsewhere represents projection interference. Blue cells have a negative projection onto the readout
and, due to the ReLU, do not contribute to projection interference for their row’s readout. (a) A
2-dimensional hidden state is only able to represent 2 features well and ignores the rest – a clear
example of the ‘all-or-none’ strategy discussed in Section 4.5. This result is equivalent to the k = 2
panel of Figure 5. (b) A 5-dimensional hidden state performs much better, representing many more
of the features, albeit with some interference. (c) A 10-dimensional hidden state performs very well,
representing all the features with almost no interference.

with higher-dimensional hidden states. In particular, we find that the interference-free space is not
only present, but very well exploited in higher dimensions.

Figure 11 shows the results of training higher-dimensional nonlinear RNNs on the 2-delay task with
vector inputs (Nx = 10). As such, this is the most generalized form of our results. Even in the 10-
dimensional hidden state, there is still significant superposition occurring: a 10-dimensional hidden
state can only represent 10 features orthogonally, whereas the task requires 10 features to be held in
memory over k + 1 = 3 timesteps, equivalent to 30 features being compressed into 10 dimensions.

The 10-dimensional case exhibits very little projection interference – most cells are blue except on
the s = 2 diagonal, where we expect them to be red. This shows that most activations lie within the
interference-free space, where their projection onto every readout vector is negative (and therefore
their contribution to projection interference is zero due to the ReLU activation function). We believe
this is a strong result that demonstrates that the interference-free space is a significant driver of
feature geometry, even in – or perhaps especially in – higher-dimensional hidden states.
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Figure 12: Mean projections of output and non-output feature directions onto readouts colored
by loss in higher-dimensional hidden states. We train 1000 models with a hidden size of 100 on
the 2-delay task with 75 features. The x-axis indicates the mean of the non-output feature direction
projections onto the readout (i.e., W⊤

y Ws ̸=k). This is the analogous to the mean of the s ̸= 2
matrices in Figure 11. The y-axis indicates the mean of the output feature direction projections onto
the readout (i.e., W⊤

y Ws=k), which is analogous to the diagonal of the s = 2 matrix in Figure 11.
By looking at the plot, we see that all models learn to have non-output feature directions that have
negative projections onto the readout (negative x-axis values), utilizing the interference-free space.
We also see that performance is correlated with the RNN’s ability to positively project the output
feature direction onto the readout, indicating that the optimal models are using the the interference-
free space to minimize projection interference with this output feature.

Based on these findings, we extend this idea to larger RNNs, developing metrics to quantify the
degree to which these networks exhibit the geometry we would expect based on our study. In
particular, we measure the mean non-output feature direction projections onto the readout (i.e.,
mean(W⊤

y Ws̸=k)), which allows us to quantify the degree to which non-output feature directions
group within the interference-free space. In particular, this value should be negative if the largest
non-output feature directions are grouping within the interference-free space. This is analogous to
the mean of the s ̸= 2 matrices in Figure 11.

We also measure the mean of the output feature direction projections onto the readout (i.e.,
mean(diag(W⊤

y Ws=k))), which quantifies whether the appropriate features are projected onto the
readout at the correct time to perform the task. We would expect this value to be positive for models
that successfully do this. This is analogous to the mean of the diagonal of the s = 2 matrix in
Figure 11.

We train 1000 RNNs with a hidden size of 100 on a 2-delay task with 75 features and plot the results
in Figure 12, where each point is representative of a single model and is colored by the final loss
it achieves. By looking at the figure, we see that all models learn to group the largest non-output
feature directions in the interference-free space (indicated by the negative-valued x-axis). We also
see that the best-performing models (lowest loss) learn to successfully project the output feature
direction onto the readout (indicated by the positive-valued y-axis), indicating that these (optimal)
models are outputting the correct features at the correct timestep and using the interference-free
space to minimize projection interference with this output feature. Our results pertaining to optimal
model geometry are therefore corroborated by this experiment.

In our experiment, there are models that do not learn the optimal solution (i.e., they have a negative
output feature direction projection onto the readout; the yellow/light green points in Figure 12).
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We suspect that this has to do with the gradient backpropagation through ReLU, as the negative
projections can get clipped to zero by the ReLU nonlinearity, preventing a learning signal from going
through. Indeed, we do not use any additional methods to assist with training in this experiment.
Moreover, if we train instead with a leaky ReLU activation (permitting gradients to backpropagate
to negative projections), there are no models with a negative mean output projection (all models
learn the optimal solution metric-wise). We note however that the extension of our work to other
activation functions is non-trivial and beyond the scope of this work.

H TASKS WITH RANDOM DELAY

In this paper we primarily focus on tasks with a fixed k-delay. Here, we instead consider the effect
of training on a task with random delay. The task we consider is identical to the k-delay task in that
the RNN must reproduce the input sequence after k timesteps, but now k is random for each training
sample (k ∼ Uniform(0,10)). One dimension of the input corresponds to the cue, which remains 0
until the randomly selected k, after which it is set to 1 and the RNN is tasked with outputting the
sequence, corresponding to the input from the t − k, ∀t > k. We train RNNs of each architecture
(linear: Figure 13, SSM: Figure 14, nonlinear: Figure 15) and visualize how the feature geometry
changes as the number of input features is varied (the rows) and sparsity is varied (the columns).

Although we are cautious about overinterpreting these plots, we provide a preliminary analysis. The
results seem to suggest some intermediate geometry between spatial superposition and temporal
superposition. Indeed, the notion of time-dependency here marks a departure from the rest of the
paper in that the sequential ordering of features is important for the task, but a time-dependent
output is not. We see that most RNNs form solutions where feature directions lie on a shrinking
line (instead of a spiral sink), with a fixed point at the origin (corresponding to ‘forgetting’). ‘Age’
(for sequential ordering) is still partially encoded by the magnitude of the feature direction on the
line. RNNs also appear to be implementing some form of spatial superposition in some cases,
partitioning the activation space for several different features; this behavior clearly contrasts from
Figure 5, which, for many input features and delays of up to 10, would only choose to represent one
feature. However, we also often see a collapse of several feature directions onto the same line. In
fact, although we study up to 7 input features, the models typically converge to approximately 2-3
principle directions. We can also see how for 2 features, most RNNs learn to represent these features
approximately orthogonally.

Remarkably, in the SSM with high sparsity, we exactly recover the pentagon of 5 features charac-
teristic of spatial superposition. We suspect that the SSMs geometric strategies are a result of each
feature direction placing itself in the interference-free space of the other feature directions’ readouts
(hence the spiraling, perpendicular, and pentagon shapes).
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Figure 13: Solutions to random-delay learned by linear RNNs. Rows correspond to different
numbers of input features (1,2,3,5,7) and columns correspond to different sparsity levels (0, 0.7, 0.9,
0.97, 0.99). Each feature is indicated by a separate marker, and ‘age’ in the network is indicated by
color (purple is new; yellow is old).
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Figure 14: Solutions to random-delay learned by SSMs. Rows correspond to different numbers
of input features (1,2,3,5,7) and columns correspond to different sparsity levels (0, 0.7, 0.9, 0.97,
0.99). Each feature is indicated by a separate marker, and ‘age’ in the network is indicated by color
(purple is new; yellow is old).
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Figure 15: Solutions to random-delay learned by nonlinear RNNs. Rows correspond to different
numbers of input features (1,2,3,5,7) and columns correspond to different sparsity levels (0, 0.7, 0.9,
0.97, 0.99). Each feature is indicated by a separate marker, and ‘age’ in the network is indicated by
color (purple is new; yellow is old).

I EXPERIMENTAL DETAILS

I.1 NUMBER OF MODELS THAT DEVELOP THE FEATURE GEOMETRIES DISCUSSED

To verify that a reasonable number of models actually achieve the kinds of feature geometry dis-
cussed in our work, we train 1000 models of each architecture for various delay and sparsity values
(Table 1). We find that a substantial number of models satisfy our heuristics, designed to identify
when a model has achieved the characteristics of the expected feature geometry. We note that op-
timizing with a two-dimensional hidden space is very challenging for gradient descent. Indeed, in
the original work on toy models of superposition (Elhage et al., 2022), the authors also study a 2-
dimensional hidden state and report that they fit each model multiple times and take the solution
with the lowest loss due to these optimization challenges.

In the case of the linear architecture, the number of models that achieve the expected “spiral sink”
feature geometry decreases with increasing k – this is simply because the task becomes too chal-
lenging for such a simple architecture to learn well; in many cases, models resort to oscillatory
behaviour that achieves suboptimal but lower-than-baseline loss. In contrast, over 40% of SSMs
trained on larger k and under high sparsity learn the expected “spiral sink” solution. For the non-
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linear model, using a rudimentary heuristic, we find that a reasonable proportion of models can be
clearly said to have learned a feature geometry in which they exploit the interference-free space as
discussed in Section 4.4.

Number of models (%)
k 1− p Linear SSM Nonlinear
2 0.9 26.5 31.7 31.4
2 0.97 30.8 20.6 26.8
2 0.99 27.0 28.5 27.6
3 0.9 21.0 41.3 18.8
3 0.97 18.2 32.8 15.6
3 0.99 19.0 33.8 13.8
5 0.9 19.4 53.5 8.20
5 0.97 18.2 48.0 10.3
5 0.99 16.0 45.3 9.40
7 0.9 14.3 47.1 12.3
7 0.97 11.4 42.5 15.6
7 0.99 11.4 41.5 13.0

Table 1: Percentage of models that exhibit characteristics of optimal geometry, as defined by
the following heuristics. Linear: we expect a reasonable spectral radius and for the feature direction
vectors to rotate through less than 180◦ between input and output, so we count the number of models
satisfying 0.5 < ρ(Wh) < 1 and 5◦ < k| arg(λ)| < 180◦, where λ is an eigenvalue of Wh ∈ R2×2.
SSM: similar to the linear case, but here we expect the feature direction vectors to rotate through
more than 180◦ between input and output, so we check for 0.5 < ρ(Wh) < 1 and k| arg(λ)| > 180◦.
Nonlinear: the optimal geometry occurs when all but the output feature direction vector lie in the
interference-free space; only one feature direction vector should project positively onto the readout
vector, so we check for w⊤

y wk > 0 and w⊤
y ws < 0.1 (tolerating some small positive projections)

for 0 < s ≤ k.

I.2 WEIGHT TYING

For visual clarity, in Figure 1, Figure 3 and Figure 5, we set the readout vector wy := ws=k (or,
in the case of vector inputs and outputs, Wy := Ws=k). This means that, in these cases, wy (or
Wy) is not a separate trainable parameter of the model and is instead entirely determined by the
parameters Wh and wx (or Wx). There are two reasons for doing this: first, it eliminates the need
for a separate readout vector to be shown, making the plots neater; second, it encourages features
in spatial superposition to arrange into regular polygons (e.g. Figure 1a). In fact, this is merely an
extension of the weight tying used by Elhage et al. (2022), where the authors set Wy := W⊤

x for the
same reasons. Our weight tying is identical to theirs in the k = 0 case.

We note that this is just a visualization trick and, to avoid doubt, Figure 16 plots spatial and tem-
poral superposition with the readout weight untied (i.e., with wy as a separate trainable parameter).
Additionally, all figures in the appendix are with weights untied.

I.3 DATA GENERATION

Unless otherwise specified, all experiments used Ut ∼ Uniform[0, 1), so

µ = E[Ut] =
1

2
, ν = E[U2

t ] =
1

3

When generating data to train a model that contains no bias terms, we only include sequences that
contain a non-zero input at some timestep. This is an optimization that exploits the fact that bias-
free models, by definition, cannot produce non-zero output for inputs that are all-zero; we can thus
safely ignore all-zero sequences, as the model will always produce the desired output ŷ = xt−k

in those cases, the loss will be zero and so no gradient will be backpropagated for such sequences.
This makes training much quicker: in cases where sparsity is extremely high (e.g. 1 − p = 0.999),
many generated sequences are all-zero. Combined with the fact that we use a constant learning rate,
this optimization has no impact on the training of the model.
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(a) Spatial superposition
(Wy untied, hidden)
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(b) Spatial superposition
(Wy untied, shown)
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(c) Temporal superposition
(wy untied, shown)

Figure 16: Spatial and temporal superposition with untied readouts. Readout vectors are shown
as dashed black arrows. (a) If Wy is untied from Ws=k, spatial superposition of 5 features no longer
forms a regular pentagon. This is also true of the results in Elhage et al. (2022). (b) Untied results
are more visually cluttered as both the Ws and the Wy vectors need to be plotted, and these sets
of vectors can overlap or be at different scales. (c) The difference between tied and untied results
is most significant when spatial superposition is involved; for purely temporal superposition, the
difference is minimal. Nevertheless, Appendix Figures 9 and 10 each contain many examples of the
feature geometry of recurrent models with untied weights.

The specific shape and sparsity of data generated varies by experiment and is discussed below.

I.4 MODEL DEFINITION, INITIALIZATION AND TRAINING

As per Equation (1), there are two activation functions σh and σy that can be set as follows to achieve
a linear RNN, SSM or nonlinear RNN:

• Linear RNN: σh = id, σy = id
• SSM: σh = id, σy = ReLU
• Nonlinear RNN: σh = ReLU, σy = ReLU

In all experiments, the model weights Wx ∈ RNh×Nx and Wh ∈ RNh×Nh were initialized using
Xavier normal distributions. In cases where the readout weights Wy ∈ RNh×Ny are not tied to
W k

hWx, we initialize Wy using a Xavier normal distribution.

In practice, we often trained many models in parallel to make efficient use of GPU compute. Data
was batched into 1000 batches; for each batch, we computed each model’s average training loss over
an entire sequence (weighting the contribution of each feature to the loss by the feature’s importance)
and backpropagated from this value. We maintained an exponential moving average (EMA) of this
value for each model according to the update equation:

ℓEMA ← ℓEMA + 0.01(ℓ− ℓEMA)

After training on all 1000 batches, the final value of ℓEMA was used to compare models; unless
otherwise stated, the model that achieved the lowest EMA training loss was selected for plotting.

In all experiments, we used the AdamW optimizer with a constant learning rate of lr = 5× 10−3.

Feature importance is attributed by weighting the loss according to the importance value per feature,
as in Elhage et al. (2022). In other words L =

∑T
t=1 I(xt−k)∥xt−k − ŷt∥2, where I(xt−k) is a

scalar sum of the corresponding importance values of xt−k.

I.5 FIGURE 1

Panel (a): 100 nonlinear RNNs with 2-dimensional hidden states were trained on 10k non-zero
sequences of length 10 timesteps each. The task was 0-delay, so yt = xt, making this equivalent to
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the first task used in Elhage et al. (2022). The input sequences had sparsity 0.99 (so p = 0.01) and
contained 5 features, {A,B,C,D,E} with importances {1, 0.97, 0.972, 0.973, 0.974} respectively.

Panel (b): Identical to panel (a), except trained on the k = 5 task instead of k = 0. To decrease
visual clutter, only the most important feature (A) was plotted. Note that due to the random nature
of data generation and training, it is not guaranteed that feature A will always be prioritized over
the other, less important features (e.g. B might instead be prioritized), but a single feature is almost
always prioritized over all others and A is the most common choice.

I.6 FIGURE 2

A linear RNN with 2-dimensional hidden state was trained on 50k non-zero scalar input sequences,
each of length 20 time steps and sparsity 0.9. The task was 3-delay. At each step of training, we
computed the values of w⊤

y ws for 0 ≤ s < 12 and used these to calculate the contribution of each
of the four terms in equation 5 to the loss, as plotted.

I.7 FIGURE 3

For each architecture (linear, SSM, nonlinear), 100 models with 2-dimensional hidden states were
trained on the 5-delay task using 10k non-zero sequences of length 25 timesteps each. We used a
sparsity level of 0.99, so p = 0.01.

I.8 FIGURE 4

Here we trained models on the k = 7 task. We swept through 200 uniformly spaced sparsity values
in the interval [0.5, 1); at each sparsity level, we trained 1000 SSMs with 2-dimensional hidden
states on 10k non-zero scalar input sequences of length 25 timesteps each. For each sparsity level,
we took the best 50 models (top 5%) in terms of lowest EMA training loss. The mean value and
standard deviation of ρ and kθ across these 50 best models for each sparsity level was plotted, thus
indicating the “optimal” ρ and kθ at each value of sparsity.

I.9 FIGURE 5

This experiment is identical to that for Figure 1, except that k = 1, k = 2 and k = 3 were also
included. The heatmap was computed by taking a 2000 × 2000 grid of points within the axes and,
at each point, computing the sum of its non-negative projections onto the readout vectors (columns
of Wy). The heatmap therefore visualizes the region in activation space within which projection
interference is zero – the interference-free space.

I.10 FIGURE 7 AND FIGURE 8

We swept through 300 uniformly spaced values for τ ∈ [−2, 2] and 300 uniformly spaced values
for δ ∈ [−2, 2]. For each pair (τ, δ), we parameterized a linear RNN with 2-dimensional hidden
state as described in Appendix D.2. Each model was trained on 10k non-zero scalar input sequences
of length 20 timesteps each. Results are plotted for each combination of delay and sparsity level
(k, 1− p) ∈ {2, 4} × {0.7, 0.9, 0.999}.

I.11 FIGURE 9

For each combination of delay and sparsity level, (k, 1−p) ∈ {2, 3, 5, 7}×{0, 0.7, 0.9, 0.97, 0.99},
100 models with 2-dimensional Wh, linear recurrence and ReLU readout were trained on 10k input
sequences, each of length 25 timesteps. Each plot shows the vectors of the best-performing model (as
measured by lowest EMA training loss). The values ρ and kθ shown under the plots are calculated
from the final Wh given its eigenvalues λ1, λ2 ∈ C as follows:

ρ := max(|λ1|, |λ2|)
kθ := k arg(λ1)
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I.12 FIGURE 10

The process was the same as for Figure 9, but with a nonlinear RNN trained instead of an SSM. Due
to the nonlinear recurrence, ρ and kθ were not meaningful values to compute and so were omitted
from the figure.
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