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Abstract Unsupervised model recommendation for anomaly detection is a recent discipline for which

there is no existing work that focuses on multivariate time series data. This paper studies

that problem under real-world restrictions, most notably: (i) a limited time to issue a

recommendation, which renders existing methods based around the testing of a large pool

of models unusable; (ii) the need for generalization to previously unseen data sources, which

is seldom factored in the experimental evaluation. We turn to meta-learning and propose

Orthus, the first meta-recommender for anomaly detection in literature that we especially

analyze in the context of multivariate times series. We conduct our experiments using 94

public datasets from 4 different data sources. Our ablation study testifies that our meta-

recommender achieves a higher performance than the current state of the art, including in

difficult scenarios in which data similarity is minimal: Orthus is able to recommend a model

in the top 10% (13%) of the algorithmic pool for known (unseen) sources of data.

1 Introduction
Unsurprisingly, there is no single anomaly detection (AD) algorithm that is optimal for every

realistic situation. Thus, the task of automatic model selection (i.e., correctly choosing which

algorithm and hyper-parameters to use, jointly known as a configuration or amodel) is crucial when
working on new data. In a supervised learning setting, in which there is available ground truth, this

problem has been extensively studied (see He et al. [2021], Karmaker et al. [2021] and references

therein). However, model selection becomes especially difficult in an unsupervised setting, given

the lack of an objective method for comparing and ranking different algorithmic configurations.

This paper investigates meta-learners for automating anomaly detection on multivariate time

series. We consider constraints of a practical scenario, in which model recommendation needs to

be as fast as possible and the recommender might work with new datasets from known sources

(e.g., sources it has been fed at training time) or with previously unseen and radically different

sources (so that generalization ability is particularly important). In particular, we design Orthus, a

two-headed meta-recommender, that attains performance superior to the state of the art not only

for known sources, but especially for radically different sources: our ablation study shows that (i) a

meta-recommender is needed to disambiguate the cases of known/unknown data sources, (ii) a

hierarchical organization of the recommenders through clustering improves performance for the

known sources case and (iii) the use of well-known time series features (i.e., Lubba et al. [2019]) is

both faster and more accurate than current ad hoc features.

We evaluate our contributions with the largest set of real data ever tested on this discipline to

date, combining four different public data sources, for a total of 94 datasets. On this benchmark,

Orthus selects models in the top 10% of all tested configurations for known data, and is able to

internally adapt to novel data sources with limited performance loss (top 13%). We open source the

software library we developed
1
to carry out our experiments, including pre-computed performance

and meta-feature matrices as well as our recommenders, with the objective of easing reproducibility

and fostering research in the area.
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Table 1: Comparison of meta-learning methods in literature.

Work Method Data used Code

MetaOD Performance estimation from meta-features Synthetic groups, independent, non temporal ✓
ELECT Nearest Neighbor in performance space Synthetic groups, independent, non temporal

LOTUS Nearest Neighbor in Gromov-Wasserstein space Independent, non temporal

Orthus (ours) Adaptive performance estimation from meta-features Real grouped, multivariate, temporal ✓

2 State of the art

Meta-learning for Algorithm Selection is a family of methods based on the mapping between

algorithmic performance and any information that can be extracted in an unsupervised fashion from

datasets, called meta-features, which allows it to be applied on a new dataset (Vanschoren [2018]).

These require a large computational effort beforehand in order to train the model recommender,

but tend to have a small computational footprint in application and are thus fit for our settings.

While meta-learning works are varied for areas as supervised learning (Dyrmishi et al. [2019]) and

neural networks (Hospedales et al. [2021]), the problem has only recently started being tackled for

unsupervised anomaly detection, as summarized in Table 1.

MetaOD by Zhao et al. [2021] is the first meta-learning scheme in literature directly tailored to

unsupervised outlier detection. It is based on collaborative filtering: 𝐶 configurations are tested

over 𝑁 different datasets, and a matrix factorization process approximates the performance of

all configurations based on a projected matrix of meta-features extracted from the datasets. A

multivariate random forest regressor is trained to transform the original projected meta-features

matrix into the optimized one. Given a new dataset, 𝑋new, its meta-features are extracted, projected

and transformed by the random forest regressor, which allows it to be multiplied by the other

matrix factorization component, yielding a performance prediction for every configuration. With

respect to MetaOD, Orthus (i) includes a meta-recommender to explicitly account for the novelty

of 𝑋new (see Section 3.3.1), (ii) differs in the design of the mapping methods (iterative factorization

versus singular value decomposition), including the optimization of the normalized discounted

cumulative gain versus the mean root squared error, which allows us to perform more complex

recommendations (Section 3.3.3), and finally (iii) on the addition and use of time-series specific

meta-features (Section 3.4).

A second branch of approaches includes ELECT (Zhao et al. [2022]) and LOTUS (Singh and

Vanschoren [2022]). The former is based on establishing distances in the performance space

and finding the closest neighbors to 𝑋new. As new datasets are unlabelled, ELECT estimates

performance with a subset of the unsupervised metrics compiled by Ma et al. [2021]. LOTUS

searches for nearest neighbors according to the Gromov-Wasserstein distance, for which it proposes

a low rank approximation. Additionally, as direct comparison is not possible since code for ELECT

and LOTUS is not available, we implement a nearest neighbor baseline as a proxy of ELECT/LOTUS,

that we include in our experimental study. In summary, none of the existing methods directly

address time series in neither their considered algorithmic space nor their used methods or meta-

features, nor is the importance of novelty detection and differing methods for novel and known

points analyzed, which can lead to overfitting on patterns that do not generalize across datasets.

3 Unsupervised model recommendation through meta-learning

This section expands the basic details of model recommendation through meta-learning and

outlines our novel proposals. Every recommender we present will follow the same scheme, divided

in an offline training phase, in which the mapper between unsupervised dataset meta-features is

trained, and an online application phase, in which a new dataset is issued an appropriate model

recommendation.
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3.1 Offline training

Starting from (i) an available collection of datasets𝐷 = {𝑋1, 𝑋2, ..., 𝑋𝑛} for which ground truth labels
about anomalies are available and (ii) a collection of algorithmic configurations 𝐶 , this collection

is applied and evaluated over 𝐷 using a suitable metric. This yields 𝑃 , a performance matrix of

dimensions 𝑛 × |𝐶 |. In parallel, a set of meta-features,𝑀 is extracted for all 𝑋𝑖 in 𝐷 , a meta-feature

being any numeric value that’s extracted from a whole dataset for which no labels are needed.

While a comprehensive set of meta-features is presented by Vanschoren [2018], the first set custom

tailored to unsupervised outlier detection was presented in Zhao et al. [2021], which we will call

𝑀MetaOD. The only task left in this phase is to build an estimator, 𝑓 , to predict the values in 𝑃 based

on𝑀 , defined as 𝑃 :

𝑃 = 𝑓 (𝑀). (1)

3.2 Online application

Once a new dataset 𝑋new is received, for which no ground truth labels are available, this phase’s

objective is to issue a configuration recommendation. Extracting the same meta-feature set as

employed in the offline training, a meta-feature vector𝑀new is obtained, through which a perfor-

mance estimation 𝑃new ∈ R1×|𝐶 |
is obtained as 𝑓 (𝑀new). As this vector contains the performance

estimation of all the configurations in𝐶 , issuing a model recommendation entails only the selection

of the one with maximum estimated performance:

𝑐𝑜𝑝𝑡 = argmax 𝑃new. (2)

3.3 Orthus design

Our proposed meta-recommender, Orthus, is composed of three components: a novelty detection

mechanism and two model recommenders, specialized to each of the two possible situations (novel

/ known data). Thus, during fitting, Orthus’s novelty lies in its model recommenders, whereas

during recommendation, its innovative component is its ability to dynamically select which model

recommender to use. We describe each step in detail in the following subsections.

3.3.1 Meta-recommendation based on data novelty. An important component of deploying a model

recommender in real-world scenarios setting is its ability to not only perform well with datasets

similar to the ones seen during fitting, but especially its ability to also perform well with novel and

radically dissimilar datasets. Recognizing this need, a novel contribution in Orthus is to propose a

mechanism for novelty detection, wich is used to create a meta-recommender that detects whether

datasets are novel or not, and then can dispatch different recommenders to be applied in each case.

The process is simple: during application, new data points are projected using Uniform Manifold

Approximation and Projection (UMAP), by McInnes et al. [2018], in the meta-feature space and

clustered alongside the previous datasets in 𝑀 . The decision of what recommender to used can

be taken based on whether the new points belong to clusters with points seen during fitting or

not using any off-the-shelf clustering algorithm, like DBSCAN. This usage of the meta-feature

space is similar to the one presented by Kadioglu et al. [2010], but we use it to perform meta-

recommendation instead of default recommendation. While the UMAP projected space does not

preserve distances between points, in this step we only use it to judge whether a new point lies

close to any other pre-existing point or not, which is still represented in the projection.

3.3.2 Recommender for novel data: URegression (UReg). In case data radically differs from the one seen

at training, Orthus next uses Singular Value Decomposition (𝑃 ≈ 𝑈𝐷𝑉 ) and trains a multi-regressor

Random Forest to predict𝑈 from𝑀 ,𝑈 (𝑀):

𝑃 = 𝑓UReg(𝑀) := 𝑈 (𝑀)𝐷𝑉 . (3)
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Internally, the Random Forest is optimizing the mean squared error of the solution, so the

estimations obtained by 𝑓UReg can guide the end user in understanding not only which model is

recommended but also its expected performance. As the number of singular vectors calculated

in the SVD, 𝑘 , is a user defined parameter, this method complexity can be tuned by reducing or

increasing the number of Random Forests to train. Additionally, it can be expected that for novel

data a highly summarized description (i.e., a low number of components) can be enough to guide

model recommendation, as it forces the SVD to extract only the broadest, most general patterns

across datasets, which we expect to hold true for novel data.

Fitting Recommendation

Figure 1: URegression’s diagram: 𝑆𝑉𝐷 represents Singular Value Decomposition, 𝑅𝐹 a Random Forest

multi-regressor model and𝑀𝐹 the meta-feature extraction process.

3.3.3 Recommender for known data: Clustered Factorization (CFact). In case data is similar to the one

seen during training, Orthus uses a more refined recommender. Given the inherent variety in the

algorithmic space we employ, it is expected to have subgroups of AD configurations with similar

characteristics, which will be reflected in dissimilar patterns between meta-features and different

groups of columns of the performance matrix. As URegression summarizes the whole 𝑃 together, it

can be expected to find more coarse-grained patterns w.r.t. if we could split 𝑃 in different groups

of configurations with similar performance profiles. CFact leverages this intuition by performing

a UMAP projection of 𝑃𝑇 to 𝑑 (with 𝑑 ≪ |𝐶 |) and a subsequent clustering of the configurations

in the projected space. A UReg recommender is fit for each cluster, corresponding to subsets of

columns of 𝑃 , obtaining a set of recommenders, 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑐𝑙 }, where 𝑐𝑙 is equal to the number

of determined clusters. As the output of each recommender can be expressed as a configuration

and its predicted performance pair (𝑐𝑖 , 𝑝𝑖), when a new dataset is received CFact will produce 𝑐𝑙
tuples of the aforementioned form, with the recommended option being the one that maximizes 𝑝𝑖 .

While the UMAP projected space does not preserve distances between points, it is not an issue in

this step as, in the worst case, it will only split datasets in more clusters than needed – however

within each cluster the relationship between meta-features and performance remains similar.

Fitting 1

1

⋮

1

⋮

Recommendation
1

⋮ 1

Figure 2: CFact’s diagram: 𝑈𝑅𝑒𝑔 represents in-

dividual URegression models, 𝑢𝑚𝑎𝑝 a

dimensionality reduction of the trans-

posed performance matrix and 𝑑𝑏𝑠𝑐𝑎𝑛

a clustering over the projected space.

This process splits the performance ma-

trix in configuration groups with a sim-

ilar performance profile, which are fed

to specific URegression recommenders.
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3.4 Time-series meta-features (Catch22)

Finally, we observe that current work Zhao et al. [2021, 2022], Singh and Vanschoren [2022] employs

generic meta-features for dataset summarization. For instance,𝑀MetaOD uses a set of 200 features,

some of which requires the application of four anomaly detection methods already (HBOS, Isolation

Forest, LODA and PCA) and are as such computationally intensive; additionally, such meta-features

do not properly account for the temporal dimension of the data. We therefore set to investigate

if, for time-series meta-recommendation, meta-features that are naturally used in the time-series

domain provide a competitive advantage: we turn to Catch22, a set of 22 univariate time series

meta-features. We point out that while these meta-features represent a good starting point (as they

have been extracted out of a set of over 4000 for their effectiveness on time-series tasks, are not

correlated with each other and are fast to compute Henderson and Fulcher [2021]), other sets could

be used in practice (cfr Sec.6). As Catch22 is extracted from a single series, we define𝑀C22 as the

110 meta-features created by summarizing each of the set of values for each meta-feature by its

{minimum, first quartile, average value, third quartile, maximum}. This is, for each time series in a

dataset, we calculate its 22 meta-features. Then, per meta-feature, we calculate its distribution and

extract the summary values previously described. This yields 110 values, which we use as𝑀 in our

recommenders.

4 Methodology

Our objective in the rest of the paper is to compare the performance of anomaly detection model

recommenders for time series data, that we collect from quite heterogeneous publicly available

sources (Section. 4.1). On these datasets, we train model recommenders using a representative

selection of anomaly detection algorithms, spanning over 500 individual algorithmic configurations

(Section. 4.2). As for recommenders, we contrast Orthus to the current state of the art, and

additionally include relevant methods as a baseline (Section. 4.3). In particular our evaluation aims

at assessing the generalization abilities of the recommender to unseen data source, for which we

devise two evaluation scenarios (Section. 4.4).

To address the above questions, we designed a software framework that we open source to

simplify reproducibility of this paper. For convenience, the software package includes pre-computed

𝑀 and 𝑃 matrices and every recommender analyzed in this paper.

4.1 Data

Table 2: Data sources summary. Number of rows, columns and anomaly duration are expressed in

median ± median absolute deviation.

Name Ref. Datasets Rows Columns Anomaly Length (samples)

BGP Putina et al. [2018] 39 1437 ± 31 214 ± 70 54 ± 1

Benchmark Lai et al. [2021] 19 400 ± 0 5 ± 0 1 ± 0

SMD Su et al. [2019] 28 47405 ± 37 31 ± 1 11 ± 11

Water Shin et al. [2020] 8 113401 ± 81393 58 ± 3 258 ± 159

Total 94 3264992 10262 92768

We used four public data sources of multivariate, numeric time series. They are (i) Server

Machine Dataset (SMD), by Su et al. [2019], containing datasets of server metrics, like CPU, memory

or network usage; (ii) BGP, by Putina et al. [2018], datasets representing devices deployed on

a testbed on which BGP anomalies were manually injected and the features are related to the

network control and data planes; (iii) Benchmark, by Lai et al. [2021], a collection of synthetic and

realistic datasets for time series outlier detection; and (iv) Water, by Shin et al. [2020], a collection
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Figure 3: UMAP projection of the datasets in

the𝑀𝐶𝑎𝑡𝑐ℎ22 space. Benchmark and

SMD are the only data sources with

apparent overlap, testifying general-

ity of the considered datasets. Large

intra-cluster similarity and inter-

cluster dissimilarity are expected

when performing model recommen-

dation in an industrial application.

of sensor features from a water-treatment plant devices. Table 2 presents a summary of the number

of datasets per source, their size in rows and columns as well as the duration of the anomalies on

each of them. To further detail their variety, Fig. 3 displays the 2D UMAP projection of the datasets

in the meta-feature space, showing that there is barely no overlap in similarity between sources

and that datasets within sources are similar between each other, which is the scenario we expect in

practice and that makes generalization abilities especially important.

4.2 Anomaly detection algorithms in the Performance Matrix

Regarding anomaly detection algorithms, we aimed for completeness in terms of different algo-

rithmic families. Additionally, in order to capture the potential time series specific anomalies

we previously mentioned, we created 𝑃 with a combination of six among batch and streaming
anomaly detection algorithms: (i) the batch case, we employed Local Outlier Factor (Breunig et al.

[2000]), Isolation Forest (Liu et al. [2008]), Random Histogram Forest (Putina et al. [2020]) and

LODA (Pevnỳ [2016]), (ii) whereas for streaming algorithms, we opted for Half-Space Trees (Tan

et al. [2011]) and xStream (Manzoor et al. [2018]). As for their hyper-parameters, we tested a total

of 507 combinations, to ensure a good coverage of their performance space, detailed further on

Appendix B.

Each algorithm’s output is evaluated using the Area Under the Precision Recall Curve (PRAUC),

a common metric for anomaly detection. Then, we project each PRAUC value in a 1-100 scale, as

the percentile it represents in the precomputed performance distribution for its dataset, to ensure all

values are comparable across datasets. For instance, if the AD algorithms performance distribution

for a single dataset were {0.2, 0.3, 0.7, 0.75, 0.9}, and the recommender selected a configuration with

performance equal to 0.75, it would be transformed into 80, as it is equal or larger than 80% of the

possible performance values.

4.3 Recommenders

In terms of recommenders, we consider Orthus (as well as serveral variations in the ablation study

where we also consider each individual building block, such as UReg and CFact) and contrast it

to the current state of the art represented byMetaOD, by Zhao et al. [2021]. We consider several

additional baselines: Global Best, which selects the configuration with best median performance in

the training data; Nearest Neighbor (kNN) by Nikolić et al. [2013], which recommends the model

that worked best in the dataset most similar in the meta-feature space to 𝑋𝑛𝑒𝑤 and a Regression
method which builds Random Forest regression models between 𝑃 and 𝑀 directly, by Xu et al.

[2012]. The parameters used for their comparison are summarized in Table 3.

4.4 Experiments

We define two scenarios in terms of the data splitting strategy employed. In Scenario I , we
perform stratified repeated 10-folds cross validation with 3 repetitions, where each recommender is

evaluated a total of 30 times with a 90/10 train/test split, ensuring that datasets from every source
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Table 3: Hyper-parameter set used to test the recommenders in the experiments.

Recommender Hyperparameters Recommender Hyperparameters

Orthus

SVD factors: UReg = 2, CFact = 5

UMAP components = 10

DBSCAN 𝜖 = 1

MetaOD

{PCA factors, iterations} = 40, 10

{Min, max} learning rate = 1.05, 0.1

Learning rate steps = 10

kNN Neighbors k = 1 Regression Number of trees = 500

are present on each fold: this scenario is the one typically considered in the literature, where

therefore, as per Fig. 3, we can expect recommenders to be able to readily leverage information

from previous datasets. This constitutes an optimistic scenario in which the recommender has been

trained to also include data from the source where it is applied to.

Additionally, we consider a Scenario II , in which we split the data in a leave-one-source-out

fashion, creating 4 folds, ensuring in each of them that each data source is not present (this creates
folds of differing sizes, as each source has a different number of datasets). For each experiment, we

fit every recommender with the training data in a single fold and predict the anomaly detection

model for corresponding test data of the left-out source. In this case, models have been exposed to

a variety of training data, which can be expected however to be quite different from the data where

the recommender is applied to. This corresponds to conditions we can expect in realistic scenarios,

in which new datasets are not necessarily extracted from the same process or distribution as seen

ones. This scenario directly deals with the generalization capabilities of the recommenders.

We repeat each experiment five times with different random seeds, so that presented results

aggregated these different repetitions, treating them as different studies in a meta-analysis as per

Lipsey and Wilson [2001]. For all reported metrics of interest, we measure their effect size by

pooling over the repetitions, estimating its average and its 95% confidence interval (CI).

5 Results

We preliminary restrain the set of meta-features (Section 5.1), based on which we report an

exhaustive comparison of the recommender performance (Section 5.2). We conclude with an

ablation study of our proposal (Section 5.3) and some consideration on computational requirements

(Section 5.4).

5.1 Preliminary selection of meta-feature sets

To compare the two meta-feature sets we measure, for each recommender, the proportions of

cases in which the better performance are obtained using𝑀MetaOD or𝑀C22. To be conservative, we

consider that recommender performance are different only whenever for a dataset 𝑑 in a scenario

𝑠 and recommender 𝑟 , the performance difference between the two meta-features set exceeds

|𝑝MetaOD − 𝑝C22 | > 𝜎+
𝑑,𝑠,𝑟

, where 𝜎+
𝑑,𝑠,𝑟

is the maximum of the standard deviation of the performance

obtained across seeds for {𝑑, 𝑠, 𝑟 } for 𝑀MetaOD and 𝑀C22. With this conservative definition, we

capture only macroscopic differences and account for the potential variability in recommender

behavior across seeds and dataset difficulty.

Recommender

Meta-features Orthus MetaOD kNN Regression

Equal 72 ± 2 65 ± 3 44 ± 2.5 68 ± 2.5

𝑀𝐶22 16 ± 2 19 ± 2.5 31 ± 2.5 18 ± 2

𝑀𝑀𝑒𝑡𝑎𝑂𝐷 12 ± 2 16 ± 2.5 25 ± 2.5 14 ± 2

Table 4: Percentage of tests in which

the performance of methods se-

lected by each recommender is

equal, better for 𝑀𝑀𝑒𝑡𝑎𝑂𝐷 or

𝑀𝐶22. Estimates and 95% con-

fidence interval across five dif-

ferent random seeds.
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Results are reported on Table 4. Briefly, we gather that for all recommenders, performance are

similar for the majority of the cases with either𝑀C22 and𝑀MetaOD meta-feature sets. Additionally,

it appears that 𝑀C22 is slightly better than 𝑀MetaOD, except for the MetaOD recommender itself.

Finally, we observe that𝑀C22 features are almost 4× faster to compute with respect to than𝑀MetaOD.

In what follows, we limited report results using𝑀C22 and point out that qualitative considerations

reported hereafter also holds when using𝑀MetaOD (detailed results available in Appendix D).

5.2 Comparison of recommender performance
We consider all recommenders at a glance, on bothmild (I) and hard (II) generalization scenarios, and

display their results on Fig. 4 (with alternative finer-grained analysis on Appendix E). Considering

the stratified cross validation scenario (I) first, we observe that most approaches appear to have

close performance: notice that Orthus recommends on average a model close to the top-10% (89.8).

Also, while the differences are statistically significant, we observe that Orthus is only marginally

improving over a simple regression (88.7) or global best (84.5) baselines, or over the Meta-OD state

of the art (83.7). This confirms previous findings in Zhao et al. [2021] that were indeed showing a

naïve solution to provide satisfactory results. Thus, under mild generalization settings, there would

be no obvious reasons to suggest for more complex recommender than simple baselines.

At the same time, a completely different picture emerges from the hard generalization scenario

(II): in particular, we see in this case that Global best (64.3) and kNN (52.5) approaches, along

with state of the art MetaOD (59.7), incur a dramatic performance drop. In this case, simply

recommending what worked best in the datasets observed at training time is not useful for the

novel data. While direct regression (75.0) is in this case able to interpolate a better recommmendation

(at the cost of building one random forest per each of the 507 algorithmic configurations), it is still

far lower than Orthus (86.9), whose performance is only minimally affected and thus is able to meet

its generalization goal with a top-13% recommendation also in harder settings. We now dissect the

fundamental reasons of this performance difference.

67.4

83.7
86.5

88.789.5

52.5

59.7

64.3

75

87

Scenario I Scenario II

Orthus Regression Global Best MetaOD kNN Orthus Regression Global Best MetaOD kNN
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Figure 4: Recommender comparison: Average performance percentile obtained by each recommender

across five random seeds, expressed as average estimate and 95% confidence intervals.

5.3 Ablation study
5.3.1 Novel vs known data. Among the fundamental reasons of the early observed performance difference

is the novelty of the data: i.e., recommender strategies that work well with when the recommender

is exposed to a sample of the data where it is expected to actuate, no longer apply when the

actuation scenario changes drastically. We illustrate this by showing a sensitivity analysis of a

building block of Orthus: specifically, URegression internally uses a Singular Value Decomposition

(SVD) of 𝑃 , where the number of SVD factors is a free hyper-parameter.
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Scenario II Figure 5: Ablation study: UReg performance as

a function of the number of SVD fac-

tors for Scenario I (stratified cross valida-

tion) and II (leave-one-source-out cross

validation). Average and 95%CI perfor-

mance using 5 different random seeds.

Intuitively, for a sufficiently high number of factors, URegression would be equivalent to the

Regression recommender we utilize for baseline: hence, as early observed for the Regression

recommender, we expect that for growing number of SVD factors the performance of UReg should

diverge in the Scenario I and Scenario II. In particular, in the stratified cross validation, Scenario I,

we expect performance (and computation time) to increase with the number of SVD factors, while

the same does not necessarily hold for the leave-one-source-out Scenario II.

Figure 5 shows the average percentile of UReg for varying number of SVD factors, with 95% CI

computed across five random seeds. In practice, (i) we observe a sharp difference between the use of

2 SVD factors and a relatively flat behavior otherwise; (ii) as expected, performance in the stratified

validation case improves with the number of SVD factors; (iii) also, we gather that a larger number

of factors than 2 is counter-productive for leave-one-source-out scenario II; (iv) finally, it is worth

stressing that UReg with 2 SVD factors seems to capture some fundamental dataset properties, with

recommendations that are structurally different, and significantly better with respect to those of a

global baseline.

These results suggest the existence of global patterns that are present across data sources and

are captured correctly just by using few SVD factors, whereas finer-grained relationships captured

by using a larger number of vectors don’t generalize across sources. While this seems a reasonable

explanation, further analysis on a broader set of data sources is needed to confirm the generality of

the phenomenon to an even broader set of sources than those considered here.

5.3.2 Performance of individual building blocks. As the main idea in Orthus is, based on the meta-

feature projection, to select a recommender that is better suited to handle novel (UReg) or known

(CFact) data, we finally contrast Orthus with simpler alternatives where only some of its individual

building blocks are used. We fit the internal recommenders to the same scenarios as Orthus and

tabulate their average performance percentile with 95% CI and report a rank test for the individual

building blocks versus Orthus in Figure 6. The picture confirms that, as expected (i) the CFact

recommender is the best choice for Scenario I, where CFact clustering allows for a finer-tuned

performance prediction in known data; (ii) the UReg(2) recommender with 2 factors is the best

choice for Scenario II, as it captures global patterns that are applicable across unseen sources;

finally (iii) Orthus is able to seamlessly meta-recommend the correct one among CFact/UReg(2)

based on its novelty estimation capability. Overall, all building blocks are therefore necessary to

get accurate recommendations in cases where training and test data are similar, as well as robust

recommendations that are able to go beyond recommending a simple default configuration when

dealing with radically different data.

5.4 Computational requirements

Orthus’ requirements are fairly lightweight. On one core of an Intel Xeon E5-4627 CPU, the cost

for meta-feature summarization per column is less than 20 ms for𝑀𝐶22 (60 for𝑀𝑀𝑒𝑡𝑎𝑂𝐷 ) on a 100

row dataset. UReg fitting costs are in the range of 100ms (500ms) for 2 (20) SVD factors, and UReg

recommendation costs 25ms (200ms) for 2 (20) factors. The dominant cost in Orthus is represented

9
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Figure 6: Ablation study: Average rank comparison and average performance percentile obtained

by Orthus and its individual building blocks, with 95% confidence interval. CD equals the

critical distance in average ranking at which recommenders can be considered significantly

different.

by the UMAP projection and clustering of the points when a new dataset is received, which takes

about 5 seconds in our experiments. We remark, though, that Orthus’ fitting (recommendation)

times are lower than (equal to) the second recommender in terms of performance, the Regression

baseline. Overall, the largest cost during training is the one-time cost incurred by evaluating the

507 combinations of algorithms across all datasets, which take several hours in our setup. Further

details on fitting and recommendation times are given on Appendix H.

6 Conclusion

In this paper we introduce Orthus, (i) a meta-recommender able to combine two new base recom-

menders, (ii) URegression and (iii) CFact –that leverage respectively a Singular Value Decomposition

of the performance matrix and a clustering of it– and that are designed to provide (ii) general

recommendation for novel data, as well as (iii) more accurate recommendation for known data.

Our results show that Orthus is able to recommend model configurations close to the top 10% of

available models both in mild and hard generalization scenarios.

At the same time, many interesting research questions remain open. First, while Orthus

provides better generalization capabilities than the state of the art, a broader study on a much

larger set of datasets would be necessary (which are unfortunately not publicly available). Second,

while we have shown that time series meta-features (e.g. Catch22) is a valid substitute for custom

meta-features set tailored for outlier detection, the meta-feature design space is far from being

fully explored, regarding the meta-features themselves (Christ et al. [2018], Fulcher and Jones

[2017], Barandas et al. [2020]) as well as the summarization functions used (i.e., higher moments

or quantiles). Finally, while we explored recent meta-learning approaches for anomaly detection,

Orthus’ task could also be classified as an Algorithm Selection problem (Bischl et al. [2016]), which

would allow us to compare against solutions in this space. We must also highlight aspects of the

present work that deserve future attention, notably concerning the quality of benchmark datasets

(i.e., labeling quality and the impact of incorrect labels (as per Wu and Keogh [2021]) as well as

limits of standard evaluation metrics (such as PRAUC used as our optimization target, as per Huet

et al. [2022]). Regarding Orthus’ societal impacts, we have determined that this work presents no

notable negative impacts to society or the environment.

7 Submission checklist

1. For all authors:
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(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Yes, we touch upon performance, generalization and com-

putational requirements. All are covered and adequately illustrated and discussed in the

paper.

(b) Did you describe the limitations of your work? [Yes] Yes, the conclusion clearly enumerate

three main limitations as interesting future work.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Yes, we have

included our remarks at the end of the conclusions section. In particular, at the end of Section

5.4 detailing computational requirements, we state “ In reason of its extreme lightweight

and parsimonious computation requirement, we believe that Orthus has a limited negative

effect to, e.g., societal impacts such as global warming.” This allows us to conclude in Section

6 that “Regarding Orthus societal impacts, we have determined that this work presents no

notable negative impacts to society, and even less to the environment, thanks to its low

computational footprint.”

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. Regarding experiments:

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes] We provide a URL with an installable R software package and

scripts to reproduce all experiments and figures.

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] The figures and tables are the final output of the included scripts, no further

modification was done to them.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes] The

scripts / folder included in the provided URL contains everything needed with the exception

of the data, which we have not the right to redistribute).

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes] Yes, we have done our best to have the quality of the

code matching the quality of the paper

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] Most of the information is in

the main paper, with extra details in the supplemental material, and ultimate reference in

the code.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] The code is parametrized so the same data and

function were tested and used with the different tested recommenders for fairness in the

evaluation.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] Yes, the ablation study is conducted in 5.3.1 and 5.3.2.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]
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(i) Did you compare performance over time? [Yes] We do not include temporal evolution

of performance. We do include a detailed analysis of algorithms running time in the

supplemental material.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] All our

extensive tests were repeated five times with different random seeds and are accessible in

the available code.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes] All figures report 95% confidence intervals bars.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] Does not

apply

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] Available in the supplemental material.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [N/A] We did not need to perform tuning, we

used the default parameters for all the recommenders. We conduct a sensitivity analysis

for one hyperparameter in 5.3.1., to illustrate a fundametal phenomena and motivate the

reason of some of our design choices.

3. Regarding existing assets (data/code):

(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, we include references

to every dataset and algorithm we used.

(b) Did you mention the license of the assets? [Yes] In the supplemental material.

(c) Did you include any new assets either in the supplemental material or as a url? [Yes] We

provide the URL to a novel R software library to run the experiments.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] Every asset we used is public and released for the scientific community.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The data we use does not contain personal infor-

mation.
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B Hyper-parameters of anomaly detection algorithms

We present in Table 5 the complete grid of hyper-parameter values we tested for each anomaly

detection algorithm as well as their source.

Table 5: Hyper-parameter combinations for AD algorithms in the performance matrix 𝑃 used in our

experiments.

Algorithm (N) Hyperparameters Source

Half-Space Tree (56*)

Number of trees ∈ {5, 10, 50, 100, 200}
Tree depth ∈ {5, 10, 20}
Initial samples ∈ {1%, 5%, 10%, 20%}

Code repository

Isolation Forest (60)

Sample size ∈ {1%, 5%, 10%, 20%}
Maximum depth ∈ {5, 10, 20}
Number of trees ∈ {5, 10, 50, 100, 200}

Isotree

LODA (25)

Number of bins ∈ {5, 10, 50, 100, 200}
Number of random cuts ∈ {5, 20, 50, 100, 200} PyOD

LOF (36)

Minkowski distance exponent ∈ {1, 2}
Leaf size ∈ {5, 10, 20}
Number of neighbors ∈ {2, 5, 10, 50, 100, 500}

Scikitlearn

RHF (30)

Number of trees ∈ {5, 10, 50, 100, 200}
Maximum height ∈ {5, 10, 20}
Check duplicates ∈ {True, False}

Code repository

xStream (300)

Projection size ∈ {5, 20, 50, 100, 200}
Number of chains ∈ {5, 10, 50, 100, 200}
Chain depth ∈ {5, 10, 20}
Initial samples ∈ {1%, 5%, 10%, 20%}

Code repository

∗
4 configurations of HST generated errors during computation and were discarded.

C Catch22 meta-features

For completeness, we reproduce here the list of the 22 meta-features in Catch22:

1. Mode of z-scored distribution (5-bin histogram).

2. Mode of z-scored distribution (10-bin histogram).

3. Longest period of consecutive values above the mean.

4. Time intervals between successive extreme events above the mean.

5. Time intervals between successive extreme events below the mean.

6. First 1/e crossing of autocorrelation function.

7. First minimum of autocorrelation function.

8. Total power in lowest fifth of frequencies in the Fourier power spectrum.

9. Centroid of the Fourier power spectrum.

10. Mean error from a rolling 3-sample mean forecasting.

11. Time-reversibility statistic.

12. Automutual information,𝑚 = 2, 𝜏 = 5.
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13. First minimum of the automutual information function.

14. Proportion of successive differences exceeding 0.04𝜎 .

15. Longest period of successive incremental decreases.

16. Shannon entropy of two successive letters in equiprobable 3-letter symbolization.

17. Change in correlation length after iterative differencing.

18. Exponential fit to successive distances in 2-d embedding space.

19. Proportion of slower timescale fluctuations that scale with DFA (50% sampling).

20. Proportion of slower timescale fluctuations that scale with linearly rescaled range fits.

21. Trace of covariance of transition matrix between symbols in 3-letter alphabet.

22. Periodicity measure of Wang et al. [2007].

D Recommender comparison and ablation study using MetaOD’s meta-features

This section replicates the experiments displayed in Figures 4 and 6 with𝑀𝑀𝑒𝑡𝑎𝑂𝐷 instead of𝑀𝐶22

as the meta-features extracted from datasets.
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Figure 7: Recommender comparison using 𝑀𝑀𝑒𝑡𝑎𝑂𝐷 : Average performance percentile obtained by each

recommender across five random seeds, expressed as average estimate and 95% confidence

intervals.

E Wilcoxon signed rank test of paired recommenders

As a complement to our analysis in Section 5.2, we display below the p-values obtained by perform-

ing Wilcoxon signed rank tests between every recommender across scenarios and the five different

random seeds. Recommenders for which the p-value is less than 0.05 can be assumed to perform

differently in the tested scenario and seed. Results show that Orthus is significantly different from

every recommender across both scenarios except for Regression in Scenario I, where it cannot be

assumed to be different. This is due to the small distance on average performance we observed on

Fig. 4.

Recommender 1 Recommender 2 Seed Scenario I Scenario II
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Global Best Orthus 1 0.000 0.000

Global Best Orthus 2 0.000 0.000

Global Best Orthus 3 0.000 0.000

Global Best Orthus 4 0.000 0.000

Global Best Orthus 5 0.000 0.000

Global Best MetaOD 1 0.245 0.000

Global Best MetaOD 2 0.931 0.000

Global Best MetaOD 3 0.816 0.000

Global Best MetaOD 4 0.487 0.845

Global Best Nearest Neighbor 1 0.000 0.000

Global Best Nearest Neighbor 2 0.000 0.000

Global Best Nearest Neighbor 3 0.000 0.000

Global Best Nearest Neighbor 4 0.000 0.000

Global Best Nearest Neighbor 5 0.000 0.000

Global Best Regression 1 0.000 0.001

Global Best Regression 2 0.000 0.000

Global Best Regression 3 0.000 0.000

Global Best Regression 4 0.000 0.000

Global Best Regression 5 0.000 0.000

Orthus MetaOD 1 0.000 0.000

Orthus MetaOD 2 0.000 0.000

Orthus MetaOD 3 0.000 0.000

Orthus MetaOD 4 0.000 0.000

Orthus Nearest Neighbor 1 0.000 0.000

Orthus Nearest Neighbor 2 0.000 0.000

Orthus Nearest Neighbor 3 0.000 0.000

Orthus Nearest Neighbor 4 0.000 0.000

Orthus Nearest Neighbor 5 0.000 0.000

Orthus Regression 1 0.114 0.000

Orthus Regression 2 0.476 0.000

Orthus Regression 3 0.419 0.000

Orthus Regression 4 0.638 0.000

Orthus Regression 5 0.798 0.000

Metaod Nearest Neighbor 1 0.000 0.214

Metaod Nearest Neighbor 2 0.000 0.584

Metaod Nearest Neighbor 3 0.000 0.085

Metaod Nearest Neighbor 4 0.000 0.000

Metaod Regression 1 0.000 0.000

Metaod Regression 2 0.000 0.000

Metaod Regression 3 0.000 0.000

Metaod Regression 4 0.000 0.000

Nearest Neighbor Regression 1 0.000 0.000

Nearest Neighbor Regression 2 0.000 0.000

Nearest Neighbor Regression 3 0.000 0.000

Nearest Neighbor Regression 4 0.000 0.000

Nearest Neighbor Regression 5 0.000 0.000

F CFact clustering analysis

We report in Fig.9 the number of clusters found by CFact, as well as the distribution of cluster

sizes, for every data split in Scenario I, with the internal DBSCAN of CFact configured with 𝜖 = 5

and minpts = 5. Results confirm that, across splits, there are approximately 10 consistent clusters

divided in groups of three different sizes, separating the algorithm families used in the performance

matrix.
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Figure 9: Distribution of number of clusters and cluster sizes found by CFact across the 30 folds of

Scenario I.

G Ablation study of Orthus’ clustering step

To study the influence of DBSCAN’s hyper-parameters on Orthus’ performance, we display on

Fig. 10 the minimum and maximum average performance obtained per parameter value, tested on

a single random seed in Scenario I, with 𝜖 ∈ {0.1, 0.2, 0.5, 1, 2, 5} and minpts ∈ {2, 5, 10, 20}. Results
show that, while Orthus’ performance is dependent on these values, even extremely low values

do not cause the recommender to perform poorly, which indicates the space projected by UMAP

that needs to be clustered is an easy problem. This makes Orthus robust to small variations in the

clustering parameters. Nevertheless, other clustering algorithms like HDBSCAN could be used

transparently with Orthus to reduce its parameter-induced variability.

H Computation time and resources used

Preparing the performance matrix 𝑃 (evaluating 511 configurations over 94 datasets) was completed

during a month in several stages in parallel computation on a server with an Intel Xeon E5-4627

CPU with 16 physical cores and 500 GB of RAM.

Regarding computation time of the different recommenders, we tested their fitting and recom-

mendation times for one of the folds of Scenario I (83 datasets for fitting and 11 for recommendation),
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Figure 10: Effect of DBSCAN’s hyper-parameters on Orthus’ average performance.

repeated 10 times, and report their minimum and maximum computation times for both tasks in

Fig. 11. Please note MetaOD was not able to be tested with this methodology as a single instance of

its fitting consumed more than two hours of computation time. In our anecdotal tests, MetaOD’s

recommendation phase computation is inferior to 100 ms.
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Figure 11: Fitting and recommendation times for the tested recommenders.
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