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ABSTRACT

Safe exploration is a prerequisite for deploying reinforcement learning (RL)
agents in safety-critical domains. In this paper, we approach safe exploration
through the lens of epistemic uncertainty, where the actor’s sensitivity to param-
eter perturbations serves as a practical proxy for regions of high uncertainty. We
propose Sharpness-Aware Policy Optimization (SHAPO), a sharpness-aware pol-
icy update rule that evaluates gradients at perturbed parameters, making policy
updates pessimistic with respect to the actor’s epistemic uncertainty. Analytically
we show that this adjustment implicitly reweighs policy gradients, amplifying the
influence of rare unsafe actions while tempering contributions from already safe
ones, thereby biasing learning toward conservative behavior in under-explored re-
gions. Across several continuous-control tasks, our method consistently improves
both safety and task performance over existing baselines, significantly expanding
their Pareto frontiers.

1 INTRODUCTION

Deploying reinforcement learning (RL) agents in safety-critical environments poses unique chal-
lenges due to the need for safe exploration: the process by which an agent collects informative ex-
perience while avoiding catastrophic failures (Bharadhwaj et al.| 2020; |Achiam et al.| 2017} [Sootla
et al} 2022). A fundamental difficulty arises during early training, when the agent inevitably visits
states about which it has limited knowledge, i.e., regions of high epistemic uncertainty. In these re-
gions, the predictions of learned policies and value functions are unreliable, and exploratory actions
may cause unsafe or irreversible outcomes.

In practice, safe exploration depends on the policies an algorithm visits while learning the task, so
the choice of update rule matters: each gradient step should hedge against unreliable estimates in
parts of the state—action space visited under the current policy. This connects safe exploration to the
agent’s epistemic uncertainty—uncertainty about model parameters that is largest where on-policy
data are scarce—suggesting that policy updates themselves should be pessimistic with respect to
that epistemic uncertainty.

Prior work has largely handled uncertainty on the critic side (ensembles (Lakshminarayanan et al.,
2017;|Osband et al., [2016; Bykovets et al., 2022)), dropout (Gal & Ghahramanil 2016)), or distribu-
tional methods (Bellemare et al.,[2017;|Luis et al.,2024) combined with risk measures), which helps
quantify variability in returns but does not expose a practical, optimization-ready notion of actor’s
epistemic uncertainty. Maintaining an explicit posterior over policy parameters is generally infeasi-
ble for deep on-policy RL, making actor-side risk aversion difficult in practice. As a result, while
critic-side approaches are common, we observe a gap in methods for policy updates that carefully
account for the actor’s parameter uncertainty.

We address this gap by introducing a novel approach to policy update guided by gradients evalu-
ated at an adjusted parameter: Sharpness Aware Policy Optimization (SHAPO). Our method builds
upon sharpness-aware optimization (Foret et al.l [2020; |[Kim et al., 2022b), which incorporates the
sharpness of the loss landscape to enhance generalization. We reinterpret this adjustment through
the perspective of epistemic uncertainty, demonstrating that it induces a systematically pessimistic
bias with respect to the actor’s performance. In a simplified analytical setting, we show that SHAPO
modifies the treatment of low-probability actions: those deemed unsafe are assigned greater weight
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in the policy update, whereas those identified as safe are downweighted. Empirically, SHAPO ex-
pands the safety—efficiency Pareto frontier across a range of on-policy Safe RL baselines in the
Safety-Gym (Ray et al.,[2019) and MuJoCo (Todorov et al., 2012) environments, while simultane-
ously reducing cumulative failures and mitigating heavy-tailed episodic cost distributions. Ablation
studies further indicate that perturbations defined in the Fisher metric are superior to their Euclidean
counterparts, and that applying sharpness-aware optimization to the actor is more consequential for
safe exploration than its application to the critic.

2 BACKGROUND

2.1 CONSTRAINED MARKOV DECISION PROCESSES

A Constrained Markov Decision Process (CMDP) (Altmanl 2021} is a tuple
M = (S’ A7 T7 r,C, 7, M0)7

with state space S, action space A, transition kernel 7', reward function r : Sx.4 — R, nonnegative
cost function ¢ : S x A — Ry, discount factor v € [0,1), and initial state distribution p. A
stationary policy 7 induces discounted returns

Jr(ﬂ—) - Eﬂ' |:Z’}/t7"(8t, at):| 5 Jc(’”) - Eﬂ' {Z’th(st, at):| 3
t=0 t=0
and the objective is
7 = argmax J,. (), ¢ = {m € I : Jo(7) < B}. (1)

welle
for a constraint threshold 5 > 0.

A common approach consists in introducing a Lagrangian objective,
Ix(mg) = Jr(mo) — A(Je(mg) — B), ()
with multiplier A > 0 adapted to enforce the constraint.

We write Q% (s,a) = E-x[Rx(T)|so = s,ao = a] for the action-value function associated with ,
where R (1) = 312 7' (r(se, ar) — Ac(sy, ay)). Similarly, we write VT (s) = Eqrn( |5)[Q% (s, a)]
for the value function. Finally, for a policy 7, we write d™(s) for the discounted state distribution
given by d™(s) = (1 — ) Yoo V' Pr(s = s¢|m)..

2.2 POLICY OPTIMIZATION

A standard way to learn policies that maximize expected return consists of iteratively improving a
policy until convergence to optimum. We provide here some notations and results from Kakade &
Langford| (2002); Schulman et al.| (2015). Given a current policy 7y we seek to find a policy 7 that
improves on 7y. The improvement of a policy 7 over 7 can be expressed as:

JA(TF) - JA(TFO) = Eswd" IEa~7r(a|s) A(,)\(Sy a)

where Ag)\(,?, a) = QY° (s, a) — V°(s) quantifies the advantage of taking action a compared to the
average action under policy 7.

This improvement is an expectation over the state distribution of the unknown policy 7, so, in
practice, it is replaced by the the following quantity that can be estimated using only experience
collected with the current 7g:

AS (s, a)
mo(als)

However in order for a positive Lf;o (m) to effectively represent an improvement, we need to ensure
that  does not differ too much from 7y . As a consequence, to generate an updated policy 7, the
natural gradient is found as the solution to the following optimization problem:

Lﬁo (m) = Esnaro Ianfro(als) m(als). 3)

maximize L (r)
" . )

max

subject to D> (m, mo) < 6
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where DR (m,m9) = maxs KL(7(-|s)||mo(+|s)) is the maximum of Kullback-Leibler divergence
over states and § > O specifies the trust region constraint.

We recall the following result adapted from (Schulman et al., 2015, Theorem 1) that bounds the
improvement (or deterioration) of a policy 7 over the current policy 7 in terms of LQO (m):

Theorem 1. For o = D¥™(m, mp), we have

L) (7) = Bo < J\(m) — Jx(mo) < L (7) + B with B, = —a H;%X|A9\(s,a)|.

Y
(1=7)?% s

Intuitively, this result indicates that the greater the distance of 7 from 7 (in the sense of D{*), the
more L;}O (7) must deviate from 0 = L7>'\r0 (7T0t0 ensure a true improvement (or deterioration).

We now consider a parametrized policy mg, let myp = gy, and overload our previous no-
tation by using 6 instead of mp when there is no risk of confusion. Since the maximum
in D (7, mo) is intractable, the expectation Dy (7, m0) = Egmaro KL(mg(-|5)||7ma, (-]5)) is
used in practice. The second-order approximation of this function of 6 around 6, is given by
Dyi (To4e,m0) ~ 2eTFg e where Fy, denotes the Fisher Information Matrix defined by Fg, =
Es~dro Eqmno(als) (Vo log mo(als)|o=g, ) (Ve log mo(als)|g=g,)". Now, using a linear approxima-
tion L) ,(0) = g7'6 of the loss function around 6 leads to the following optimization problem:

Ug,, (9.0) = argmax (g,e). 5)

3€TFg e<é

TRPO (Schulman et al., 2015) uses g = VgL (6)]9—g, for the parameter update. We observe that

relying on the gradient g of the loss L , may result in an overconfident update, as it does not take
into account the epistemic uncertainty associated with 7.

2.3 SHARPNESS-AWARE OPTIMIZATION

Sharpness-Aware Minimization (SAM) (Foret et al., 2020) is a general framework that aims to bias
solutions towards flat regions of the loss or utility landscape. In general terms, for a utility function
L() that we seek to maximize for 7 € II, SAM framework proposes the following modified
optimization problem:

max min L(7),

mell 7eN(m)
where N (7) is some choice of neighborhood of 7. Given a parametrization gy with § € ©, Eu-
clidean neighborhoods in parameter space represent a simple choice that was studied by |Foret et al.
(2020) and has also applied to RL (Lee & Yoon, [2025). Other neighborhoods based on functional
similarity have also been proposed in the supervised learning setting. Fisher-SAM (Kim et al.,
2022b)) proposes to define the neighborhood of a predictive distribution 7 : « — 7(+|z) in terms
of expected Kullback-Leibler divergence NX"(7) = {7 : E, [KL(7(-|z)|n(-|z))] < 8} for some
0 > 0. In practice, maximization of this worst-case value in a neighborhood is achieved by suc-
cessive ascent on parameter 6 following the gradient of the loss at £(6 + ¢) where ¢ is such that
Tote A ArgMiNze N (r) L(7) (see Alg. in appendix). In the next section, we adapt the sharpness-
aware optimization approach for policy optimization. Furthermore, we show that this method is
equivalent to optimizing a risk-aware objective in light of the epistemic uncertainty surrounding the
current policy.

3 SAFE EXPLORATION

On-policy deep RL algorithms for CMDPs begin with a random policy 7y and iteratively update to

1,2, - -, Tast- Lhe objective is to maximize J,.(7.s) subject to J.(mas) < 5. However, during

this process the agent incurs a cumulative training cost proportional to Zlifl Je(m;). The primary

objective of safe exploration is therefore to minimize this cumulative cost while still learning a policy
that yields high expected reward.

"Note that L}, (m0) = Eswaro Eqmrg( |5) AX(8, @) = 0since A3(s,a) = Q3 (s,a) —Eamry( ) [Q3(s, a)]
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Algorithm 1 SHAPO(0, L, F, pown)

Require: parameter ¢, objective function L, Fisher matrix F, constraint dpgwn
1: Compute the gradient at 0: g <— Vg L(0)]g
2: Compute the perturbation: epown = Ur(—9, dpown)
3: Compute the gradient at perturbed parameter: § < VoL (0)|o4epyn
4: Return SHAPO gradient g

A complementary objective is to avoid policies 7; that, even if low-cost in expectation, occasion-
ally produce trajectories with very high cost. Writing the discounted trajectory cost as J.(7) =
oo e(se, ar), the goal is to control the tail of the distribution of J.(7), thereby reducing the
frequency of rare but catastrophic failures.

We observe that these two objectives extend beyond merely finding a solution to the CMDP. They
emphasize not only the importance of maximizing expected rewards while adhering to cost con-
straints but also the critical need for the policies explored during training to avoid rare high-cost
outcomes. In practice, selecting different values of \ in the equation [2| results in a trade-off be-
tween expected return and total cost. The focus of this work is on safe exploration, which involves
advancing this Pareto front.

Policy updates are crucial to the effectiveness of these methods. Given the inherent uncertainties
associated with these updates, adopting a pessimistic approach—especially in the context of the
agent’s epistemic uncertainty—emerges as a logical strategy for achieving safe exploration, which
we implement in this work. Specifically, we believe that a safe exploration framework must effec-
tively address rare and potentially unsafe events during the policy update process. By prioritizing
this consideration, we aim to enhance both the reliability and safety of the learning process and its
outcomes.

4 SHARPNESS AWARE POLICY OPTIMIZATION (SHAPO)

In the context of policy optimization, SAM framework (Foret et al.| |2020) suggests to look for a
policy 7 that maximizes

BU IA(T) (6)
instead of just Jy (). This shift in objectives can be intuitively justified at high level as follows.
We may prefer a policy m over mo even if Jy(m1) < Jy(m2) if 7 achieves a higher value for the
worst-case objective[6] This preference may arise from the understanding that the expected return of
policies within the neighborhood N (1) can provide a more accurate estimate of the actual perfor-
mance of 7;. This is particularly relevant because our learning problem may not fully encapsulate
real-world complexities, such as environmental dynamics or the real-world implementation of our
policy. By focusing on the worst-case expected return of nearby policies, we aim to better align our
estimates with the true performance outcomes in realistic settings.

4.1 THE POLICY UPDATE

As outlined in the background section, our goal is to learn a policy 7 that maximizes Jy(7) by
gradually updating the current policy mg,. This is achieved by solving the optimization problem 3]
under a trust region constraint dy, and using the gradient g = VQLQO (9) | 0=0," We present here our
proposed approach, which differs primarily in that it substitutes the direction g with the gradient g
of L§\r0 computed at 0y + epown Where epowy is a carefully chosen adjustment.

Given the current policy 7y, we now outline our proposed method for updating it within the frame-

work of SAM. We have at our disposal the utility function L;\TO(G) which estimates the relative

improvement (or deterioration) of nearby policies 7. Our first step therefore consists of solving the
minimization problem

. by ~

min L2 (7). 7

FEN (mo) o (%) ™

We note that choosing an isotropic Euclidean neighborhood in parameter space for N () presents

certain challenges. A small distance in parameter space (||¢ — 6p||2 small) does not necessarily
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Figure 1: SHAPO directs the policy update using the gradient g at an adjusted parameter (Right). Two
perspectives on this adjustment are illustrated: (Left) The adjustment aims to minimize the expected return
while staying within the trust region defined by dpowa. (Middle) Parameter uncertainty translates to uncertainty
in the expected return, resulting in a maximum likelihood adjustment that remains below the a-quantile yq,.

guarantee that 7y is similar to 7o in terms of Dg{*. Consequently, when L;}O (9) < 0, it does not
ensure that Jy(mg) < Jx(mo). In contrast, while selecting a neighborhood of distributionally similar
policies better reflects the underlying geometry of the statistical manifold of the parameters (Kim:
et al.,|2022b), it also contributes to ensure the validity of utility function LQ . in virtue of Theorem

Consequently, to identify a policy 7 that is distributionally close to 7y but performs worse than
Tp, we propose to formulate the inner minimization [7] in a manner analogous to the optimization
problem[d] namely as
minirnize L;\TO ()
®)

subject to DX (7, 70) < Spown

for some trust region constraint dpow, > 0. We therefore estimate the solution to the inner minimiza-
tion with the policy 7 = 7, +p,,, Where the perturbation epown = Ur,, (~VoL) o (0)]o=0, ODown) is
the solution to the optimization problem|§] where Fy, is the Fisher information matrix of our policy
parametrization evaluated at 6.

Next we proceed to update my based on the direction provided by the gradient of L>‘O at our found
perturbed parameter 0o + €pown- This step involves solving the maximization problem [ where the
gradient VgL ,(0) is now evaluated at 6y + epown. This results in a parameter update given by
evp = Ur,, (V.gL 0 (0)10=00+epown» OUp) Where 6Up > 0 is the trust region constraint. The pseudo-
code for computlng 'the SHAPO gradients is given in Algorithm [I]

4.2 REINTERPRETING FISHER SAM AS PESSIMISM IN FACE OF EPISTEMIC UNCERTAINTY

In effect, our proposed approach differs from classical local optimization techniques in that the
update of the current parameter 6y is guided by the gradient evaluated at 6y + epown instead of
fo. We now provide a different perspective on the perturbation epyyy, arising from a pessimistic
viewpoint in the context of epistemic uncertainty.

We propose to model the uncertainty about the parameter 6y, which defines the current policy
o = Ty, using a multivariate normal distribution Q(#) = N (6y, X) with mean 6, and covari-
ance matrix ¥ = LF~! where F~! denotes the inverse of the Fisher Information Matrix F = Fy,
evaluated at 6. The choice to model epistemic uncertainty this way is motivated by the asymptotic
properties established by the Bernstein—von Mises Theorem (van der Vaart, |1998) where n repre-
sents the number of independent samples used to estimate the parameters of the model. However, it
should be noted that in the case of RL this not simple to compute due to the correlation of samples,
as we will elaborate on in Section [f.4] This approach captures the intuitive notion that as we gather
more data, our uncertainty about the parameter decreases, and the distribution of our estimates be-
comes more concentrated around the true value. This choice not only aligns with theoretical founda-
tions but also offers a practical starting point for exploring the implications of epistemic uncertainty
in the context of policy optimization.

We observe that this uncertainty about the current parameter 6 translates into an uncertainty about
the expected return Jy(7g) of our current policy, which we can estimate as

Ia(mg) = Jx(m,) + Ly, (6)

when 7y is close to my in distribution. Writing ¢ = VQLTAFG(G)‘gzgo and assuming a first-
order approximation Lf;o (0 +¢) = €Tg around 6, the deviation of expected return is given



Under review as a conference paper at ICLR 2026

Current policy distribution With advantage A=-10.0 With advantage A=10.0
1 60 T = b T
040 \‘ —— standard gradient 41— standard gradient
0.35 1 404 . ---' SHAPO gradient 301 --- SHAPO gradient
. -
0301 2 201 o
20 2 0
0.254 10
020 0 0
0.15 =10
—20q N 7
0.10 ~ —20 e
N -
—40 N, -
0.05 \\ =301
0.00 604 \' —40 4
B B % 2 o 3 %
action observed action observed

Figure 2: 1D Gaussian policy: The gradient utilized in SHAPO exhibits a larger amplitude for rare and unsafe
actions, while it is comparatively smaller for rare safe actions, compared to the classical gradient.

by Y = L} (6),60 ~ N(fy, LF~") that follows a normal distribution N'(0,5?) with variance
o2 = lgTF*1g.

While L3 (6y) = 0 represents the mean of this distribution, parameters for which L2 (6) falls at, for
instance, the 5th percentile of the distribution Y provide a more nuanced perspective on the current
expected return. This highlights that, although the mean may indicate a certain level of performance,
there are credible scenarios in which performance could be significantly lower. Therefore, adopting
a pessimistic standpoint, it is justified to prioritize improving a more conservative expected return
when updating 6. We demonstrate that evaluating the gradient at 6y + €powy to inform the update
of 6 can be interpreted as optimizing an estimate of the expected return that is pessimistic in face
of the parameter uncertainty.

For « € (0, %), let y,, denote the c-quantile of the random variable Y, and z,, denote the a-quantile
of the normal distribution A'(0,1). Note that under our first-order approximation of LQO the con-
dition Lﬁo (6o + €) < yq corresponds to €/ g < y,. The following proposition links this epistemic

uncertainty perspective with the parameter perturbation described in the previous section. It is illus-
trated in Fig.

Proposition 2. Let Q(0) = N'(6o, LF~1). Forevery a € (0, 3), the solution €, to the optimization
problem

maximize log Q(0y + €)
< ©)
subjectto € g < Yo

2
coincides with the adjustment we make in SHAPO for the trust constraint dpgy, = ;—‘;l namely
2
z,
€a = UF(_gv 277‘17,)

Intuitively, this result states that the adjusted parameter 6y + epown considered in SHAPO can be
viewed as the most likely parameter under the parameter distribution Q(#) that falls in the lower tail
at the a-quantile. Our approach SHAPO, which updates the current policy 7 by using the gradient
g calculated at this adjusted parameter, can therefore be understood as promoting an enhancement
of my in a worst-case or pessimistic scenario, considering the existing epistemic uncertainty sur-
rounding 7. By applying SHAPO with a dpewn > 0 to update the actor, we are therefore effectively
enforcing pessimism in face of epistemic uncertainty about our current policy.

Furthermore, by establishing the relationship dpown = ;—%, this proposition allows us to interpret
the constraint dpew, as a measure of confidence in the expected return of the current policy in the
presence of epistemic uncertainty. More details and proof in Appendix

4.3  ANALYSIS OF SHAPO ON A SIMPLE GAUSSIAN POLICY

Our proposed approach to update the current policy 7y is guided by the gradient g of L§\r0 (9) evalu-
ated at Oy + epown, While classical approaches use the gradient g evaluated at 6. Here we study how
these two gradients g and g differ in a simplified setting.

We assume that the policy at some state is given by a 1D Gaussian policy 7(a; p, 1) = N(a;p, 1)
parametrized by the mean p and that the current policy is mg(a) = 7(a;0, 1) specified by o = 0.
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We propose to study the discrepancy between the two gradients g and g with respect to p in terms
of an observed action a and an advantage value A under a constraint dpoy,. Our utility function L;\ro
and its gradient can now be expressed as:

A A
L(p;a, A) = m”(mﬂ) VuL(ps;a, A) = Wv;ﬂf(a;/l)
The standard gradient g(a, A) = V,L(u; a, A)|,—o and the gradient g(a, A) = V,L(y; a, A)|=p
at [l = fig + €pown are as given in the following Proposition (See Appendix [C|for details).
Proposition 3. Under the 1D Gaussian model, we have

a—p ifAa<0
a+p otherwise,

a2 _ A2
gla,A) =aA and §(a,A) = AAexp (2> with A= {
where p = \/20pown-

Figure [2| show plots of the two gradients as functions of the action observed a for two values of
advantage (A = —10 and A = 10) with p = 0.1 (i.e. dpown = 0.005).

We see that SHAPO gradients differ from standard gradients for rare actions |a| > 1. When the ad-
vantage is negative, indicating an unsafe action, we see that SHAPO’s gradient is larger compared to
the standard gradient. In contrast, for positive advantage SHAPO’s gradient is smaller than the stan-
dard gradient. The analysis of this simplified setting shows that, under certain conditions, SHAPO’s
policy update promotes a different treatment of rare actions depending on the sign of the corre-
sponding advantage. When unsafe, rare actions are taken very seriously and an important update of
the policy is promoted. In comparison, SHAPO opts for smaller updates when facing safe actions,
even when they have large advantage. Overall, this behavior aligns well with our safe exploration
objectives and helps explain why our approach favors policies that infrequently incur high costs (cf.

Figure [3)).

4.4 SHAPO FOR ON-POLICY RL ALGORITHMS

As presented in this section, Sharpness Aware Policy Optimization (SHAPO) modifies the TRPO
algorithm with a Lagrange objective and pseudo-code is provided in Algorithm 3] We abstract this
modification in Algorithm [T} this code returns a parameter direction g for updating the current
policy my based on the objective function L, the Fisher matrix F' of the policy parametrization and
constraint bound dpew,. Formulated this way, our method can be applied to most online policy RL
algorithms and we provide pseudo-code in Appendix [A]for CRPO and CPO.

While Propositionlinks the trust-region constraint dpowy to the percentile z,, of the normal distribu-
tion (where « is the level of pessimism in face of uncertainty), the effective sample size n cannot be
easily estimated in continuous-control reinforcement learning where data are temporally correlated
and only a subset of collected samples provide independent information. Furthermore, due to the
complex coupling between the actor and critic, together with the challenges posed by exploration,
it is difficult to determine the appropriate level of pessimism (i.e. the value of «) to adopt at each
stage of the training.

In this context, adopting a constant value of dpow, during training and treating this value as tunable
hyperparameter allows us to directly control the desired safety—efficiency tradeoff without relying on
uncertain estimates of n. This makes the constant-dp.y, strategy both simple and effective, offering
a stable mechanism for regulating pessimism throughout training. We further discuss this approach
and other options to schedule the level of pessimism in Subsection [6.T]and in Appendix[E]

Finally, in our method, we also incorporate Sharpness Aware Minimization with Euclidean neighbor-

hoods for the critic, as proposed by [Foret et al.|(2020) for a supervised learning task. By considering
the sharpness of the loss landscape during the training of the critic, we aim to focus on flatter regions

that yield more stable value function approximations.

5 EXPERIMENTAL SETUP

Environments. We evaluate SHAPO on Safety Gym (Ray et al| 2019) (PointGoall-v0,
PointButtonl-v0) and MuJoCo (Todorov et al.,[2012) (Ant-v4, Walker2d-v4). In PointGoall-v0, an
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Figure 3: Performance of SHAPO on four different tasks across four different baselines over 5 training seeds.
We report Cost Rate (Total Cost / Total Env Steps) for Safety Gym environments after training for 10M en-
vironment steps and Total Cost for MuJoCo environments after 5/ environment steps. SHAPO (shown with
a star) significantly improves the performance of the baseline algorithms (shown with a circle) on both safety
and efficiency thus improving the safe exploration capabilities of the baseline algorithms. Width and height of
the ellipses represent the standard error over 5 seeds.
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out SHAPO. We can see that SHAPO improves upon ing the learning phase.

the Vanilla PIDLag for all configurations.

agent must reach a random goal while avoiding unsafe regions that accumulate cost; in PointButtonl-
v0, it must press buttons in the correct order, with penalties for wrong presses and additional hazards.
In both tasks, the objective is to succeed while keeping cost under S = 10. In MuJoCo, the agent
must run fast without falling, where each fall is a constraint violation.

Baselines. Although Sec. ] more specifically describes how our approach modifies TRPO
with a Lagrangian objective, SHAPO virtually applies to any on-policy method
in a straightforward manner. We therefore also study the effect of SHAPO on CPO (Achiam et al.
2017), PIDLag (Stooke et al.} 2020) (Lagrangian TRPO with PID control of \), CRPO (Xu et al.
2021) (alternating primal updates) and SauteRL (Sootla et all,[2022) (state augmentation with con-
straint budget with TRPO (Schulman et al [2013) as base algorithm). Pseudo-code for the SHAPO
versions of the baseline algorithms is provided in Appendix [A]

Metrics. In MuJoCo we report episodic return (efficiency) and total failures/cost (safety). In Safety
Gym we track episodic return and cost during training, plus final average return and cost-rate (total
cost / steps) as defined in [2019). All results are generated by averaging over 5 seeds, the
standard error in x (Cost Rate / Total Cost) and y (Return) are represented by the width and height
of the ellipses, respectively.

Implementation Details. When adding SHAPO, baseline’s hyperparameters are frozen and only
Opown and peritic are tuned. Thus the safety—efficiency tradeoff is determined by the baseline, while
SHAPO provides an orthogonal improvement. More details in the Appendix

6 RESULTS

Fig. 3] summarizes performance across four baseline algorithms and their SHAPO counterparts on
four tasks. In PointGoall and PointButtonl, we plot cost-rate (x-axis) against return (y-axis), captur-
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Figure 7: SHAPO leads to significant improvement
in cost-rate, even without SAM on critic. While SAM
on critic leads to improvement in return, only adopting
SAM for the critic does not promote safe exploration
in PointGoall and PointButtonl

Figure 6: We compare results for SHAPO when using
perturbation in the euclidean space E-SAM or in the
Fisher Metric space (SHAPO). We can see that SHAPO
is consistently better than E-SAM because of perturba-
tion that ensure worsening of the inner objective.

ing the safety—efficiency tradeoff during training. For Ant-v4 and Walker2d-v4, we report cumulative
failures (total cost). Across all benchmarks, SHAPO consistently improves either safety, task per-
formance, or both. For instance, SauteRL (Sootla et al] 2022)) achieves the lowest cost-rate on
PointGoall and SHAPO further reduces this cost without hurting returns. Since SauteRL relies on
augmenting states with the remaining budget, it is inapplicable in MuJoCo (where 3 = 0 means any
incurred cost violates the constraint), so we omit those results. Detailed results have been presented

in the Appendix Fig. [T3] [T6}[T7] [T8]

The safety—efficiency tradeoff in Lagrangian methods is shaped by hyperparameters such as the
initial multiplier \;,,;;. Fig. E| shows results for PIDLag across different \;,;; values. In every
setting, SHAPO expands the Pareto frontier of return versus cost, indicating that it consistently
delivers better safety—efficiency tradeoffs than the vanilla algorithm.

To assess safety beyond mean statistics, Fig. [5]shows episodic cost distributions. While both vanilla
baselines and SHAPO reduce average cost, only SHAPO consistently suppresses heavy tails (95"
percentile in Ant-v4, 80" in Walkeer—v{b. This tail suppression significantly enhances the agent’s
safety and aligns with our safe exploration objective. Consistent with our analysis in Sec. {.2]
SHAPO’s pessimism when faced with parameter uncertainty reduces catastrophic events, yielding
fewer cumulative failures (i.e. Total Cost) (Fig. [3). Detailed plots are included in the Appendix.

6.1 ABLATIONS & ANALYSIS

Fisher versus Euclidean perturbations: Fig. [6| compares perturbations in Euclidean (E-SAM) and
Fisher (SHAPO) spaces. SHAPO consistently outperforms E-SAM across tasks and baselines, vali-
dating that Fisher perturbations, being aligned with the local geometry of on-policy data, yield more
principled and effective risk-sensitive updates.

Actor versus critic perturbations: Fig. []] isolates the effect of applying SHAPO to different com-
ponents. When SAM is applied only to the critic (SAM Critic), perturbations do not enforce risk-
aversion and can even increase cost, since squared-error perturbations treat under- and overesti-
mation symmetrically. In contrast, applying SHAPO only to the actor (SHAPO Actor) markedly
improves safety by steering exploration conservatively. Finally, Using SHAPO (SHAPO Actor +
SAM on critic) yields the strongest gains in both safety and efficiency.

Pessimism schedule: In light of Proposition |2} we consider for each update step ¢ the number n;,
of state-action pairs collected so far by our agent as a proxy for the effective sample size n from
Subsection This allows us to interpret the bound &}, at step ¢ in terms of n; and the percentile
24, of the distribution NV'(0, 1) at the level of pessimism cy. Our simple strategy using a fixed dpown
therefore can be interpreted as increasing the level of pessimism as the agent learns. Indeed, we then
have z,, = —v/2n:0pown and thus a; = ®(—+/2n0pewn), Where P is the cumulative distribution
function of A/(0,1). Another simple approach can instead consist of choosing a fixed value of

t z

pessimism « € (0, %) for the whole learning process, and then compute the bound dp,,,, = - o

5th

*Walker2d-v4 is more challenging, with the 95" percentile remaining near one, so we report the 80"

instead.
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at step ¢, which effectively decreases as we progress through learning. Fig. [§] compares these two
different approaches to scheduling pessimism. Figure [§] shows that both of these schedules allow
SHAPO to consistently outperform the vanilla algorithm, highlighting the robustness of the proposed
adjustment with respect to the choice of &}, which controls the level of pessimism. More details
and analysis are provided in Appendix [E}

7 RELATED WORK

Uncertainty in RL: RL agents must con-
tend with aleatoric (outcome) and epis- 12
temic (model/parameter) uncertainty (Os-
band et al) 2016} [Ghavamzadeh et al., 20
2015). Bayesian model-based methods
propagate posterior uncertainty for explo- .
ration and risk assessment

.
; mOdel-free approaCheS use 1.065 1.070 1.075 1.080 1.085 1.090 1.095 ” 1.07 1.08 1.09 110 111

PointGoall PointButtonl

Return

ensembles/randomized value functions for Cost Rate le-2 Cost Rate le-2
epistemic estimates (Osband et al., 2016} ® Vanila  ® SHAPO (fixed 640s)  ® SHAPO (fixed a)

2018; [Mai et all [2022) and distributional
critics for risk-sensitive control
let al}, 2017 [Dabney et al. 2018). Pes-

Figure 8: Pessimism schedule. We compare the selection
of a constant dpewn With the selection of a value o € (0, 0.5)

2
oo = = ; . ; st Za "
simistic objectives further bias learning to- USINg th? SChefhﬂe ODown = 3,,; Where n; is the number of
ward conservative estimates (Kumar et al), state-action pairs seen by the agent. Both approaches out-
2020). perform the vanilla approach.

Sharpness-Aware Optimization: Sharpness-aware objectives minimize the worst-case (or stochas-
tic) loss in a local noisy parameter neighborhood (Rahn et al. [2023)), yielding solutions that are
insensitive to weight perturbations and thus more robust to parameter uncertainty 2020;
Andriushchenko & Flammarion|,[2022};[M&llenhoff & Khanl2022). Geometry-aware variants (Kwon
et al.;2021; [Kim et al.} 20224l tailor the neighborhood to better approximate uncertainty directions,
while noisy-neighborhood extensions explicitly inject randomness into the perturbation to probe loss
under parameter noise and improve robustness (Baek et al.} [2024). (Lee & Yoonl, 2025) shows that
applying SAM to PPO significantly improves robustness to aleatoric variations of the environment
at test time. In this paper, we focus instead on the potential of sharpness aware optimization for safe
exploration.

Safe Exploration: Safe exploration deals with epistemic uncertainty associated with data scarce
regions of the state-space(Achiam et al., 2017} [Liu et all, 2022; [Sootla et al.| 2022} [Stooke et al.}
[2020; Mani et al, 2025 |Gu et al.| [2024). Strategies include Bayesian model-based control with

uncertainty-aware planning (Berkenkamp] 2019), Lagrangian world models (Huang et al., [2023),

safety critics that filter risky actions or impose constraints (Fisac et al., 2019; Srinivasan et al., 2020;
[Kang et al | [2022; [Bharadhwaj et al.| [2020), and state augmentation with accumulated cost as a risk

proxy (Sootla et al.| [2022; Jiang et al.l [2023)). In this paper, we are interested specifically in the
epistemic uncertainty of the actor and in designing update rule to be pessimistic with respect to that
uncertainty.

8 DIScuUSSION & CONCLUSION

Safe exploration is ultimately about shaping updates to respect uncertainty, not only enforcing con-
straints on the final policy. By instantiating SAM in the actor’s Fisher/KL geometry, we treat sharp-
ness—the sensitivity of the policy surrogate to tiny parameter changes—as a practical proxy for
epistemic uncertainty. When small nudges can flip outcomes, the local neighborhood is under-
supported by data; SHAPO biases learning toward locally stable policies whose nearby variants
behave similarly, tempering brittle, risk-seeking moves and emphasizing improvements that reliably
reduce cost. This creates a closed loop: safer updates yield safer trajectories, which produce cleaner
data in risky regions, reducing epistemic uncertainty and naturally relaxing conservatism as learning
progresses.

10
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REPRODUCIBILITY STATEMENT

All code, configuration files, and exact hyperparameters required to reproduce our
results are  publicly available at https://anonymous.4open.science/r/
Safe-Policy—-Optimization—-813E. Experiments were run in standard, publicly ac-
cessible environments (OpenAl Gym, Safety Gym), with version details documented in the
repository.
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Algorithm 2 Sharpness-aware optimization

1: Initialize 6

while not converged do
Compute € such that mp. ~ arg minz¢ v £(7)
Calculate the gradient at perturbed parameter: g + VL(6 + €)
Update parameters: 6 < 6 + ag {« is the learning rate}

end while

AN A

Algorithm 3 SHAPO (TRPOLag): Sharpness Aware Policy Optimization (TRPOLag)

1: Initialize parameters 6
2: Set trust region constraint dy, and SHAPO constraint dpown
while not converged do
Compute the Fisher matrix I at 0
Compute the gradient: g < VoL, (0)]o
Compute the perturbation: epown = Up(—9, Opown)
Compute the gradient at perturbed parameter: § < Vg Ly, (0)]g+cp.,
Compute the parameter update: eyp, = Ur(7, dup)
Update parameters: 6 <— 0 + ey,
end while
Return policy g

TRYRID;NEW

—_

Algorithm 4 SHAPO (PPO): Sharpness-Aware Policy Optimization (PPO)

1: Initialize policy parameters 6

Set clipping parameter ¢ and SHAPO constraint dpeyn

Set learning rate n

while not converged do
Compute the Fisher matrix F at 6
Compute SHAPO gradient for the clipped objective: § <— SHAPO(0, LE'° | F, 640n )
Update parameters with the SHAPO gradient: 6 <— 6 + 1 g.

end while

A PSEUDO-CODE

Pseudo-code for Sharpness Aware Optimization is presented in Algorithm 2] and for our Sharpness
Aware Policy Optimization for Lagrangian TRPO (SHAPO TRPOLag) in Algorithm

Recall that Ur (g, ¢) stands for the (estimated) solution to the optimization problem

Ur(g,0) = argmax(g, €). (10)
%eTFESS

where & > 0, g is a vector and F' is a symmetric positive definite matrix. In TRPO at current 6y, g
is the gradient of Ly, (0) evaluated at 6y and F' is the Fisher information matrix Fg, of the policy
parametrization 7y, § € ©, evaluated at 6.

We provide pseudo-code for SHAPO in Algorithm|l} Formulated this way, our method can be ap-
plied to most on-policy RL algorithms. It returns a parameter direction g for updating the current
policy my based on the objective function, the Fisher matrix of the policy parametrization and con-
straint bound dpewa. This function effectively abstracts lines 4 — 7 of Algorithm 3]and allows us to
present how our method applies to other algorithms.

While TRPOLag combines cost and reward into a Lagrangian objective L , at the current policy 7o
(cf. Equation [3)), other algorithms like CPO or CRPO consider two distinct objectives. Given the

14
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Algorithm 5 SHAPO-CRPO

1: Initialize parameters 6

Set trust region constraint dy, and SHAPO constraint dpown
3: while not converged do

4:  Compute the Fisher matrix F' at §

5:  if Expected Cost > constraint threshold (/3) then

6.

7

8

»

Compute SHAPO gradient on Cost Surrogate § <— SHAPO(0, L., , F', Spown)
else
: Compute SHAPO gradient on Reward Surrogate § < SHAPO(0, L., F', 0pown)
9: endif
10:  Compute the parameter update: eyp, = Urp(7, dup)
11:  Update parameters: 6 < 6 + eyp
12: end while

13: Return policy g

Algorithm 6 SHAPO-CPO

. Initialize parameters 6

: Set trust region constraint dy, and SHAPO constraint dpown

while not converged do
Compute Fisher matrix F" at 6
Compute SHAPO gradient on Cost Surrogate . +— SHAPO(0, L., I, 6pown)
Compute SHAPO gradient on Reward Surrogate j. <— SHAPO(0, L, , I, 6pown)
Resolve gradient update ey, <— CPO_Update(§;, §., dup)
Update parameters: 6 < 0 + ey,

end while

. Return policy g

—_

A AN ARl

—

current policy 7 we define the two following objectives similarly to Equation 3}

- AV(s,a

L7 (0) = Esuaqo Eqaorgals) Woga|s)) mo(als) (1D
c AS s,a

LWO (0) = Egoqo EaNﬂO(MS) 7TOECL|S)) we(a\s), (12)

where d° denotes the discounted state distribution under 7y and A%(a, s) (resp.A?) quantifies the
advantage in reward (resp. cost) of taking action a in state s compared to the average action under
o in state s. More precisely, letting Q%(s,a) = Err,[R:(T)[so = s,a9 = a] for the reward
action-value function associated with o, where R,.(7) = >_,=,v'r(ss, ar), we have A (s,a) =
QU(s,a) = Egrro( |s)[Q2(s, a)] and similarly for cost with Ro(7) = 372 v e(sq, ar).

While CRPO’s update relies on a single gradient direction for either improving reward or decreasing
cost (see Algorithm [5) at each step, CPO relies on both pieces of information through an update
function that we denote by CPO_Update (see Algorithm [6). In both cases, our method SHAPO
provides gradient directions for both reward and cost following the same steps, thereby incorporating
pessimism in face of epistemic uncertainty of the actor into these algorithms. Since SauteRL (Sootla
et al.| 2022)) is a state-augmentation technique, it can use any underlying policy gradient algorithm.
We’ve used TRPO (Schulman et al.,[2015])) as the base algorithm for SauteRL and the SHAPO version
can be derived from Algorithm 3] In Algorithm [ we propose a simple approach to apply SHAPO
on the popular PPO algorithm that uses the following clipped objective (for some ¢ > 0):

LPPO(0) = E, g0 Eqmo(als) [min (r(0,a, 5)A%(s,a), clip(r(6,a,s),1 — e, 1+ €)A°(s, (1))} ;

o

where r(0, a, s) = %
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B REINTERPRETING FISHER SAM AS PESSIMISM IN FACE OF EPISTEMIC
UNCERTAINTY

For the sake of completeness, we prove first the following well known result (cf. |[Kakade| (2001));
Schulman et al.| (2015)):

Lemma 4. The solution to the optimization problem
Ur(g,d) = arg max(g, €) (13)
1eTFe<s
. . _ V25 -1 -1 . . .
is given by Up(g,9) = WF g where F~ is the inverse of F, which is assumed to be

symmetric positive definite.

Proof. We introduce a Lagrange multiplier A for the constraint %eTFe < 4 and define the following
Lagrangian:

1
Le,\) = {g,e) — )\(56TF6 —9).
We then find the stationary point £(e, A). First, we have:
0=V.L(e,\) =g— AFe

which leads to € = %F‘l g. Next we have:
1
0=Vi.L(c,N\) = geTFe — 0,

that leads to the constraint ¢’ F'e = §. Substituting e = +F~'g into the constraint, and using the
fact that F~1 is also symmetric, we find:

1

gt F-1lg
oxed 25

Tp—1, _ _
Fg=6 = I= 25

25
= = F g
‘ gorig Y

Recall that Q(6) is assumed to follow a multivariate normal distribution A/ (6o, L F =) where F~*
is the inverse of the Fisher matrix at 6. Recall that Y = g*(8 — 6p) with 6 ~ Q with a-quantiles
denoted by y,,. Finally z,, denotes the a-quantile for A’(0, 1). We now provide the proof of Propo-
sition 2] which is illustrated in Figure

Proposition 5. Let Q(0) = N (6o, L F~1). For every a € (0, %) the solution €, to the optimization
problem

Consequently, as desired:

O

maximize log Q(0y + €)
‘ (14)
subject to g7 e < yq

coincides with the adjustment we make in SHAPO, namely we have epgu, = Up(—g, Spown) when
2

pown = 5.
Proof. Note that the precision matrix of Q(6) is equal to nF" and so
log Q0 +€) = —geTFe -+ constant.
We introduce a Lagrange multiplier \ for the constraint g7 ¢ < v, and define the following La-

grangian:
L(e,\) = —geTFe — Mg e—ya).
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Next, we look for the stationary points of L. First,
0=VL(e,\) = —nFe—\g

which implies e = —2 F'~1g. Next we see that

0=ViL(e,)) = gle=yq.

Therefore,
A T Yo
ya:ﬁg F qg and so )\:W

Consequently, we obtain
Yo

gTF g
Now using the fact that y, = 0z, where o = ﬁ /gT F~1g is the standard deviation of Y = g'e
with e ~ Q(0), we get

F1g.

€ =

Za 1

6:—7}? g.
VngTF-1g

[T
Up(—g,0) = — WF 9

which is equal to € when % = /29, namely when ¢ = %, as desired. O

By Lemmad] we have

We observe that the relation dpgwn = % offers an attractive perspective on the trust constraint for the
inner minimization in SHAPO. This equation expresses the bound in terms of the a-quantile of the
standard normal distribution A/(0, 1) and n, which represents the sample size used for estimating
flp. For a given sample size n, selecting a confidence level—such as the 5th percentile—yields a
specific value for dpown. This approach implies that one can initially set Sl = »2 by determining

Down
an appropriate confidence level « € (0, %) As the actor gains more experience, it would appear

init
recommended to decrease dpown according to dpown = %, reflecting the increasing trust in the
estimates as more data becomes available. This strategy not only enhances the robustness of the

minimization process but also aligns the trust constraint with the actor’s growing experience.

C ANALYSIS OF SHAPO ON A SIMPLE GAUSSIAN POLICY

Our proposed approach to update the current policy mg is guided by the gradient g of Lf;o (0) eval-
uated at 6y + epown, While classical approaches use the gradient g evaluated at ). Here we study
how these two gradients g and g differ in a simplified setting. We observe that the contribution of a
single state-action pair (s, a) towards Ly is given by:

A%(s,a)

L} (0]s,a) =
770( |57a) Wo(a\s) 7T9<a‘8)7
whose gradient with respect to 6 is given by
A%(s,a)
VoL (0]s,a) = ———
oLz, (0]s,a) o(als) omo(als)

Each observed state-action pair therefore contributes towards the gradient, to increase or decrease
the likelihood of action a depending on the sign of A°(s,a) (in way that is inversely proportional to
the likelihood of that action under 7).

Here we study how the two gradients g (standard) and g (SHAPO) differ in a simplified setting.
We assume that the policy at some state is given by a 1D Gaussian policy m(a; u,1) = N(a;u, 1)
parametrized by the mean p, with probability density function given by:

m(a;p) = \/12? exp (—W) :
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The gradient of 7(a; 1) with respect to p is expressed as:
2 r(as) =(a — wyr(a: )
oy (@ 1) =(a = pm(as

Assuming that the current policy is mo(a) = 7(a; 0, 1) specified by pg = 0, we study the discrepancy
between the two gradients g and g with respect to w in terms of an observed action a and an advantage
value A. Our utility function LQO and its gradient can now be expressed as:

A A
I ca. A) = . I ca. A) = .
‘n-o(,uvaa ) ﬂo(a)ﬁ(a“u) v# ™0 (H’vav ) 770(@) vuﬂ(av ,LL)
The gradient g(a, A) at 1o becomes:

g0, A) = VL2, (1]a) mo = ﬁ)( ~ o) (a; o) = Aa

Therefore, in this situation, the standard gradient is simply the product of the advantage A with
the action a. With SHAPO the gradient is instead computed at (g + €pown, Where epown is a
parameter perturbation crafted to minimize L;\ro. Note that with our choice of parametrization
2
KL(7( ;5 0, 1)||7( 5 o + €pown, 1)) = g2, which is half the square of the Euclidean distance
between mean parameters. Therefore, the approach based on the Kullback-Leibler neighborhood
(KL(7( ; o, 1)[|7( 5 o + €powns 1) < Opown) coincides with one using the Euclidean metric on pa-
rameters (€pown < p) and can be expressed in terms of p = v/2dpown. The perturbation is therefore
given by:
g(a, A)

EDown(a7 A) P lg(a, A)|
This adjustment contributes to increase the likelihood of action a when the advantage A is negative
(unsafe action) and to decrease it when A is positive. The adjusted parameter fi(a, A) = po +
€pown (@, A) is given by:

fi(a, A) = — psign(Aa)

So, for example, this adjusted mean is negative when A < 0 and a < 0, thereby leading to a
likelihood 7 (a; fi, 1) larger than 7(a; 0, 1).

Now we compute the gradient g at fi:
30, A) = VL2, (1) o = —2—(a — fm(as i)
7o(a)
As desired, this leads to the following expression for g(a, A)

Ala — p)exp (M# if Aa <0

gla,A) =
(@ 4) A(a+ p)exp GQL;J”’V if Aa > 0.

D IMPLEMENTATION DETAILS & ANALYSIS

D.1 HYPERPARAMETER DETAILS

For the base algorithms we use the optimized hyperparameters available in open-source implemen-
tations like Omnisafe (Ji et al.,[2024)°} SHAPO hyperparameters dpown and peritic are optimized by
performing grid search between range [0.001, 0.00001] for dpown and {0.01,0.05,0.005} for peritic
while keeping the hyperparameters of the base algorithm were kept fixed. Full list of hyperpa-
rameters for each baseline and the corresponding environment have been provided here (https:
//anonymous.4open.science/r/Safe-Policy-Optimization-813E). Most com-
mon choice of SHAPO hyperparameters that gave the best performance across tasks and baselines

*https://github.com/PKU-Alignment/omnisafe
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Figure 9: Hyperparameter Sensitivity: We evaluate the sensitivity of SHAPO to dpown (left) and
Peritic (right). Very small dpewy, effectively disables SHAPO and yields performance similar to the
vanilla baseline, while overly large values destabilize training. Moderate values provide the most
consistent improvements. For p..;;., performance is stable across a broad range, as long as the
value is not excessively large.

was dpown = 0.0001 and pe,s¢5c = 0.01. There is a very clear monotonous hyperparameter sensi-
tivity to SHAPO i.e. if the dpown Value is too small, the policy optimization is unchanged from the
base algorithm thus the performance also resembles the base algorithm’s performance, while if the
Opown 18 too high, the state-distributions of the original policy d™ that generated the data and that of
perturbed policy d” are no longer bounded and thus its no longer possible to provide a tight bound
on the deterioration of the policy required for the inner SHAPO objective, which leads to unsability
and inferior performance.

D.2 HYPERPARAMETER SENSITIVITY Metric Vanilla SHAPO
. Total Runtime (mins) 85 min 100 min
To study the robustness of SHAPO to the choice of Update Time (s) 45 555

hyperparameters, we conduct an analysis (Fig. P)

varying the two key hyperparameters, g0, and

Peritic» While keeping all other settings fixed. This Table 1: Table shows the total runtime of
setup allows us to isolate the effect of each hyperpa-  Vanilla (PIDLag) and SHAPO (PIDLag) on
rameter on safety and efficiency of the resulting pol- PointGoall task as well as time taken for
icy. The results show that very small §4,,, values individual updates. As we can see that the
effectively disable the perturbation step in SHAPO, compute overhead is negligible in compari-
causing the algorithm to behave like the vanilla base- sion to the overall time it takes to train the
line. Conversely, excessively large 640, values lead RL agent and most of the runtime is taken up
to unstable updates and degraded performance. We by collecting data through policy rollouts.
observe a clear band of intermediate values that con-

sistently improves both learning speed and final performance. In contrast, p.,i;;. exhibits much less
sensitivity: performance remains stable across a wide range of values, with degradation only occur-
ring when the regularization becomes extremely large. These trends confirm that SHAPO is robust
to reasonable choices of p.,;1; and requires only mild tuning of d ..., to achieve reliable gains.

D.3 RUNTIME ANALYSIS

Here we analyze the computational overhead introduced by SHAPO during training across different
tasks. In our experiments, overall training time is dominated by environment interaction rather than

19



Under review as a conference paper at ICLR 2026

Fixed a Fixed 6down
10° 1 —— alpha=0.01 051 —— 64own=0.001
—— alpha=0.05 = Bdown=0.0005
10721 — alpha=0.1 041 —— Bgown=1e-05
—— alpha=0.2 —— Ogown=5e-05
10-4A —— alpha=0.3 64own=0.0001
—— alpha=0.4 0.3
§ alpha=0.499
S 107°1 (<]
© 0.2
10—8-
107104 0.1
107121
0.0
0.0 0.2 0.4 0.6 0.8 1.0 10! 103 10° 107
n le7 n

Figure 10: Comparison of pessimism schedules under SHAPO. Left: Fixed a. Holding the pessimism
level o constant causes the corresponding bound 650, = 22/(2n:) to shrink rapidly as n; grows, reducing
the robustness margin over time. Right: Fixed dpown. Keeping dpown constant makes the implied percentile
ay = P(—+/2n40pown) decrease with n;, meaning the agent becomes more risk-averse as training progresses.
This is desirable for safe exploration: early on, when data are limited, pessimism remains low to avoid overly
conservative behavior, while increased pessimism later helps guard against epistemic uncertainty once sufficient
experience has been gathered.

by policy or critic updates. Consequently, the additional TRPO step required for SHAPO’s parameter
adjustment contributes only marginally to the total wall-clock time, which includes data collection,
policy updates, and critic updates. Table [I] reports the runtime for training an RL agent for 10M
timesteps on the PointGoall task averaged across 5 different training runs. As shown, SHAPO
incurs only a small increase in total runtime, since most of the compute is spent on collecting on-
policy rollouts. The per-update computation time for the actor and critics increases by roughly
30 percent, but this overhead is minor compared to the dominant cost of data collection. All the
experiments were performed on CPU with 10 cores and 30 GB of RAM. To increase the efficiency
of data-collection, we use vectorized environments provided with gymnasium (Towers et al.} [2024))

and safety-gymnasium(Ray et al| [2019)), with 5 environments running in parallel.

E PESSIMISM SCHEDULE

In order to compare different ways of controlling the level of pessimism used in SHAPO, we use at
each update step ¢ the number of collected state—action samples n; as a proxy for the ideal sample
size n introduced in Subsection 2] It is important to note that the true value of n—the number of
informative, approximately independent samples governing posterior contraction—is unknown in
practice. The proxy n; may therefore increase much faster than the effective statistical sample size,
which has direct implications for how pessimism evolves during learning.

Increasing n; affects the pessimism level differently depending on whether we fix dpown or fix the
target percentile ce. When dpown is kept constant, Proposition 2] implies that the induced percentile

satisfies
= o, a0 = B(zL),

so that o decreases as n; grows. Thus, the agent becomes increasingly pessimistic, focusing on
more extreme tail events as training progresses. This behavior is desirable for safe exploration: early
in learning, when data are scarce and uncertainty is large, low pessimism avoids overly conservative
behavior that would suppress exploration; as more experience is gathered, increasing pessimism
helps guard against refined estimates of unsafe regions.

By contrast, if we fix a pessimism level a € (0, 1), then the corresponding 8%,
2
zZ
6]L)OWI'1 = <
2'I’Lt
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Figure 11: We compare two pessimism schedules for
SHAPO by using a fixed dpown throughout the train-

2
ing or calculating dpown USIing dpown = ;—g for a fixed
a, where n is assumed to be all the state-action pairs

Figure 12: Both fixed dpown and fixed « schedules
lead to significant improvement in performance over
the vanilla baseline on PointGoall task. Although the
choice of « is not straightforward as both very low
(o = 0.01) and high alphas (o« = 0.4) give good per-
formance.

experienced by the agent. Both schedules expand the
Pareto frontier of the Vanilla (PIDLag) baseline.

decays at rate 1/n;. Because n;, may grow much faster than the true effective sample size, this
schedule can drive 8, to zero prematurely, effectively nullifying any pessimism in the later stages
of learning. This mirrors the Bernstein—von Mises posterior contraction, but may not model appro-
priately the epistemic uncertainty state of an actor trained in a reinforcement learning setting, where
epistemic uncertainty persists due to partial observability, non-stationarity, or limited coverage of the
state space. Fig. [I0]illustrates this phenomenon: the fixed-c schedule quickly collapses the dpown as
n; grows, whereas fixing dpgy, maintains a nontrivial degree of pessimism throughout training.

Fig. [[T] and [T2] compare these two approaches to scheduling pessimism. Both strategies—fixing
pown O fixing a—enable SHAPO to outperform the vanilla baseline (PIDLag in this case). Fig. [[]
shows that both pessimism schedules expand the Pareto frontier of the vanilla algorithm enhancing
safety-efficiency tradeoff across different \;,,;; values. Fig.compares the performance of SHAPO
compared to the vanilla baseline (in grey) for different choices of dpown Or cv. We can see that there
are many choices of fixed a’s and dpoyy,’s that lead to improvement over the vanilla PIDLag, but the
choice of « that leads to best performance is not that obvious as it impacts the exploration of the
algorithm.

Since the effective sample size n cannot be reliably estimated in continuous-control reinforcement
learning—where data are temporally correlated and only a fraction of collected samples contribute
independent information—fixing dpow, provides a practical and robust alternative. Treating dpown
as a tunable hyperparameter allows practitioners to directly control the desired safety—efficiency
tradeoff without relying on uncertain estimates of 7. This makes the fixed-dpown Strategy both simple
and effective, offering a stable mechanism for regulating pessimism throughout training.

F ADDITIONAL RESULTS

Here we study SHAPO in the context of existing approaches that induce pessimism in the actor by
adopting conservative estimates of the cost value function—either by inflating cost predictions or by
emphasizing high-cost outcomes.

Worst-case Policy Gradients (WCPG) approximates a distribution over the cost
value and computes policy gradients using the Conditional Value-at-Risk (CVaR) at level «, thereby

training the agent on the upper tail of the cost distribution. This explicitly biases the actor toward
avoiding high-cost states. We’ve implemented an on-policy version of WCPG algorithm with the
TRPO based actor and IQN [Dabney et al| (2018) critic. Ensemble Critic methods instead construct
an empirical distribution of the cost-value function using multiple critic networks. The resulting
pessimistic estimate takes the form A¥(s,a) + 8 A% (s, a), where A* is the mean cost-advantage
and AZ captures epistemic uncertainty across ensemble members. Larger 3 values thus impose
stronger pessimism by amplifying uncertainty-driven penalties.
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Figure 13: SHAPO improves the safety—efficiency tradeoff compared to value-based pessimism
methods across a range of hyperparameters. For both WCPG (varying «) and ensemble critics
(varying [3), increasing pessimism causes these baselines to become overly conservative, limiting
exploration. In contrast, SHAPO regulates pessimism directly at the actor level, yielding safer and
more effective exploration.

Our method SHAPO, which only intervenes on the actor’s update, is compatible with these two
approaches to pessimism in the face of uncertainty that focus on the critic. Fig. [3] shows that
across a range of CVaR « values for WCPG (Tang et al [2019) and 3 values for the ensemble
critic, SHAPO consistently achieves a superior safety—efficiency tradeoff. This demonstrates that
explicitly regulating pessimism through our perturbation mechanism provides a more stable and
principled way to guide safe exploration compared to methods that rely solely on conservative or
uncertainty-inflated value estimates.

In particular, both WCPG [2019) and ensemble-based critics tend to produce increas-
ingly conservative policies as « or  grows, since they amplify either the upper tail of the cost
distribution or the critic’s epistemic uncertainty. While such mechanisms do encourage caution,
they can also lead to excessive pessimism that suppresses useful exploration. The results empha-
size that uncertainty at the actor level cannot be fully or reliably inferred from uncertainty in the
value function alone. By directly shaping the actor’s update through SHAPO’s perturbation step,
we obtain a more balanced form of pessimism—one that maintains safety without unduly restricting
exploration during early learning.

Originally, WCPG (2019) was proposed for off-policy RL and we have adapted it for
on-policy RL with distributional critic implemented using IQN (Dabney et al.} 2018]). We have not
spent a lot of time optimizing the hyperparameters and we do not claim that the results are optimal.
Also we note that the environments used in the paper don’t have any aleatoric uncertainty (in terms
of stochasticity in the transition function), which distributional critics are best known to model.

G SHAPO FOR UNCONSTRAINED RL

SHAPO is a general mechanism that can be incorporated into any on-policy reinforcement learning
algorithm, and its utility extends beyond explicitly constrained RL settings. To illustrate this ver-
satility, we evaluate SHAPO in three standard MuJoCo (Todorov et al] [2012) continuous-control
environments: Ant-v4, Walker2d-v4, and HalfCheetah-v4. The first two environments (Ant and
Walker2d) include termination conditions in which the episode ends immediately if the agent falls.
Although they do not provide an explicit cost signal or negative penalty for falling, this termination
logic implicitly induces a lower tail of poor outcomes: each fall truncates the episode, prevents fur-
ther reward collection, and therefore constitutes an undesirable event in the return distribution. In
contrast, HalfCheetah has no such termination or failure mode—the episode continues regardless
of how the agent moves—yielding a much smoother return distribution without a pronounced lower
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Figure 14: SHAPO on Standard RL: Columns correspond to Ant-v4, Walker2d-v4, and HalfCheetah-
v4. Top row: episodic return; middle row: rate of termination; bottom row: total terminations.
SHAPO yields substantial gains on Ant-v4 and Walker2d-v4, where falling triggers early episode
termination and creates a pronounced lower tail in the return distribution. In HalfCheetah-v4, which
lacks termination or failure modes, the return distribution has no meaningful lower tail, and SHAPO
consequently provides limited improvement.

tail. We compare PPO (Schulman et al} 2017) to its SHAPO-augmented variant (SHAPO-PPO),
implemented as described in Algorithm 4] From this perspective, SHAPO’s role becomes clear: it
modulates the actor’s sensitivity to tail events in the loss landscape, whether these arise from explicit
constraints or from inherent structural properties of the environment.

Fig. [[4] illustrates how the impact of SHAPO depends on the presence or absence of tail events
in the environment. In Ant and Walker2d, SHAPO consistently improves the sample efficiency of
the PPO baseline by reducing premature terminations; this allows agents to remain in the episode
longer, resulting in fewer resets and more reward collected per rollout. In HalfCheetah, however,
where no catastrophic failure or termination mode exists, the return distribution lacks a meaningful
lower tail, and accordingly, SHAPO offers limited additional benefit. These results underscore that
while SHAPO provides tangible advantages in settings with significant tail risk, its effect is naturally
less pronounced in environments where undesirable events do not produce clear tail behavior in the
return landscape.
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H LLM USAGE

ChatGPT (Achiam et al.}[2023)) was used to polish writing and also as a tool to correct grammar and
spelling mistakes.
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Figure 17: Ant-v4
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Figure 18: Walker2d-v4
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