

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SHAPO: SHARPNESS-AWARE POLICY OPTIMIZATION FOR SAFE EXPLORATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

Safe exploration is a prerequisite for deploying reinforcement learning (RL) agents in safety-critical domains. In this paper, we approach safe exploration through the lens of epistemic uncertainty, where the actor’s sensitivity to parameter perturbations serves as a practical proxy for regions of high uncertainty. We propose *Sharpness-Aware Policy Optimization (SHAPO)*, a sharpness-aware policy update rule that evaluates gradients at perturbed parameters, making policy updates pessimistic with respect to the actor’s epistemic uncertainty. Analytically we show that this adjustment implicitly reweights policy gradients, amplifying the influence of rare unsafe actions while tempering contributions from already safe ones, thereby biasing learning toward conservative behavior in under-explored regions. Across several continuous-control tasks, our method consistently improves both safety and task performance over existing baselines, significantly expanding their Pareto frontiers.

1 INTRODUCTION

Deploying reinforcement learning (RL) agents in safety-critical environments poses unique challenges due to the need for *safe exploration*: the process by which an agent collects informative experience while avoiding catastrophic failures (Bharadhwaj et al., 2020; Achiam et al., 2017; Sootla et al., 2022). A fundamental difficulty arises during early training, when the agent inevitably visits states about which it has limited knowledge, i.e., regions of *high epistemic uncertainty*. In these regions, the predictions of learned policies and value functions are unreliable, and exploratory actions may cause unsafe or irreversible outcomes.

In practice, safe exploration depends on the policies an algorithm visits while learning the task, so the choice of update rule matters: each gradient step should hedge against unreliable estimates in parts of the state–action space visited under the current policy. This connects safe exploration to the agent’s epistemic uncertainty—uncertainty about model parameters that is largest where on-policy data are scarce—suggesting that policy updates themselves should be pessimistic with respect to that epistemic uncertainty.

Prior work has largely handled uncertainty on the critic side (ensembles (Lakshminarayanan et al., 2017; Osband et al., 2016; Bykovets et al., 2022), dropout (Gal & Ghahramani, 2016), or distributional methods (Bellemare et al., 2017; Luis et al., 2024) combined with risk measures), which helps quantify variability in returns but does not expose a practical, optimization-ready notion of actor’s epistemic uncertainty. Maintaining an explicit posterior over policy parameters is generally infeasible for deep on-policy RL, making actor-side risk aversion difficult in practice. As a result, while critic-side approaches are common, we observe a gap in methods for policy updates that carefully account for the actor’s parameter uncertainty.

We address this gap by introducing a novel approach to policy update guided by gradients evaluated at an adjusted parameter: *Sharpness Aware Policy Optimization (SHAPO)*. Our method builds upon sharpness-aware optimization (Foret et al., 2020; Kim et al., 2022b), which incorporates the sharpness of the loss landscape to enhance generalization. We reinterpret this adjustment through the perspective of epistemic uncertainty, demonstrating that it induces a systematically pessimistic bias with respect to the actor’s performance. In a simplified analytical setting, we show that *SHAPO* modifies the treatment of low-probability actions: those deemed unsafe are assigned greater weight

in the policy update, whereas those identified as safe are downweighted. Empirically, *SHAPo* expands the safety–efficiency Pareto frontier across a range of on-policy Safe RL baselines in the Safety-Gym (Ray et al., 2019) and MuJoCo (Todorov et al., 2012) environments, while simultaneously reducing cumulative failures and mitigating heavy-tailed episodic cost distributions. Ablation studies further indicate that perturbations defined in the Fisher metric are superior to their Euclidean counterparts, and that applying sharpness-aware optimization to the actor is more consequential for safe exploration than its application to the critic.

2 BACKGROUND

2.1 CONSTRAINED MARKOV DECISION PROCESSES

A *Constrained Markov Decision Process* (CMDP) (Altman, 2021) is a tuple

$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, T, r, c, \gamma, \mu_0),$$

with state space \mathcal{S} , action space \mathcal{A} , transition kernel T , reward function $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, nonnegative cost function $c : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}_+$, discount factor $\gamma \in [0, 1)$, and initial state distribution μ_0 . A stationary policy π induces discounted returns

$$J_r(\pi) = \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right], \quad J_c(\pi) = \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t c(s_t, a_t) \right],$$

and the objective is

$$\pi^* = \underset{\pi \in \Pi_C}{\operatorname{argmax}} J_r(\pi), \quad \Pi_C = \{ \pi \in \Pi : J_c(\pi) \leq \beta \}. \quad (1)$$

for a constraint threshold $\beta \geq 0$.

A common approach consists in introducing a Lagrangian objective,

$$J_\lambda(\pi_\theta) = J_r(\pi_\theta) - \lambda(J_c(\pi_\theta) - \beta), \quad (2)$$

with multiplier $\lambda \geq 0$ adapted to enforce the constraint.

We write $Q_\lambda^\pi(s, a) = E_{\tau \sim \pi}[R_\lambda(\tau) | s_0 = s, a_0 = a]$ for the action-value function associated with π , where $R_\lambda(\tau) = \sum_{t=0}^{\infty} \gamma^t (r(s_t, a_t) - \lambda c(s_t, a_t))$. Similarly, we write $V_\lambda^\pi(s) = E_{a \sim \pi(\cdot | s)}[Q_\lambda^\pi(s, a)]$ for the value function. Finally, for a policy π , we write $d^\pi(s)$ for the discounted state distribution given by $d^\pi(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t Pr(s = s_t | \pi)$.

2.2 POLICY OPTIMIZATION

A standard way to learn policies that maximize expected return consists of iteratively improving a policy until convergence to optimum. We provide here some notations and results from Kakade & Langford (2002); Schulman et al. (2015). Given a current policy π_0 we seek to find a policy π that improves on π_0 . The improvement of a policy π over π_0 can be expressed as:

$$J_\lambda(\pi) - J_\lambda(\pi_0) = \mathbb{E}_{s \sim d^\pi} \mathbb{E}_{a \sim \pi(a | s)} A_\lambda^0(s, a)$$

where $A_\lambda^0(s, a) = Q_\lambda^{\pi_0}(s, a) - V_\lambda^{\pi_0}(s)$ quantifies the advantage of taking action a compared to the average action under policy π_0 .

This improvement is an expectation over the state distribution of the unknown policy π , so, in practice, it is replaced by the the following quantity that can be estimated using only experience collected with the current π_0 :

$$L_{\pi_0}^\lambda(\pi) = \mathbb{E}_{s \sim d^{\pi_0}} \mathbb{E}_{a \sim \pi_0(a | s)} \frac{A_\lambda^0(s, a)}{\pi_0(a | s)} \pi(a | s). \quad (3)$$

However in order for a positive $L_{\pi_0}^\lambda(\pi)$ to effectively represent an improvement, we need to ensure that π does not differ too much from π_0 . As a consequence, to generate an updated policy π , the natural gradient is found as the solution to the following optimization problem:

$$\begin{aligned} & \underset{\pi}{\operatorname{maximize}} L_{\pi_0}^\lambda(\pi) \\ & \text{subject to } D_{\text{KL}}^{\max}(\pi, \pi_0) \leq \delta \end{aligned} \quad (4)$$

108 where $D_{KL}^{\max}(\pi, \pi_0) = \max_s \text{KL}(\pi(\cdot|s) \parallel \pi_0(\cdot|s))$ is the maximum of Kullback-Leibler divergence
 109 over states and $\delta > 0$ specifies the trust region constraint.
 110

111 We recall the following result adapted from (Schulman et al., 2015, Theorem 1) that bounds the
 112 improvement (or deterioration) of a policy π over the current policy π_0 in terms of $L_{\pi_0}^{\lambda}(\pi)$:
 113

Theorem 1. For $\alpha = D_{KL}^{\max}(\pi, \pi_0)$, we have

$$115 \quad L_{\pi_0}^{\lambda}(\pi) - B_{\alpha} \leq J_{\lambda}(\pi) - J_{\lambda}(\pi_0) \leq L_{\pi_0}^{\lambda}(\pi) + B_{\alpha} \quad \text{with} \quad B_{\alpha} = -\alpha \frac{4\gamma}{(1-\gamma)^2} \max_{s,a} |A_{\lambda}^0(s, a)|.$$

117 Intuitively, this result indicates that the greater the distance of π from π_0 (in the sense of D_{KL}^{\max}), the
 118 more $L_{\pi_0}^{\lambda}(\pi)$ must deviate from $0 = L_{\pi_0}^{\lambda}(\pi_0)$ ¹ to ensure a true improvement (or deterioration).
 119

120 We now consider a parametrized policy π_{θ} , let $\pi_0 = \pi_{\theta_0}$ and overload our previous
 121 notation by using θ instead of π_{θ} when there is no risk of confusion. Since the maximum
 122 in $D_{KL}^{\max}(\pi_{\theta}, \pi_0)$ is intractable, the expectation $\overline{D}_{KL}^{\pi_0}(\pi_{\theta}, \pi_0) = \mathbb{E}_{s \sim d^{\pi_0}} \text{KL}(\pi_{\theta}(\cdot|s) \parallel \pi_{\theta_0}(\cdot|s))$ is
 123 used in practice. The second-order approximation of this function of θ around θ_0 is given by
 124 $\overline{D}_{KL}^{\pi_0}(\pi_{\theta+\epsilon}, \pi_0) \approx \frac{1}{2} \epsilon^T \mathbf{F}_{\theta_0} \epsilon$ where \mathbf{F}_{θ_0} denotes the Fisher Information Matrix defined by $\mathbf{F}_{\theta_0} =$
 125 $\mathbb{E}_{s \sim d^{\pi_0}} \mathbb{E}_{a \sim \pi_0(a|s)} (\nabla_{\theta} \log \pi_{\theta}(a|s)|_{\theta=\theta_0}) (\nabla_{\theta} \log \pi_{\theta}(a|s)|_{\theta=\theta_0})^T$. Now, using a linear approxima-
 126 tion $L_{\pi_0}^{\lambda}(\theta) = g^T \theta$ of the loss function around θ_0 leads to the following optimization problem:
 127

$$128 \quad U_{\mathbf{F}_{\theta_0}}(g, \delta) = \arg \max_{\frac{1}{2} \epsilon^T \mathbf{F}_{\theta_0} \epsilon \leq \delta} \langle g, \epsilon \rangle. \quad (5)$$

130 TRPO (Schulman et al., 2015) uses $g = \nabla_{\theta} L_{\pi_0}^{\lambda}(\theta)|_{\theta=\theta_0}$ for the parameter update. We observe that
 131 relying on the gradient g of the loss $L_{\pi_0}^{\lambda}$ may result in an overconfident update, as it does not take
 132 into account the epistemic uncertainty associated with π_0 .
 133

134 2.3 SHARPNESS-AWARE OPTIMIZATION

136 Sharpness-Aware Minimization (SAM) (Foret et al., 2020) is a general framework that aims to bias
 137 solutions towards flat regions of the loss or utility landscape. In general terms, for a utility function
 138 $\mathcal{L}(\pi)$ that we seek to maximize for $\pi \in \Pi$, SAM framework proposes the following modified
 139 optimization problem:
 140

$$\max_{\pi \in \Pi} \min_{\tilde{\pi} \in N(\pi)} \mathcal{L}(\tilde{\pi}),$$

141 where $N(\pi)$ is some choice of neighborhood of π . Given a parametrization π_{θ} with $\theta \in \Theta$, Eu-
 142 clidean neighborhoods in parameter space represent a simple choice that was studied by Foret et al.
 143 (2020) and has also applied to RL (Lee & Yoon, 2025). Other neighborhoods based on functional
 144 similarity have also been proposed in the supervised learning setting. Fisher-SAM (Kim et al.,
 145 2022b) proposes to define the neighborhood of a predictive distribution $\pi : x \mapsto \pi(\cdot|x)$ in terms
 146 of expected Kullback-Leibler divergence $N_{\delta}^{KL}(\pi) = \{\tilde{\pi} : \mathbb{E}_x [\text{KL}(\tilde{\pi}(\cdot|x) \parallel \pi(\cdot|x))] \leq \delta\}$ for some
 147 $\delta \geq 0$. In practice, maximization of this worst-case value in a neighborhood is achieved by suc-
 148 cessive ascent on parameter θ following the gradient of the loss at $\mathcal{L}(\theta + \epsilon)$ where ϵ is such that
 149 $\pi_{\theta+\epsilon} \approx \arg \min_{\tilde{\pi} \in N(\pi)} \mathcal{L}(\tilde{\pi})$ (see Alg. 2 in appendix). In the next section, we adapt the sharpness-
 150 aware optimization approach for policy optimization. Furthermore, we show that this method is
 151 equivalent to optimizing a risk-aware objective in light of the epistemic uncertainty surrounding the
 152 current policy.
 153

154 3 SAFE EXPLORATION

156 On-policy deep RL algorithms for CMDPs begin with a random policy π_0 and iteratively update to
 157 $\pi_1, \pi_2, \dots, \pi_{\text{last}}$. The objective is to maximize $J_r(\pi_{\text{last}})$ subject to $J_c(\pi_{\text{last}}) \leq \beta$. However, during
 158 this process the agent incurs a cumulative training cost proportional to $\sum_{i=1}^{\text{last}} J_c(\pi_i)$. The *primary*
 159 *objective* of safe exploration is therefore to minimize this cumulative cost while still learning a policy
 160 that yields high expected reward.
 161

¹Note that $L_{\pi_0}^{\lambda}(\pi_0) = \mathbb{E}_{s \sim d^{\pi_0}} \mathbb{E}_{a \sim \pi_0(\cdot|s)} A_{\lambda}^0(s, a) = 0$ since $A_{\lambda}^0(s, a) = Q_{\lambda}^0(s, a) - \mathbb{E}_{a \sim \pi_0(\cdot|s)} [Q_{\lambda}^0(s, a)]$

162 **Algorithm 1** $SHAPO(\theta, L, F, \delta_{\text{Down}})$
 163 **Require:** parameter θ , objective function L , Fisher matrix F , constraint δ_{Down}
 164 1: Compute the gradient at θ : $g \leftarrow \nabla_{\theta} L(\theta)|_{\theta}$
 165 2: Compute the perturbation: $\epsilon_{\text{Down}} = U_F(-g, \delta_{\text{Down}})$
 166 3: Compute the gradient at perturbed parameter: $\tilde{g} \leftarrow \nabla_{\theta} L(\theta)|_{\theta+\epsilon_{\text{Down}}}$
 167 4: Return $SHAPO$ gradient \tilde{g}

170 A complementary objective is to avoid policies π_i that, even if low-cost in expectation, occasionally produce trajectories with very high cost. Writing the discounted trajectory cost as $J_c(\tau) = \sum_{t=0}^{\infty} \gamma^t c(s_t, a_t)$, the goal is to control the tail of the distribution of $J_c(\tau)$, thereby reducing the frequency of rare but catastrophic failures.

174 We observe that these two objectives extend beyond merely finding a solution to the CMDP. They
 175 emphasize not only the importance of maximizing expected rewards while adhering to cost constraints but also the critical need for the policies explored during training to avoid rare high-cost
 176 outcomes. In practice, selecting different values of λ in the equation 2 results in a trade-off between expected return and total cost. The focus of this work is on safe exploration, which involves
 177 advancing this Pareto front.

180 Policy updates are crucial to the effectiveness of these methods. Given the inherent uncertainties
 181 associated with these updates, adopting a pessimistic approach—especially in the context of the
 182 agent’s epistemic uncertainty—emerges as a logical strategy for achieving safe exploration, which
 183 we implement in this work. Specifically, we believe that a safe exploration framework must effectively
 184 address rare and potentially unsafe events during the policy update process. By prioritizing
 185 this consideration, we aim to enhance both the reliability and safety of the learning process and its
 186 outcomes.

187
 188 **4 SHARPNESS AWARE POLICY OPTIMIZATION ($SHAPO$)**
 189

190 In the context of policy optimization, SAM framework (Foret et al., 2020) suggests to look for a
 191 policy π that maximizes

$$\min_{\tilde{\pi} \in N(\pi)} J_{\lambda}(\tilde{\pi}) \quad (6)$$

194 instead of just $J_{\lambda}(\pi)$. This shift in objectives can be intuitively justified at high level as follows.
 195 We may prefer a policy π_1 over π_2 even if $J_{\lambda}(\pi_1) < J_{\lambda}(\pi_2)$ if π_1 achieves a higher value for the
 196 worst-case objective 6. This preference may arise from the understanding that the expected return of
 197 policies within the neighborhood $N(\pi_1)$ can provide a more accurate estimate of the actual performance
 198 of π_1 . This is particularly relevant because our learning problem may not fully encapsulate
 199 real-world complexities, such as environmental dynamics or the real-world implementation of our
 200 policy. By focusing on the worst-case expected return of nearby policies, we aim to better align our
 201 estimates with the true performance outcomes in realistic settings.

202 **4.1 THE POLICY UPDATE**
 203

204 As outlined in the background section, our goal is to learn a policy π that maximizes $J_{\lambda}(\pi)$ by
 205 gradually updating the current policy π_{θ_0} . This is achieved by solving the optimization problem 5
 206 under a trust region constraint δ_{Up} and using the gradient $g = \nabla_{\theta} L_{\pi_0}^{\lambda}(\theta)|_{\theta=\theta_0}$. We present here our
 207 proposed approach, which differs primarily in that it substitutes the direction g with the gradient \tilde{g}
 208 of $L_{\pi_0}^{\lambda}$ computed at $\theta_0 + \epsilon_{\text{Down}}$ where ϵ_{Down} is a carefully chosen adjustment.

209 Given the current policy π_0 , we now outline our proposed method for updating it within the frame-
 210 work of SAM. We have at our disposal the utility function $L_{\pi_0}^{\lambda}(\theta)$ which estimates the relative
 211 improvement (or deterioration) of nearby policies π_{θ} . Our first step therefore consists of solving the
 212 minimization problem

$$\min_{\tilde{\pi} \in N(\pi_0)} L_{\pi_0}^{\lambda}(\tilde{\pi}). \quad (7)$$

213 We note that choosing an isotropic Euclidean neighborhood in parameter space for $N(\pi_0)$ presents
 214 certain challenges. A small distance in parameter space ($\|\theta - \theta_0\|_2$ small) does not necessarily

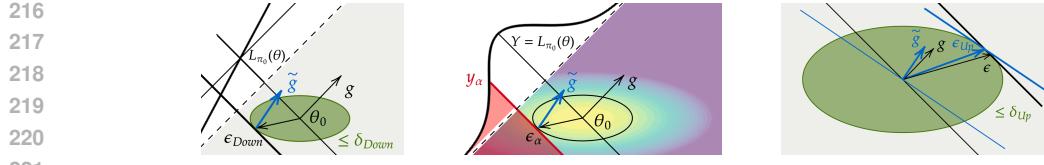


Figure 1: SHAPO directs the policy update using the gradient \tilde{g} at an adjusted parameter (Right). Two perspectives on this adjustment are illustrated: (Left) The adjustment aims to minimize the expected return while staying within the trust region defined by δ_{Down} . (Middle) Parameter uncertainty translates to uncertainty in the expected return, resulting in a maximum likelihood adjustment that remains below the α -quantile y_α .

guarantee that π_θ is similar to π_0 in terms of D_{KL}^{\max} . Consequently, when $L_{\pi_0}^\lambda(\theta) < 0$, it does not ensure that $J_\lambda(\pi_\theta) < J_\lambda(\pi_0)$. In contrast, while selecting a neighborhood of distributionally similar policies better reflects the underlying geometry of the statistical manifold of the parameters (Kim et al., 2022b), it also contributes to ensure the validity of utility function $L_{\pi_0}^\lambda$ in virtue of Theorem 1.

Consequently, to identify a policy $\tilde{\pi}$ that is distributionally close to π_0 but performs worse than π_0 , we propose to formulate the inner minimization 7 in a manner analogous to the optimization problem 4, namely as

$$\begin{aligned} & \underset{\tilde{\pi}}{\text{minimize}} \quad L_{\pi_0}^\lambda(\tilde{\pi}) \\ & \text{subject to } D_{\text{KL}}^{\max}(\tilde{\pi}, \pi_0) \leq \delta_{\text{Down}} \end{aligned} \quad (8)$$

for some trust region constraint $\delta_{\text{Down}} \geq 0$. We therefore estimate the solution to the inner minimization with the policy $\tilde{\pi} = \pi_{\theta_0 + \epsilon_{\text{Down}}}$ where the perturbation $\epsilon_{\text{Down}} = U_{\mathbf{F}_{\theta_0}}(-\nabla_\theta L_{\pi_0}^\lambda(\theta)|_{\theta=\theta_0}, \delta_{\text{Down}})$ is the solution to the optimization problem 5 where \mathbf{F}_{θ_0} is the Fisher information matrix of our policy parametrization evaluated at θ_0 .

Next we proceed to update π_0 based on the direction provided by the gradient of $L_{\pi_0}^\lambda$ at our found perturbed parameter $\theta_0 + \epsilon_{\text{Down}}$. This step involves solving the maximization problem 5, where the gradient $\nabla_\theta L_{\pi_0}^\lambda(\theta)$ is now evaluated at $\theta_0 + \epsilon_{\text{Down}}$. This results in a parameter update given by $\epsilon_{\text{Up}} = U_{\mathbf{F}_{\theta_0}}(\nabla_\theta L_{\pi_0}^\lambda(\theta)|_{\theta=\theta_0 + \epsilon_{\text{Down}}}, \delta_{\text{Up}})$ where $\delta_{\text{Up}} \geq 0$ is the trust region constraint. The pseudo-code for computing the SHAPO gradients is given in Algorithm 1.

4.2 REINTERPRETING FISHER SAM AS PESSIMISM IN FACE OF EPISTEMIC UNCERTAINTY

In effect, our proposed approach differs from classical local optimization techniques in that the update of the current parameter θ_0 is guided by the gradient evaluated at $\theta_0 + \epsilon_{\text{Down}}$ instead of θ_0 . We now provide a different perspective on the perturbation ϵ_{Down} , arising from a pessimistic viewpoint in the context of epistemic uncertainty.

We propose to model the uncertainty about the parameter θ_0 , which defines the current policy $\pi_0 = \pi_{\theta_0}$, using a multivariate normal distribution $Q(\theta) = \mathcal{N}(\theta_0, \Sigma)$ with mean θ_0 and covariance matrix $\Sigma = \frac{1}{n} \mathbf{F}^{-1}$ where \mathbf{F}^{-1} denotes the inverse of the Fisher Information Matrix $\mathbf{F} = \mathbf{F}_{\theta_0}$ evaluated at θ_0 . The choice to model epistemic uncertainty this way is motivated by the asymptotic properties established by the Bernstein-von Mises Theorem (van der Vaart, 1998) where n represents the number of independent samples used to estimate the parameters of the model. However, it should be noted that in the case of RL this is not simple to compute due to the correlation of samples, as we will elaborate on in Section 4.4. This approach captures the intuitive notion that as we gather more data, our uncertainty about the parameter decreases, and the distribution of our estimates becomes more concentrated around the true value. This choice not only aligns with theoretical foundations but also offers a practical starting point for exploring the implications of epistemic uncertainty in the context of policy optimization.

We observe that this uncertainty about the current parameter θ_0 translates into an uncertainty about the expected return $J_\lambda(\pi_\theta)$ of our current policy, which we can estimate as

$$J_\lambda(\pi_\theta) \approx J_\lambda(\pi_{\theta_0}) + L_{\pi_0}^\lambda(\theta)$$

when π_θ is close to π_0 in distribution. Writing $g = \nabla_\theta L_{\pi_0}^\lambda(\theta)|_{\theta=\theta_0}$ and assuming a first-order approximation $L_{\pi_0}^\lambda(\theta + \epsilon) = \epsilon^T g$ around θ_0 , the deviation of expected return is given

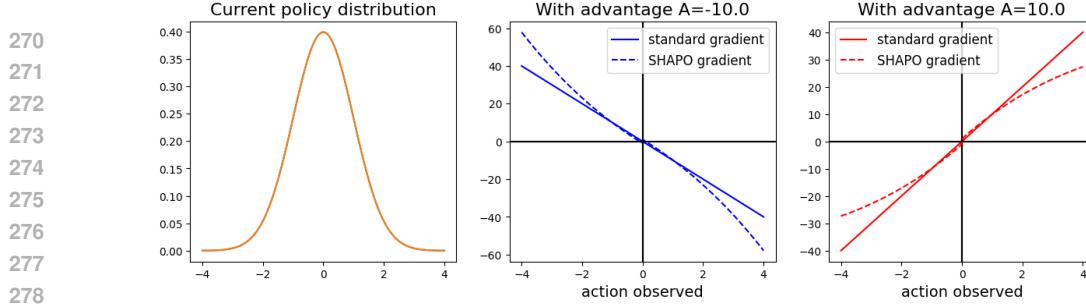


Figure 2: 1D Gaussian policy: The gradient utilized in SHAPo exhibits a larger amplitude for rare and unsafe actions, while it is comparatively smaller for rare safe actions, compared to the classical gradient.

by $Y = L_{\pi_0}^\lambda(\theta), \theta \sim \mathcal{N}(\theta_0, \frac{1}{n}\mathbf{F}^{-1})$ that follows a normal distribution $\mathcal{N}(0, \sigma^2)$ with variance $\sigma^2 = \frac{1}{n}g^T\mathbf{F}^{-1}g$.

While $L_{\pi_0}^\lambda(\theta_0) = 0$ represents the mean of this distribution, parameters for which $L_{\pi_0}^\lambda(\theta)$ falls at, for instance, the 5th percentile of the distribution Y provide a more nuanced perspective on the current expected return. This highlights that, although the mean may indicate a certain level of performance, there are credible scenarios in which performance could be significantly lower. Therefore, adopting a pessimistic standpoint, it is justified to prioritize improving a more conservative expected return when updating θ_0 . We demonstrate that evaluating the gradient at $\theta_0 + \epsilon_{\text{Down}}$ to inform the update of θ_0 can be interpreted as optimizing an estimate of the expected return that is pessimistic in face of the parameter uncertainty.

For $\alpha \in (0, \frac{1}{2})$, let y_α denote the α -quantile of the random variable Y , and z_α denote the α -quantile of the normal distribution $\mathcal{N}(0, 1)$. Note that under our first-order approximation of $L_{\pi_0}^\lambda$ the condition $L_{\pi_0}^\lambda(\theta_0 + \epsilon) \leq y_\alpha$ corresponds to $\epsilon^T g \leq y_\alpha$. The following proposition links this epistemic uncertainty perspective with the parameter perturbation described in the previous section. It is illustrated in Fig. 1.

Proposition 2. *Let $Q(\theta) = \mathcal{N}(\theta_0, \frac{1}{n}\mathbf{F}^{-1})$. For every $\alpha \in (0, \frac{1}{2})$, the solution ϵ_α to the optimization problem*

$$\begin{aligned} & \underset{\epsilon}{\text{maximize}} \log Q(\theta_0 + \epsilon) \\ & \text{subject to } \epsilon^T g \leq y_\alpha \end{aligned} \tag{9}$$

coincides with the adjustment we make in SHAPo for the trust constraint $\delta_{\text{Down}} = \frac{z_\alpha^2}{2n}$, namely $\epsilon_\alpha = U_{\mathbf{F}}(-g, \frac{z_\alpha^2}{2n})$.

Intuitively, this result states that the adjusted parameter $\theta_0 + \epsilon_{\text{Down}}$ considered in SHAPo can be viewed as the most likely parameter under the parameter distribution $Q(\theta)$ that falls in the lower tail at the α -quantile. Our approach SHAPo, which updates the current policy π_0 by using the gradient \tilde{g} calculated at this adjusted parameter, can therefore be understood as promoting an enhancement of π_0 in a worst-case or pessimistic scenario, considering the existing epistemic uncertainty surrounding π_0 . **By applying SHAPo with a $\delta_{\text{Down}} > 0$ to update the actor, we are therefore effectively enforcing pessimism in face of epistemic uncertainty about our current policy.**

Furthermore, by establishing the relationship $\delta_{\text{Down}} = \frac{z_\alpha^2}{2n}$, this proposition allows us to interpret the constraint δ_{Down} as a measure of confidence in the expected return of the current policy in the presence of epistemic uncertainty. More details and proof in Appendix B.

4.3 ANALYSIS OF SHAPo ON A SIMPLE GAUSSIAN POLICY

Our proposed approach to update the current policy π_0 is guided by the gradient \tilde{g} of $L_{\pi_0}^\lambda(\theta)$ evaluated at $\theta_0 + \epsilon_{\text{Down}}$, while classical approaches use the gradient g evaluated at θ_0 . Here we study how these two gradients g and \tilde{g} differ in a simplified setting.

We assume that the policy at some state is given by a 1D Gaussian policy $\pi(a; \mu, 1) = \mathcal{N}(a; \mu, 1)$ parametrized by the mean μ and that the current policy is $\pi_0(a) = \pi(a; 0, 1)$ specified by $\mu_0 = 0$.

We propose to study the discrepancy between the two gradients g and \tilde{g} with respect to μ in terms of an observed action a and an advantage value A under a constraint δ_{Down} . Our utility function $L_{\pi_0}^\lambda$ and its gradient can now be expressed as:

$$L(\mu; a, A) = \frac{A}{\pi_0(a)} \pi(a; \mu) \quad \nabla_\mu L(\mu; a, A) = \frac{A}{\pi_0(a)} \nabla_\mu \pi(a; \mu)$$

The standard gradient $g(a, A) = \nabla_\mu L(\mu; a, A)|_{\mu=0}$ and the gradient $\tilde{g}(a, A) = \nabla_\mu L(\mu; a, A)|_{\mu=\tilde{\mu}}$ at $\tilde{\mu} = \mu_0 + \epsilon_{\text{Down}}$ are as given in the following Proposition (See Appendix C for details).

Proposition 3. *Under the 1D Gaussian model, we have*

$$g(a, A) = aA \quad \text{and} \quad \tilde{g}(a, A) = A\Delta \exp\left(\frac{a^2 - \Delta^2}{2}\right) \quad \text{with} \quad \Delta = \begin{cases} a - \rho & \text{if } Aa < 0 \\ a + \rho & \text{otherwise,} \end{cases}$$

where $\rho = \sqrt{2\delta_{\text{Down}}}$.

Figure 2, show plots of the two gradients as functions of the action observed a for two values of advantage ($A = -10$ and $A = 10$) with $\rho = 0.1$ (i.e. $\delta_{\text{Down}} = 0.005$).

We see that *SHAPO* gradients differ from standard gradients for rare actions $|a| > 1$. When the advantage is negative, indicating an unsafe action, we see that *SHAPO*'s gradient is larger compared to the standard gradient. In contrast, for positive advantage *SHAPO*'s gradient is smaller than the standard gradient. The analysis of this simplified setting shows that, under certain conditions, *SHAPO*'s policy update promotes a different treatment of rare actions depending on the sign of the corresponding advantage. When unsafe, rare actions are taken very seriously and an important update of the policy is promoted. In comparison, *SHAPO* opts for smaller updates when facing safe actions, even when they have large advantage. Overall, this behavior aligns well with our safe exploration objectives and helps explain why our approach favors policies that infrequently incur high costs (cf. Figure 5).

4.4 SHAPO FOR ON-POLICY RL ALGORITHMS

As presented in this section, Sharpness Aware Policy Optimization (*SHAPO*) modifies the TRPO algorithm with a Lagrange objective and pseudo-code is provided in Algorithm 3. We abstract this modification in Algorithm 1: this code returns a parameter direction \tilde{g} for updating the current policy π_θ based on the objective function L , the Fisher matrix F of the policy parametrization and constraint bound δ_{Down} . Formulated this way, our method can be applied to most online policy RL algorithms and we provide pseudo-code in Appendix A for CRPO and CPO.

While Proposition 2 links the trust-region constraint δ_{Down} to the percentile z_α of the normal distribution (where α is the level of pessimism in face of uncertainty), the effective sample size n cannot be easily estimated in continuous-control reinforcement learning where data are temporally correlated and only a subset of collected samples provide independent information. Furthermore, due to the complex coupling between the actor and critic, together with the challenges posed by exploration, it is difficult to determine the appropriate level of pessimism (i.e. the value of α) to adopt at each stage of the training.

In this context, adopting a constant value of δ_{Down} during training and treating this value as tunable hyperparameter allows us to directly control the desired safety–efficiency tradeoff without relying on uncertain estimates of n . This makes the constant- δ_{Down} strategy both simple and effective, offering a stable mechanism for regulating pessimism throughout training. We further discuss this approach and other options to schedule the level of pessimism in Subsection 6.1 and in Appendix E.

Finally, in our method, we also incorporate Sharpness Aware Minimization with Euclidean neighborhoods for the critic, as proposed by Foret et al. (2020) for a supervised learning task. By considering the sharpness of the loss landscape during the training of the critic, we aim to focus on flatter regions that yield more stable value function approximations.

5 EXPERIMENTAL SETUP

Environments. We evaluate *SHAPO* on Safety Gym (Ray et al., 2019) (*PointGoal1-v0*, *PointButton1-v0*) and MuJoCo (Todorov et al., 2012) (*Ant-v4*, *Walker2d-v4*). In *PointGoal1-v0*, an

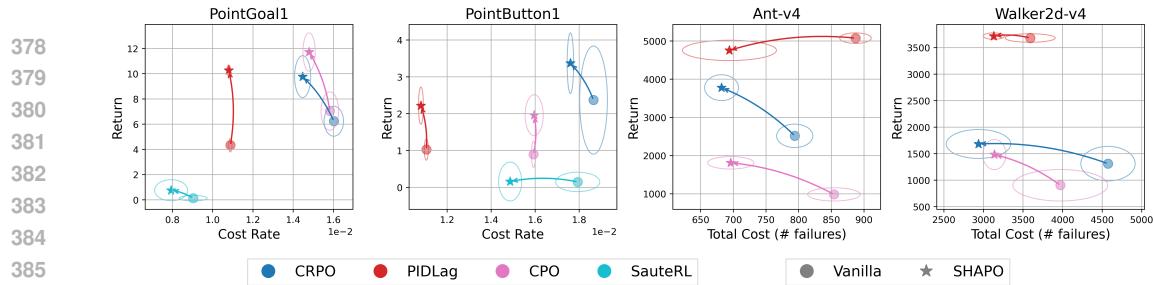


Figure 3: Performance of *SHAPo* on four different tasks across four different baselines over 5 training seeds. We report Cost Rate (Total Cost / Total Env Steps) for Safety Gym environments after training for 10M environment steps and Total Cost for MuJoCo environments after 5M environment steps. *SHAPo* (shown with a star) significantly improves the performance of the baseline algorithms (shown with a circle) on both safety and efficiency thus improving the safe exploration capabilities of the baseline algorithms. **Width and height of the ellipses represent the standard error over 5 seeds.**

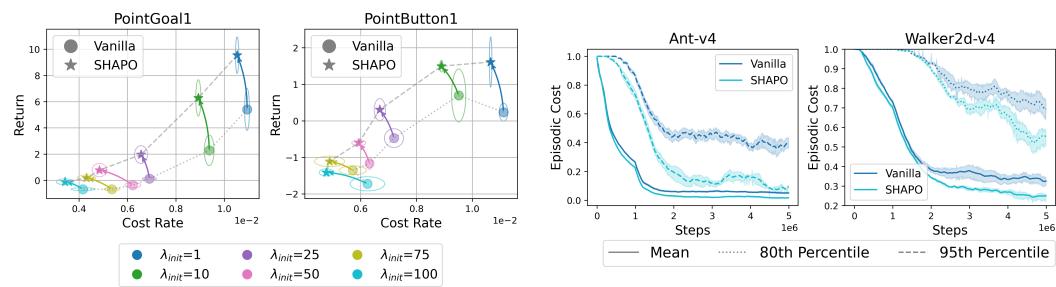


Figure 4: Results for different values of initial lambda (λ_{init}) for *PIDLag* algorithm with and without *SHAPo*. We can see that *SHAPo* improves upon the Vanilla *PIDLag* for all configurations.

agent must reach a random goal while avoiding unsafe regions that accumulate cost; in *PointButton1*-*v0*, it must press buttons in the correct order, with penalties for wrong presses and additional hazards. In both tasks, the objective is to succeed while keeping cost under $\beta = 10$. In MuJoCo, the agent must run fast without falling, where each fall is a constraint violation.

Baselines. Although Sec. 4 more specifically describes how our approach modifies TRPO (Schulman et al., 2015) with a Lagrangian objective, *SHAPo* virtually applies to any on-policy method in a straightforward manner. We therefore also study the effect of *SHAPo* on CPO (Achiam et al., 2017), PIDLag (Stooke et al., 2020) (Lagrangian TRPO with PID control of λ), CRPO (Xu et al., 2021) (alternating primal updates) and Sauterl (Sootla et al., 2022) (state augmentation with constraint budget with TRPO (Schulman et al., 2015) as base algorithm). **Pseudo-code for the *SHAPo* versions of the baseline algorithms is provided in Appendix A.**

Metrics. In MuJoCo we report episodic return (efficiency) and total failures/cost (safety). In Safety Gym we track episodic return and cost during training, plus final average return and cost-rate (total cost / steps) as defined in (Ray et al., 2019). **All results are generated by averaging over 5 seeds, the standard error in x (Cost Rate / Total Cost) and y (Return) are represented by the width and height of the ellipses, respectively.**

Implementation Details. When adding *SHAPo*, baseline’s hyperparameters are frozen and only δ_{Down} and ρ_{critic} are tuned. Thus the safety–efficiency tradeoff is determined by the baseline, while *SHAPo* provides an orthogonal improvement. More details in the Appendix D.

6 RESULTS

Fig. 3 summarizes performance across four baseline algorithms and their *SHAPo* counterparts on four tasks. In *PointGoal1* and *PointButton1*, we plot cost-rate (x-axis) against return (y-axis), capturing

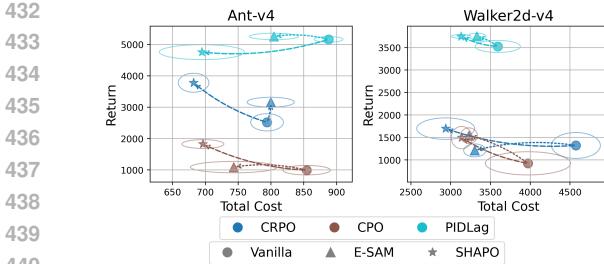


Figure 6: We compare results for *SHAPo* when using perturbation in the euclidean space *E-SAM* or in the Fisher Metric space (*SHAPo*). We can see that *SHAPo* is consistently better than *E-SAM* because of perturbation that ensure worsening of the inner objective.

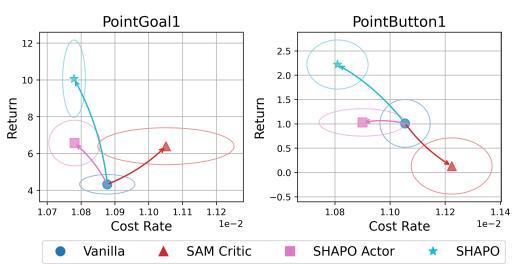


Figure 7: *SHAPo* leads to significant improvement in cost-rate, even without SAM on critic. While SAM on critic leads to improvement in return, only adopting SAM for the critic does not promote safe exploration in *PointGoal1* and *PointButton1*

ing the safety–efficiency tradeoff during training. For *Ant-v4* and *Walker2d-v4*, we report cumulative failures (total cost). Across all benchmarks, *SHAPo* consistently improves either safety, task performance, or both. For instance, *SauteRL* (Sootla et al., 2022) achieves the lowest cost-rate on *PointGoal1* and *SHAPo* further reduces this cost without hurting returns. Since *SauteRL* relies on augmenting states with the remaining budget, it is inapplicable in MuJoCo (where $\beta = 0$ means any incurred cost violates the constraint), so we omit those results. Detailed results have been presented in the Appendix Fig. 15, 16, 17, 18.

The safety–efficiency tradeoff in Lagrangian methods is shaped by hyperparameters such as the initial multiplier λ_{init} . Fig. 4 shows results for *PIDLag* across different λ_{init} values. In every setting, *SHAPo* expands the Pareto frontier of return versus cost, indicating that it consistently delivers better safety–efficiency tradeoffs than the vanilla algorithm.

To assess safety beyond mean statistics, Fig. 5 shows episodic cost distributions. While both vanilla baselines and *SHAPo* reduce average cost, only *SHAPo* consistently suppresses heavy tails (95th percentile in *Ant-v4*, 80th in *Walker2d-v4*²). This tail suppression significantly enhances the agent’s safety and aligns with our safe exploration objective. Consistent with our analysis in Sec. 4.2, *SHAPo*’s pessimism when faced with parameter uncertainty reduces catastrophic events, yielding fewer cumulative failures (i.e. Total Cost) (Fig. 3). Detailed plots are included in the Appendix.

6.1 ABLATIONS & ANALYSIS

Fisher versus Euclidean perturbations: Fig. 6 compares perturbations in Euclidean (*E-SAM*) and Fisher (*SHAPo*) spaces. *SHAPo* consistently outperforms *E-SAM* across tasks and baselines, validating that Fisher perturbations, being aligned with the local geometry of on-policy data, yield more principled and effective risk-sensitive updates.

Actor versus critic perturbations: Fig. 7 isolates the effect of applying *SHAPo* to different components. When SAM is applied only to the critic (*SAM Critic*), perturbations do not enforce risk-aversion and can even increase cost, since squared-error perturbations treat under- and overestimation symmetrically. In contrast, applying *SHAPo* only to the actor (*SHAPo Actor*) markedly improves safety by steering exploration conservatively. Finally, Using *SHAPo* (*SHAPo Actor + SAM on critic*) yields the strongest gains in both safety and efficiency.

Pessimism schedule: In light of Proposition 2, we consider for each update step t the number n_t of state-action pairs collected so far by our agent as a proxy for the effective sample size n from Subsection 4.2. This allows us to interpret the bound δ_{Down}^t at step t in terms of n_t and the percentile z_{α_t} of the distribution $\mathcal{N}(0, 1)$ at the level of pessimism α_t . Our simple strategy using a fixed δ_{Down} therefore can be interpreted as increasing the level of pessimism as the agent learns. Indeed, we then have $z_{\alpha_t} = -\sqrt{2n_t\delta_{Down}}$ and thus $\alpha_t = \Phi(-\sqrt{2n_t\delta_{Down}})$, where Φ is the cumulative distribution function of $\mathcal{N}(0, 1)$. Another simple approach can instead consist of choosing a fixed value of pessimism $\alpha \in (0, \frac{1}{2})$ for the whole learning process, and then compute the bound $\delta_{Down}^t = \frac{z_{\alpha}^2}{2n_t}$

²Walker2d-v4 is more challenging, with the 95th percentile remaining near one, so we report the 80th instead.

486 at step t , which effectively decreases as we progress through learning. Fig. 8 compares these two
 487 different approaches to scheduling pessimism. Figure 8 shows that both of these schedules allow
 488 *SHAPO* to consistently outperform the vanilla algorithm, highlighting the robustness of the proposed
 489 adjustment with respect to the choice of δ_{Down}^t which controls the level of pessimism. More details
 490 and analysis are provided in Appendix E.

492 7 RELATED WORK

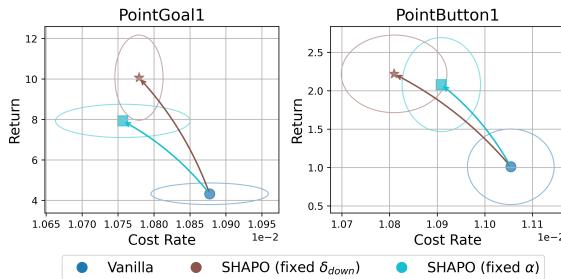
494 *Uncertainty in RL*: RL agents must contend with aleatoric (outcome) and epistemic (model/parameter) uncertainty (Osband et al., 2016; Ghavamzadeh et al., 2015). Bayesian model-based methods propagate posterior uncertainty for exploration and risk assessment (Ghavamzadeh et al., 2015); model-free approaches use ensembles/randomized value functions for epistemic estimates (Osband et al., 2016; 2018; Mai et al., 2022) and distributional critics for risk-sensitive control (Bellemare et al., 2017; Dabney et al., 2018). Pessimistic objectives further bias learning toward conservative estimates (Kumar et al., 2020).

509 *Sharpness-Aware Optimization*: Sharpness-aware objectives minimize the worst-case (or stochastic) loss in a local *noisy* parameter neighborhood (Rahn et al., 2023), yielding solutions that are 510 insensitive to weight perturbations and thus more robust to parameter uncertainty (Foret et al., 2020; 511 Andriushchenko & Flammarion, 2022; Möllenhoff & Khan, 2022). Geometry-aware variants (Kwon 512 et al., 2021; Kim et al., 2022a) tailor the neighborhood to better approximate uncertainty directions, 513 while noisy-neighborhood extensions explicitly inject randomness into the perturbation to probe loss 514 under parameter noise and improve robustness (Baek et al., 2024). (Lee & Yoon, 2025) shows that 515 applying SAM to PPO significantly improves robustness to aleatoric variations of the environment 516 at test time. In this paper, we focus instead on the potential of sharpness aware optimization for safe 517 exploration.

519 *Safe Exploration*: Safe exploration deals with epistemic uncertainty associated with data scarce 520 regions of the state-space (Achiam et al., 2017; Liu et al., 2022; Sootla et al., 2022; Stooke et al., 521 2020; Mani et al., 2025; Gu et al., 2024). Strategies include Bayesian model-based control with 522 uncertainty-aware planning (Berkenkamp, 2019), Lagrangian world models (Huang et al., 2023), 523 safety critics that filter risky actions or impose constraints (Fisac et al., 2019; Srinivasan et al., 2020; 524 Kang et al., 2022; Bharadhwaj et al., 2020), and state augmentation with accumulated cost as a risk 525 proxy (Sootla et al., 2022; Jiang et al., 2023). In this paper, we are interested specifically in the 526 epistemic uncertainty of the actor and in designing update rule to be pessimistic with respect to that 527 uncertainty.

528 8 DISCUSSION & CONCLUSION

530 Safe exploration is ultimately about shaping updates to respect uncertainty, not only enforcing 531 constraints on the final policy. By instantiating SAM in the actor’s Fisher/KL geometry, we treat *sharp- 532 ness*—the sensitivity of the policy surrogate to tiny parameter changes—as a practical proxy for 533 epistemic uncertainty. When small nudges can flip outcomes, the local neighborhood is under- 534 supported by data; *SHAPO* biases learning toward locally stable policies whose nearby variants 535 behave similarly, tempering brittle, risk-seeking moves and emphasizing improvements that reliably 536 reduce cost. This creates a closed loop: safer updates yield safer trajectories, which produce cleaner 537 data in risky regions, reducing epistemic uncertainty and naturally relaxing conservatism as learning 538 progresses.



539 Figure 8: Pessimism schedule. We compare the selection of a constant δ_{Down} with the selection of a value $\alpha \in (0, 0.5)$ using the schedule $\delta_{\text{Down}}^t = \frac{z^2}{2n_t}$ where n_t is the number of 540 state-action pairs seen by the agent. Both approaches out- 541 perform the vanilla approach.

540 REPRODUCIBILITY STATEMENT
541

542 All code, configuration files, and exact hyperparameters required to reproduce our
543 results are publicly available at [https://anonymous.4open.science/r/
544 Safe-Policy-Optimization-813E](https://anonymous.4open.science/r/Safe-Policy-Optimization-813E). Experiments were run in standard, publicly ac-
545 cessible environments (OpenAI Gym, Safety Gym), with version details documented in the
546 repository.

548 REFERENCES
549

550 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
551 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
552 report. *arXiv preprint arXiv:2303.08774*, 2023.

553 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
554 *International Conference on Machine Learning*, pp. 22–31. PMLR, 2017.

555 Eitan Altman. *Constrained Markov decision processes*. Routledge, 2021.

557 Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
558 mization. In *International conference on machine learning*, pp. 639–668. PMLR, 2022.

559

560 Christina Baek, Zico Kolter, and Aditi Raghunathan. Why is SAM robust to label noise? *arXiv
561 preprint arXiv:2405.03676*, 2024.

562 Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
563 learning. In *International Conference on Machine Learning*, pp. 449–458. PMLR, 2017.

564

565 Felix Berkenkamp. *Safe exploration in reinforcement learning: Theory and applications in robotics*.
566 PhD thesis, ETH Zurich, 2019.

567 Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and Ani-
568 mesh Garg. Conservative safety critics for exploration. *arXiv preprint arXiv:2010.14497*, 2020.

569

570 Eugene Bykovets, Yannick Metz, Mennatallah El-Assady, Daniel A. Keim, and Joachim M. Buh-
571 mann. How to enable uncertainty estimation in proximal policy optimization. *arXiv preprint
572 arXiv:2210.03649*, 2022.

573 Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
574 distributional reinforcement learning. In *International conference on machine learning*, pp. 1096–
575 1105. PMLR, 2018.

576

577 Jaime F Fisac, Neil F Lugovoy, Vicenç Rubies-Royo, Shromona Ghosh, and Claire J Tomlin. Bridg-
578 ing hamilton-Jacobi safety analysis and reinforcement learning. In *2019 International Conference
579 on Robotics and Automation (ICRA)*, pp. 8550–8556. IEEE, 2019.

580 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
581 tion for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.

582

583 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
584 uncertainty in deep learning. In *Proceedings of the 33rd International Conference on Machine
585 Learning*, volume 48 of *Proceedings of Machine Learning Research*, pp. 1050–1059. PMLR,
586 2016.

587

588 Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian reinforcement
589 learning: A survey. *Foundations and Trends® in Machine Learning*, 8(5-6):359–483, 2015.

590

591 Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
592 review of safe reinforcement learning: Methods, theories and applications. *IEEE Transactions on
593 Pattern Analysis and Machine Intelligence*, 2024.

594

595 Weidong Huang, Jiaming Ji, Borong Zhang, Chunhe Xia, and Yaodong Yang. Safe dreamerv3: Safe
596 reinforcement learning with world models. *arXiv preprint arXiv:2307.07176*, 2023.

594 Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
 595 Yiran Geng, Mickel Liu, and Yaodong Yang. OmniSafe: An infrastructure for accelerating safe
 596 reinforcement learning research. *Journal of Machine Learning Research*, 25(285):1–6, 2024.

597

598 Hao Jiang, Tien Mai, Pradeep Varakantham, and Minh Huy Hoang. Solving richly con-
 599 strained reinforcement learning through state augmentation and reward penalties. *arXiv preprint*
 600 *arXiv:2301.11592*, 2023.

601 Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
 602 *Proceedings of the nineteenth international conference on machine learning*, pp. 267–274, 2002.

603

604 Sham M Kakade. A natural policy gradient. *Advances in neural information processing systems*,
 605 14, 2001.

606 Katie Kang, Paula Gradu, Jason J Choi, Michael Janner, Claire Tomlin, and Sergey Levine. Ly-
 607 punov density models: Constraining distribution shift in learning-based control. In *International*
 608 *Conference on Machine Learning*, pp. 10708–10733. PMLR, 2022.

609

610 Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher sam: Information geometry
 611 and sharpness aware minimisation. In *International Conference on Machine Learning*, pp. 11148–
 612 11161. PMLR, 2022a.

613 Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher sam: Information geometry
 614 and sharpness aware minimisation. In *International Conference on Machine Learning*, pp. 11148–
 615 11161. PMLR, 2022b.

616

617 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 618 reinforcement learning. *Advances in neural information processing systems*, 33:1179–1191, 2020.

619

620 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
 621 aware minimization for scale-invariant learning of deep neural networks. In *International confer-
 622 ence on machine learning*, pp. 5905–5914. PMLR, 2021.

623

624 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 625 uncertainty estimation using deep ensembles. In *Advances in Neural Information Processing
 Systems*, volume 30, 2017.

626

627 Hyun Kyu Lee and Sung Whan Yoon. Flat reward in policy parameter space implies robust rein-
 628forcement learning. In *The Thirteenth International Conference on Learning Representations*,
 629 2025.

630

631 Zuxin Liu, Zhepeng Cen, Vladislav Isenbaev, Wei Liu, Steven Wu, Bo Li, and Ding Zhao. Con-
 632 strained variational policy optimization for safe reinforcement learning. In *International Confer-
 633 ence on Machine Learning*, pp. 13644–13668. PMLR, 2022.

634

635 Carlos E Luis, Alessandro G Bottero, Julia Vinogradska, Felix Berkenkamp, and Jan Peters. Value-
 636 distributional model-based reinforcement learning. *Journal of Machine Learning Research*, 25
 637 (298):1–42, 2024.

638

639 Vincent Mai, Kaustubh Mani, and Liam Paull. Sample efficient deep reinforcement learning via
 640 uncertainty estimation. *arXiv preprint arXiv:2201.01666*, 2022.

641

642 Kaustubh Mani, Vincent Mai, Charlie Gauthier, Annie Chen, Samer Nashed, and Liam Paull. Safety
 643 representations for safer policy learning. *arXiv preprint arXiv:2502.20341*, 2025.

644

645 Thomas Möllenhoff and Mohammad Emtyiaz Khan. Sam as an optimal relaxation of bayes. *arXiv*
 646 *preprint arXiv:2210.01620*, 2022.

647

648 Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
 649 bootstrapped DQN. *Advances in Neural Information Processing Systems*, 29, 2016.

650

651 Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
 652 learning. *Advances in Neural Information Processing Systems*, 31, 2018.

648 Nate Rahn, Pierluca D’Oro, Harley Wiltzer, Pierre-Luc Bacon, and Marc Bellemare. Policy opti-
 649 mization in a noisy neighborhood: On return landscapes in continuous control. In A. Oh, T. Nau-
 650 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information*
 651 *Processing Systems*, volume 36, pp. 30618–30640. Curran Associates, Inc., 2023.

652 Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep Reinforce-
 653 ment Learning. 2019.

654 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
 655 policy optimization. In Francis Bach and David Blei (eds.), *Proceedings of the 32nd International*
 656 *Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pp.
 657 1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

658 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 659 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

660 Aivar Sootla, Alexander I Cowen-Rivers, Taher Jafferjee, Ziyan Wang, David H Mguni, Jun Wang,
 661 and Haitham Ammar. Sauté RL: Almost surely safe reinforcement learning using state augmen-
 662 tation. In *International Conference on Machine Learning*, pp. 20423–20443. PMLR, 2022.

663 Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn. Learning to be
 664 safe: Deep RL with a safety critic. *arXiv preprint arXiv:2010.14603*, 2020.

665 Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
 666 PID Lagrangian methods. In *International Conference on Machine Learning*, pp. 9133–9143.
 667 PMLR, 2020.

668 Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. Worst cases policy gradients. *arXiv*
 669 *preprint arXiv:1911.03618*, 2019.

670 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 671 In *2012 IEEE/RSJ international conference on intelligent robots and systems*, pp. 5026–5033.
 672 IEEE, 2012.

673 Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
 674 Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
 675 interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.

676 AW van der Vaart. Asymptotic statistics. cambridge series in statistical and probabilistic mathemat-
 677 ics 3. cambridge univ. press, cambridge. 1998.

678 Tengyu Xu, Yingbin Liang, and Guanghui Lan. CRPO: A new approach for safe reinforcement
 679 learning with convergence guarantee. In *International Conference on Machine Learning*, pp.
 680 11480–11491. PMLR, 2021.

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **Algorithm 2** Sharpness-aware optimization

703 1: Initialize θ
704 2: **while** not converged **do**
705 3: Compute ϵ such that $\pi_{\theta+\epsilon} \approx \arg \min_{\tilde{\pi} \in N(\pi)} \mathcal{L}(\tilde{\pi})$
706 4: Calculate the gradient at perturbed parameter: $g \leftarrow \nabla \mathcal{L}(\theta + \epsilon)$
707 5: Update parameters: $\theta \leftarrow \theta + \alpha g$ $\{\alpha$ is the learning rate $\}$
708 6: **end while**

709
710
711

712 **Algorithm 3** *SHAPO* (TRPOLag): Sharpness Aware Policy Optimization (TRPOLag)

713 1: Initialize parameters θ
714 2: Set trust region constraint δ_{Up} and *SHAPO* constraint δ_{Down}
715 3: **while** not converged **do**
716 4: Compute the Fisher matrix F at θ
717 5: Compute the gradient: $g \leftarrow \nabla_{\theta} L_{\pi_{\theta}}^{\lambda}(\theta)|_{\theta}$
718 6: Compute the perturbation: $\epsilon_{\text{Down}} = U_F(-g, \delta_{\text{Down}})$
719 7: Compute the gradient at perturbed parameter: $\tilde{g} \leftarrow \nabla_{\theta} L_{\pi_{\theta}}^{\lambda}(\theta)|_{\theta+\epsilon_{\text{Down}}}$
720 8: Compute the parameter update: $\epsilon_{\text{Up}} = U_F(\tilde{g}, \delta_{\text{Up}})$
721 9: Update parameters: $\theta \leftarrow \theta + \epsilon_{\text{Up}}$
722 10: **end while**
723 11: Return policy π_{θ}

724
725

726 **Algorithm 4** *SHAPO* (PPO): Sharpness-Aware Policy Optimization (PPO)

727 1: Initialize policy parameters θ
728 2: Set clipping parameter ϵ and *SHAPO* constraint δ_{Down}
729 3: Set learning rate η
730 4: **while** not converged **do**
731 5: Compute the Fisher matrix F at θ
732 6: Compute *SHAPO* gradient for the clipped objective: $\tilde{g} \leftarrow \text{SHAPO}(\theta, L_{\pi_{\theta}}^{\text{PPO}}, F, \delta_{\text{down}})$
733 7: Update parameters with the *SHAPO* gradient: $\theta \leftarrow \theta + \eta \tilde{g}$
734 8: **end while**

735
736

737

A PSEUDO-CODE

738

739 Pseudo-code for Sharpness Aware Optimization is presented in Algorithm 2 and for our Sharpness
740 Aware Policy Optimization for Lagrangian TRPO (*SHAPO* TRPOLag) in Algorithm 3.
741

742 Recall that $U_F(g, \delta)$ stands for the (estimated) solution to the optimization problem 5

743
$$U_F(g, \delta) = \arg \max_{\frac{1}{2} \epsilon^T F \epsilon \leq \delta} \langle g, \epsilon \rangle. \quad (10)$$
744
745

746 where $\delta > 0$, g is a vector and F is a symmetric positive definite matrix. In TRPO at current θ_0 , g
747 is the gradient of $L_{\pi_{\theta_0}}(\theta)$ evaluated at θ_0 and F is the Fisher information matrix \mathbf{F}_{θ_0} of the policy
748 parametrization $\pi_{\theta}, \theta \in \Theta$, evaluated at θ_0 .

749 We provide pseudo-code for *SHAPO* in Algorithm 1. Formulated this way, our method can be ap-
750 plied to most on-policy RL algorithms. It returns a parameter direction \tilde{g} for updating the current
751 policy π_{θ} based on the objective function, the Fisher matrix of the policy parametrization and
752 constraint bound δ_{Down} . This function effectively abstracts lines 4 – 7 of Algorithm 3 and allows us to
753 present how our method applies to other algorithms.

754 While TRPOLag combines cost and reward into a Lagrangian objective $L_{\pi_{\theta}}^{\lambda}$ at the current policy π_0
755 (cf. Equation 3), other algorithms like CPO or CRPO consider two distinct objectives. Given the

756

Algorithm 5 *SHAPo-CRPO*

757

```

1: Initialize parameters  $\theta$ 
2: Set trust region constraint  $\delta_{\text{Up}}$  and SHAPo constraint  $\delta_{\text{Down}}$ 
3: while not converged do
4:   Compute the Fisher matrix  $F$  at  $\theta$ 
5:   if Expected Cost > constraint threshold ( $\beta$ ) then
6:     Compute SHAPo gradient on Cost Surrogate  $\tilde{g} \leftarrow \text{SHAPo}(\theta, L_{\pi_\theta}^c, F, \delta_{\text{Down}})$ 
7:   else
8:     Compute SHAPo gradient on Reward Surrogate  $\tilde{g} \leftarrow \text{SHAPo}(\theta, L_{\pi_\theta}^r, F, \delta_{\text{Down}})$ 
9:   end if
10:  Compute the parameter update:  $\epsilon_{\text{Up}} = U_F(\tilde{g}, \delta_{\text{Up}})$ 
11:  Update parameters:  $\theta \leftarrow \theta + \epsilon_{\text{Up}}$ 
12: end while
13: Return policy  $\pi_\theta$ 

```

770

771

Algorithm 6 *SHAPo-CPO*

772

```

1: Initialize parameters  $\theta$ 
2: Set trust region constraint  $\delta_{\text{Up}}$  and SHAPo constraint  $\delta_{\text{Down}}$ 
3: while not converged do
4:   Compute Fisher matrix  $F$  at  $\theta$ 
5:   Compute SHAPo gradient on Cost Surrogate  $\tilde{g}_r \leftarrow \text{SHAPo}(\theta, L_{\pi_\theta}^r, F, \delta_{\text{Down}})$ 
6:   Compute SHAPo gradient on Reward Surrogate  $\tilde{g}_c \leftarrow \text{SHAPo}(\theta, L_{\pi_\theta}^c, F, \delta_{\text{Down}})$ 
7:   Resolve gradient update  $\epsilon_{\text{Up}} \leftarrow \text{CPO\_Update}(\tilde{g}_r, \tilde{g}_c, \delta_{\text{Up}})$ 
8:   Update parameters:  $\theta \leftarrow \theta + \epsilon_{\text{Up}}$ 
9: end while
10: Return policy  $\pi_\theta$ 

```

782

783

784

785

current policy π_0 we define the two following objectives similarly to Equation 3:

786

787

$$L_{\pi_0}^r(\theta) = \mathbb{E}_{s \sim d^0} \mathbb{E}_{a \sim \pi_0(a|s)} \frac{A_r^0(s, a)}{\pi_0(a|s)} \pi_\theta(a|s) \quad (11)$$

788

789

$$L_{\pi_0}^c(\theta) = \mathbb{E}_{s \sim d^0} \mathbb{E}_{a \sim \pi_0(a|s)} \frac{A_c^0(s, a)}{\pi_0(a|s)} \pi_\theta(a|s), \quad (12)$$

790

791

where d^0 denotes the discounted state distribution under π_0 and $A_r^0(a, s)$ (resp. A_c^0) quantifies the advantage in reward (resp. cost) of taking action a in state s compared to the average action under π_0 in state s . More precisely, letting $Q_r^0(s, a) = E_{\tau \sim \pi_0}[R_r(\tau) | s_0 = s, a_0 = a]$ for the reward action-value function associated with π_0 , where $R_r(\tau) = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$, we have $A_r^0(s, a) = Q_r^0(s, a) - E_{a \sim \pi_0(\cdot|s)}[Q_r^0(s, a)]$ and similarly for cost with $R_c(\tau) = \sum_{t=0}^{\infty} \gamma^t c(s_t, a_t)$.

792

793

794

795

796

797

798

799

800

801

802

803

804

805

While CRPO's update relies on a single gradient direction for either improving reward or decreasing cost (see Algorithm 5) at each step, CPO relies on both pieces of information through an update function that we denote by *CPO_Update* (see Algorithm 6). In both cases, our method *SHAPo* provides gradient directions for both reward and cost following the same steps, thereby incorporating pessimism in face of epistemic uncertainty of the actor into these algorithms. Since SauteRL (Sootla et al., 2022) is a state-augmentation technique, it can use any underlying policy gradient algorithm. We've used TRPO (Schulman et al., 2015) as the base algorithm for SauteRL and the *SHAPo* version can be derived from Algorithm 3. **In Algorithm 4, we propose a simple approach to apply *SHAPo* on the popular PPO algorithm that uses the following clipped objective (for some $\epsilon > 0$):**

806

807

808

809

$$L_{\pi_0}^{\text{PPO}}(\theta) = \mathbb{E}_{s \sim d^0} \mathbb{E}_{a \sim \pi_0(a|s)} \left[\min \left(r(\theta, a, s) A^0(s, a), \text{clip}(r(\theta, a, s), 1 - \epsilon, 1 + \epsilon) A^0(s, a) \right) \right],$$

$$\text{where } r(\theta, a, s) = \frac{\pi_\theta(a|s)}{\pi_0(a|s)}.$$

810 **B REINTERPRETING FISHER SAM AS PESSIMISM IN FACE OF EPISTEMIC
811 UNCERTAINTY**

813 For the sake of completeness, we prove first the following well known result (cf. Kakade (2001);
814 Schulman et al. (2015)):

815 **Lemma 4.** *The solution to the optimization problem*

817
$$U_F(g, \delta) = \arg \max_{\frac{1}{2}\epsilon^T F \epsilon \leq \delta} \langle g, \epsilon \rangle \quad (13)$$

819 is given by $U_F(g, \delta) = \frac{\sqrt{2\delta}}{\sqrt{g^T F^{-1} g}} F^{-1} g$ where F^{-1} is the inverse of F , which is assumed to be
820 symmetric positive definite.

823 *Proof.* We introduce a Lagrange multiplier λ for the constraint $\frac{1}{2}\epsilon^T F \epsilon \leq \delta$ and define the following
824 Lagrangian:

825
$$\mathcal{L}(\epsilon, \lambda) = \langle g, \epsilon \rangle - \lambda \left(\frac{1}{2}\epsilon^T F \epsilon - \delta \right).$$

827 We then find the stationary point $\mathcal{L}(\epsilon, \lambda)$. First, we have:

828
$$0 = \nabla_\epsilon \mathcal{L}(\epsilon, \lambda) = g - \lambda F \epsilon$$

830 which leads to $\epsilon = \frac{1}{\lambda} F^{-1} g$. Next we have:

832
$$0 = \nabla_\lambda \mathcal{L}(\epsilon, \lambda) = \frac{1}{2}\epsilon^T F \epsilon - \delta,$$

834 that leads to the constraint $\frac{1}{2}\epsilon^T F \epsilon = \delta$. Substituting $\epsilon = \frac{1}{\lambda} F^{-1} g$ into the constraint, and using the
835 fact that F^{-1} is also symmetric, we find:

837
$$\frac{1}{2\lambda^2} g^T F^{-1} g = \delta \quad \Rightarrow \quad \lambda = \sqrt{\frac{g^T F^{-1} g}{2\delta}}$$

839 Consequently, as desired:

840
$$\epsilon = \sqrt{\frac{2\delta}{g^T F^{-1} g}} F^{-1} g.$$

843 \square

844 Recall that $Q(\theta)$ is assumed to follow a multivariate normal distribution $\mathcal{N}(\theta_0, \frac{1}{n} F^{-1})$ where F^{-1}
845 is the inverse of the Fisher matrix at θ_0 . Recall that $Y = g^t(\theta - \theta_0)$ with $\theta \sim Q$ with α -quantiles
846 denoted by y_α . Finally z_α denotes the α -quantile for $\mathcal{N}(0, 1)$. We now provide the proof of Propo-
847 sition 2 which is illustrated in Figure 1:

849 **Proposition 5.** *Let $Q(\theta) = \mathcal{N}(\theta_0, \frac{1}{n} F^{-1})$. For every $\alpha \in (0, \frac{1}{2})$ the solution ϵ_α to the optimization
850 problem*

851
$$\begin{aligned} & \underset{\epsilon}{\text{maximize}} \log Q(\theta_0 + \epsilon) \\ & \text{subject to } g^T \epsilon \leq y_\alpha \end{aligned} \quad (14)$$

855 *coincides with the adjustment we make in SHAPo, namely we have $\epsilon_{\text{Down}} = U_F(-g, \delta_{\text{Down}})$ when
856 $\delta_{\text{Down}} = \frac{y_\alpha^2}{2n}$.*

857 *Proof.* Note that the precision matrix of $Q(\theta)$ is equal to nF and so

859
$$\log Q(\theta_0 + \epsilon) = -\frac{n}{2}\epsilon^T F \epsilon + \text{constant}.$$

861 We introduce a Lagrange multiplier λ for the constraint $g^T \epsilon \leq y_\alpha$ and define the following La-
862 grangian:

863
$$\mathcal{L}(\epsilon, \lambda) = -\frac{n}{2}\epsilon^T F \epsilon - \lambda(g^T \epsilon - y_\alpha).$$

864 Next, we look for the stationary points of \mathcal{L} . First,

$$865 \quad 0 = \nabla_{\epsilon} \mathcal{L}(\epsilon, \lambda) = -nF\epsilon - \lambda g$$

867 which implies $\epsilon = -\frac{\lambda}{n}F^{-1}g$. Next we see that

$$868 \quad 0 = \nabla_{\lambda} \mathcal{L}(\epsilon, \lambda) \Rightarrow g^T \epsilon = y_{\alpha}.$$

870 Therefore,

$$871 \quad y_{\alpha} = \frac{\lambda}{n}g^T F^{-1}g \quad \text{and so} \quad \lambda = \frac{ny_{\alpha}}{g^T F^{-1}g}.$$

873 Consequently, we obtain

$$874 \quad \epsilon = -\frac{y_{\alpha}}{g^T F^{-1}g} F^{-1}g.$$

876 Now using the fact that $y_{\alpha} = \sigma z_{\alpha}$ where $\sigma = \frac{1}{\sqrt{n}}\sqrt{g^T F^{-1}g}$ is the standard deviation of $Y = g^t \epsilon$
877 with $\epsilon \sim Q(\theta)$, we get

$$878 \quad \epsilon = -\frac{z_{\alpha}}{\sqrt{ng^T F^{-1}g}} F^{-1}g.$$

880 By Lemma 4, we have

$$882 \quad U_F(-g, \delta) = -\sqrt{\frac{2\delta}{g^T F^{-1}g}} F^{-1}g,$$

885 which is equal to ϵ when $\frac{z_{\alpha}}{\sqrt{n}} = \sqrt{2\delta}$, namely when $\delta = \frac{z_{\alpha}^2}{2n}$, as desired. \square

887 We observe that the relation $\delta_{\text{Down}} = \frac{z_{\alpha}^2}{2n}$ offers an attractive perspective on the trust constraint for the
888 inner minimization in *SHAPO*. This equation expresses the bound in terms of the α -quantile of the
889 standard normal distribution $\mathcal{N}(0, 1)$ and n , which represents the sample size used for estimating
890 θ_0 . For a given sample size n , selecting a confidence level—such as the 5th percentile—yields a
891 specific value for δ_{Down} . This approach implies that one can initially set $\delta_{\text{Down}}^{\text{init}} = z_{\alpha}^2$ by determining
892 an appropriate confidence level $\alpha \in (0, \frac{1}{2})$. As the actor gains more experience, it would appear
893 recommended to decrease δ_{Down} according to $\delta_{\text{Down}} = \frac{\delta_{\text{Down}}^{\text{init}}}{2n}$, reflecting the increasing trust in the
894 estimates as more data becomes available. This strategy not only enhances the robustness of the
895 minimization process but also aligns the trust constraint with the actor’s growing experience.

897 C ANALYSIS OF SHAPO ON A SIMPLE GAUSSIAN POLICY

900 Our proposed approach to update the current policy π_0 is guided by the gradient \tilde{g} of $L_{\pi_0}^{\lambda}(\theta)$ evaluated
901 at $\theta_0 + \epsilon_{\text{Down}}$, while classical approaches use the gradient g evaluated at θ_0 . Here we study
902 how these two gradients g and \tilde{g} differ in a simplified setting. We observe that the contribution of a
903 single state-action pair (s, a) towards $L_{\pi_0}^{\lambda}$ is given by:

$$904 \quad L_{\pi_0}^{\lambda}(\theta|s, a) = \frac{A^0(s, a)}{\pi_0(a|s)} \pi_{\theta}(a|s),$$

906 whose gradient with respect to θ is given by

$$908 \quad \nabla_{\theta} L_{\pi_0}^{\lambda}(\theta|s, a) = \frac{A^0(s, a)}{\pi_0(a|s)} \nabla_{\theta} \pi_{\theta}(a|s)$$

910 Each observed state-action pair therefore contributes towards the gradient, to increase or decrease
911 the likelihood of action a depending on the sign of $A^0(s, a)$ (in a way that is inversely proportional to
912 the likelihood of that action under π_0).

913 Here we study how the two gradients g (standard) and \tilde{g} (*SHAPO*) differ in a simplified setting.
914 We assume that the policy at some state is given by a 1D Gaussian policy $\pi(a; \mu, 1) = \mathcal{N}(a; \mu, 1)$
915 parametrized by the mean μ , with probability density function given by:

$$917 \quad \pi(a; \mu) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(a - \mu)^2}{2}\right).$$

918 The gradient of $\pi(a; \mu)$ with respect to μ is expressed as:
 919

$$920 \quad \frac{\partial}{\partial \mu} \pi(a; \mu) = (a - \mu) \pi(a; \mu) \\ 921 \\ 922$$

923 Assuming that the current policy is $\pi_0(a) = \pi(a; 0, 1)$ specified by $\mu_0 = 0$, we study the discrepancy
 924 between the two gradients g and \tilde{g} with respect to μ in terms of an observed action a and an advantage
 925 value A . Our utility function $L_{\pi_0}^\lambda$ and its gradient can now be expressed as:
 926

$$927 \quad L_{\pi_0}^\lambda(\mu; a, A) = \frac{A}{\pi_0(a)} \pi(a; \mu) \quad \nabla_\mu L_{\pi_0}^\lambda(\mu; a, A) = \frac{A}{\pi_0(a)} \nabla_\mu \pi(a; \mu) \\ 928$$

929 The gradient $g(a, A)$ at μ_0 becomes:
 930

$$931 \quad g(a, A) = \nabla_\mu L_{\pi_0}^\lambda(\mu|a)|_{\mu=0} = \frac{A}{\pi_0(a)} (a - \mu_0) \pi(a; \mu_0) = Aa \\ 932$$

933 Therefore, in this situation, the standard gradient is simply the product of the advantage A with
 934 the action a . With *SHAPO* the gradient is instead computed at $\mu_0 + \epsilon_{\text{Down}}$, where ϵ_{Down} is a
 935 parameter perturbation crafted to minimize $L_{\pi_0}^\lambda$. Note that with our choice of parametrization
 936 $\text{KL}(\pi(\cdot; \mu_0, 1) \|\pi(\cdot; \mu_0 + \epsilon_{\text{Down}}, 1)) = \frac{\epsilon_{\text{Down}}^2}{2}$, which is half the square of the Euclidean distance
 937 between mean parameters. Therefore, the approach based on the Kullback-Leibler neighborhood
 938 ($\text{KL}(\pi(\cdot; \mu_0, 1) \|\pi(\cdot; \mu_0 + \epsilon_{\text{Down}}, 1) \leq \delta_{\text{Down}}$) coincides with one using the Euclidean metric on pa-
 939 rameters ($\epsilon_{\text{Down}} \leq \rho$) and can be expressed in terms of $\rho = \sqrt{2\delta_{\text{Down}}}$. The perturbation is therefore
 940 given by:
 941

$$942 \quad \epsilon_{\text{Down}}(a, A) = -\rho \frac{g(a, A)}{|g(a, A)|}$$

943 This adjustment contributes to increase the likelihood of action a when the advantage A is negative
 944 (unsafe action) and to decrease it when A is positive. The adjusted parameter $\tilde{\mu}(a, A) = \mu_0 +$
 945 $\epsilon_{\text{Down}}(a, A)$ is given by:
 946

$$947 \quad \tilde{\mu}(a, A) = -\rho \text{sign}(Aa)$$

948 So, for example, this adjusted mean is negative when $A < 0$ and $a < 0$, thereby leading to a
 949 likelihood $\pi(a; \tilde{\mu}, 1)$ larger than $\pi(a; 0, 1)$.
 950

Now we compute the gradient \tilde{g} at $\tilde{\mu}$:
 951

$$952 \quad \tilde{g}(a, A) = \nabla_\mu L_{\pi_0}^\lambda(\mu|a)|_{\mu=0} = \frac{A}{\pi_0(a)} (a - \tilde{\mu}) \pi(a; \tilde{\mu}) \\ 953$$

954 As desired, this leads to the following expression for $\tilde{g}(a, A)$
 955

$$956 \quad \tilde{g}(a, A) = \begin{cases} A(a - \rho) \exp\left(\frac{a^2 - (a - \rho)^2}{2}\right) & \text{if } Aa < 0 \\ 957 \\ 958 \\ 959 \\ 960 \\ 961 \end{cases} \quad \begin{cases} A(a + \rho) \exp\left(\frac{a^2 - (a + \rho)^2}{2}\right) & \text{if } Aa \geq 0. \end{cases}$$

D IMPLEMENTATION DETAILS & ANALYSIS

D.1 HYPERPARAMETER DETAILS

964 For the base algorithms we use the optimized hyperparameters available in open-source implemen-
 965 tations like Omnisafe (Ji et al., 2024)³. *SHAPO* hyperparameters δ_{Down} and ρ_{critic} are optimized by
 966 performing grid search between range $[0.001, 0.00001]$ for δ_{Down} and $\{0.01, 0.05, 0.005\}$ for ρ_{critic}
 967 while keeping the hyperparameters of the base algorithm were kept fixed. Full list of hyperpa-
 968 rameters for each baseline and the corresponding environment have been provided here (<https://anonymous.4open.science/r/Safe-Policy-Optimization-813E>). Most com-
 969 mon choice of *SHAPO* hyperparameters that gave the best performance across tasks and baselines
 970

971 ³<https://github.com/PKU-Alignment/omnisafe>

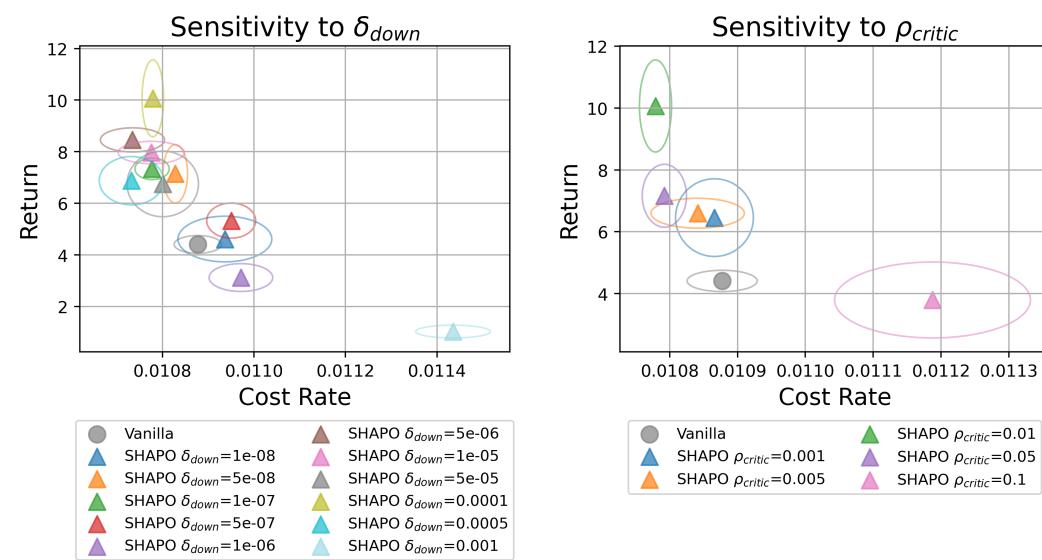


Figure 9: *Hyperparameter Sensitivity*: We evaluate the sensitivity of *SHAPo* to δ_{Down} (left) and ρ_{critic} (right). Very small δ_{Down} effectively disables *SHAPo* and yields performance similar to the vanilla baseline, while overly large values destabilize training. Moderate values provide the most consistent improvements. For ρ_{critic} , performance is stable across a broad range, as long as the value is not excessively large.

was $\delta_{\text{Down}} = 0.0001$ and $\rho_{\text{critic}} = 0.01$. There is a very clear monotonous hyperparameter sensitivity to *SHAPo* i.e. if the δ_{Down} value is too small, the policy optimization is unchanged from the base algorithm thus the performance also resembles the base algorithm’s performance, while if the δ_{Down} is too high, the state-distributions of the original policy d^{π_0} that generated the data and that of perturbed policy $d^{\tilde{\pi}}$ are no longer bounded and thus its no longer possible to provide a tight bound on the deterioration of the policy required for the inner *SHAPo* objective, which leads to unsability and inferior performance.

D.2 HYPERPARAMETER SENSITIVITY

To study the robustness of *SHAPo* to the choice of hyperparameters, we conduct an analysis (Fig. 9) varying the two key hyperparameters, δ_{down} and ρ_{critic} , while keeping all other settings fixed. This setup allows us to isolate the effect of each hyperparameter on safety and efficiency of the resulting policy. The results show that very small δ_{down} values effectively disable the perturbation step in *SHAPo*, causing the algorithm to behave like the vanilla baseline. Conversely, excessively large δ_{down} values lead to unstable updates and degraded performance. We observe a clear band of intermediate values that consistently improves both learning speed and final performance. In contrast, ρ_{critic} exhibits much less sensitivity: performance remains stable across a wide range of values, with degradation only occurring when the regularization becomes extremely large. These trends confirm that *SHAPo* is robust to reasonable choices of ρ_{critic} and requires only mild tuning of δ_{down} to achieve reliable gains.

D.3 RUNTIME ANALYSIS

Here we analyze the computational overhead introduced by *SHAPo* during training across different tasks. In our experiments, overall training time is dominated by environment interaction rather than

Metric	Vanilla	<i>SHAPo</i>
Total Runtime (mins)	85 min	100 min
Update Time (s)	4 s	5.5 s

Table 1: Table shows the total runtime of Vanilla (*PIDLag*) and *SHAPo* (*PIDLag*) on *PointGoalI* task as well as time taken for individual updates. As we can see that the compute overhead is negligible in comparison to the overall time it takes to train the RL agent and most of the runtime is taken up by collecting data through policy rollouts.

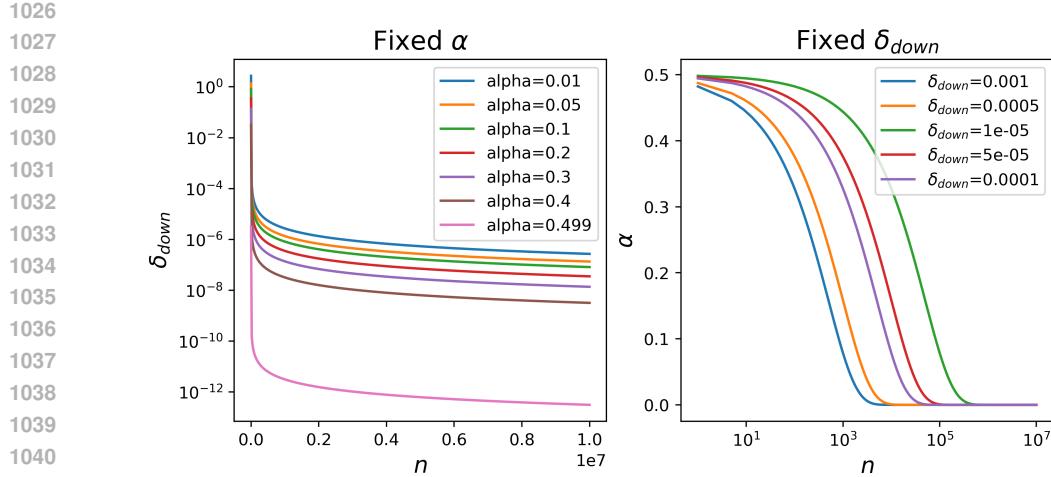


Figure 10: Comparison of pessimism schedules under *SHAPO*. **Left: Fixed α .** Holding the pessimism level α constant causes the corresponding bound $\delta_{\text{Down}}^t = z_\alpha^2 / (2n_t)$ to shrink rapidly as n_t grows, reducing the robustness margin over time. **Right: Fixed δ_{Down} .** Keeping δ_{Down} constant makes the implied percentile $\alpha_t = \Phi(-\sqrt{2n_t \delta_{\text{Down}}})$ decrease with n_t , meaning the agent becomes more risk-averse as training progresses. This is desirable for safe exploration: early on, when data are limited, pessimism remains low to avoid overly conservative behavior, while increased pessimism later helps guard against epistemic uncertainty once sufficient experience has been gathered.

by policy or critic updates. Consequently, the additional TRPO step required for *SHAPO*'s parameter adjustment contributes only marginally to the total wall-clock time, which includes data collection, policy updates, and critic updates. Table 1 reports the runtime for training an RL agent for 10M timesteps on the *PointGoal1* task averaged across 5 different training runs. As shown, *SHAPO* incurs only a small increase in total runtime, since most of the compute is spent on collecting on-policy rollouts. The per-update computation time for the actor and critics increases by roughly 30 percent, but this overhead is minor compared to the dominant cost of data collection. All the experiments were performed on CPU with 10 cores and 30 GB of RAM. To increase the efficiency of data-collection, we use vectorized environments provided with gymnasium (Towers et al., 2024) and safety-gymnasium(Ray et al., 2019), with 5 environments running in parallel.

E PESSIMISM SCHEDULE

In order to compare different ways of controlling the level of pessimism used in *SHAPO*, we use at each update step t the number of collected state-action samples n_t as a proxy for the ideal sample size n introduced in Subsection 4.2. It is important to note that the true value of n —the number of *informative, approximately independent* samples governing posterior contraction—is unknown in practice. The proxy n_t may therefore increase much faster than the effective statistical sample size, which has direct implications for how pessimism evolves during learning.

Increasing n_t affects the pessimism level differently depending on whether we fix δ_{Down} or fix the target percentile α . When δ_{Down} is kept constant, Proposition 2 implies that the induced percentile satisfies

$$z_\alpha^t = -\sqrt{2n_t \delta_{\text{Down}}}, \quad \alpha_t = \Phi(z_\alpha^t),$$

so that α_t decreases as n_t grows. Thus, the agent becomes *increasingly pessimistic*, focusing on more extreme tail events as training progresses. This behavior is desirable for safe exploration: early in learning, when data are scarce and uncertainty is large, low pessimism avoids overly conservative behavior that would suppress exploration; as more experience is gathered, increasing pessimism helps guard against refined estimates of unsafe regions.

By contrast, if we fix a pessimism level $\alpha \in (0, \frac{1}{2})$, then the corresponding δ_{Down}^t

$$\delta_{\text{Down}}^t = \frac{z_\alpha^2}{2n_t}$$

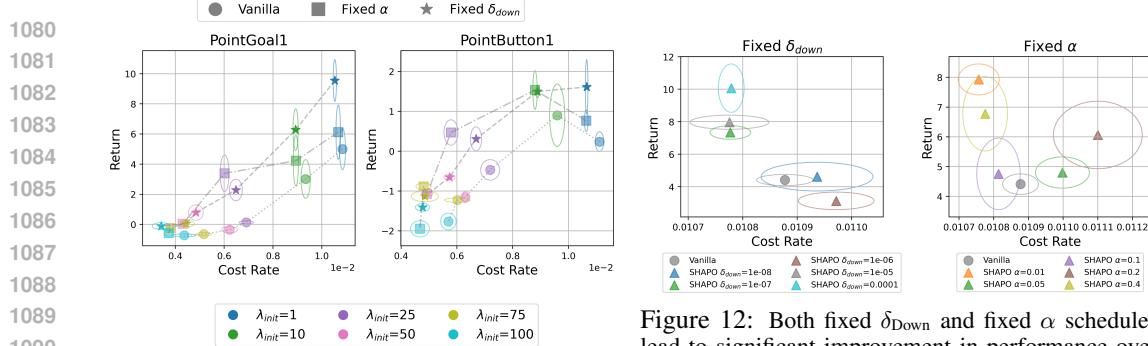


Figure 11: We compare two pessimism schedules for *SHAPO* by using a fixed δ_{Down} throughout the training or calculating δ_{Down} using $\delta_{\text{Down}} = \frac{\epsilon_{\alpha}^2}{2n}$ for a fixed α , where n is assumed to be all the state-action pairs experienced by the agent. Both schedules expand the Pareto frontier of the Vanilla (*PIDLag*) baseline.

decays at rate $1/n_t$. Because n_t may grow much faster than the true effective sample size, this schedule can drive δ_{Down}^t to zero prematurely, effectively nullifying any pessimism in the later stages of learning. This mirrors the Bernstein–von Mises posterior contraction, but may not model appropriately the epistemic uncertainty state of an actor trained in a reinforcement learning setting, where epistemic uncertainty persists due to partial observability, non-stationarity, or limited coverage of the state space. Fig. 10 illustrates this phenomenon: the fixed- α schedule quickly collapses the δ_{Down} as n_t grows, whereas fixing δ_{Down} maintains a nontrivial degree of pessimism throughout training.

Fig. 11 and 12 compare these two approaches to scheduling pessimism. Both strategies—fixing δ_{Down} or fixing α —enable *SHAPO* to outperform the vanilla baseline (*PIDLag* in this case). Fig. 11 shows that both pessimism schedules expand the Pareto frontier of the vanilla algorithm enhancing safety–efficiency tradeoff across different λ_{init} values. Fig. 12 compares the performance of *SHAPO* compared to the vanilla baseline (in grey) for different choices of δ_{Down} or α . We can see that there are many choices of fixed α ’s and δ_{Down} ’s that lead to improvement over the vanilla *PIDLag*, but the choice of α that leads to best performance is not that obvious as it impacts the exploration of the algorithm.

Since the effective sample size n cannot be reliably estimated in continuous-control reinforcement learning—where data are temporally correlated and only a fraction of collected samples contribute independent information—fixing δ_{Down} provides a practical and robust alternative. Treating δ_{Down} as a tunable hyperparameter allows practitioners to directly control the desired safety–efficiency tradeoff without relying on uncertain estimates of n . This makes the fixed- δ_{Down} strategy both simple and effective, offering a stable mechanism for regulating pessimism throughout training.

F ADDITIONAL RESULTS

Here we study *SHAPO* in the context of existing approaches that induce pessimism in the actor by adopting conservative estimates of the cost value function—either by inflating cost predictions or by emphasizing high-cost outcomes.

Worst-case Policy Gradients (WCPG) (Tang et al., 2019) approximates a distribution over the cost value and computes policy gradients using the Conditional Value-at-Risk (CVaR) at level α , thereby training the agent on the upper tail of the cost distribution. This explicitly biases the actor toward avoiding high-cost states. We’ve implemented an on-policy version of WCPG algorithm with the TRPO based actor and IQN Dabney et al. (2018) critic. Ensemble Critic methods instead construct an empirical distribution of the cost-value function using multiple critic networks. The resulting pessimistic estimate takes the form $A_c^{\mu}(s, a) + \beta A_c^{\sigma}(s, a)$, where A_c^{μ} is the mean cost-advantage and A_c^{σ} captures epistemic uncertainty across ensemble members. Larger β values thus impose stronger pessimism by amplifying uncertainty-driven penalties.

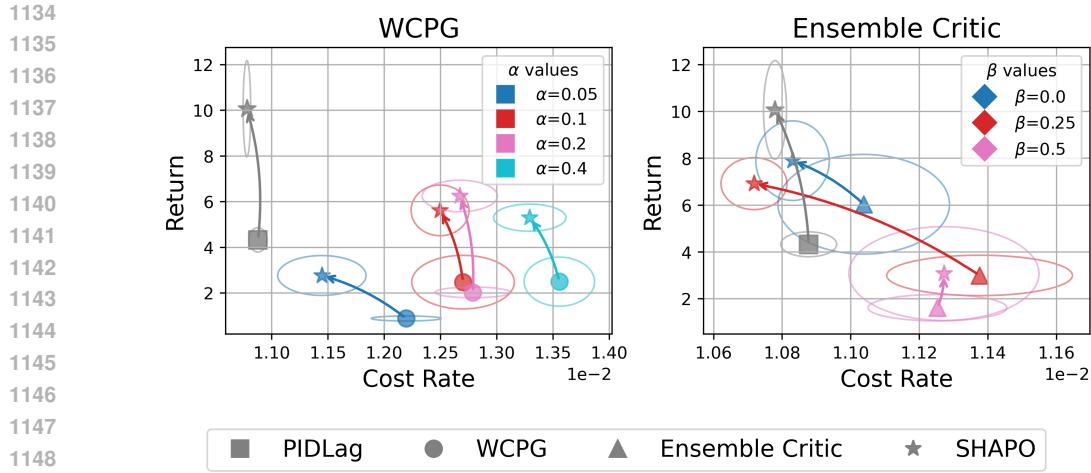


Figure 13: *SHAPO* improves the safety–efficiency tradeoff compared to value-based pessimism methods across a range of hyperparameters. For both WCPG (varying α) and ensemble critics (varying β), increasing pessimism causes these baselines to become overly conservative, limiting exploration. In contrast, *SHAPO* regulates pessimism directly at the actor level, yielding safer and more effective exploration.

Our method *SHAPO*, which only intervenes on the actor’s update, is compatible with these two approaches to pessimism in the face of uncertainty that focus on the critic. Fig. 13 shows that across a range of CVaR α values for WCPG (Tang et al., 2019) and β values for the ensemble critic, *SHAPO* consistently achieves a superior safety–efficiency tradeoff. This demonstrates that explicitly regulating pessimism through our perturbation mechanism provides a more stable and principled way to guide safe exploration compared to methods that rely solely on conservative or uncertainty-inflated value estimates.

In particular, both WCPG (Tang et al., 2019) and ensemble-based critics tend to produce increasingly conservative policies as α or β grows, since they amplify either the upper tail of the cost distribution or the critic’s epistemic uncertainty. While such mechanisms do encourage caution, they can also lead to excessive pessimism that suppresses useful exploration. The results emphasize that uncertainty at the actor level cannot be fully or reliably inferred from uncertainty in the value function alone. By directly shaping the actor’s update through *SHAPO*’s perturbation step, we obtain a more balanced form of pessimism—one that maintains safety without unduly restricting exploration during early learning.

Originally, WCPG Tang et al. (2019) was proposed for off-policy RL and we have adapted it for on-policy RL with distributional critic implemented using IQN (Dabney et al., 2018). We have not spent a lot of time optimizing the hyperparameters and we do not claim that the results are optimal. Also we note that the environments used in the paper don’t have any aleatoric uncertainty (in terms of stochasticity in the transition function), which distributional critics are best known to model.

G SHAPO FOR UNCONSTRAINED RL

SHAPO is a general mechanism that can be incorporated into any on-policy reinforcement learning algorithm, and its utility extends beyond explicitly constrained RL settings. To illustrate this versatility, we evaluate *SHAPO* in three standard MuJoCo (Todorov et al., 2012) continuous-control environments: *Ant-v4*, *Walker2d-v4*, and *HalfCheetah-v4*. The first two environments (*Ant* and *Walker2d*) include termination conditions in which the episode ends immediately if the agent falls. Although they do not provide an explicit cost signal or negative penalty for falling, this termination logic implicitly induces a lower tail of poor outcomes: each fall truncates the episode, prevents further reward collection, and therefore constitutes an undesirable event in the return distribution. In contrast, *HalfCheetah* has no such termination or failure mode—the episode continues regardless of how the agent moves—yielding a much smoother return distribution without a pronounced lower

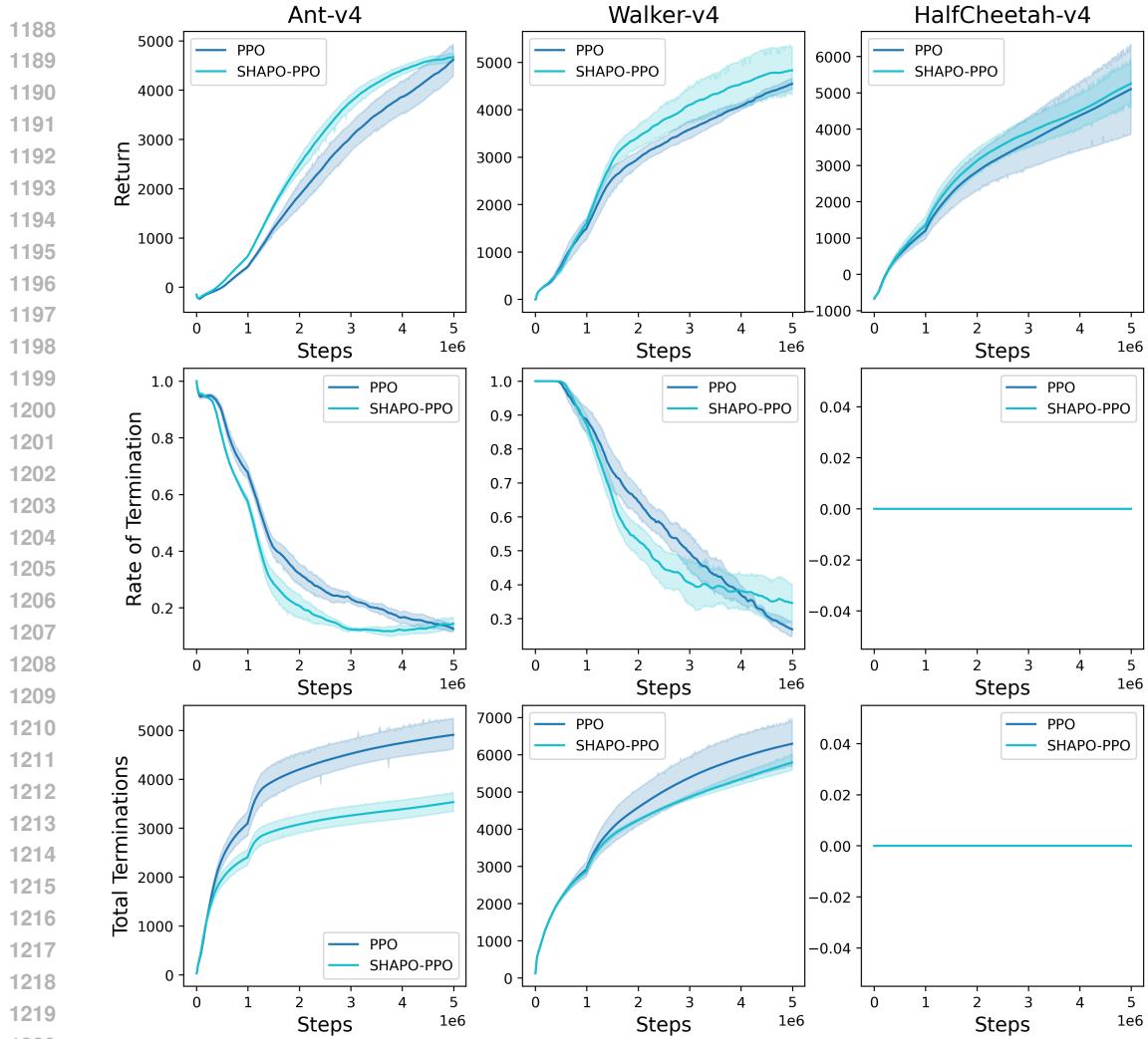


Figure 14: *SHAPo on Standard RL*: Columns correspond to *Ant-v4*, *Walker2d-v4*, and *HalfCheetah-v4*. Top row: episodic return; middle row: rate of termination; bottom row: total terminations. *SHAPo* yields substantial gains on *Ant-v4* and *Walker2d-v4*, where falling triggers early episode termination and creates a pronounced lower tail in the return distribution. In *HalfCheetah-v4*, which lacks termination or failure modes, the return distribution has no meaningful lower tail, and *SHAPo* consequently provides limited improvement.

tail. We compare PPO (Schulman et al., 2017) to its *SHAPo*-augmented variant (*SHAPo-PPO*), implemented as described in Algorithm 4. From this perspective, *SHAPo*’s role becomes clear: it modulates the actor’s sensitivity to tail events in the loss landscape, whether these arise from explicit constraints or from inherent structural properties of the environment.

Fig. 14 illustrates how the impact of *SHAPo* depends on the presence or absence of tail events in the environment. In *Ant* and *Walker2d*, *SHAPo* consistently improves the sample efficiency of the PPO baseline by reducing premature terminations; this allows agents to remain in the episode longer, resulting in fewer resets and more reward collected per rollout. In *HalfCheetah*, however, where no catastrophic failure or termination mode exists, the return distribution lacks a meaningful lower tail, and accordingly, *SHAPo* offers limited additional benefit. These results underscore that while *SHAPo* provides tangible advantages in settings with significant tail risk, its effect is naturally less pronounced in environments where undesirable events do not produce clear tail behavior in the return landscape.

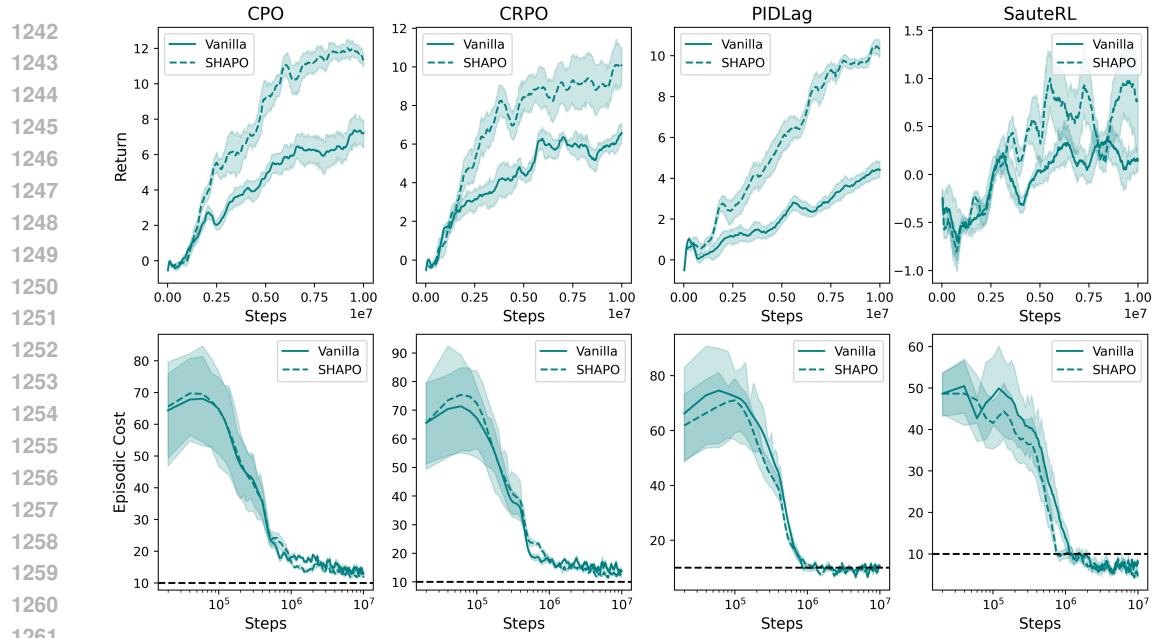


Figure 15: *PointGoal1*

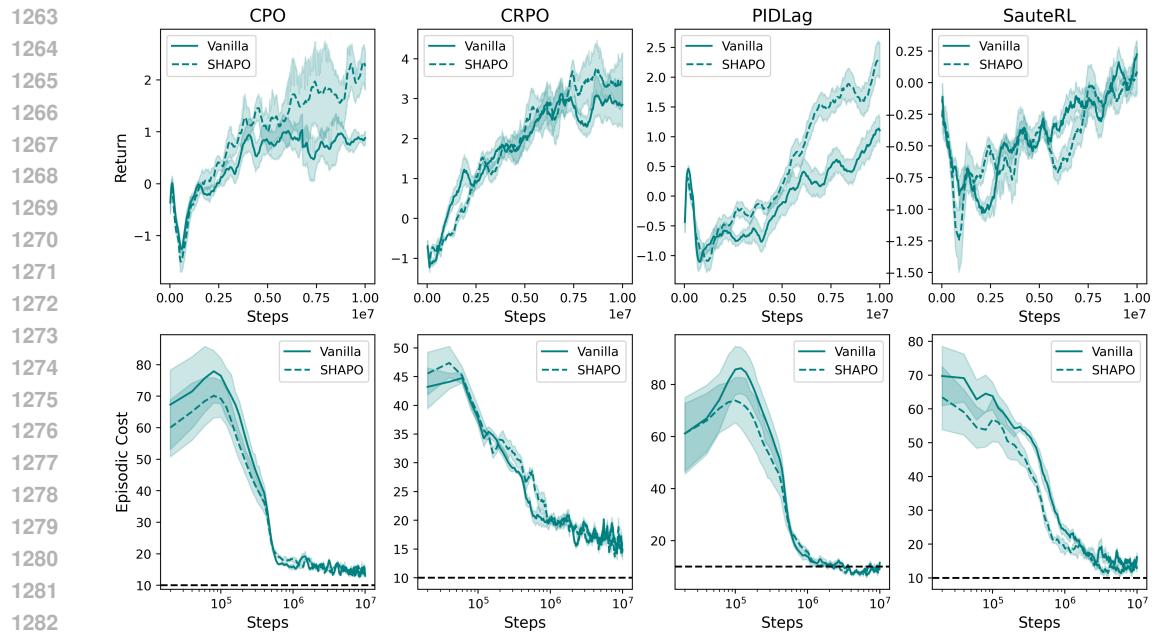


Figure 16: *PointButton1*

II LLM USAGE

1288 ChatGPT (Achiam et al., 2023) was used to polish writing and also as a tool to correct grammar and
1289 spelling mistakes.

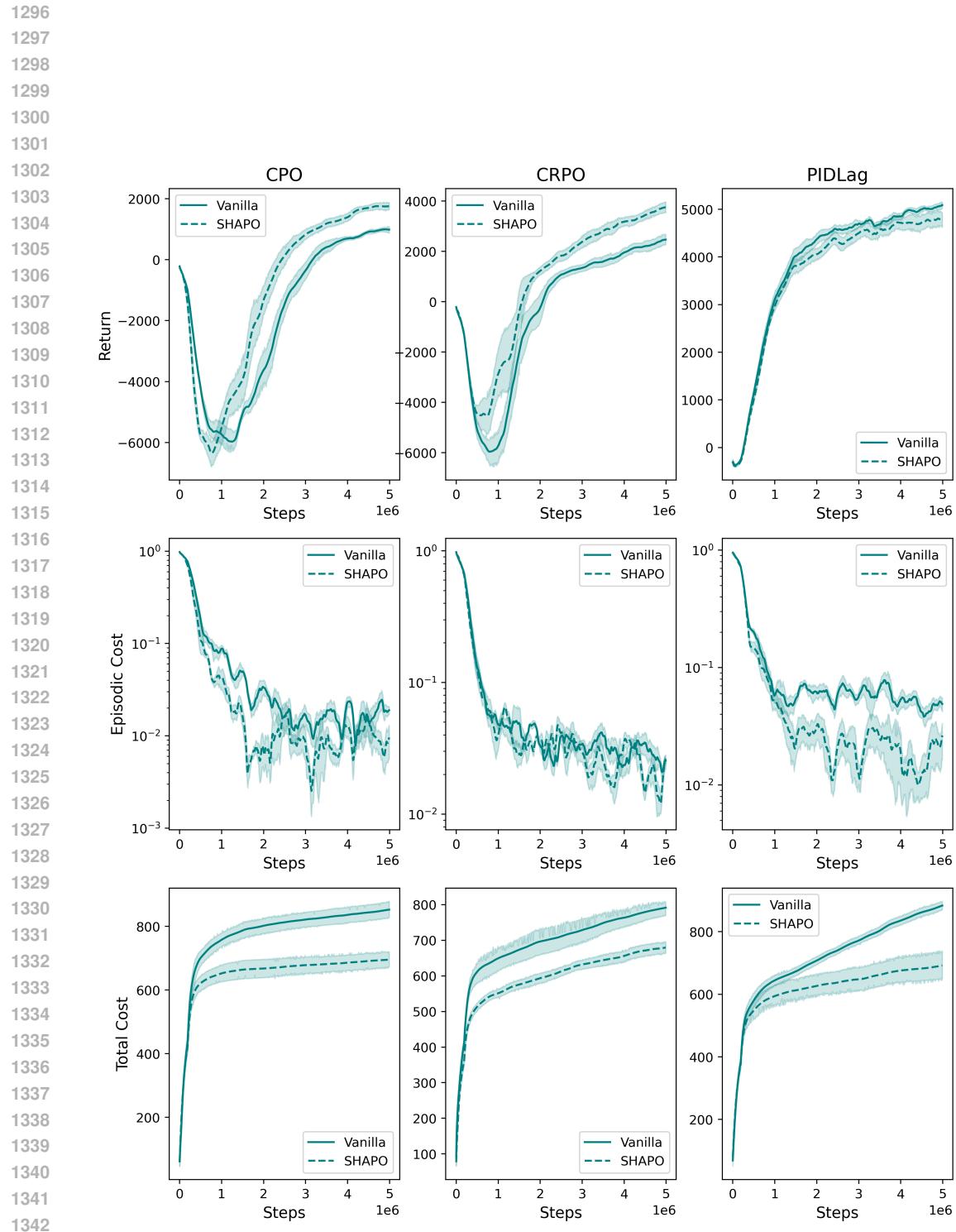


Figure 17: *Ant-v4*

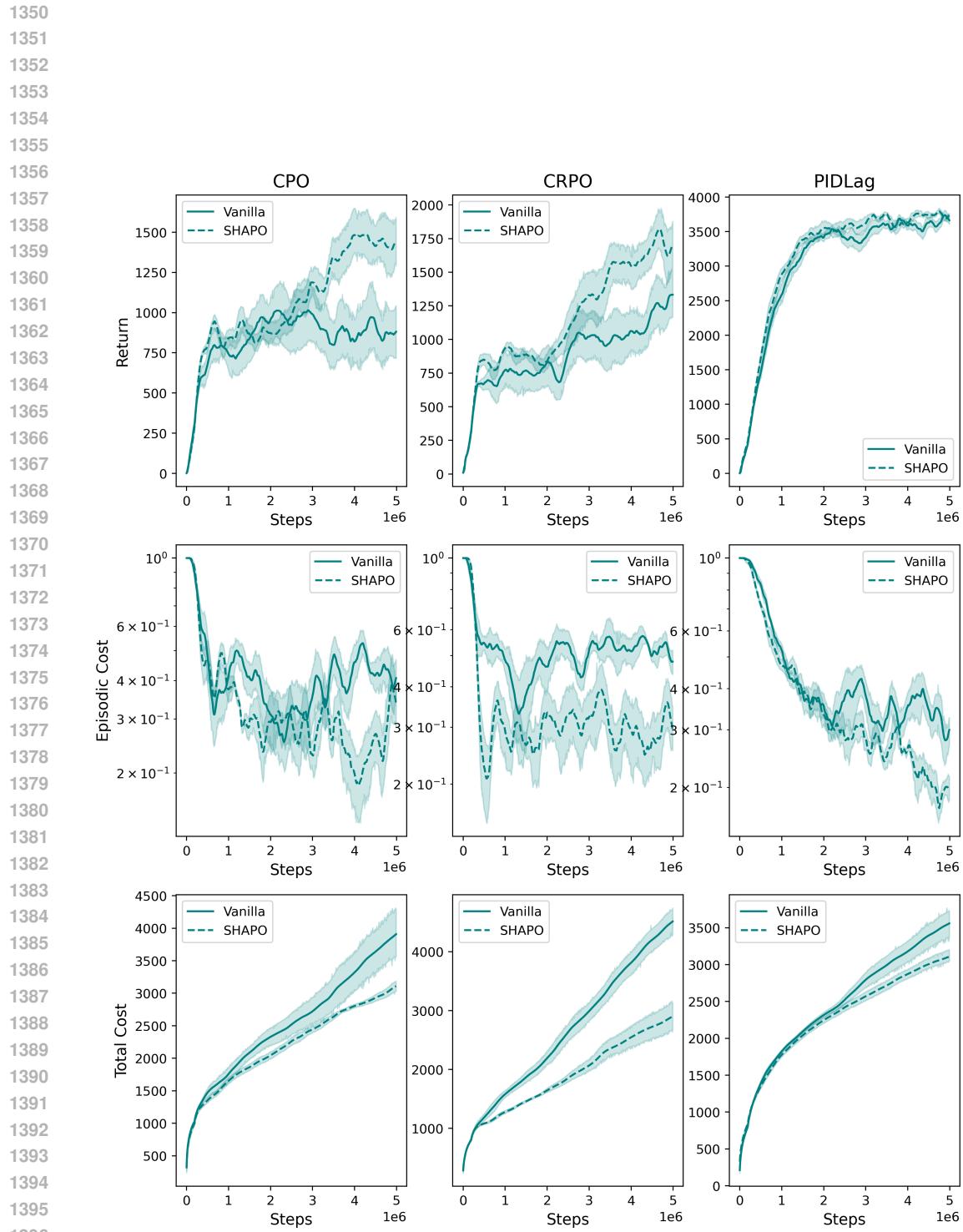


Figure 18: Walker2d-v4