
CodeBERTScore: Evaluating Code Generation
with Pretrained Models of Code

Shuyan Zhou∗ Uri Alon∗† Sumit Agarwal Graham Neubig
Language Technologies Institute, Carnegie Mellon University
{shuyanzh,ualon,sumita,gneubig}@cs.cmu.edu

Abstract

Since the rise of neural natural-language-to-
code models (NL→Code) that can generate
long expressions and statements rather than
a single next-token, one of the major prob-
lems has been reliably evaluating their gen-
erated output. In this paper, we propose
CodeBERTScore: an evaluation metric for
code generation, which builds on BERTScore
(Zhang et al., 2020). Instead of encoding
only the generated tokens as in BERTScore,
CodeBERTScore also encodes the natural lan-
guage input preceding the generated code, thus
modeling the consistency between the gener-
ated code and its given natural language con-
text as well. We perform an extensive eval-
uation of CodeBERTScore across four pro-
gramming languages. We find that Code-
BERTScore achieves a higher correlation with
human preference and with functional correct-
ness than all existing metrics. That is, gener-
ated code that receives a higher score by Code-
BERTScore is more likely to be preferred by
humans, as well as to function correctly when
executed. We release five language-specific
pretrained models to use with our publicly
available code. Our language-specific models
have been downloaded more than 1,000,000
times from the Huggingface Hub.1

1 Introduction

Natural-language-to-code generation (NL→Code)
has seen sharply growing popularity recently
due to the emergence of large language models
(LLMs) trained on vast amounts of natural lan-
guage and code (Chen et al., 2021; Fried et al.,
2022; Zhou et al., 2023; Austin et al., 2021; Al-
lal et al., 2023). LLMs have reached such a high
NL→Code accuracy that they are now useful for
the broad programming audience and actually save

∗Equal contribution
† Now at Google DeepMind

1The code and data are available at https://github.com/
neulab/code-bert-score

developers’ time when implemented in tools such
as GitHub’s Copilot. This sharp rise in LLMs’ us-
ability was achieved thanks to their ability to ac-
curately generate long completions, which span
multiple tokens and even lines, rather than only
a single next-token as in early models (Allama-
nis and Sutton, 2013; Movshovitz-Attias and Co-
hen, 2013). Nevertheless, evaluating and compar-
ing different models has remained a challenging
problem (Xu et al., 2022) that requires an accurate
and reliable evaluation metric for the quality of
the models’ generated outputs, and existing met-
rics are sub-optimal.

Existing evaluation approaches The most
common evaluation metrics are token-matching
methods such as BLEU (Papineni et al., 2002),
adopted from natural language processing. These
metrics are based on counting overlapping n-
grams in the generated code and the reference
code. CrystalBLEU (Eghbali and Pradel, 2022)
extends BLEU by ignoring the 500 most oc-
curring n-grams, arguing that they are trivially
shared between the prediction and the reference.
Nonetheless, both BLEU and CrystalBLEU rely
on the lexical exact match of tokens, which does
not account for diversity in implementation,
variable names, and code conventions. Figure 1
shows an example: given the reference code
in Figure 1(a), both BLEU and CrystalBLEU
prefer (rank higher) the non-equivalent code in
Figure 1(b) over the functionally equivalent code
in Figure 1(c).

CodeBLEU (Ren et al., 2020) attempts to lower
the requirement for a lexical exact match, by rely-
ing on data-flow and Abstract Syntax Tree (AST)
matching as well; nevertheless, valid generations
may have different ASTs and data flow from the
reference code, which may lead to low CodeBLEU
score even when the prediction is correct. Further,
partial predictions may be useful for a program-

https://github.com/neulab/code-bert-score
https://github.com/neulab/code-bert-score

Reference:
int f(Object target) {

int i = 0;
for (Object elem: this.elements) {

if (elem.equals(target)) {
return i;

}
i++;

}
return -1;

}

(a) The ground truth reference – find the index of target in this.elements.

Non-equivalent candidate: Equivalent candidate:
boolean f(Object target) {

for (Object elem: this.elements) {
if (elem.equals(target)) {

return true;
}

}

return false;
}

int f(Object target) {
for (int i=0; i<this.elements.size(); i++) {

Object elem = this.elements.get(i);
if (elem.equals(target)) {

return i;
}

}
return -1;

}

(b) Preferred by BLEU & CrystalBLEU – find
whether or not target is in this.elements.

(c) Preferred by CodeBERTScore – find the index of target in
this.elements.

Figure 1: An intuitive example for the usefulness of CodeBERTScore in measuring generated code: Figure 1(a)
shows a reference code snippet in Java. Figure 1(b) and Figure 1(c) show two generated predictions. Among
these two candidates and given the reference, both BLEU and CrystalBLEU prefer (score higher) the snippet in
Figure 1(b), which is not functionally equivalent to the reference, while our proposed CodeBERTScore prefers the
code in Figure 1(c), which is functionally equivalent to the code in Figure 1(a).

mer, but accepting them may lead to partial code
that does not parse, and thus cannot be fully eval-
uated by CodeBLEU (for example, predicting the
first line of a for loop, without the loop’s body).

Execution-based evaluation attempts to address
these problems by running tests on the generated
code to verify its functional correctness (Chen
et al., 2021; Athiwaratkun et al., 2022; Li et al.,
2022; Wang et al., 2022; Lai et al., 2022). This
provides a direct measure of the functionality of
the generated code while being agnostic to di-
versity in implementation and style. However,
execution-based evaluation requires datasets that
are provided with hand-written test cases for each
example, which is costly and labor-intensive to
create; thus, only few such datasets exist. Addi-
tionally, executing model-generated code is sus-
ceptible to security threats, and thus should be run
in an isolated sandbox, which makes it technically
cumbersome to work with iteratively.

Our approach In this work, we introduce Code-
BERTScore, an evaluation metric for code genera-
tion, leveraging self-supervised pretrained models
of code such as CodeBERT (Feng et al., 2020),
and adopting best practices BERTScore (Zhang

et al., 2020). First, CodeBERTScore encodes
the generated code and the reference code inde-
pendently with pretrained models, with the inclu-
sion of natural language instructions or comments.
Then, we compute the cosine similarity between
the encoded representations of each token in the
generated code and each token in the reference
code. Finally, the best matching token vector pairs
are used to compute precision and recall. Code-
BERTScore allows comparing code pairs that are
lexically different while taking into account the
(1) programmatic- or natural-language-context, if
such provided; the (2) contextual information of
each token; and (3) implementation diversity. Our
approach is illustrated in Figure 2.

Example A concrete example is shown in Fig-
ure 1: while BLEU and CrystalBLEU prefer (rank
higher) the non-equivalent code in Figure 1(b)
given the reference code in Figure 1(a), Code-
BERTScore prefers the code in Figure 1(c), which
is functionally equivalent to the reference (Fig-
ure 1(a)). We note that in this example, the vari-
able names are identical across all three code snip-
pets. When the variable names of the reference
are different than the candidate’s, it is even harder

CodeBERT

CodeBERT

Natural Language Instruction

Find the square root of x

Encode

Pairwise Cosine Similarity
(only between non-punctuation

code tokens)

Similarity Matrix

x

**

0.5R
ef

er
en

ce
 C

od
e

Generated Code
math xsqrt

CodeBERTScore

CodeBERTScore

CodeBERTScore

Precision

Recall

F-score

Reference Code

x ** 0.5

Generated Code

math.sqrt(x)

Figure 2: A diagram illustrating CodeBERTScore: We use a language-specific CodeBERT model to encode each
of ⟨natural_language, reference_code⟩ and ⟨natural_language, generated_code⟩. We then compute the pairwise
cosine similarity between every encoded token in the reference and every encoded token in the generated code,
ignoring the encoded natural language context tokens and encoded punctuation tokens; finally, we take the max
across the rows of the resulting matrix to compute Precision and across columns to compute Recall.

for token-matching approaches such as BLEU and
CrystalBLEU to compare the reference with the
candidates, while CodeBERTScore can trivially
match variable names according to their semantic
similarity and their functional role in the code.

Contributions In summary, our main contribu-
tions are: (a) CodeBERTScore: a self-supervised
metric for NL→Code evaluation, based on
BERTScore, which leverages the benefits of pre-
trained models, while not requiring labeling or
manually annotated data. (b) An extensive em-
pirical evaluation across four programming lan-
guages, showing that CodeBERTScore is more
correlated with human preference and more cor-
related with execution correctness than all pre-
vious approaches including BLEU, CodeBLEU,
and CrystalBLEU. (c) We pretrain and release five
language-specific CodeBERT models to use with
our publicly available code, for Java, Python, C,
C++, and JavaScript. As of the time of this sub-
mission, our models have been downloaded from
the Huggingface Hub more than 1,000,000 times.

2 Evaluating Generated Code

2.1 Problem Formulation
Given a context x ∈ X (e.g., a natural language
instruction or comment), a code generation model
M : X → Y produces a code snippet ŷ ∈ Y
by conditioning on the intent specified by x. The
quality of the generation is evaluated by compar-
ing ŷ ∈ Y with the reference implementation
y∗ ∈ Y , using a metric function f : Y × Y → R,
essentially computing f(ŷ, y∗).

A larger value of f(ŷ, y∗) indicates that the gen-
erated code is more accurate with respect to the
reference code, and the way f ranks different can-

didates is more important than the absolute value
of f(ŷ, y∗). That is, ideally, if a prediction ŷ1
is more functionally equivalent to y∗ and more
preferable by human programmers over a predic-
tion ŷ2, we wish that a good metric would rank ŷ1
higher than ŷ2. That is, we seek an f function such
that f(ŷ1, y∗) > f(ŷ2, y

∗).

2.2 Background: BERTScore

BERTScore (Zhang et al., 2020) was proposed as
a method for evaluating mainly machine transla-
tion outputs. The idea in BERTScore is to en-
code the candidate sentence (the prediction) and
the reference sentence (the ground truth) sepa-
rately, using a BERT-based model, which encodes
each sequence of tokens as a sequence of vectors.
Then, BERTScore computes the cosine similarity
between every vector from the candidate sequence
and every vector from the reference sequences.

Given these similarity scores, BERTScore com-
putes sentence-level precision by taking the max-
imum similarity score for every candidate vec-
tor and averaging, and computes recall by tak-
ing the average of the maximum similarity scores
for every reference vector. Intuitively, a high
BERTScore-recall is obtained, for example, if ev-
ery vector from the reference sentence has at least
one vector from the candidate sentence that is
highly cosine-similar to it; a high BERTScore-
precision is obtained if every vector from the can-
didate sentence is highly cosine-similar to at least
one vector from the reference sentence. Ulti-
mately, the final score is the F1 score, computed
as the harmonic mean of precision and recall.

CodeBERTScoreP =
1

|ŷ[m̂]|
∑

ŷj∈ŷ[m̂]

max
y∗i ∈y∗[m∗]

sim (y∗i , ŷj) (4)

CodeBERTScoreR =
1

|y∗[m]|
∑

y∗i ∈y∗[m∗]

max
ŷj ∈ŷ[m̂]

sim (y∗i , ŷj) (5)

CodeBERTScoreF1 =
2 · CodeBERTScoreP · CodeBERTScoreR
CodeBERTScoreP +CodeBERTScoreR

(6)

CodeBERTScoreF3 =
10 · CodeBERTScoreP · CodeBERTScoreR
9 · CodeBERTScoreP +CodeBERTScoreR

(7)

Figure 3: Main equations for CodeBERTScore

2.3 CodeBERTScore

Our approach generally follows BERTScore, with
the following main differences:

1. We encode the context (the natural language
instruction or comment) along with each of
the generated and reference code snippets,
but without using the encoded context in the
final similarity computation, essentially com-
puting f(ŷ, y∗, x) rather than f(ŷ, y∗).

2. Given the precision and recall, instead of
computing the F1 score, we also compute F3

to weigh recall higher than precision, follow-
ing METEOR (Banerjee and Lavie, 2005).

3. As our underlying BERT-like model, we use
programming language-specific models that
we pretrain and release, rather than models
that were intended for natural language only.

We use a BERT-like pretrained model B to en-
code the reference and candidate. In our exper-
iments, B is a CodeBERT model that we fur-
ther pretrained using the masked language mod-
eling objective (Devlin et al., 2019) on language-
specific corpora, but B can be any transformer-
based model which we have access to its internal
hidden states.

Token Representation We concatenate the con-
text x with each of the reference and the candidate,
resulting in x · y∗ and x · ŷ. We use the tokenizer
TB provided with the model B:

TB (x · y∗) = ⟨x1, ..., xk, y∗1, ..., y∗m⟩
TB (x · ŷ) = ⟨x1, ..., xk, ŷ1, ..., ŷn⟩

(1)

to get a sequences of tokens. We run a standard
“forward pass” with the model B for each tok-

enized sequence, resulting in sequences of vectors:

B (⟨x1,...,xk,y∗1,...,y∗m⟩)= ⟨x1,...,xk,y
∗
1,...,y

∗
m⟩

B (⟨x1,...,xk,ŷ1,...,ŷn⟩)= ⟨x1,...,xk,ŷ1,...,ŷn⟩
(2)

Finally, we mask out the encoded context tokens
x1, ...,xk as well as all non-alphanumeric tokens
(parentheses, brackets, dots, commas, whites-
paces, etc.) except for arithmetic operators, from
each of the encoded reference and encoded can-
didate. This results in encoded reference tokens
y∗ = ⟨y∗

1, ...,y
∗
m⟩, encoded candidate tokens ŷ =

⟨ŷ1, ..., ŷn⟩, and their corresponding masks m∗

and m̂. We denote y[m] as the remaining encoded
tokens in y after selecting only alphanumeric to-
ken vectors according to the mask m.

Similarity Computation We compute the co-
sine similarity between the encoded reference and
candidate tokens, following Zhang et al. (2020):

sim (y∗i , ŷj) =
y∗
i
⊤ · ŷj

∥y∗
i ∥ · ∥ŷj∥

(3)

Although this compares the individual tokens y∗i
and ŷj , their vector representations y∗

i and ŷj

contain information about their context, and thus
about their semantic role in the code.

CodeBERTScore We use the similarity matrix
(see Figure 2), formed by the similarity scores be-
tween y∗ and ŷ, to compute precision, recall, and
F1, by taking the maximum across the rows and
columns of the similarity matrix, and then aver-
aging. Following Banerjee and Lavie (2005), we
also compute F3 by giving more weight to recall,
as shown in Figure 3. Additional details regarding
token weighting and scaling are provided in Ap-
pendix A.

3 Experimental Setup

We evaluate CodeBERTScore across multiple
datasets and programming languages. We first
show that CodeBERTScore is more correlated
with human preference than previous metrics, us-
ing human-rated solutions for the CoNaLa dataset
(Yin et al., 2018a; Evtikhiev et al., 2022). We then
show that CodeBERTScore is more correlated
with functional correctness, using the HumanEval
dataset (Chen et al., 2021). We also show that
CodeBERTScore achieves a higher newly pro-
posed distinguishability than other metrics (Ap-
pendix F). Finally, we analyze some of the design
decisions and their implications.

3.1 Training Language-specific CodeBERT
models

Training We used CodeBERT (Feng et al.,
2020) as our base model (B) and continued its self-
supervised pretraining (Gururangan et al., 2020)
with the masked language modeling (MLM) ob-
jective (Devlin et al., 2019) on Python, Java, C++,
C, and JavaScript corpora. We trained a sepa-
rate model for each programming language, for
1,000,000 steps for each language, using a batch
size of 32, an initial learning rate of 5e−5, decayed
linearly to 3e−5. Our implementation is based on
the widely used HuggingFace Transformers
library (Wolf et al., 2019) and BERTScore2, and
it supports any transformer-based model available
on the HuggingFace hub.

Dataset We trained each model on the language-
specific subset of the CodeParrot (Tunstall et al.,
2022) dataset3, which consists of overall 115M
code files from GitHub, further filtered by keep-
ing only files having average line length lower than
100, more than 25% alphanumeric characters, and
non-auto-generated files. Even after 1,000,000
training steps, none of the models have completed
even a single epoch, meaning that every training
example was seen only once at most.

3.2 Comparing Different Metrics
We compare CodeBERTScore with existing met-
rics that are commonly used on code generation
evaluation. We use human annotated preference
and execution-based results as the ground truth
and measure their correlation with these metrics.

2https://github.com/Tiiiger/bert_score
3https://huggingface.co/datasets/codeparrot/

github-code-clean

Correlation metrics We used three major cor-
relation metrics. Following best practices in natu-
ral language evaluation, we used Kendall-Tau (τ),
Pearson (rp) and Spearman (rs) to measure the
correlation between each metric’s scores and the
references. The detailed equations can be found in
Appendix C.

Human preference experiments We evaluate
different metrics on CoNaLa (Yin et al., 2018b), a
natural language to Python code generation bench-
mark collected from StackOverflow. We use the
human annotation of Evtikhiev et al. (2022) to
measure the correlation between each metric and
human preference. More details are provided in
Appendix B.1.

Functional correctness experiments We
evaluate functional correctness using the Hu-
manEval (Chen et al., 2021) benchmark. Each
example in HumanEval contains a natural
language goal, hand-written input-output test
cases, and a human-written reference solution.
While the original HumanEval is in Python,
Cassano et al. (2022) translated HumanEval to
18 programming languages, and provided the
predictions of the Codex model (Chen et al., 2021)
(code-davinci-002) and their corresponding
functional correctness.4 We used Java, C++,
Python, and JavaScript for these experiments,
which are some of the most popular programming
languages in open-source projects.5 More details
are provided in Appendix B.2.

Hyperparameters We tuned only the following
hyperparameters for CodeBERTScore: whether to
use F1 or F3, and which layer of the underlying
model to extract the encoded tokens from, which
we examine in Section 5. We used F1 in the hu-
man preference experiments and F3 in the func-
tional correctness experiments. We perform 3-fold
cross-validation and report average results across
the three folds. As for the layer to extract the to-
ken vectors from, we used layer 7 for CoNaLa,
and in HumanEval we used layer 7 for Java, 10 for
C++, 11 for JavaScript, and 9 for Python.

4 Results

Correlation with human preference Table 2
shows the correlation between different metrics

4https://huggingface.co/datasets/nuprl/MultiPL-E
5https://octoverse.github.com/2022/

top-programming-languages

https://github.com/Tiiiger/bert_score
https://huggingface.co/datasets/codeparrot/github-code-clean
https://huggingface.co/datasets/codeparrot/github-code-clean
https://huggingface.co/datasets/nuprl/MultiPL-E
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages

Java C++ Python JavaScript
Metric τ rs τ rs τ rs τ rs

BLEU .481 .361 .112 .301 .393 .352 .248 .343
CodeBLEU .496 .324 .175 .201 .366 .326 .261 .299
ROUGE-1 .516 .318 .262 .260 .368 .334 .279 .280
ROUGE-2 .525 .315 .270 .273 .365 .322 .261 .292
ROUGE-L .508 .344 .258 .288 .338 .350 .271 .293
METEOR .558 .383 .301 .321 .418 .402 .324 .415
chrF .532 .319 .319 .321 .394 .379 .302 .374
CrystalBLEU .471 .273 .046 .095 .391 .309 .118 .059

CodeBERTScore .553 .369 .327 .393 .422 .415 .319 .402

Table 1: Kendall-Tau (τ) and Spearman (rs) correlations of each metric with the functional correctness on Hu-
manEval in multiple languages. The correlation coefficients are reported as the average across three runs. Standard
deviation is provided in Table 3.

Metric τ rp rs

BLEU .374 .604 .543
CodeBLEU .350 .539 .495
ROUGE-1 .397 .604 .570
ROUGE-2 .429 .629 .588
ROUGE-L .420 .619 .574
METEOR .366 .581 .540
chrF .470 .635 .623
CrystalBLEU .411 .598 .576

CodeBertScore .517 .674 .662

Table 2: The Kendall-Tau (τ), Pearson (rp) and Spear-
man (rs) correlation with human preference. The best
performance is bold. The correlation coefficients are
reported as the average across three runs. Standard de-
viations are provided in Table 4.

and human preference. CodeBERTScore achieves
the highest correlation with human preference,
across all correlation metrics. While Evtikhiev
et al. (2022) suggested that chrF and ROUGE-L
are the most suitable metrics for evaluating code
generation models in CoNaLa, CodeBERTScore
outperforms these metrics by a significant mar-
gin. For example, CodeBERTScore achieves
Kendall-Tau correlation of 0.517 compared to
0.470 of chrF and 0.420 of ROUGE-L. These re-
sults show that generated code that is preferred by
CodeBERTScore— also tends to be preferred by
human programmers.

Correlation with functional correctness Ta-
ble 1 shows the correlation between different met-
rics and functional correctness: CodeBERTScore

achieves the highest or comparable Kendall-Tau
and Spearman correlation with functional correct-
ness across all four languages. METEOR achieves
a comparable correlation with CodeBERTScore in
Java and JavaScript, and its correlation is surpris-
ingly better than other baseline metrics. However,
in C++ and Python, CodeBERTScore is strictly
better. Overall on average across languages, Code-
BERTScore is more correlated with functional
correctness than all baselines.

5 Analysis

We conducted a series of additional experiments
to understand the importance of different design
decisions, and to gain insights on applying Code-
BERTScore to new datasets and scenarios.

Can we use CodeBERTScore in a new lan-
guage without a language-specific CodeBERT?
In all experiments in Section 4, we used the
language-specific model which we continued to
pretrain on each language. But what if we wish
to use CodeBERTScore in a language in which we
don’t have a language-specific model? We com-
pare the language-specific models to CodeBERT-
base in Figure 4. Generally, CodeBERT-base
achieves close performance to a language-specific
model. However, in most HumanEval experi-
ments and correlation metrics, using the language-
specific model is beneficial. These results show
that language-specific models are often preferred
if such models are available, but the CodeBERT-
base can still provide close performance even
without language-specific pretraining.

CoNaLa HumanEval-Python HumanEval-Java HumanEval-C++ HumanEval-JavaScript
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.52

0.46

0.56

0.38 0.37

0.52

0.45

0.56

0.39 0.38

0.65

0.34 0.33

0.37
0.34

0.65

0.35
0.32

0.35
0.3

τ -Lang-specific τ -Base model rs-Lang-specific rs-Base model

Figure 4: The Kendall-Tau and Spearman on the development set of different datasets with the language-specific
pretrained model (Lang-specific) and with the base CodeBERT (Base model).

0 2 4 6 8 10 12
0.25

0.3

0.35

0.4

0.45

Layer

Java
C++
JavaScript
Python

Figure 5: The average of Kendall-Tau and Spearman
on the development set of HumanEval when using the
embeddings from different layers.

Which transformer layer should we use? We
further investigate the impact of using hidden
states from different layers of the model — the
layer which the vectors in Equation (2) come from,
in the computation of CodeBERTScore. The re-
sults are shown in Figure 5: generally, the deeper
the layer – the higher the average correlation be-
tween CodeBERTScore and functional correct-
ness, across all programming languages. However
in almost all languages, performance reaches its
maximum before the last layer, and decreases at
the following layers. This suggests that higher lay-
ers encode the semantic information of each token
more accurately, but the final layers may be more
task-specific. These observations are consistent
with Tenney et al. (2019), who found that lower
layers in BERT tend to process shallow informa-

tion, while higher layers encode deeper semantic
meaning in natural language.

Does encoding natural language context help?
One major difference between CodeBERTScore
and BERTScore is that CodeBERTScore lever-
ages the context for the generated code, such as
the natural language instruction or intent that was
given as input for generation. We find that us-
ing context increases the correlation, for example,
the Kendall-Tau of CodeBERTScore from 0.50 to
0.52. While this paper mainly focuses on natu-
ral language instructions, we believe that Code-
BERTScore can thus benefit other programming
scenarios as well, for example when generating
code given the human-written comments, or gen-
erating code given the preceding code context.

CodeBERTScore allows soft matching of
tokens The heatmaps in Figure 6 show the sim-
ilarity scores between tokens in CodeBERTScore.
For example, both shutil.rmtree and
os.rmdir in Figure 6(a) delete a folder;
CodeBERTScore aligns each token to a respective
token in the other expression, even though the two
spans do not share many identical tokens.

In Figure 6(b), both code snippets calculate a
square root, where one uses math.sqrt(x) and
the other uses x ** 0.5. An exact surface-
form-matching metric such as chrF would assign a
low similarity score to this code pair, as they only
share the token x. However, CodeBERTScore as-
signs non-zero scores to each token with meaning-
ful alignments, such as matching [sq,rt] with
[_0,5], since a square root is the 0.5-th power.

Additionally, we study the robustness of Code-
BERTScore to adversarial perturbations. We
found that token-based metrics such as chrF are

sh util . r mt ree (folder)

os

.

r

md

ir

(

folder

)

(a)

x _** _0 . 5

math

.

sq

rt

(

x

)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

Figure 6: Heatmaps of the similarity scores between two pieces of code that achieve the same goal. Figure 6(a)
shows the similarity scores between os.rmdir(folder) and shutil.rmtree(folder). Figure 6(b)
shows the similarity scores between math.sqrt(x) and x ** 0.5.

much more prone to matching trivial tokens rather
than tokens that preserve the semantic meaning of
the code. Examples can be found in Appendix E.

Additional discussion and experiments regard-
ing the distinguishability of CodeBERTScore are
provided in Appendix F. Additional general exam-
ples are provided in Appendix G.

6 Related Work

Token-based metrics Metrics such as BLEU
(Papineni et al., 2002) evaluate code generation
by counting matching n-grams between generated
and reference code. CrystalBLEU (Eghbali and
Pradel, 2022) refines this approach by disregard-
ing trivially shared n-grams, while ROUGE (Lin,
2004) and METEOR (Banerjee and Lavie, 2005)
emphasize recall and balance of precision and re-
call respectively. However, these metrics, relying
on exact lexical matches, often fail to capture se-
mantically equivalent but lexically different code
snippets. Unlike these, CodeBERTScore captures
the wide, two-sided context of each token, which
n-grams cannot capture.

Static analysis-based metrics CodeBLEU
(Ren et al., 2020) incorporates data-flow and
Abstract Syntax Tree (AST) matching, in addition
to token-matching. However, valid code may not
always align in ASTs and data-flows. Addition-
ally, partial code, although potentially useful,
may not parse, thus cannot be fully evaluated by
CodeBLEU. Further, as highlighted by subsequent
studies (Wang et al., 2022), CodeBLEU does not

correlate well with execution accuracy.

Execution-based Metrics To alleviate previous
issues, execution-based evaluation counts a gener-
ated code snippet as correct if it produces the re-
quired outputs when run with given inputs (Chen
et al., 2021; Athiwaratkun et al., 2022; Li et al.,
2022; Wang et al., 2022; Lai et al., 2022; Huang
et al., 2022). However, execution-based evalua-
tion requires datasets that are provided with man-
ually crafted test cases for each example, which is
costly and labor-intensive to create; thus, only few
such datasets exist. In contrast, CodeBERTScore
is completely unsupervised and does not depend
on any specific dataset. Further, executing model-
generated code is susceptible to security threats,
and thus should be run in an isolated sandbox,
which makes it technically cumbersome to work
with iteratively.

7 Conclusion

In this paper, we present CodeBERTScore, a sim-
ple evaluation metric for code generation, which
builds on BERTScore (Zhang et al., 2020), using
pretrained language models of code, and lever-
aging the natural language context of the gen-
erated code. We perform an extensive evalua-
tion across four programming languages which
shows that CodeBERTScore is more correlated
with human preference than all prior metrics. Fur-
ther, we show that generated code that receives a
higher score by CodeBERTScore is more likely
to function correctly when executed. Finally, we

release five programming language-specific pre-
trained models to use with our publicly available
code. These models were downloaded more than
1,000,000 times from the HuggingFace Hub. Our
code and data are available at https://github.com/
neulab/code-bert-score.

Acknowledgement

We thank Misha Evtikhiev, Egor Bogomolov, and
Timofey Bryksin for the discussions, and for the
data from their paper (Evtikhiev et al., 2022). We
thank anonymous reviewers for the valuable feed-
back. We are grateful to Yiwei Qin for the dis-
cussions regarding the T5Score paper (Qin et al.,
2022); the idea to use functional correctness as
a meta-metric was born thanks to the discus-
sion with her. We are also grateful to Aryaz
Eghbali and Michael Pradel for the discussions
about CrystalBLEU (Eghbali and Pradel, 2022).
This material is partly based on research spon-
sored in part by the Air Force Research Labora-
tory under agreement number FA8750-19-2-0200.
The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies or
endorsements, either expressed or implied, of the
Air Force Research Laboratory or the U.S. Gov-
ernment. This project was also partially supported
by a gift from AWS AI.

Limitations

CodeBERTScore requires a GPU for computing
the metric, while traditional metrics such as BLEU
require only a CPU. This adds a hardware re-
quirement to the evaluation of models of code,
while most previous approaches are computation-
ally cheaper (e.g., by counting n-grams). How-
ever, since training and testing neural models re-
quire GPU anyways, we can safely assume that a
GPU is available. Further, BERT-base models are
encoder-only and non-autoregressive; this means
that they require only a single “forward pass”,
compared to encoder-decoder models (e.g., T5)
and decoder-only models (e.g., GPT-3) that need
to autoregressively generate token after token, us-
ing a forward pass for each output token. Thus,
the additional time consumption by encoder-only
models (e.g., BERT) is negligible, especially when

evaluating encoder-decoder or decoder-only as the
NL→Code generator models.

Another point to consider is that Code-
BERTScore relies on a strong underlying BERT-
based model, while methods such as BLEU do not
have many “moving parts” or hyperparameters to
tune. However, this is mostly an advantage, since
CodeBERTScore can be further improved in the
future using stronger base models.

References

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. Santa-
coder: don’t reach for the stars! arXiv preprint
arXiv:2301.03988.

Miltiadis Allamanis and Charles Sutton. 2013. Mining
source code repositories at massive scale using lan-
guage modeling. In 2013 10th working conference
on mining software repositories (MSR), pages 207–
216. IEEE.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian
Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun,
Mingyue Shang, et al. 2022. Multi-lingual evalu-
ation of code generation models. ArXiv preprint,
abs/2210.14868.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.
2021. Program synthesis with large language mod-
els. ArXiv preprint, abs/2108.07732.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinck-
ney, Ming Ho Yee, Yangtian Zi, Carolyn Jane An-
derson, Molly Q Feldman, et al. 2022. A scalable
and extensible approach to benchmarking nl2code
for 18 programming languages. ArXiv preprint,
abs/2208.08227.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde, Jared Kaplan, Harri Edwards, Yura
Burda, Nicholas Joseph, Greg Brockman, et al.
2021. Evaluating large language models trained on
code. ArXiv preprint, abs/2107.03374.

https://github.com/neulab/code-bert-score
https://github.com/neulab/code-bert-score
https://arxiv.org/abs/2210.14868
https://arxiv.org/abs/2210.14868
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Aryaz Eghbali and Michael Pradel. 2022. Crystalbleu:
precisely and efficiently measuring the similarity of
code. In 37th IEEE/ACM International Conference
on Automated Software Engineering, pages 1–12.

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav
Sokolov, and Timofey Bryksin. 2022. Out of the
bleu: how should we assess quality of the code gen-
eration models? ArXiv preprint, abs/2208.03133.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida
Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-
tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022.
Incoder: A generative model for code infilling and
synthesis. ArXiv preprint, abs/2204.05999.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Junjie Huang, Chenglong Wang, Jipeng Zhang, Cong
Yan, Haotian Cui, Jeevana Priya Inala, Colin
Clement, and Nan Duan. 2022. Execution-based
evaluation for data science code generation mod-
els. In Proceedings of the Fourth Workshop on
Data Science with Human-in-the-Loop (Language
Advances), pages 28–36, Abu Dhabi, United Arab
Emirates (Hybrid). Association for Computational
Linguistics.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. 2022.
Ds-1000: A natural and reliable benchmark for
data science code generation. ArXiv preprint,
abs/2211.11501.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin

Dal Lago, et al. 2022. Competition-level code gen-
eration with alphacode. Science, 378(6624):1092–
1097.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out, pages 74–81.

Dana Movshovitz-Attias and William Cohen. 2013.
Natural language models for predicting program-
ming comments. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 35–40.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Yiwei Qin, Weizhe Yuan, Graham Neubig, and Pengfei
Liu. 2022. T5score: Discriminative fine-tuning
of generative evaluation metrics. arXiv preprint
arXiv:2212.05726.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Am-
brosio Blanco, and Shuai Ma. 2020. Codebleu: a
method for automatic evaluation of code synthesis.
ArXiv preprint, abs/2009.10297.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computa-
tional Linguistics.

Lewis Tunstall, Leandro von Werra, and Thomas Wolf.
2022. Natural Language Processing with Trans-
formers. " O’Reilly Media, Inc.".

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Gra-
ham Neubig. 2022. Execution-based evaluation
for open-domain code generation. ArXiv preprint,
abs/2212.10481.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv
preprint, abs/1910.03771.

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent J.
Hellendoorn. 2022. A systematic evaluation of large
language models of code.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018a. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, MSR, pages 476–486.
ACM.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2208.03133
https://arxiv.org/abs/2208.03133
https://arxiv.org/abs/2208.03133
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://aclanthology.org/2022.dash-1.5
https://aclanthology.org/2022.dash-1.5
https://aclanthology.org/2022.dash-1.5
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://doi.org/10.18653/v1/P19-1452
https://arxiv.org/abs/2212.10481
https://arxiv.org/abs/2212.10481
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2202.13169
http://arxiv.org/abs/2202.13169
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018b. Learning to
mine aligned code and natural language pairs from
stack overflow. In Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories,
pages 476–486.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: An
open bilingual pre-trained model. ArXiv preprint,
abs/2210.02414.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with BERT. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang,
and Graham Neubig. 2023. Docprompting: Gener-
ating code by retrieving the docs. In International
Conference on Learning Representations (ICLR),
Kigali, Rwanda.

https://arxiv.org/abs/2210.02414
https://arxiv.org/abs/2210.02414
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://arxiv.org/abs/2207.05987
https://arxiv.org/abs/2207.05987

A Additional Details

Fβ The well-known F1 score is computed as:

F1 =
2

1
recall +

1
precision

=
2 · precision · recall
precision + recall

(4)
A more general F score Fβ uses a positive factor
β, where recall is considered β times as important
as precision:

Fβ =

(
1 + β2

)
· precision · recall

β2 · precision + recall
(5)

As found in METEOR (Banerjee and Lavie,
2005), using Fβ with β = 3, thus preferring re-
call over precision, results in a higher correlation
with human preference in machine translation. In
our experiments, we found that this applies to
NL→Code as well.

Token Weighting Following Zhang et al.
(2020), we compute the inverse document fre-
quency (idf), according to a language-specific
test set, and weigh each token according to its
negative log frequency.

Scaling Following Zhang et al. (2020), the co-
sine similarity scores of hidden states tend to lie
in a limited range. Thus, we can linearly scale the
resulting scores, using an empirical base scalar b:

̂CodeBERTScore =
CodeBERTScore− b

1− b
(6)

This typically spreads the CodeBERTScore F1

scores to the [0, 1] range, and is merely a cos-
metical change: this scaling does not change the
way CodeBERTScore ranks different prediction,
but can be slightly more intuitive and easier to in-
terpret. We computed b empirically by sampling
random unrelated code pairs and measuring their
average similarity score. For Java, the empirical
bJava was 0.78 and for C++, bC++ it was 0.76.

B Evaluation Details

B.1 Human Preference
For each example, Evtikhiev et al. (2022) asked
experienced software developers to grade the gen-
erated code snippets from five different models.
The grade scales from zero to four, with zero de-
noting that the generated code is irrelevant and un-
helpful, and four meaning that the generated code
solves the problem accurately. Overall, there are

2860 annotated code snippets (5 generations ×
472 examples) where each snippet is graded by 4.5
annotators.

B.2 Functional Correctness

We evaluate functional correctness using the Hu-
manEval (Chen et al., 2021) benchmark. Each ex-
ample in HumanEval contains a natural language
goal, hand-written input-output test cases, and a
human-written reference solution. On average,
each example has 7.7 test cases and there are 164
examples in total. While the original HumanEval
is in Python, Cassano et al. (2022) translated Hu-
manEval to 18 programming languages, and pro-
vided the predictions of the Codex model (Chen
et al., 2021) (code-davinci-002) and their
corresponding functional correctness.6 We used
Java, C++, Python, and JavaScript for these ex-
periments, which are some of the most popular
programming languages in open-source projects.7

Notably, Cassano et al. (2022) did not translate the
reference solutions to the other languages, so, we
collected these from HumanEval-X (Zeng et al.,
2022).8 The reference score of every example is
either 1 (“correct”, if it passes all test cases) or 0
(“incorrect”, otherwise).

C Correlation Metrics

Kendall-Tau (τ) τ measures the ordinal/rank
association between a metric such as Code-
BERTScore and the reference measurement. It is
calculated as:

τ =
|concordant| − |discordant|
|concordant|+ |discordant|

where |concordant| represents the number of pairs
where two measurements agree on their relative
rank. That is, if f(ŷ1, y

∗
1) > f(ŷ2, y

∗
2), the

reference measurement also yields f∗(ŷ1, y
∗
1) >

f∗(ŷ2, c
∗
2). Similarly, |discordant| represents the

number of pairs where two measurements yield
opposite ranks. Notably, in our experiments, we
restrict the comparisons of ranks within the gener-
ations of the same question.

Pearson (rp) rp measures the linear correlation
between a metric and the reference measurement.

6https://huggingface.co/datasets/nuprl/MultiPL-E
7https://octoverse.github.com/2022/

top-programming-languages
8https://huggingface.co/datasets/THUDM/humaneval-x

https://huggingface.co/datasets/nuprl/MultiPL-E
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://huggingface.co/datasets/THUDM/humaneval-x

It is defined as:

rp =
∑N

i=1(f(ŷi,y
∗
i)−f̄)(f∗(ŷi,y∗i)−f̄∗)√∑N

i=1(f(ŷi,y
∗
i)−f̄)2

∑N
i=1(f

∗(ŷi,y∗i)−f̄∗)2

where N is the number of generations in the
dataset, f̄ is the mean CodeBERTScore of the
dataset, and f̄∗ is the mean similarity score cal-
culated by the reference measurement.

Spearman (rs) rs measures the Pearson corre-
lation coefficient between the ranks produced by a
metric and the reference measurement:

rp =
cov(R(f(Ŷ), R(f∗(Y∗)))

σ
R(f(Ŷ))

σR(f∗(Y∗))

where R returns the ranks of code snippets in a
collection of code snippets Y. cov(·, ·) is the co-
variance of two variables and σ(·) is the standard
deviation.

D Standard Deviation

Table 3 shows the same results as in Table 1, but
with standard deviations. Table 4 shows the results
from Table 2, with standard deviations.

E Robustness to adversarial
perturbations

Ref: shutil.rmtree(folder)

Candidate CodeBERTScore chrF

os.rmdir(folder) 1st 1st
os.rmdir(f) 2nd 3rd
(folder) 3rd 2nd

Figure 7: The similarity rankings of three
code snippets given the reference code
shutil.rmtree(folder). While Code-
BERTScore correctly ranks os.rmdir(f) over
the the non-equivalent (folder), chrF prefers just
(folder) over os.rmdir(f).

We conducted a qualitative evaluation of Code-
BERTScore under various perturbations. An
example is shown in Figure 7, which shows
the CodeBERTScore and chrF rankings of
three code snippets based on the similarity
to the reference shutil.rmtree(folder).
CodeBERTScore gives a higher ranking to
the code snippet that employs the appropriate
API (os.rmdir) than the trivial (folder) that

has the same variable name but without any func-
tion call. Contrarily, chrF assigns a higher rank-
ing to (folder) which has a longer common
sequence of characters, although semantically in-
equivalent.

F Distinguishing Code with Different
Semantics

We study how well can CodeBERTScore perform
as a generic similarity function that measures the
similarity between two arbitrary code snippets yi
and yj .

F.1 Distinguishability Metric
We evaluate CodeBERTScore using the distin-
guishability metric d proposed by Eghbali and
Pradel (2022) which is calculated as follows:

d =

∑
yi,yj∈Pairsintra

f(yi, yj)∑
yi,yj∈Pairsinter

f(yi, yj)
(7)

where Pairintra defines a set of code pairs from the
same semantically equivalent clusters, and Pairinter
defines a set of code pairs from two clusters of dif-
ferent functionality. Formally,

Pairintra ={(yi, yj) | ∃k such that yi, yj ∈ Ck}
Pairinter ={(yi, yj) | ∃k such that

yi ∈ Ck, yj /∈ Ck}

where Ck is the k-th cluster with semantically
equivalent code snippets. Intuitively, a similar-
ity function f that can distinguish between similar
and dissimilar code will produce d larger than 1,
meaning that a pair of code snippets from the same
semantic cluster has a higher similarity score than
a pair of snippets from different clusters. Since the
number of intra-class and inter-class pairs grows
quadratically with the number of code snippets, in
our experiments we followed Eghbali and Pradel
(2022) to sample N inter- and N intra-class pairs
instead.

F.2 Dataset with Semantically equivalent
clusters

We follow Eghbali and Pradel (2022) to evaluate
whether CodeBERTScore can distinguish similar
and dissimilar code mined from ShareCode9, an
online coding competition platform. Semantically
equivalent code snippets are from the same coding
problem, and they all pass the unit tests provided

9https://sharecode.io/

https://sharecode.io/

Java C++ Python JavaScript
Metric τ rs τ rs τ rs τ rs

BLEU .481(±.030) .361(±.037) .112(±.059) .301(±.054) .393(±.083) .352(±.064) .248(±.075) .343(±.052)
CodeBLEU .496(±.034) .324(±.037) .175(±.021) .201(±.037) .366(±.079) .326(±.075) .261(±.065) .299(±.043)
ROUGE-1 .516(±.052) .318(±.043) .262(±.073) .260(±.024) .368(±.092) .334(±.054) .279(±.092) .280(±.068)
ROUGE-2 .525(±.049) .315(±.047) .270(±.073) .273(±.036) .365(±.094) .322(±.077) .261(±.077) .292(±.057)
ROUGE-L .508(±.060) .344(±.038) .258(±.091) .288(±.027) .338(±.103) .350(±.064) .271(±.078) .293(±.046)
METEOR .558(±.058) .383(±.027) .301(±.061) .321(±.023) .418(±.090) .402(±.049) .324(±.075) .415(±.022)
chrF .532(±.067) .319(±.035) .319(±.056) .321(±.020) .394(±.096) .379(±.058) .302(±.073) .374(±.044)
CrystalBLEU .471(±.024) .273(±.067) .046(±.009) .095(±.064) .391(±.080) .309(±.073) .118(±.057) .059(±.069)

CodeBERTScore .553(±.068) .369(±.049) .327(±.086) .393(±.048) .422(±.090) .415(±.071) .319(±.054) .402(±.030)

Table 3: Kendall-Tau (τ) and Spearman (rs) correlations of each metric with the functional correctness on Hu-
manEval in multiple languages. The correlation coefficients are reported as the average across three runs, along
with the standard deviation.

Metric τ rp rs

BLEU .374(±.025) .604(±.016) .543(±.018)
CodeBLEU .350(±.037) .539(±.033) .495(±.037)
ROUGE-1 .397(±.023) .604(±.016) .570(±.018)
ROUGE-2 .429(±.025) .629(±.015) .588(±.022)
ROUGE-L .420(±.037) .619(±.014) .574(±.022)
METEOR .366(±.033) .581(±.016) .540(±.022)
chrF .470(±.029) .635(±.023) .623(±.018)
CrystalBLEU .411(±.030) .598(±.019) .576(±.034)

CodeBertScore .517(±.024) .674(±.012) .662(±.012)

Table 4: The Kendall-Tau (τ), Pearson (rp) and Spearman (rs) correlation with human preference. The best
performance is bold. The correlation coefficients are reported as the average across three runs. Numbers inside
parentheses indicate the standard deviations.

Metric Java C++

BLEU 2.36 2.51
CodeBLEU 1.44 1.42
CrystalBLEU 5.96 6.94

CodeBERTScore 9.56 9.13

Table 5: Distinguishability with different metrics as the
similarity function. CodeBERTScore achieves a higher
distinguishability than CrystalBLEU, which proposed
this meta-metric, on the same datasets.

by the platform. The dataset consists 6958 code
snippets covering 278 problems in Java and C++.
We use CodeBERTScore to calculate the similar-
ity score for code pairs that share the same seman-
tic class and code pairs that do not. We then mea-
sure the distinguishability of CodeBERTScore ac-
cording to Equation 7. The results are shown in
Table 5.

Table 5 shows that CodeBERTScore achieves
a higher distinguishability than CrystalBLEU,
which proposed this meta-metric, in both Java
and C++. CodeBERTScore achieves distinguisha-
bility scores of 9.56 in Java while CrystalBLEU
achieves 5.96; in C++, CodeBERTScore achieves

9.13 while CrystalBLEU achieves only 6.94.
This result confirms that CodeBERTScore assigns
higher similarity scores to semantically similar
code pairs, compared to randomly paired snippets
that belong to different semantic classes.

Can We Hack the Distinguishability Metric?
Despite the encouraging results in Table 5, we also
found that distinguishability can be easily manipu-
lated since it compares absolute scores across dif-
ferent metrics. For example, while CrystalBLEU
achieves a distinguishability score of 5.96, we can
craft a variant of CodeBERTScore that achieves a
distinguishability score of 120,000 by simple ex-
ponentiation of CodeBERTScore’s output score.

To illustrate this, we conducted a distinguisha-
bility evaluation with the same configurations as
before, but with a variant of CodeBERTScore
that we call CodeBERTScorek, and defined as the
composition of CodeBERTScore with the f (x) =
xk function, that is: CodeBERTScorek (y1, y2) =
(CodeBERTScore (y1, y2))

k.
As Figure 8 shows, distinguishability of

CodeBERTScorek increases almost exponentially
while increasing k, although the base Code-

0 10 20 30 40 50
0

10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000
110,000
120,000
130,000

k

CodeBERTScore k

Figure 8: Distinguishability by exponentiating the orig-
inal CodeBERTScore by k.

BERTScore metric has not changed.
We thus argue that distinguishability is not

a reliable meta-metric and is no substitute for
execution-based- or human-rating. We further sus-
pect that any meta-metric that compares exact, ab-
solute, scores across different metrics is suscepti-
ble to such manipulations, and the reliable way to
compare metrics is according to the way they rank
different examples, rather than the exact scores.

The distinguishability results of
CodeBERTScorek with different values of k
are shown in Figure 8. As Figure 8 shows, the
distinguishability increases almost exponentially
with the increasing value of k. We thus argue
that distinguishability is not a reliable meta-
metric and is no substitute for execution-based-
or human-rating. We further suspect that any
meta-metric that compares exact, absolute, scores
across different metrics is susceptible to such
manipulations, and the reliable way to compare
metrics is according to the way they rank different
examples, rather than the exact scores.

G Additional Examples

In this section, we provide additional examples
in which CodeBERTScore prefers the functionally
correct prediction, while the best baseline metric
in each language ranks higher a functionally in-
correct prediction, which is inequivalent to the ref-
erence. Figure 9 shows an example in Java, and
Figure 10 shows a C++ example.

Natural Language Question: Reference:
/**
Find how many times a given
substring can be found in
the original string.
Count overlaping cases.
>>> howManyTimes("", "a")
0
>>> howManyTimes("aaa", "a")
3
>>> howManyTimes("aaaa", "aa")
3
*/

public static int howManyTimes(String string,
String substring) {

int times = 0;
for (int i = 0; i < string.length() -

substring.length() + 1; i++) {
if (string.substring(i, i + substring.length())

.equals(substring)) {
times += 1;

}
}
return times;

}

(a) The natural language question. (b) The ground truth reference.

Non-equivalent candidate: Equivalent candidate:
public static int howManyTimes(

String string, String substring) {
int count = 0;
int index = 0;
while ((index = string.indexOf(

substring, index)) != -1) {
count++;
index += substring.length();

}
return count;

}

public static int howManyTimes(
String string, String substring) {

int counter = 0;
int index = 0;
while (true) {

index = string.indexOf(substring, index);
if (index == -1)

break;
counter += 1;
index += 1;

}
return counter;

}

(c) Preferred by METEOR. (d) Preferred by CodeBERTScore.

Figure 9: An example in HumanEval-Java, in which METEOR assigns a higher score to Figure 9(c) which is
not functionally equivalent to the reference (Figure 9(b)), while CodeBERTScore prefers the functionally correct
candidate Figure 9(d).

Natural Language Question: Reference:
/*
Write a function that takes a vector
of numbers as input and returns the
number of elements in the vector that
are greater than 10 and both first
and last digits of a number are odd
(1, 3, 5, 7, 9). For example:
specialFilter({15, -73, 14, -15})

=> 1
specialFilter({33, -2, -3, 45, 21, 109})

=> 2
*/

long specialFilter(
std::vector<long> nums) {

int num=0;
for (int i=0;i<nums.size();i++)

if (nums[i]>10) {
string w=to_string(nums[i]);
if (w[0]%2==1 and

w[w.length()-1] % 2 == 1)
num+=1;

}
return num;

}

(a) The natural language question. (b) The ground truth reference.

Non-equivalent candidate: Equivalent candidate:
long specialFilter(

std::vector<long> nums) {
// Write your code here
long sum = 0;
for(int i=0; i<nums.size(); i++){

std::string str =
std::to_string(nums[i]);

long firstDigit = nums[i] /
abs(nums[i]);

long lastDigit = nums[i]%10;
if(nums[i] > 10 &&

(firstDigit % 2 == 1 ||
lastDigit % 2 == 1)){

sum++;
}

}
return sum;

}

long specialFilter(
std::vector<long> nums) {

long count = 0;
for(int i=0; i<nums.size(); i++){

if(nums[i] >= 10) {
int last = nums[i] % 10;
int first = nums[i];
while(first >= 10) {

first /= 10;
}
if (last % 2 != 0 &&

first % 2 != 0) {
count++;

}
}

}
return count;

}

(c) Preferred by chrF. (d) Preferred by CodeBERTScore.

Figure 10: An example in HumanEval-C++, in which chrF assigns a higher score to Figure 10(c) which is not
functionally equivalent to the reference (Figure 10(b)), while CodeBERTScore assigns a higher score to the func-
tionally correct candidate Figure 10(d).

