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Abstract
Many real-world eligibility problems, ranging001
from medical diagnosis to tax planning, can be002
mapped to decision problems expressed in nat-003
ural language, wherein a model must make a004
binary choice based on the features of the user.005
Large-scale domains such as legal codes or fre-006
quently updated funding opportunities render007
human annotation (e.g., web forms or deci-008
sion trees) impractical, suggesting a need for009
agents that can automatically assist in decision-010
making. Since relevant information is often011
only known to the user, it is important that012
these agents can ask the right questions. To013
evaluate this task, we propose BeNYfits, a new014
benchmark for determining user eligibility for015
multiple overlapping social benefits opportuni-016
ties through interactive decision-making. Our017
experiments show that current language mod-018
els struggle with frequent hallucinations, with019
GPT-4o scoring only 35.7 F1 using a ReAct-020
style chain-of-thought. We therefore introduce021
ProADA, a novel approach that uses program022
synthesis to assist in decision-making by map-023
ping dialog planning to a code generation prob-024
lem and using gaps in structured data to deter-025
mine the best next action. Our agent, ProADA,026
improves the F1 score to 56.2 while using027
nearly the same number of dialog turns.028

1 Introduction029

The improved capabilities of large language mod-030

els have refocused attention away from traditional031

benchmarks and towards real-world tasks where032

automated systems could broadly benefit the pub-033

lic, such as improving access to public services.034

Many such opportunities require determining the035

user’s eligibility based on the user’s features and036

the task at hand, formally referred to as decision037

problems. In adaptive decision scenarios, where038

information is revealed iteratively (e.g., medical di-039

agnosis), one also wishes to minimize the number040

of queries. Also, critical information may be user-041

specific and known only to certain people, meaning042

that it often must be requested through dialog. Fi- 043

nally, the diversity of problems in the real world 044

places a premium on whether agents can generalize 045

information gathering and logical reasoning to new 046

domains. 047

User-facing decision problems have tradition- 048

ally been solved using hard-coded forms (as in the 049

American tax filing software TurboTax1) or dialog 050

trees (as in video games). However, hard-coded 051

solutions struggle to generalize or extend to web- 052

scale decision problems; opportunities found by 053

web-scraping, crowd-sourcing, or from extremely 054

large corpora such as national tax codes may be 055

challenging to formalize, let alone decide on in 056

real-time. Methods to approach adaptive decision 057

problems include multi-armed bandits, reinforce- 058

ment learning, dynamic programming, and deci- 059

sion trees, but adapting these strategies to online 060

natural language tasks is not trivial. Recently, large 061

language models have improved on a wide range of 062

related tasks. However, they are known to struggle 063

with reasoning over long contexts and hallucinate 064

unstated information. 065

To evaluate interactive decision-making, in Sec- 066

tion 2 we introduce BeNYfits, a language model 067

agent task for determining user eligibility for real- 068

world public benefits opportunities with overlap- 069

ping eligibility requirements. 1. In the single- 070

opportunity scenario, the assistant agent could sim- 071

ply repeat the requirements and ask the user if they 072

qualify. However, BeNYfits’ overlapping require- 073

ments present an interesting optimization challenge 074

for dialog planning: how should models “merge" 075

eligibility requirements to avoid duplicating ques- 076

tions and maximize information gain? We find that 077

current large language models, including GPT-4o, 078

struggle to perform significantly better than chance 079

at determining user eligibility, suffering from hal- 080

lucination, poor reasoning under uncertainty, over- 081

1https://turbotax.intuit.com/
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Figure 1: Interactive decision-making dialog loop in
BeNYfits. The agent is initialized with opportunity eli-
gibility requirements for the "Train & Earn" opportunity
(simplified). The agent then asks questions to the user
until the agent answers YES to the READY prompt, at
which point it PREDICTs the user’s eligibility. Note that
the agent skips requirement 3a because youth cannot
register for selective service. Similarly, it skips require-
ment 3c because it becomes irrelevant if the user is a
former foster care youth.

confidence, and lost-in-the-middle problems ob-082

served in prior work (Huang et al., 2024).083

Given these weaknesses, we introduce a method084

for an agent that, given a natural language descrip-085

tion of the user-facing decision problem, generates086

a program to request user input conversationally to087

solve the problem. Specifically, we construct an088

agent consisting of a code module, which conducts089

dialog planning in the form of a Python program,090

and a dialog module, which asks questions based091

on the program state. The agent then uses the dia-092

log module to parse the user’s response into struc-093

tured data. This approach exploits code generation094

models’ long-range planning and and uncertainty095

handling to improve task-oriented dialog, as com-096

pared to conventional dialog models. As a key097

contribution, in Section 3 we present Program Syn-098

thesis Adaptive Decision Agent, or ProADA, an099

agent that, given a natural language policy of a de-100

cision problem, generates Python code to structure101

the decision-making process and request minimal102

user input to make the correct decision.103

Our main contributions are as follows.104

1. A novel agent benchmark for adaptive decision-105

making in dialog measuring agent accuracy and106

dialog turn efficiency in helping users determine 107

eligibility for public, real-world opportunities. 108

2. A general and effective agent for adaptive 109

decision-making in dialog that exploits program 110

synthesis and tool use to plan dialog and adaptively 111

request user information, improving both F1 score 112

and dialog completion speed. We will release the 113

model code and maintain a benchmark after publi- 114

cation. 115

2 BeNYfits: An Agent Benchmark for 116

Public Benefit Eligibility Decisions 117

The determination of eligibility for many public 118

opportunities, such as tax credits, scholarships, re- 119

search funding opportunities, business incentives, 120

charities, job listings, and social services, can be 121

reduced to a binary decision problem. Since many 122

requirements, such as age and income, overlap be- 123

tween programs, this creates an opportunity for 124

agent assistants to make more efficient and adaptive 125

decisions as compared to traditional methods like 126

static web forms. At the same time, determinations 127

often require domain-specific knowledge to make 128

accurate determinations, presenting a challenge in 129

natural language understanding. We present BeNY- 130

fits, a benchmark for decision-making on public 131

benefits eligibility. In BeNYfits, the agent’s goal 132

is to help users navigate complex decision-making 133

processes and make a final determination on the 134

user’s eligibility based on the dialog in the mini- 135

mum number of dialog turns. 136

2.1 Efficiency, Generalization, and User 137

Experience 138

Traditional methods for determining eligibility 139

present several opportunities for improvement by 140

intelligent agent assistants. For small numbers of 141

opportunities, we might convert natural language 142

requirements into a web form or static chatbot di- 143

alog tree serving as an interface for hard-coded 144

checking logic, similar to TurboTax. However, this 145

approach has several drawbacks. First, many eli- 146

gibility requirements are updated without notice, 147

often annually, meaning eligibility performance 148

will degrade over time without ongoing mainte- 149

nance. Second, opportunities may be crowdsourced 150

or scraped from the Web dynamically, rendering 151

manual coding impractical in favor of more gener- 152

alizable, lower-latency solutions, such as language 153

agents. Furthermore, requirements between simi- 154

lar opportunities frequently overlap, forcing users 155
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to answer the same questions repeatedly. On the156

other hand, users may waste a lot of time if they157

discover that they are ineligible very late in the ex-158

amination process, presenting an opportunity for159

adaptive decision-making algorithms. An intelli-160

gent agent, however, should adaptively query the161

user for only the minimum necessary information,162

saving time, and improving user experience.163

In BeNYfits, an agent must interact with a simu-164

lated user to determine their household’s eligibil-165

ity for multiple overlapping benefits opportunities166

based only on the opportunity requirements and167

conversation with the user. We define the task as168

follows. Given a set of opportunities, each with a169

unique set of eligibility requirements, determine170

whether the user is eligible for each of them in the171

minimum number of dialog turns (Figure 1). We172

simulate a user by prompting a language model173

with detailed information about themselves and174

their household. Each simulated user is interested175

in a subset of all opportunities. Assistant agents176

possess the natural language eligibility require-177

ments for those opportunities and must determine178

the simulated user’s eligibility by asking a series of179

questions. After each dialog turn, the agent deter-180

mines whether it is ready to make a decision and,181

if so, outputs a final eligibility prediction for each182

opportunity.183

2.2 Opportunity Requirements184

We source the plain English eligibility require-185

ments for 82 benefits opportunities from NYC186

Open Data2. We minimally edit requirements to187

remove ambiguity ("may be eligible"), future ex-188

pectations ("can commit to"), and dates ("since189

2023"). Opportunities include tax credits, youth190

programming, housing, nutrition assistance, health-191

care, parental services, and career advancement,192

among other categories. Eligibility requirements193

range from broad (State ID card: all residents age194

10+) to extremely specific (Air conditioner subsidy:195

ten independent requirements). Opportunities may196

apply to either the individual or the household as a197

whole, offering additional logical complexity. Op-198

portunities depend on 1-18 unique user features199

each (mean: 4.66 standard deviation: 3.56). Each200

user feature appears in 1-52 opportunities (mean:201

3.25, standard deviation: 6.66), falling on a long-202

tailed distribution (Figure 2). We define a house-203

hold as eligible for an opportunity if any of its204

2https://data.cityofnewyork.us/

Figure 2: Number of opportunities dependent on each
household feature. For example, 53 of 82 programs rely
on age to determine eligibility. Top 20 features shown.

members are eligible. 205

2.3 User Simulation 206

For each opportunity, we enumerate relevant user 207

features (age, income, number of dependents, etc.). 208

We create simulated user households by randomly 209

sampling each feature for each member, with up 210

to 6 members per household. Features are inde- 211

pendently sampled, except when subject to con- 212

straints preventing illogical combinations (5-year- 213

old grandparents, adults in foster care, multiple 214

spouses, etc.) From these structured feature sets, 215

we generate a natural language profile for the house- 216

hold. We prompt Llama 3.1 70B with the natural 217

language profile to answer questions from the in- 218

formation seeking agent. 219

2.4 Eligibility Checker Programs 220

To determine the ground truth eligibility of sim- 221

ulated users for specific opportunities, we manu- 222

ally write an eligibility checker Python program 223

for each opportunity based on its plain language 224

requirements. The eligibility checker takes a simu- 225

lated user’s structured features as input and outputs 226

the user’s eligibility for the opportunity. We take 227

care to avoid Python OR and AND keywords and 228

other patterns such as list comprehension. In this 229

way, we ensure that if and only if two households 230

qualify (or fail to qualify) for an opportunity for the 231

same reasons, they cause the eligibility checker 232

to execute the same unique set of lines of code, its 233

trace. 234
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2.5 Diverse Dataset235

Due to the time and cost of benchmarking new236

models, we attempt to construct the smallest pos-237

sible dataset with the most "coverage" of unique238

traces to qualification or disqualification using in-239

put fuzzing. Each example consists of a simulated240

user, a subset of opportunities in which they are241

interested, and the ground truth eligibility for those242

opportunities. We first randomly generate 10,000243

simulated users, sampling each variable from a dis-244

tribution chosen to produce a balanced sampling245

across traces, typically uniformly, except when eli-246

gibility is based on thresholds of numeric features.247

We then greedily add households to the dataset248

whose trace through all eligibility checkers con-249

tributes the most lines not yet present in the dataset.250

Finally, we greedily remove opportunities from251

simulated users if the user-opportunity trace con-252

tributes no unique lines. We refer to this dataset253

as the Diverse Dataset, which contains only 56 of254

the original 10,000 households (305 of 82,000 user-255

opportunity pairs) but covers the same traces as the256

full set. Each household is interested in between257

1-10 opportunities, with a mean of 5.4.258

2.6 Representative Dataset259

To model a realistic distribution of potential users,260

we construct a second Representative Dataset.261

Each feature for each user household (e.g., housing262

type) is independently sampled from distributions263

derived from 78 different sources. We use data264

from New York City when available, but fall back265

to state- or national-level statistics if necessary. We266

assign opportunities to users at random. The repre-267

sentative contains 25 user households, each inter-268

ested in 6-19 opportunities, with a mean of 9.8.269

2.7 Dialog Loop270

Agents are provided eligibility requirements and271

then must determine simulated user eligibility by272

asking questions, one at a time. After each re-273

sponse, the agent is prompted with READY, where274

it is asked if it has enough information to determine275

the eligibility of the user with certainty (Figure 1).276

If the agent responds with TRUE, it is prompted to277

PREDICT the user’s eligibility for each opportunity.278

Otherwise, it asks another question. We limit con-279

versations to average 20 questions per opportunity,280

to a maximum of 100 questions.281

3 ProADA 282

To solve interactive decision problems, we propose 283

a Program Synthesis Adaptive Decision Agent, or 284

ProADA, which uses agent-created Python tools 285

as reasoning aids for adaptive decision problems 286

in dialog. State-of-the-art code generation models 287

often generate code that involves a dozen variables 288

(Wan et al., 2024), yet the models suffer from basic 289

reasoning errors and hallucinations when working 290

in natural language. By offloading dialog plan- 291

ning and memory into static Python code, ProADA 292

achieves the flexibility and usability of natural lan- 293

guage while leveraging the long-range planning 294

and reasoning of program synthesis. ProADA con- 295

sists of a code generation module and a dialog 296

module. The code generation module creates one 297

Python DECIDE tool per opportunity, formalizing 298

the logic of the decision problem and deciding the 299

result. The dialog module serves as an interface 300

between the user and the DECIDE tool, asking ques- 301

tions and storing answers in a structured form (Fig- 302

ure 3). 303

To best explain ProADA, we instantiate it in 304

the context of our proposed BeNYfits benchmark. 305

Before starting a dialog, ProADA uses the code 306

generation model to convert the eligibility require- 307

ments in natural language into a Python DECIDE 308

Checker tool used by the agent (Figure 3). DECIDE 309

is a Python function that takes a UserFeatures 310

dictionary containing known user properties (e.g., 311

“homeless_or_runaway") as input and outputs the 312

household eligibility. For each key used to access 313

UserFeatures, the code generation model defines 314

a type (int, float, etc.) constraint, or a list of 315

string choices that the feature can take. At the start 316

of the dialog, the agent runs the DECIDE tool, pass- 317

ing in an empty UserFeatures dictionary, since it 318

knows nothing about the user yet. An empty dictio- 319

nary would normally cause a key error, which we 320

exploit by wrapping DECIDE in a try/except block. 321

In an exception, the agent passes the offending key, 322

relevant code, eligibility requirements, and dialog 323

history to the dialog module. The dialog module 324

constructs a question seeking the necessary infor- 325

mation (“Are you a homeless or a runaway youth?") 326

and presents it to the user. The dialog module then 327

converts the user’s response (“I am a homeless 328

youth") into a valid value according to the predeter- 329

mined constraint using constrained generation, stor- 330

ing the key-value pair (“homeless_or_runaway": 331

“yes") in UserFeatures. In the case that the 332
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Figure 3: ProADA architecture. ProADA consists of the checker tool created by the code generation module
(left) and the dialog module (center). The checker tool is a Python function that determines user eligibility from
a structured user representation dictionary (right). The ProADA dialog module acts as an interface between the
checker tool and the user. On each dialog turn, the agent runs the checker tool on the user dictionary, which is
initially empty. On a key error, the dialog module fills in a single key-value pair by asking a user a question and
converting the answer to a value consistent with the checker tool logic. The dialog ends once a value is returned by
the checker tool for every opportunity.

user’s response cannot be mapped to a valid value,333

ProADA will invoke the CLARITY module, which334

will spend up to three turns attempting to clarify the335

user’s response. This module allows ProADA to336

recover from unhappy dialog paths and incoherent337

user input. Finally, the agent repeats running DE-338

CIDE with the updated UserFeatures dictionary339

until it returns a value.340

4 Experimental Setup341

As baselines, we choose Llama 3.1 Instruct 8B342

and 70B, as well as GPT-4o. In direct prompt-343

ing, we instruct these models to assess readiness344

and generate questions at each step in the dialog345

loop, and finally to predict eligibility. We also346

assess prompting models to conduct ReAct-style347

chain-of-thought before each step (Yao et al., 2023).348

During READLY and DECIDE, we use constrained349

decoding to ensure ProADA and baseline models350

generate a valid output. For ProADA, we choose351

the same models for the dialog module and always352

use GPT-4o for the code generation module. We353

choose Llama 3.1 Instruct 70B to implement our354

simulated user for all experiments, in order to re-355

duce the hallucinations that we observed in smaller356

8B parameter models. To reduce memory usage,357

we use 4-bit quantization on all 70B-parameter358

models. We report three trials for Llama 8B, Llama359

70B ReAct, and ProADA models, and one trial for360

others due to resource constraints.361

To measure human performance on this task, one 362

expert author performed the role of the agent on 363

39 user-opportunity pairs from the Diverse Dataset, 364

achieving 89.7% accuracy. Upon review, we find 365

all inaccuracies are due to human error rather than 366

unfaithful simulated user responses, suggesting a 367

performance ceiling near 100% on this benchmark. 368

5 Experimental Results 369

Figure 4: Average of Representative and Diverse dataset
F1 vs. dialog turns to completion for ProADA and
baseline models.
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Since our datasets are unbalanced (Diverse:370

47.9% positive, Representative: 15.5%), we choose371

micro F1 as our primary accuracy metric. Let F1372

and T be the average F1 score and the number of373

turns across both datasets, respectively. To reward374

efficient questioning, we define a turn-weighted F1375

score as:376

Turn-Weighted F1 =
100 · F1

T/100 + 1
377

since dialogs can have at most 100 turns.378

We find that our method, ProADA, outperforms379

all others by a significant margin with a turn-380

weighted F1 score of 46.7. The turn-weighted F1381

score drops to 43.5 without the CLARITY mod-382

ule. However, ProADA still surpasses the next best383

strategy, Llama 3.1 70B + ReAct (34.1) and GPT-384

4o + direct prompting (29.9), despite using a dialog385

model with many times fewer parameters. GPT-4o386

achieves a relatively high average F1 score (40.8),387

but uses 27.2 turns per dialog, while Llama 3.1388

8B appears to terminate prematurely after only 6.0389

turns, achieving only 33.6 F1. Dialog completion390

speed varies widely across models and strategies,391

with Llama 3.1 70B + direct prompting frequently392

hitting the turn limit without terminating, resulting393

in an average turn count of 81.7. Program synthesis394

guidance, and to a lesser degree ReAct prompting,395

appear to moderate the number of turns needed396

without negatively impacting F1 score. We see sig-397

nificantly higher accuracy on the Diverse Dataset398

compared to the Representative Dataset, possibly399

because its examples contain roughly half as many400

opportunities per user.401

5.1 User Study402

We conducted a user survey n=58 interactions.403

Each user selected 5 opportunities in which they are404

personally interested. Half of participants were as-405

signed each to use either ProADA or GPT-4o + Re-406

Act. Users then rated the accuracy and subjective407

usability on a 5-point likert scale, in accordance408

with the NASA Task Load Index (Hart, 2006). We409

find that ProADA achieves better usability scores410

in metrics as well as significantly higher accuracy411

and program discovery with real users (Table 2).412

6 Failure Analysis413

We observe multiple distinct types of errors that414

contribute to poor reasoning and inefficient dialog.415

Program synthesis-guided dialog reduces errors416

overall, but introduces unique failure modes associ- 417

ated with code generation. However, several failure 418

modes persist across all strategies, indicating core 419

weaknesses in foundational model reasoning abil- 420

ity. 421

Suggestibility: Models suffer from hallucination 422

prompted by implications in eligibility require- 423

ments. For example, when prompted with a child 424

care program, models ask for the child’s age with- 425

out checking whether the household contains any 426

children to begin with. 427

Domain knowledge & edge cases: Models fail to 428

account for edge cases, such as 17-year-olds with 429

work income or adult dependents. 430

6.1 Baseline Behavior 431

Although it is difficult to confidently attribute final 432

predictions to specific mistakes in black-box mod- 433

els during question generation, we observe several 434

flawed reasoning patterns when using direct and 435

ReAct prompting: 436

Hallucination: Baseline models frequently return 437

TRUE in READY before collecting all relevant infor- 438

mation, implying either a logical reasoning failure 439

or an internal hallucination of relevant facts. 440

Hyperspecificity: Models ask needlessly specific 441

questions ("Is your total annual income below 442

$69,900?") when a more general question ("What 443

is your total annual investment income?") would 444

produce information useful elsewhere, resulting in 445

superfluous dialog turns. 446

Repetition: Baseline models get stuck in loops, 447

asking slight variations of the same question. 448

Multi-member households: Baseline models of- 449

ten inquire only about the user, rather than all 450

members of the family, despite being specifically 451

prompted to do so. They rarely ask for the family 452

size or composition when eligibility is determined 453

at the individual level, substantially reducing recall. 454

Conflating users: Baseline models often conflate 455

household members or fail to specify which mem- 456

ber they are asking about. 457

6.2 ProADA Behavior 458

Program synthesis-guided dialog introduces several 459

distinct new failure modes: 460

Code generation: Logical or domain-specific rea- 461

soning errors can create flawed code that propa- 462

gates errors through subsequent conversations. 463

Code to question: Although the code generated 464

for the DECIDE tool usually represents multiple 465
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Diverse Representative Average Turn-weighted

Strategy Model F1 ↑ Turns ↓ F1 ↑ Turns ↓ F1 ↑ Turns ↓ F1 ↑

Direct Prompting Llama 3.1 8B 44.6% 5.5 22.5% 6.4 33.6% 6.0 31.7
Llama 3.1 70B 54.3% 41.6 27.2% 81.7 40.8% 61.7 25.2

GPT-4o 31.2% 16.8 45.0% 37.6 38.1% 27.2 29.9
GPT-o3 mini 52.9% 20.3 15.6% 31.2 34.2% 25.8 27.2

Claude 3.7 43.7% 11.9 17.9% 8.9 30.8% 10.4 27.9

ReAct Agent Llama 3.1 8B 40.4% 9.5 26.1% 10.9 33.2% 10.2 30.2
Llama 3.1 70B 58.3% 9.5 26.1% 37.9 42.2% 23.7 34.1

GPT-4o 50.4% 18.4 20.9% 13.3 35.7% 15.8 30.8
Claude 3.7 58.3% 9.5 16.4% 28.4 37.4% 19.0 31.4

Random P(True=0.5) 23.6% 0 48.9% 0 36.3% 0 36.3

ProADA w/o Clarity Llama 3.1 70B 54.0% 18.2 49.7% 19.8 51.8% 19.0 43.5
ProADA (ours) Llama 3.1 70B 58.7% 18.8 53.7% 22.1 56.2% 20.4 46.7

Table 1: F1 score and dialog turns to completion for ProADA and baseline models.

Figure 5: ProADA program synthesis errors

family members correctly as a list, the dialog mod-466

ule struggles to track and specify which member467

is being discussed at any time. Interestingly, we468

observe improved performance when users provide469

the names of their family members.470

To investigate bias arising from the mapping of471

user responses to structured data, we conduct the472

following study: We analyze 17 questions gener-473

ated by ProADA and provide 6 perturbed versions474

of the same answer. Across all 102 trials, we find475

that overall, user responses are rarely mapped in-476

correctly, in only 2% (n=2) of cases.477

ProADA GPT-4o + React

Accuracy ↑ 81.3%† 42.1%
Discovered Opportunity ↑ 80.0%† 50.0%

Clarity ↑ 4.80† 4.14
Ease of Use ↑ 4.53* 3.96
Could Save Time ↑ 4.47† 3.39
Question Appropriateness ↑ 4.43† 3.54
Task Complexity ↓ 1.73† 1.89
Workload ↓ 1.33† 2.04
Irritation ↓ 1.50† 2.71

Table 2: User-reported accuracy, usability, and frequency of
discovery of at least one opportunity for which the user is
eligible. * p<0.05, † p<0.01

478

6.3 Errors by Simulated Users 479

Authors annotated 61 simulated user responses for 480

faithfulness to the user profile, finding 60 (98.4%) 481

of questions are answered faithfully. The simulated 482

user tends towards verbosity, providing additional 483

unrequested information in 5 cases (8.2%). We 484

find unnatural but faithful responses in 2 cases (3. 485

3%), indicating that the frequency of errors due 486

to simulated user misbehavior is low. In qualita- 487

tive probing, we find that the simulated user can 488

respond accurately to diverse questions up to two 489

hops (e.g., "How many children do you have under 490

the age of 5?"). Sufficiently complex queries or 491

those with more than two hops tend to cause the 492

simulated user to respond that it cannot answer the 493

question, but we rarely observe models generating 494

such questions in our experiments. 495

7 Discussion 496

Program-synthesis-guided dialog improves accu- 497

racy in adaptive decision problems while reducing 498

the number of dialog turns needed. This provides 499

multiple benefits by exposing the agent’s reason- 500

ing process in a human-readable format. Agent 501

decisions become more transparent and consistent, 502

improving interpretability, and enabling several av- 503

enues for further improvements. 504

Since the Python tool only needs to be created 505

once, we can use a stronger model for program 506

synthesis without incurring significantly increased 507

inference costs or latency. Then, by replacing the 508

READY and PREDICT language model calls in the 509

dialog loop with simple Python functions, we re- 510

duce the number of language model calls by over 511

50%. Unlike in black-box models where we ob- 512
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serve disparate behavior based on surface form vari-513

ation, especially in out-of-distribution contexts, our514

technique forces the agent to behave consistently515

across users. As a form of prompt transformation,516

this may also reduce the susceptibility of public-517

facing agents to jailbreak (Peng et al., 2024).518

Synthesized code also serves as a window into519

the agent’s decisions. Although we generate520

code automatically in this work, the code may521

be checked manually or with software tools to en-522

sure correctness before deployment. Unlike black-523

box models, program synthesis-guided models like524

ProADA may also be subject to unit tests to ensure525

code quality.526

AI faces increasing regulation, especially in pub-527

lic services or where systemic bias may disenfran-528

chise certain groups, such as credit offerings. In cer-529

tain scenarios, providers are required to prove that530

their models are unbiased or to provide a human-531

readable basis for any given AI decision. Although532

questions are generated neurally, eligibility deci-533

sions are made with static code that can be auto-534

matically traced to produce a rationale. However,535

we note that the parsing of user utterances into536

structured data may still introduce bias.537

Many opportunities in BeNYfits and other public538

opportunities are contingent on sensitive personal539

information, such as income, substance abuse, do-540

mestic violence, and being HIV positive. By limit-541

ing closed-source model use only to program syn-542

thesis, solutions like ProADA avoid leaking user543

data to commercial entities while harnessing their544

models’ advanced reasoning.545

ProADA represents a reverse of the traditional546

tool-use paradigm in which language models call547

tools by generating special tokens. Instead, our548

agent creates a tool which in turn calls the lan-549

guage model. Future work may explore more so-550

phisticated agent-tool relationships.551

8 Related Work552

Many dialog agent tasks have been proposed, in-553

cluding offline task-oriented dialog (Andreas et al.,554

2020) (Budzianowski et al., 2018) and online user555

simulations using real humans or LM agents as re-556

sponders (Gür et al., 2018) (He et al., 2018). Ques-557

tion generation is a related task where agents seek558

information relevant to a downstream task, such as559

user intent (Min et al., 2020) or relevant facts (Toles560

et al., 2023). Some task-oriented dialog datasets fo-561

cus on clarification and information seeking, such562

as Zhang et al. (2023). However, datasets such as 563

ShARC (Saeidi et al., 2018) and ClariT (Feng et al., 564

2023) only require "yes" or "no" questions. BeNY- 565

fits expands on these works by adding a highly real- 566

istic, multi-turn dialog agent task requiring logical 567

reasoning and domain-specific knowledge. Simi- 568

lar tasks include MediQ (Li et al., 2024), which 569

benchmarks medical diagnosis through dialog, and 570

ClarQ-LLM (Gan et al., 2024), which focuses on 571

discovering hidden information while playing an 572

adventurer. In comparison, BeNYfits focuses on 573

logically reasoning legalistic tasks to reach a binary 574

prediction. 575

Many works on tool-use have equipped language 576

models with a code interpreter (Gupta and Kemb- 577

havi, 2023) (Shen et al., 2024), though fewer have 578

specifically studied tool creation, e.g., Qian et al. 579

(2023). Several prior works have established the 580

efficacy of code generation in dialog systems. Chiu 581

et al. (2023) propose grounding in code generated 582

based on partner utterances and using symbolic 583

planning to reason over the code. Surís et al. (2023) 584

find code translations an effective intermediate rep- 585

resentation for natural language questions. Nguyen 586

et al. (2024) create an LLM agent framework for 587

dynamically creating and composing subtask ac- 588

tions based on code. To the best of our knowledge, 589

no other code generation-based approaches have 590

been proposed for question generation in dialog. 591

9 Conclusion 592

We present a strong tool-augmented method to 593

solve interactive decision-making in dialogs and 594

a novel and realistic benchmark for measuring 595

decision-problem accuracy and dialog efficiency. 596

Our method ameliorates memory and planning is- 597

sues by converting key information in user utter- 598

ances into structured key-value pairs to improve 599

reasoning, latency, and cost by offloading compu- 600

tations onto an agent-created Python tool. Such 601

structured coding support overcomes many prob- 602

lems of pure LLM baselines such as hallucination 603

of missing information, lack of object tracking, be- 604

ing over-confident, etc. Ultimately, our proposed 605

method achieved an F1 score of 56.2 (compared to 606

at most 42.2 for the baselines) while reducing the 607

dialog turns needed by 13.9% compared to the next 608

best agent, raising hopes for reducing user burden 609

and increasing access to public opportunities using 610

language models. 611
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10 Limitations612

The eligibility requirements for this benchmark613

were derived from plain English summaries rather614

than official documents. Requirements for some615

opportunities omit details present in more complete616

sources.617

Although our dataset includes numerous state618

and federal level opportunities, suggesting broader619

applicability to many US-oriented applications, we620

agree that NYC Open Data may not generalize621

to other regions and contexts. We will add the622

following to the limitations section:623

We note that, due to its size and budget, New624

York City and State provide a wider range of ser-625

vices than most other municipalities around the626

world. For example, New York State’s right to shel-627

ter drives many of the 18 housing-related oppor-628

tunities in the dataset. Other domains, especially629

those requiring subjective evaluation (e.g., merit-630

based opportunities) present additional challenges,631

as eligibility cannot necessarily be determined con-632

sistently based on self-reported user information.633

The population data used to construct the Rep-634

resentative Dataset were collected from numerous635

independent sources. Some features were not avail-636

able, such as the percentage of people currently637

struggling to pay their electricity bill. In such cases,638

we make estimates based on the most similar avail-639

able data. At the same time, features are each col-640

lected from disparate sources, rather than from a641

single census, so our dataset is unable to express ac-642

curate correlations between related features. Users643

of our dataset should be aware of these limitations.644

Because our evaluation method weights the F1645

score against dialog turns, complex, multi-hop646

queries are weighted the same as simple yes or no647

questions. However, in practice, we rarely observe648

complex queries. The trade-offs of question com-649

plexity, length, and user burden may be addressed650

in future work.651

11 Ethical Considerations652

Empirically, we observe that model-generated code653

in this study does not contain harmful side effects.654

However, it is always safer to run untrusted code655

in a sandboxed environment like Docker.656

Introducing AI models into the social benefits657

system poses risks of false determinations and in-658

equitable user experiences. We encourage stake-659

holders to use AI to increase accessibility to public660

opportunities, but to avoid using them as the final661

determiner in any step due to the harm caused by 662

errors. Similarly, user-facing deployments should 663

consider the relative harm of false acceptances ver- 664

sus false refusals and calibrate their models accord- 665

ingly. 666
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A Structured Data Mapping 776

To investigate bias arising from the mapping of user 777

responses to structured data, we conduct the follow- 778

ing study: We analyze 17 questions generated by 779

ProADA and provide 6 perturbed versions of the 780

same answer. For example, to the question “What 781

is the number of people living in your household?”, 782

we provide the following perturbations: 783

Numeric: 1 784

Text: one 785

Verbose: There is only one person in my household 786

Multi-hop: I don’t live with anyone else 787

Misspelled: onee 788

Extraneous Info: One but I have a dog 789

Across all 102 trials, we find that overall, user 790

responses are mapped incorrectly only 2% (n=2) 791

of the time. Inaccurate mapping occurred only 792

once each in multi-hop and extraneous info per- 793

turbations. Otherwise, we see ProADA attempt 794

to clarify user responses in 6% (n=1) of verbose 795

perturbations and 23% (n=4) misspelling pertur- 796

bations, which we consider desired behavior. We 797

believe two factors contribute to the low level of 798

bias observed: Firstly, eligibility requirements in 799

BeNYfits are objective, leaving little room for bi- 800

ased interpretation. Secondly, ProADA generates 801

primarily yes/no (65%, n=11) and numeric ques- 802

tions (35%, n=6), which are generally straightfor- 803

ward to parse. 804
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C List of Prompts806

C.1 “Are Benefits Ready?” Prompt807

Eligibility requirements: {eligibil-808

ity_requirements}.809

Is the information sufficient to determine810

whether any member of the user’s household is eli-811

gible for all programs? Answer only in one word812

True or False.813

C.2 “Predict Benefits Eligibility” Prompt814

Eligibility: {eligibility_requirements}.815

Predict the programs for which any member of816

the user’s household is eligible. Return only a817

boolean array of length {num_programs}, e.g. {ex-818

ample_array}, where the value at index ‘i‘ is true819

iff the user is eligible for program ‘i‘. Only return820

the array. Do not return anything else in the re-821

sponse. If a user’s eligibility is unclear, make your822

best guess.823

C.3 “Ask a Clarifying Question” Prompt824

Eligibility: {eligibility_requirements}.825

Ask a clarifying question that will help you de-826

termine if any member of the user’s household is827

eligible for benefits as efficiently as possible. Only828

ask about one fact at a time.829

C.4 “Predict Benefits Eligibility” for CoT830

Prompt831

Eligibility requirements: {eligibil-832

ity_requirements}.833

Is the information sufficient to determine834

whether any member of the user’s household is835

eligible for all programs? Think through your rea-836

soning out loud. Then answer with True or False.837

C.5 “Predict Benefits Reasoning” for CoT838

Prompt839

Eligibility: {eligibility_requirements}.840

Predict the programs for which any member of841

the user’s household is eligible. Return only a842

boolean array of length {num_programs}, e.g. {ex-843

ample_array}, where the value at index ‘i‘ is true844

iff the user is eligible for program ‘i‘. Only return845

the array. Do not return anything else in the re-846

sponse. If a user’s eligibility is unclear, make your847

best guess. Think through your reasoning out loud.848

C.6 “Predict Benefits Constrained” for CoT849

Prompt850

Reasoning: {reasoning}.851

Using the reasoning above, predict the programs 852

for which any member of the user’s household 853

is eligible. Output a boolean array of length 854

{num_programs}, e.g. {example_array}, where 855

the value at index ‘i‘ is true iff the user is eligible 856

for program ‘i‘. If a user’s eligibility is unclear, 857

make your best guess. 858

C.7 “Predict Clarifying Questions” for ReAct 859

Chain-of-Thought Prompt 860

Eligibility: {eligibility_requirements}. 861

Ask a clarifying question that will help you de- 862

termine if any member of the user’s household is 863

eligible for benefits as efficiently as possible. Only 864

ask about one fact at a time. Think through your 865

reasoning out loud, then state your question after a 866

colon, e.g. Question: What is the user’s age? 867

C.8 “Generate Checker” Prompt 868

{attempt_no} 869

Eligibility Requirements: {eligibil- 870

ity_requirement} 871

Write a python function called 872

check_eligibility that takes a dictionary 873

hh containing relevant information and determines 874

user eligibility. hh is a special dictionary connected 875

to a language model that is conversing with the 876

user. Any time it does not contain a key, it will 877

determine that information from the user. As a 878

result here are some requirements for interacting 879

with hh: 880

• DO NOT use dict.get() anywhere in the 881

code. Key errors will be handled elsewhere. 882

• Do not use default values. 883

• Do not use any f-strings, curly brackets, or 884

dynamically generated strings in your keys. 885

• Use only literal strings in keys. 886

• Do not use try-except blocks. 887

• If you need to access data for individuals 888

(rather than the household as a whole) you 889

can use integer indexing. hh[0] is the head of 890

the household. 891

check_eligibility returns a bool. All 892

keys and values of hh are strings. If you 893

write helper functions, keep them inside the 894

check_eligibility function. Make your code 895

as detailed as possible capturing every edge case. 896
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Remember that the household may have no relevant897

members, so be sure to ask about the composition898

of the household. For example, for childcare pro-899

grams, check that the household has at least one900

child. After each new lookup in hh, write a com-901

ment suggesting a question to ask.902

The following is a set of preexisting keys and val-903

ues in the hh dictionary; take care not to duplicate904

them.905

{preexisting_keys}906

Avoid using int() and use float() instead. Do907

not provide anything besides code in your response.908

Do not use input for user input.909

C.9 “Get Type” Prompt910

Context: {eligibility_requirements}911

Code: {code}912

Target key: {key}913

Question: Given the code and context above,914

what do you expect {key} to be an integer, a float,915

or one choice from a set of strings? Return ONLY916

int, float, or choice.917

C.10 “Get Values” Prompt918

Context: {eligibility_requirements}919

Code: {code}920

Target key: {key}921

Question: Given the code and context above,922

what are the possible values of {key}? Return923

ONLY the list of possible values in a list of strings.924

For example, return ["a", "b", "c"].925

C.11 “Extract Values from Answer” Prompt926

Context: {eligibility_requirements}927

Line: ˋˋ{̀line}```928

We need to extract the value of {key} from the929

following dialog:930

Question: {cq} Answer: {answer}931

What should we set as the value of {key}? Re-932

turn ONLY the value.933

C.12 “Key Error” Prompt934

Context: {eligibility_requirements}935

Line: ˋˋ{̀line}```936

We need to determine what value of {key}937

should be stored in the hh dictionary. Ask a ques-938

tion to the user that would get this value. For ex-939

ample, for age_i, ask “What is the age of person940

i?”. Return ONLY the question.941

D Instructions to User Survey 942

Participants 943

Please select five programs in which you are inter- 944

ested. The chatbot will help you determine your 945

eligibility for them. Please answer the questions 946

with respect to your own household. You may end 947

the study at any time. Your responses will not be 948

stored. Only the final model prediction and your 949

feedback will be used. 950

Participants were students and a New York City 951

university recruited in person and compensated up 952

to $5 USD. 953
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Benefits Program Positive Count Negative Count Percentage True (%)

FamilyHomelessnessAndEvictionPreventionSupplement 4 3 57.14
WorkforceoneCareerCenters 1 1 50.00
SilverCorps 1 1 50.00
AdultProtectiveServices 1 2 33.33
DisabilityRentIncreaseExemption 8 7 53.33
ChildTaxCredit 1 4 20.00
SeniorCitizenHomeownersExemption 1 9 10.00
InfantToddlerPrograms 3 6 33.33
LearnEarn 7 1 87.50
DisabledHomeownersExemption 1 6 14.29
PreKForAll 1 1 50.00
JobsPlus 1 1 50.00
HeadStart 6 2 75.00
KindergartenAndElementarySchool 1 1 50.00
CoolingAssistanceBenefit 4 5 44.44
HomeEnergyAssistanceProgram 4 3 57.14
VeteransAffairsSupportedHousing 1 1 50.00
NYCFreeTaxPrep 2 1 66.67
FamilyPlanningBenefitProgram 1 6 14.29
ChildrenAndYouthWithSpecialHealthCareNeeds 3 2 60.00
EnhancedSchoolTaxReliefProgram 0 2 0.00
SummerMeals 1 1 50.00
TrainEarn 6 3 66.67
NYCFinancialEmpowermentCenters 1 1 50.00
NYCHAPublicHousing 3 5 37.50
ChildAndDependentCareTaxCredit 4 4 50.00
ChildCareVouchers 8 2 80.00
HIVAIDSServicesAdministration 1 1 50.00
BigAppleConnect 1 1 50.00
OfficeOfChildSupportServices 1 3 25.00
BeaconPrograms 1 1 50.00
SafeAndSickLeave 1 5 16.67
NYSUnemploymentInsurance 1 1 50.00
FamilyTypeHomesForAdults 1 6 14.29
EarnedIncomeTaxCredit 1 6 14.29
Homebase 1 1 50.00
HomeFirstDownPaymentAssistance 2 1 66.67
HighSchool 1 1 50.00
SeniorCitizenRentIncreaseExemption 1 1 50.00
AccessARideParatransitService 2 1 66.67
TextTwoWork 4 1 80.00
TheEarlyInterventionProgram 1 1 50.00
EarlyHeadStart 2 4 33.33
Lifeline 6 1 85.71
IDNYC 1 1 50.00
NYSPaidFamilyLeave 2 1 66.67
COVIDnineteenFuneralAssistance 1 1 50.00
SchoolAgeAndEarlyChildhoodFamilyAndCommunityEngagementFACECenters 1 1 50.00
FairFaresNYC 1 2 33.33
NYCYouthHealth 1 1 50.00
NewbornHomeVisitingProgram 4 2 66.67
AcceleratedStudyInAssociatePrograms 1 1 50.00
STEMMattersNYC 1 1 50.00
CommoditySupplementalFoodProgram 1 2 33.33
CareerAndTechnicalEducation 1 1 50.00
NYCHAResidentEconomicEmpowermentAndSustainability 1 1 50.00
OutpatientTreatmentServices 1 1 50.00
CUNYFatherhoodAcademy 1 3 25.00
SummerYouthEmploymentProgram 1 1 50.00
ThreeK 1 1 50.00
MedicaidForPregnantWomen 1 2 33.33
ActionNYC 1 1 50.00
FamilyResourceCenters 2 1 66.67
NYCCare 1 1 50.00
PrimaryAndPreventiveHealthCare 1 1 50.00
NYCTenantResourcePortal 1 1 50.00
OlderAdultEmploymentProgram 1 1 50.00
NYCLaddersForLeaders 1 1 50.00
CornerstonePrograms 1 1 50.00
ComprehensiveAfterSchoolSystemOfNYC 1 1 50.00
WeSpeakNYC 1 1 50.00
NYCMitchellLama 1 0 100.00
CUNYStart 1 1 50.00
NYCNurseFamilyPartnership 1 1 50.00
MiddleSchool 1 1 50.00
AdvanceEarn 1 1 50.00
SectionEightHousingChoiceVoucherProgram 1 0 100.00
NYCYouthLeadershipCouncils 1 1 50.00
ChildHealthPlusAndChildrensMedicaid 1 2 33.33
VeteransPropertyTaxExemption 1 1 50.00
FamilyAssessmentProgram 1 1 50.00
BasicSchoolTaxReliefProgram 1 0 100.00
Total 146 159 47.88

Table 4: Benefits Program-wise Positive/Negative Counts and Percentages for the Diversity Dataset
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Benefits Program Positive Count Negative Count Percentage True (%)

AdultProtectiveServices 0 3 0.00
HomeEnergyAssistanceProgram 0 3 0.00
MiddleSchool 0 3 0.00
NYCFreeTaxPrep 0 3 0.00
NYSPaidFamilyLeave 1 2 33.33
NYSUnemploymentInsurance 0 3 0.00
WorkforceoneCareerCenters 1 2 33.33
FamilyTypeHomesForAdults 2 1 66.67
HeadStart 0 3 0.00
NYCFinancialEmpowermentCenters 3 0 100.00
TextTwoWork 3 0 100.00
ThreeK 0 3 0.00
CornerstonePrograms 0 3 0.00
JobsPlus 0 3 0.00
CommoditySupplementalFoodProgram 0 3 0.00
NYCCare 0 3 0.00
SilverCorps 0 3 0.00
SummerMeals 1 2 33.33
PrimaryAndPreventiveHealthCare 1 2 33.33
IDNYC 3 0 100.00
NYCYouthLeadershipCouncils 0 3 0.00
Homebase 1 2 33.33
NYCMitchellLama 2 1 66.67
NYCNurseFamilyPartnership 0 3 0.00
AdvanceEarn 0 3 0.00
BeaconPrograms 1 2 33.33
ChildHealthPlusAndChildrensMedicaid 0 3 0.00
BasicSchoolTaxReliefProgram 0 3 0.00
TheEarlyInterventionProgram 0 3 0.00
AccessARideParatransitService 3 0 100.00
ChildAndDependentCareTaxCredit 0 3 0.00
FamilyResourceCenters 0 3 0.00
InfantToddlerPrograms 0 3 0.00
NYCTenantResourcePortal 3 0 100.00
NYCYouthHealth 1 2 33.33
DisabledHomeownersExemption 0 3 0.00
OutpatientTreatmentServices 0 3 0.00
STEMMattersNYC 0 3 0.00
SeniorCitizenHomeownersExemption 0 3 0.00
CareerAndTechnicalEducation 0 3 0.00
NewbornHomeVisitingProgram 0 3 0.00
SchoolAgeAndEarlyChildhoodFamilyAndCommunityEngagementFACECenters 0 3 0.00
BigAppleConnect 0 3 0.00
CUNYFatherhoodAcademy 0 3 0.00
HomeFirstDownPaymentAssistance 0 3 0.00
DisabilityRentIncreaseExemption 0 3 0.00
KindergartenAndElementarySchool 0 3 0.00
EarnedIncomeTaxCredit 1 2 33.33
HIVAIDSServicesAdministration 0 3 0.00
OlderAdultEmploymentProgram 0 3 0.00
FamilyHomelessnessAndEvictionPreventionSupplement 0 3 0.00
ChildCareVouchers 1 2 33.33
ComprehensiveAfterSchoolSystemOfNYC 1 2 33.33
COVIDnineteenFuneralAssistance 0 3 0.00
TrainEarn 0 3 0.00
LearnEarn 0 3 0.00
SectionEightHousingChoiceVoucherProgram 0 3 0.00
CoolingAssistanceBenefit 0 3 0.00
MedicaidForPregnantWomen 0 3 0.00
SummerYouthEmploymentProgram 1 2 33.33
FairFaresNYC 0 3 0.00
PreKForAll 0 3 0.00
ChildrenAndYouthWithSpecialHealthCareNeeds 1 2 33.33
CUNYStart 2 1 66.67
NYCLaddersForLeaders 0 3 0.00
FamilyAssessmentProgram 1 2 33.33
FamilyPlanningBenefitProgram 0 3 0.00
NYCHAPublicHousing 0 3 0.00
SafeAndSickLeave 2 1 66.67
WeSpeakNYC 1 2 33.33
VeteransAffairsSupportedHousing 0 3 0.00
NYCHAResidentEconomicEmpowermentAndSustainability 0 3 0.00
SeniorCitizenRentIncreaseExemption 0 3 0.00
AcceleratedStudyInAssociatePrograms 0 3 0.00
EnhancedSchoolTaxReliefProgram 0 3 0.00
EarlyHeadStart 0 3 0.00
ActionNYC 0 3 0.00
Lifeline 1 2 33.33
VeteransPropertyTaxExemption 0 3 0.00
HighSchool 0 3 0.00
OfficeOfChildSupportServices 0 3 0.00
ChildTaxCredit 0 3 0.00
Total 38 208 15.42

Table 5: Benefits Program-wise Positive/Negative Counts and Percentages for the Representative Dataset
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