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Abstract

Neural language models (LMs) have achieved impressive results on various
language-based reasoning tasks by utilizing latent knowledge encoded in their
own pretrained parameters. To make this reasoning process more explicit, recent
works retrieve a rationalizing LM’s internal knowledge by training/prompting it
to generate free-text rationales, which can be used to guide task predictions made
by either the same LM or a separate reasoning LM. However, rationalizing LMs
require expensive rationale annotation, without any assurance that the generated ra-
tionales improve LM task performance or faithfully reflect LM decision-making. In
this paper, we propose PINTO, an LM pipeline that rationalizes via prompt-based
learning, and learns to faithfully reason over rationales via counterfactual regu-
larization. First, PINTO maps out a suitable reasoning process for the task input
by prompting a frozen rationalizing LM to generate a free-text rationale. Second,
PINTO’s reasoning LM is fine-tuned to solve the task using the generated rationale
as context, while regularized to output less confident predictions when the rationale
is perturbed. Across four datasets, we show that PINTO significantly improves
the generalization ability of the reasoning LM, yielding higher performance on
both in-distribution and out-of-distribution test sets. Also, PINTO leverages the
rationales more faithfully than competitive baselines do.

1 Introduction

Many language-based reasoning tasks require retrieving and reasoning over knowledge beyond the
task input—e. g., commonsense reasoning and closed-book QA (Fig.|1] left) [29,20]. Neural language
models (LMs) have achieved impressive results on such tasks by utilizing latent knowledge encoded
in their pretrained parameters [23}|4]. Still, given LMs’ black-box nature, it is unclear whether this
knowledge is being used properly [8,|16]. Previous studies have shown that LMs often learn spurious
correlations from artifacts in downstream training data, thus limiting their generalizability [3} 9, [6].

With this in mind, a number of prior works aim to make LMs’ reasoning processes more explicit by
generating free-text rationales, which use LMs’ internal knowledge to describe a reasoning process
in natural language [21} 32, [18} 135)]. In the fine-tuned self-rationalizing paradigm, a single LM
is fine-tuned to jointly generate the task output and rationale [21} (18] 135]]. In the prompted self-
rationalizing paradigm, a single LM is instead frozen and prompted to jointly generate the task output
and rationale, with the prompt consisting of a few input-output-rationale demonstrations [32]. In the
pipeline-rationalizing paradigm, a fine-tuned LM first generates the rationale, which is then used as
input for a separate fine-tuned reasoning LM to generate the output [14} 24]].

However, when considering generalization performance, reliability, and deployment cost, these exist-
ing paradigms all have key limitations. Fine-tuned self-rationalizing LMs often perform worse than
non-rationalizing LMs, since their parameters are learned using two relatively dissimilar objectives,
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Figure 1: Rationale-Based Language Reasoning. (a) Examples of reasoning tasks that require
implicit knowledge beyond task inputs. (b) Comparison of existing paradigms for providing free-text
rationales along with predictions.

while also requiring expensive rationale annotations [34} 21]]. Prompted self-rationalizing LMs yield
strong task performance and only need a few rationale demonstrations for the prompt, but are compu-
tationally prohibitive since they generally require very large-scale (i.e., over 100B parameters) LMs
to work effectively [31} 32]]. Besides requiring expensive rationale annotations, pipeline-rationalizing
LMs’ generated rationale forms a non-differentiable bottleneck between the two modules, which
complicates end-to-end training and can hurt task performance [34} [12]]. Moreover, none of these
paradigms has a mechanism for regularizing the rationale generation to faithfully reflect the reasoning
process of the LM, without hurting task performance.

In this paper, we propose Prompted RatIonalizing with CouNTerfactual ReasOning ($ PINTO),
an LM pipeline that rationalizes via prompt-based learning, then reasons over the task input and
rationale via counterfactual regularization. PINTO’s rationalizing module is a medium-scale (i.e.,
20B parameters) LM that contains vast latent knowledge obtained via pretraining [2]. Though
prohibitive to fine-tune, it is affordable for prompt-based learning. Given the task input and a minimal
input-output demonstration prompt, the rationalizing module uses its internal knowledge to map out
a suitable reasoning process for the task input by generating a free-text rationale. The rationalizing
module is frozen during fine-tuning, which drastically reduces training costs and prevents it from
exploiting spurious shortcuts in the downstream training data. PINTO’s reasoning module is a
small-scale (i.e., under 1B parameters) LM to which knowledge is transferred from the much larger
rationalizing module. The reasoning module is fine-tuned to solve the downstream reasoning task by
using the generated rationale as context for the task input. Crucially, to help ensure that the rationale
dictates the behavior of the reasoning module, the reasoning module is regularized to output less
confident predictions when the rationale is perturbed. To simulate shortcut reasoning with rationales,
we consider two rationale perturbation strategies: token masking (i.e., rationale is ignored) and token
replacement (i.e., rationale is misused).

Across four question answering datasets (CSQA, StrategyQA, OpenBookQA, QASC), we show that
PINTO significantly improves the reasoning LM’s generalization, yielding higher performance on
both in-distribution (ID) and out-of-distribution (OOD) test sets. Also, we find that rationales are
leveraged more faithfully by PINTO than by other methods. Furthermore, we show that PINTO’s
counterfactual regularization improves the reasoning module’s robustness to noise in the rationalizing
module’s generated rationales.

2 Rationale-Based Language Reasoning

In this work, we study LMs’ ability on language-based reasoning using implicit knowledge. We
consider a specific type of multi-choice question answering (QA) tasks where the required knowledge
for answering the question is not explicitly provided in the input and needs to be inferred from the
LM’s parameters [30} [13]]: Given a question ¢ and a set of answer choices A = {a;}, the model’s
goal is to predict a plausibility score p(q, a;) for each (g, a;) pair, so that the predicted answer
a = argmax,, 4 p(q, a;) matches the correct answer choice a* € A.
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Figure 2: Overview of PINTO. (1) A frozen medium-scale LM is prompted to generate choice-
specific rationales. (2) A small-scale LM is fine-tuned to reason over the generated rationales. (3) We
introduce counterfactual regularization in addition to standard training loss to ensure the rationales
are leveraged properly. During inference, the rationalizing LM is prompted with a new question to
generate rationales, which are provided to the reasoning module to make a prediction.

Motivated by the LM tendency to exploit reasoning shortcuts for solving tasks [3], we focus on
methods that explicitly generate free-text rationales to explain their predictions. Whereas extractive
rationales are limited to input token scoring [7} 27, 5], free-text rationales use natural language to
describe a reasoning process (e.g., things beyond the task input) [21} 132]. Below, we discuss several
paradigms (see also Fig.[T)) for rationale-based language reasoning.

Fine-Tuned Self-Rationalization In this paradigm, an LM is fine-funed to generate the task output
and rationale as a single sequence [21} [17]]. If the rationale is generated after the task output, then the
rationale is conditioned on the task output, and vice versa. Since the LM parameters are shared across
two relatively dissimilar objectives, they often perform worse than non-rationalizing LMs [34, 21]].
Notably, this paradigm requires expensive rationale annotations for all training instances.

Prompted Self-Rationalization In this paradigm, a pretrained LM is frozen and prompted to
generate the task output and rationale as a single sequence, with the prompt consisting of a few
input-output-rationale demonstrations [15132]. If the rationale is generated after the task output, then
the rationale is conditioned on the task output, and vice versa. This paradigm performs well and it
only needs a few rationale annotations for the prompt, but it is computationally prohibitive since it
generally requires very large-scale (i.e., over 100B parameters) LMs to work effectively [15}132].

Pipeline Rationalization Here, a fine-tuned rationalizing LM first generates the rationale, which is
then used as input for a separate fine-tuned reasoning LM to predict the task output [[14}24]. This
paradigm’s generated rationale forms a discrete (i.e., non-differentiable) bottleneck between the two
modules, which complicates end-to-end training and can hurt task performance [34,112]. Additionally,
the dedicated rationalizing LM requires extra rationale annotation/computation costs.

3 PINTO: Faithful Language Reasoning Using Prompt-Generated Rationales

PINTO is a two-stage, rationalize-then-reason pipeline, designed to address the limitations of
existing paradigms for rationale-based language reasoning (§2). Like the pipeline rationalization
paradigm, PINTO has separate modules for rationalizing and reasoning. However, PINTO’s
rationalizing module is prompted instead of fine-tuned. As a result, PINTOdoes not suffer from the
non-differentiable bottleneck issue and has lower rationale annotation/computation costs.

Following prior works, PINTO is based on choice-specific rationales [14,[12]]. First, given g and
A, the rationalizing module generates a set of choice-specific rationales R = {r;}, where each r;
explains a reasoning process that supports answer choice a; € A (§3.1), as opposed to generating
one rationale per question. We opt for this design choice because rationales are often answer-leaking
[26]], i.e., the rationale itself is already sufficiently predictive of one of the answer choices. If the
rationalizing module only generates one rationale per question, then it is forced to make an “early
decision”, and the reasoning module would only be left to recover the answer from the rationale [[14].



Table 1: Rationalization Prompts. The format of our prompts for rationalization with a medium-
scale LM. The prompt consists of a few examples as demonstration on how to rationalize for a
question-choice pair and placeholders for new question and a target choice.

Task | CommonsenseQA | OpenBookQA
Prompt | Q: What do people use to absorb extra ink from | Q: How do you reduce pollution?
a fountain pen? Answer choices:(a) igniting fuel and oxidiser

Answer Choices: (a) shirt pocket (b) callig- | (b) transportation technology ... (h) using less
rapher’s hand (c) inkwell (d) desk drawer (e) | resources

blotter A: The answer is using less resources. Con-
A: The answer is blotter. Blotting paper ab- | serving resources has a positive impact on the
sorbs liquids like ink well. environment. Use of resources affects the envi-

ronment such as pollution.

While prior works require expensive rationale annotations to train/prompt the rationalizing module
[14, 12], PINTO’s rationalizing module is a frozen pretrained LM that uses only a few question-
answer demonstrations as a prompt (§3.I). Second, given ¢, a; € A, and r; € R, the reasoning
module outputs plausibility score p(q, a;, ;) (. We also design a regularization objective that
encourages the reasoning module to properly use the rationales to predict the answer (§3.3).

3.1 Rationalizing Module

Prior works mainly rely on human-annotated rationales to teach a model to rationalize [14} 12, [26].
However, such rationale annotations are expensive and frequently low-quality [1} 26, 24]], e.g., not
providing sufficient knowledge to support a given answer. Meanwhile, rationales automatically
generated by pretrained LMs are often preferred over human-annotated rationales [33]. Therefore,
for PINTO’s rationalizing module, we propose using a pretrained LM to generate rationales via
in-context learning, which prompts the frozen LM to retrieve knowledge from its parameters [32].

The prompt consists of a fixed set of question-answer demonstrations that are randomly selected
from the training set. Each demonstration consists of a question ¢, answer choices AE] gold answer
a* € A, and a human-annotated free-text rationale r* € R for a* (Table E] With this prompt p, we
use the LM to generate rationales for every instance from the dataset. Specifically, for each a; € A
of some instance (¢, A), the rationalizing LM’s input is constructed as [p, ¢, A, a;]. Then, we use
greedy decoding of the LM output to obtain rationale r; for a;. Note that the LM input does not have
any information about the gold answer a*. Our design of the rationalizing module assumes that r;
will be aligned with common sense if and only if a; = a*, since it should intuitively be difficult to
retrieve correct commonsense knowledge that supports an incorrect answer choice. The reasoning
module then predicts the correct answer by reasoning over the rationales for each answer choice.

3.2 Reasoning Module

Given a question ¢, the answer choices A, answer candidate a; € A, and rationale r;, the reasoning
module learns to output plausibility score p; = p(q, A, a;, ;). Following prior works, we use a text-
to-text Transformer LM as the backbone of our reasoning module [34}[12]. For each a;, the reasoning
module’s input is defined as the token sequence s = [¢ © a1 @ ... @ aj4) @ r;], where & denotes
concatenation. Meanwhile, the reasoning module’s output is obtained by sequentially teacher-forcing
a;’s tokens t; = [t8, 5, ..., fail] into the decoder, rather than via greedy decoding. This way, we can
compute the reasoning module’s output token probabilities for arbitrary answer choices a;. Following
[25]], we compute a;’s plausibility score p; by aggregating ¢;’s token probabilities as:

lai|

1 o o
Zp(tj |t;—15 "'7t;7t117qa Qj, ri)-
j=1

Pi = 7

|l
Next, we use the softmax function to normalize p; as probability P(a; |q, A, R) = e”i/ le’ill efi.
During inference, the rationalizing module firstly generate R = {r;} given a new question and
answer choices, and then the predicted answer choice is computed by the reasoning module as
a = argmax,, .4 P(a;|q, A, R).

'We include the answer choices A in the prompt so that the LM is aware of all the available choices and thus
could generate a rationale that is more distinctive.
2As opposed to full human annotation, we only need a few (usually <8) examples for one dataset.



3.3 Training

For a multi-choice QA, the standard training objective is to maximize the likelihood of the correct
answer choice using cross-entropy loss, computed as:

Std - Z Q a‘t‘Qa logP(a’i|qu7R)a (1)

a; EA

where Q(a; | g, A) is 1 if a; = a* and O otherwise. Let ~——-—-—~-—-=--=-—-—-==-—~
Q(A]q, A) be the one-hot target distribution over all a; € A. |

There can be spurious correlations between g and A [3]], so | AN
the reasoning module may take undesirable shortcuts instead '

of properly using the rationale to predict the answer [[L1,[19]. :

In this case, the rationales would be unfaithful in explaining 222272 282008 -
the model’s behavior and useless for model debugging.

+ Unif. Distribution |
|

To address this, we introduce a counterfactual regulariza- 1) Token Maksing
tion objective in which the reasoning module is regularized Q
to output less confident predictions when the rationale is /N

|
|

|

| |
- |
not leveraged properly (i.e., shortcuts are used). This is im- : @ |
plemented using label smoothing [28]], which softens the | 2)Token Replacement ‘ |
target distribution Q(A | ¢, A) by linearly combining it with 1 Noisy labels :
a noisy distribution U(A | g, A), often set as the uniform ! / |
distribution. Therefore, given tunable label smoothing factor : > A |
Q <e< 1/, we compute the label-smoothed target distribu- | Counterfactual Training :
tionas: Q' (A q,A)=(1—-€)Q(A|q,A)+eU(A|q,A). "= ————-—===-——-—-—=

In ord imul h . Jder th Figure 3: Standard Training vs. Coun-
n or qr to simulate s' ortcut reasoning, Wf? consider the two terfactual Training. For counterfactual
strategies for perturbing the generated rationales ;. Token .oy jarization, we train the reasoning mod-
Masking addresses the case where the reasoning module yle with noisy labels when the rationale
ignores the rationale and instead exploits spurious cues in tokens are either masked or replaced.

the rest of the input. To simulate this, we mask the rationales

from the input. Recall that the backbone of the reasoning module is a Transformer LM, which uses a
self-attention mechanism to aggregate information across tokens. Hence, we implement rationale
masking by zeroing the attention mask for rationale tokens Token Replacement addresses the

scenario in which the reasoning module misunderstands the rationales. It randomly replaces k% of
the rationale tokens with other tokens randomly sampled from the entire vocabulary.

At each fine-tuning step, we randomly select one of the strategies for obtaining perturbed ratio-
nales R’ = {r.}, which helps keep the LM from overfitting to any particular strategy. Then, the
counterfactual regularization loss is computed as:

creg - Z Q al|qa 10gP(a7|q,A7R/) (2)

a; EA

This counterfactual regularization teaches the reasoning module to be less confident when the
rationales are either absent or problematic, so that it can learn to make sounder use of the rationales.

4 Experimental Setup

Datasets We experiment with several CSR benchmarks. (1) CommonsenseQA [29], (2) Strate-
gyQA [10], (3) OpenBookQA [20], and (4) QASC [13]]. Since the gold labels for the testing sets
of these datasets are not publicly available, we treat the official development set as our test set, and
separate the training data into our own training set and development set.

Baselines (1) Prompted Self-Rationalization is a GPT-neox LM which learns from a few examples
in the prompt to firstly generate a few short sentences as the rationale and then predict the answer.
We use the chain-of-thought type of prompt as in [32]. (2) Without Rationales is a T5-based model
fine-tuned with the task dataset without using any rationales as additional input. (3) Standard Training
adopts the same rationalizing and reasoning pipeline as our method, but the reasoning module is not

3We do not choose to replace the tokens in a rationale with special mask tokens since the LM is already
pretrained to recover the mask tokens, and we want to ensure that this ability is completely deprived.



Table 2: ID Results. Task performance (accuracy) and faithfulness (LAS) of the compared methods
on the testing datasets. The rationalizing module is GPT-neox (20B) while the reasoning module for
the fine-tuning methods is T5-based. The Prompted Self-Rationalization using GPT-3 is reported
to achieve 73.50 and 66.53 in accuracy on CSQA and StrategyQA respectively [32]. We bold the
results that exceed the second best with statistical significance (p-value< 0.05).

CSQA StrategyQA  OpenBookQA QASC
Method Acc.t LAST Acc.t LAST Acc.t LAST Acc.t LAST
Prompted Self-Rational. 38.41 11.66 55.31 1.09 33.80 14.67 32.61 32.01
w/o Rationales 58.68 - 58.12 - 55.85 - 3558 -
Standard Training 59.48 18.75 57.11 1.50 56.65 17.03 37.50 3791
Dropout Context 59.64 2040 5145 0.62 5755 18.76 3537 37.54
PINTO 61.67 24.22 60.87 335 5885 18.02 37.82 38.98
- Token Masking Only 60.46 17.44 59.12 1.74 5835 13.06 37.39 34.06

- Token Replacement Only  60.38  22.54  58.72 2.11 5810 18.01 3747 34.61

Table 3: OOD Results. Performance (accuracy) of the compared methods, which are firstly trained
on a source dataset and then directly predict on a target dataset (denoted as source — target).

Method \ CS—OB \ CS—QASC \ OB—CS \ QASC—CS \ QASC—0OB
w/o Rationales 32.05 39.17 24.87 45.74 34.90
Standard Training 31.05 40.04 25.37 47.71 34.50
Dropout Context 32.30 38.85 23.01 44.27 32.90
PINTO \ 34.90 \ 42.25 \ 27.66 \ 48.03 \ 35.75

fine-tuned with the counterfactual training loss. (4) Dropout Context is the same as the Standard
Training baseline except that during the fine-tuning of the reasoning module, the question is randomly
dropped out from the input, which is a strategy adopted in prior work [12]] to encourage the reasoning
module to make good use of the input rationales.

Implementaion details of our method can be found in the Appendix (A.T). We also consider two
PINTO variants as baselines: Token Masking Only and Token Replacement Only. These only use
token masking or token replacement for perturbing rationale tokens, respectively.

Evaluation Metrics To evaluate fask performance, we measure accuracy and consider both ID and
OOD evaluation sets in our experiments. To evaluate the faithfulness of the generated rationale to the
model’s prediction, we adopt LAS metric [12], which measures how well rationales help a simulator
predict a model’s output. Following [[12], we use a fine-tuned T5-base for the simulator.

5 Experiments
5.1 Main Results

Performance on ID data Table |2| shows the task performance in accuracy of all the compared
methods on the four CSR datasets we consider, from which we make two observations. First, the
Prompted Self-Rationalization baseline with GPT-neox (20B) generally does not outperform the
fine-tuning methods while the GPT-3 version is reported to achieve 73.50 and 66.53 in accuracy on
CSQA and StrategyQA respectively [32]. This validates that Prompted Self-Rationalization requires
very large LMs to work effectively [31]. Second, simply augmenting the reasoning module with
rationales (as in Standard Training) does not always lead to better results compared with the Without
Rationales baseline since the rationales may not be properly utilized. The Dropout Context baseline
helps to address this issue in some, but not all cases, while PINTO consistently yields the best
accuracy in most of the cases.

Generalizability to OOD data To demonstrate the generalizability brought by faithful reasoning
over rationales, we further investigate the performance of our method on out-of-distribution (OOD)
data. The intuition is that by utilizing rationales faithfully rather than fitting only the in-distribution
training data, our model achieves better OOD generalization without any fine-tuning. Table|3|shows
the OOD performance of all the fine-tuning methods. We conclude that rationales are helpful in
improving the generalizability of the model to a dataset unseen during fine-tuning. Among all the



methods utilizing rationales, our method yields the best OOD performance, which confirms the
benefit of faithful reasoning.

Rationale-Label Association Table [2| also reports the faithfulness of all the methods involving
rationalization measured by LAS. We observe that PINTO achieves a much higher score compared
with the baselines except on OpenBookQA. This demonstrates that with counterfactual regularization,
the reasoning module can make predictions more faithfully with regard to the rationales.

5.2 Performance Analysis

Can we refine the reasoning behavior via ratio-
nales? One important application of faithful rea-
. . . . d
soning is that rationales provide a way to refine the =/ _ e e Annotated
behavior of a model, i.e., we can correct reasoning I
E B

mistakes by providing a better rationale. To verify
this, we make use of ECQA [1] which augments
CSQA with human-annotated rationales. We directly
provide the human-annotated rationales to the fine-
tuned reasoning modules to obtain its oracle results,
shown in Figure E} We see that human-annotated . i o0
rationales generally lead to performance gain for all Standard Dropout PINTO

fine-tuning methods whereof the gain of our method  Figure 4: Rationale Quality Analysis. Ac-
is the largest. This again showcases the merits of en- curacy of models with both generated and
suring the faithful reasoning on rationales in refining  annotated rationales vs. models using only
a system. generated rationales on CSQA.

Is our method more robust to perturbed Typle 4: Robustness to Noisy Rationales. Robustness
rationales?  One potential risk with the (accuracy) of the compared methods. We use perturbed
rationalize-then-predict approach is error prop- rationales during inference as a stress test.

agation where the model may be misled by less
optimal rationales. However, since the label csQA 0BQA
smoothing loss used for counterfactual regular- Model / Rationale ~ Original Perturbed Original Perturbed
ization still teaches the reasoning module to out- ~ Standard Training  59.48 58.60 56.65 56.30
put a reasonable distribution with the answer DropoutContext 3964 5758 5755 57.00
having the highest probability, the ability to rea- FPINTO 6167 5905 5885 5730
son robustly is thus preserved in our method. To

verify this, we conduct a stress test. We choose CSQA and OpenBookQA and replace each question
in the testing set with a randomly sampled question but still keep the original answer choices. We
then prompt our rationalizing module with the replaced question and the original choices to obtain
a set of perturbed rationales. We finally provide the perturbed rationales to the reasoning module.
Table [ shows the results. We can observe that among all the methods, PINTO still predicts robustly
without much performance drop while baselines are affected more severely. Note that the robustness
is an additional advantage brought by counterfactual regularization and is not contradictory to our
goal of ensuring faithfulness, since normally we do not use the perturbed rationales for inference.

Accuracy (%)

«
@

56

6 Conclusion

This paper presents PINTO, an LM pipeline that rationalizes with prompt-based learning and
reasons via counterfactual regularization. Through prompting, we remove the need for expensive
human annotation and leverage the massive knowledge encoded in a medium-sized LM to perform
rationalization. With counterfactual regularization in addition to standard training objective, our
reasoning module learns to reason over the generated rationales more faithfully. Experiments show
that our method outperforms baselines on both in-distribution and out-of-distribution datasets in
accuracy, while providing higher faithfulness. Our analysis also shows that we can further improve
task performance with a more faithful reasoning module and refined rationales.
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A Appendix

A.1 Implementation Details

For the rationalizing module, we use GPT-neox [2], a pretrained, autoregressive LM with 20B
parameters. We manually annotate 7 examples to set up the prompt for each task dataset. For the
reasoning module, we adopt T5-base [22] with only 220 million parameters, which is around two
orders of magnitude smaller than the rationalizing module. During fine-tuning, the standard training
loss (Eq.[I) and our counterfactual training loss (Eq.2) are directly combined as the overall training
loss. For perturbing rationales, we randomly choose the token masking or token replacement strategy
with a equal chance in each training batch. The replacing rate for token replacement is empirically
set to 30%. We run all the experiments on the compared methods 4 times using a fixed set of random
seeds and report the average results.

A.2 Case Study

Table 5: Case Study. Generated rationales and model predictions from CSQA and StrategyQA.

Questions and Choice-specific Rationales | Standard | PINTO

Q: If you have leftover cake, where would you put it?

(a) quandry: Quandry is a place where you put things that you don’t know ...
(b) refrigerator: Refrigerator is used to store food.

(c) oven: Oven is used to bake cakes.

oven X | refrigerator

Q: Has every astronaut survived their space journey?

yes: Astronauts have died in space. For example, the Challenger astronauts
died in the Challenger space shuttle explosion.

no: The first astronaut to die was Yuri Gagarin. Gagarin died in a plane crash.

yes X no

We provide concrete examples in Table[5]to showcase how our prompted LM rationalizes for correct
and incorrect choices and how PINTO reasons more faithfully compared with the Standard baseline.
In the question (second row) from CSQA, we can see that for incorrect choices, the generated
rationales do not support them to be the answer while the one for the correct choice refrigerator does.
In the question (third row) from StrategyQA, the rationale for the correct choice yes is sound and
reasonable while the rationale for the incorrect choice no is factually correct but does not answer the
question directly (died in a plane crash vs. died in the space journey). For both questions, PINTO
properly leverages the rationales and make the correct predictions while the Standard baseline fails.
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