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Abstract

Vision Large Language Models (VLLMs) are widely acknowledged to be prone to hallucina-
tions. Existing research addressing this problem has primarily been confined to image inputs,
with sparse exploration of their video-based counterparts. Furthermore, current evaluation
methods fail to capture nuanced errors in generated responses, which are often exacerbated
by the rich spatiotemporal dynamics of videos. To address these two limitations, we introduce
VidHal, a benchmark specially designed to evaluate video-based hallucinations in VLLMs.
VidHal is constructed by bootstrapping video instances across a wide range of common
temporal aspects. A defining feature of our benchmark lies in the careful creation of captions
representing varying levels of hallucination associated with each video. To enable fine-grained
evaluation, we propose a novel caption ordering task requiring VLLMs to rank captions by
hallucinatory extent. We conduct extensive experiments on VidHal and comprehensively
evaluated a broad selection of models, including both open-source and proprietary ones such
as GPT4.1 and Gemini 2.5. Our results uncover significant limitations in existing VLLMs
regarding video-based hallucination generation. Through our benchmark, we aim to inspire
further research on I) holistic understanding of VLLM capabilities, particularly regarding
hallucination, and II) advancing VLLMs to alleviate this problem.

1 Introduction

Building on the advancements of Large Language Models (LLMs), Vision LLMs (VLLMs) have recently gained
significant attention. Models such as LLaVA (Liu et al., 2023; 2024c) have shown impressive performance
across various visual understanding tasks involving both images and videos. Despite their potential, VLLMs
are notably prone to hallucinations, where generated responses appear plausible but contradict visual
context (Bai et al., 2024; Xu et al., 2024). This problem significantly compromises the reliability of VLLMs,
hindering their practical use in real-world applications.

To tackle this challenge, some methods propose to leverage post-hoc techniques such as contrastive decod-
ing (Leng et al., 2024; Zhu et al., 2024c; Favero et al., 2024; Zhuang et al., 2024) and attention calibra-
tion (Huang et al., 2024; Ma et al., 2024; Liu et al., 2024f; Yue et al., 2024; Gong et al., 2024; Zhou et al.,
2024a; Xing et al., 2024b). Other efforts have been devoted to the evaluation of hallucinations in VLLMs.
For example, CHAIR (Rohrbach et al., 2018) initially studies object-based hallucination evaluation with the
aid of the image captioning task. Subsequent studies (Li et al., 2023e; Liu et al., 2024e; Kaul et al., 2024;
Ding et al., 2024) instead harness paired 〈positive, hallucinatory〉 questions to probe such hallucinations.
Additionally, MMHalBench (Sun et al., 2024) and AMBER (Wang et al., 2023) expand beyond object-based
evaluations by constructing benchmarks that cover attribute and relationship hallucinations.

Unlike their image-based counterparts, video hallucinations pose unique challenges primarily due to the
intricate spatiotemporal dynamics of videos (Fu et al., 2024; Liu et al., 2024g; Ning et al., 2023). In particular,
video-specific temporal aspects, such as movement direction and chronological order of events, are especially
concerning for video-based VLLMs. Furthermore, the richness of video content necessitates a finer-grained
understanding, making VLLMs more vulnerable to nuanced hallucinations. Nonetheless, to the best of our
knowledge, video-based hallucinations remain underexplored in the existing literature.

1



Under review as submission to TMLR

VideoLLaMA2 (7B)

VideoLLaMA2 (72B)

LLaVA-NeXT-Video (7B)

LLaVA-NeXT-Video (32B)

Gemini-1.5 Pro

Gemini-1.5 Flash

InternVL2.5 (8B)

InternVL2.5 (26B)

LongVU (7B)

Qwen2.5-VL (7B)

Qwen2.5-VL (32B)

Qwen2.5-VL (72B)

Gemini-2.5 Pro

Gemini-2.5 Flash

GPT-4o

GPT-4.1

Action

Direction

Order

Attribute

Object

0.2 0.4 0.6 0.8

Figure 1: Multiple-Choice Question Answering
(MCQA) performance of representative VLLMs on our
VidHal benchmark. (Left) Overall ranking of VLLMs.
(Right) Detailed accuracy results for each temporal as-
pect, where higher scores indicate fewer hallucinations.

To address this research gap, we present VidHal,
a benchmark specifically designed to evaluate video-
based hallucinations of VLLMs. VidHal features
videos that comprehensively cover a broad range of
temporal aspects, such as entity actions and sequence
of events. Each video is automatically annotated
with multiple captions exhibiting varying levels of
aspect-specific hallucinations, capturing both subtle
and significant discrepancies. In addition, we per-
form detailed human validation to ensure the robust-
ness and reliability of our annotation process. An
additional motivation stems from the limited metrics
for quantifying hallucinations in VLLMs. To capture
fine-grained hallucinatory errors of these models, we
propose a unique caption ordering task that requires
models to rank captions by hallucination levels. This
consequently leads to a ranking-based NDCG metric
and an MCQA accuracy metric, both are distinct from prior ones and specifically tailored to evaluate nuanced
hallucinations in video-based VLLMs.

Using our VidHal dataset, we benchmark thirteen VLLMs including both open-sourced and proprietary
models, with abstracted results summarized in Figure 1. Through these extensive experiments, we identify
limitations in nuanced video understanding among all evaluated VLLMs. Specifically, our findings reveal
that existing VLLMs struggle to differentiate between captions with varying levels of hallucination. This
deficiency is particularly evident when evaluating video-specific aspects, such as Direction and Order, as
illustrated in Figure 1, indicating substantial room for improvement in current video-based VLLMs.

The contributions of this work are three-fold:

• We present VidHal, a benchmark dataset dedicated to video-based hallucination evaluation of VLLMs.
Our dataset is distinguished by i) video instances encompassing a diverse range of temporal concepts and
ii) captions with varying hallucination levels1.

• We introduce a novel evaluation task of caption ordering along with two metrics designed to evaluate
fine-grained hallucination generation in existing VLLMs.

• We conduct extensive experiments on VidHal with a variety of VLLMs, uncovering limitations in their
fine-grained video reasoning abilities, particularly in their tendency to generate hallucinations.

2 Related Work

Vision Large Language Models. The emergence of powerful LLMs has advanced the development of
VLLMs. Typical methods in this category include LLaVA (Liu et al., 2023), MiniGPT-4 (Zhu et al., 2024a),
InstructBLIP (Dai et al., 2023), and Qwen-VL (Wang et al., 2024a; Bai et al., 2025). These VLLMs rely on
aligning vision encoders with LLMs using connective modules such as Q-Former (Dai et al., 2023; Zhang
et al., 2023; Cheng et al., 2024) or MLPs (Liu et al., 2024c; Su et al., 2023) with the instruction tuning
stage. Recent methods have extended visual inputs from images to (long) videos, delivering impressive
joint spatial-temporal reasoning capabilities. For instance, VideoLLaMA2 (Cheng et al., 2024) enhances
the LLaMA model with video understanding capabilities through a Spatial-Temporal Convolution (STC)
module. LLaVA-NeXT-Video (Liu et al., 2024d; Zhang et al., 2024) presents an AnyRes approach that
enables reasoning with long videos.

Hallucinations in VLLMs. Despite their impressive performance on visual reasoning benchmarks, current
VLLMs remain notoriously susceptible to hallucinations (Jiang et al., 2024; Liu et al., 2024f; Zhu et al.,

1Our VidHal dataset will be made available to the public.
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Figure 2: Overview of our VidHal benchmark construction pipeline. Using direction as an example from the
five selected aspects, we begin by sourcing relevant video instances from existing datasets. Next, the anchor
(positive) caption is generated from the original video metadata. Finally, GPT-4o is employed to generate
hallucinatory captions at varying levels.

2024b; Chen et al., 2024a). A common demonstration is that generated responses contain information
inconsistent with the visual content (Liu et al., 2024b; Yuan et al., 2024; Xing et al., 2024a). Most approaches
address the hallucination problem with post-hoc techniques. For example, LURE (Zhou et al., 2024c) and
Woodpecker (Yin et al., 2023) develop pipelines that assist VLLMs in revising their responses using expert
models. To reduce bias from unimodal and statistical priors, contrastive decoding methods, such as VCD (Leng
et al., 2024) and M3ID (Favero et al., 2024), along with attention calibration techniques like OPERA (Huang
et al., 2024) are employed to refine token predictions. Building on the success of reinforcement learning in
LLM development (Ouyang et al., 2022), HA-DPO (Zhao et al., 2023), POVID (Zhou et al., 2024b) and
CSR (Zhou et al., 2024d) adopt this paradigm to fine-tune VLLMs, yielding outputs with fewer hallucinations.

Video Reasoning Benchmarks. The rise of video-based VLLMs has driven the development of numerous
video benchmarks. Notable examples, such as SEEDBench (Li et al., 2023a), VideoBench (Ning et al., 2023),
MVBench (Li et al., 2024b), and VideoMME (Fu et al., 2024), focus on dynamic events requiring temporal
reasoning beyond individual frames. However, these benchmarks often lack diversity in reasoning tasks
and visual concepts. To address this, AutoEval-Video (Chen et al., 2023) and Perception Test (Patraucean
et al., 2023) introduce complex reasoning tasks such as counterfactual and explanatory reasoning, while
TempCompass (Liu et al., 2024g) expands temporal concept coverage. Several benchmarks (Li et al., 2023e;
Wang et al., 2023; Sun et al., 2024; Kaul et al., 2024; Liu et al., 2024a; Wei et al., 2024; Chen et al., 2024b) have
been constructed to quantify visual hallucinations, primarily targeting object-based hallucinations in images.
HallusionBench (Guan et al., 2024), VideoCon (Bansal et al., 2024), and Vript (Yang et al., 2024) provides
partial coverage of video-based hallucinations, while VidHalluc (Li et al., 2024a) and VideoHallucer (Wang
et al., 2024b) introduces benchmarks for hallucination detection in videos. However, these benchmarks provide
limited coverage of spatio-temporal concepts, focusing on conventional aspects like actions while neglecting
other video-centric elements such as direction. Additionally, their evaluation strategies primarily follow
image-based approaches, which we argue are less effective in capturing nuanced, video-specific hallucinations.

3 VidHal Dataset Construction

We introduce VidHal, a unique video-language benchmark designed to evaluate hallucinations of Video-LLMs
in a comprehensive manner. As depicted in Figure 2, VidHal comprises of video instances which span a
diverse spectrum of temporal aspects, including previously unexplored aspects such as directional movement.
In contrast to previous studies on video hallucination evaluation (Yang et al., 2024; Wang et al., 2024b; Li
et al., 2024a), VidHal incorporates multiple hallucinated captions per video, enabling the assessment of
video hallucinations at multiple levels of granularity.
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3.1 Temporal Hallucinations in Videos

Hallucinations in VLLMs occur when the model fabricates details in its responses that contradict the provided
visual content. Compared to images, video hallucinations extend beyond static visual elements to include
misperceptions of dynamic changes within scenes. We categorize these temporal hallucinations into two
semantic levels:

Lexical Semantics (L-Sem) captures instances where VLLMs misinterpret words related to temporal
features, including nouns referring to objects or attributes (e.g., misidentifying a color change from green to
red as green to orange) and verbs describing actions (e.g., interpreting “kicking a ball” as “throwing a ball”).

Clause Semantics (C-Sem) encompasses errors involving event descriptions and their sequences, where
the VLLM incorrectly predicts the order of events occurring in the video. For example, given sequentially
occurring events A and B in a video, the model may perceive B preceding A.

By addressing these two dimensions of video-based hallucinations, VidHal offers holistic coverage over the
level of detail in which VLLMs may hallucinate.

3.2 Temporal Concept Selection

Prior research on hallucination evaluation for both images (Li et al., 2023e; Wang et al., 2023; Rohrbach et al.,
2018) and videos (Wang et al., 2024b; Yang et al., 2024; Guan et al., 2024) has predominantly focused on
common visual aspects such as action- and object-based hallucinations. However, video-based hallucinations
may involve additional dynamic factors associated with spatio-temporal patterns, which these studies overlook.
In light of this, we propose to focus on the following five aspects to ensure comprehensive coverage of temporal
concepts. Specifically, the first four aspects address hallucinations based on lexical semantics, while the fifth
targets clause semantics.

• Attribute (L-Sem) describes the fine-grained characteristics of objects or subjects in the video. We
additionally categorize this aspect into sub-aspects of Size, Shape, Color, Count and State Change.

• Object (L-Sem) relates to the interactions between objects and entities within the video. We further
delineate this aspect into two fine-grained sub-aspects: Object Recognition, identifying the objects engaged
in interactions, and Interaction Classification which concentrate on how these objects interact with other
objects or subjects.

• Action (L-Sem) refers to the movements and behaviours exhibited by entities.

• Direction (L-Sem) indicates the orientation and movement trajectory of subjects or objects.

• Event Order (C-Sem) represents the correct sequence of events in the video. During our collection, we
retain videos that contain at least three distinct events.

We present an example that illustrates the direction aspect in Figure 2, with additional examples available in
the supplementary material.

3.3 Hallucinatory Caption Generation

Based on the aspects defined in Section 3.2, we construct our benchmark from four public video understanding
datasets: TempCompass (Liu et al., 2024g), Perception Test (Patraucean et al., 2023), MVBench (Li et al.,
2024b), and AutoEval-Video (Chen et al., 2023). TempCompass and MVBench provide extensive coverage of
all five temporal aspects, while Perception Test and AutoEval-Video focus on human-object interactions and
attribute changes, respectively.

Existing hallucination benchmarks (Li et al., 2023e; Wang et al., 2023) rely mostly on binary questions for
evaluation, limiting their efficacy in detecting subtle video hallucinations, such as minor event inconsistencies.
To address this issue, we advocate a novel evaluation protocol incorporating several carefully annotated
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Dataset
Temporal Aspects Task

Formats
Evaluation

MetricsAction Attribute Direction Object Order
Size Shape Color Count State-Change Recognition Interaction

V
id

eo
Re

as
on

in
g SEEDBench (Li et al., 2023a) ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ MCQA Accuracy

VideoBench (Ning et al., 2023) ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ MCQA Accuracy
MVBench (Li et al., 2024b) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ MCQA Accuracy

Video-MME (Fu et al., 2024) ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ MCQA Accuracy

H
al

lu
ci

na
tio

n
Ev

al
ua

tio
n Vript (Yang et al., 2024) ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Video Captioning F1 Score
Event Ordering Accuracy

VideoCon (Bansal et al., 2024) ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ VL Entailment ROC-AUC
HallusionBench (Guan et al., 2024) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ Y/N QA Accuracy

VidHal (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MCQA Accuracy

Caption Ordering NDCG

Table 1: Comparison of our benchmark dataset with existing video-based reasoning and hallucination
evaluation datasets. For datasets with multiple evaluation tasks, only those relevant to hallucination
evaluation are included. VL Entailment denotes the task of video-language entailment, while Event Ordering
prompts the model to determine the chronological sequence of scenes in a video.

captions. Specifically, each video will be annotated with M captions that reflect varying degrees of hallucination
in VLLMs. Given the cost and labor intensity of manual annotation, we follow existing benchmark studies
such as PhD (Liu et al., 2024e) and MVBench (Li et al., 2024b), opting for automatic caption generation
using a carefully designed pipeline illustrated in Figure 2.

Anchor Caption Generation. The video instances in VidHal are sourced from various public datasets,
resulting in distinct associated metadata such as long-form captions in AutoEval-Video and question-answer
pairs in MVBench. To ensure structure consistency and information granularity in the respective dataset
description across all instances, we automatically generate an anchor caption for each video. Specifically,
we input the metadata for each video V i into GPT-4o and prompt it to generate a concise and accurate
description yi

+ using the provided metadata information.

Hallucinatory Caption Generation. After obtaining the positive caption for each video instance, we
augment the dataset with M−1 additional captions containing hallucinated content. For a given video instance
V i, we construct a set Yi

− = {yi,1
− , · · · , yi,M−1

− } containing captions with different levels of hallucination
based on the temporal concepts associated with it. Specifically, yi,k

− exhibits heavier hallucination than
yi,j

− for caption hallucination degree j < k. We leverage GPT-4o to generate Yi
− by combining the anchor

caption yi
+ and prompting it to create yi,1

− , · · · , yi,M−1
− progressively in increasing levels of hallucination. The

set of captions associated with V i is then defined as Yi ← {yi
+}

⋃
Yi

− consisting of both the anchor and
hallucinatory captions.

3.4 Dataset Statistics and Human Validation

Using our automatic annotation pipeline, our VidHal benchmark consists of a total of 1,000 video instances
each tagged with M = 3 captions. As shown in Table 1, our VidHal dataset stands out from other video
understanding (Li et al., 2023a; Ning et al., 2023; Li et al., 2024b; Fu et al., 2024) and hallucination
benchmarks (Guan et al., 2024; Liu & Wan, 2023) in terms of two dimensions: I) VidHal encompasses a
diverse range of video-centric temporal aspects; and II) We introduce a novel caption ordering task along
with two tailored metrics to capture subtle hallucinations previously ignored by paired questions.

To validate the reliability of our generated captions, we randomly sampled 100 examples for human evaluation,
with each example assessed by an average of 15 annotators. The validation process focused on verifying
whether the ranking of hallucinatory captions produced by our pipeline aligns with human judgment. As
shown in Figure 3, an overall agreement rate of 87% was achieved, demonstrating strong consistency with
human preferences across all temporal aspects.
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Figure 3: Human agreement on hallucination levels in the VidHal dataset. (Left) Distribution of agreement
ratios per video sample. (Right) Average agreement ratio for each aspect, with an overall average of 87%.

4 VidHal Evaluation Protocol

To address the limitations of binary question-based benchmarks, we propose two evaluation tasks: multiple-
choice question answering and a novel caption ordering task, detailed in Section 4.1. Additionally, we develop
corresponding metrics to comprehensively measure hallucinations in video-based VLLMs in Section 4.2.

4.1 Evaluation Tasks

Multiple-Choice Question Answering (MCQA) assesses the model’s spatiotemporal understanding in a
coarse-grained manner. Specifically, the VLLM is provided with a video V i and its corresponding set of
captions Yi as answer options and instructed to select the most appropriate caption for the video.

Caption Ordering evaluates a model’s visual reasoning from a nuanced granularity, instructing VLLMs
to order the provided captions based on their hallucination level. Through pairwise comparisons across all
captions, this task identifies cases where the model struggles to distinguish varying levels of hallucination
severity beyond anchor-hallucination distinctions.
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A C
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accurately?
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Figure 4: Visual illustration of the relative caption
ordering task in VidHal.

Specifically, we design two caption ordering sub-tasks.
The first, naive caption ordering, requires VLLMs to
rank all captions at once. However, this sub-task can
confuse several VLLMs due to its inherently chal-
lenging nature and the inferior instruction-following
capabilities of some models. As a complement, we
propose an additional sub-task, relative caption or-
dering, which decomposes the prior task into multi-
ple paired caption ordering tasks. Since each paired
ordering task is answered in isolation, the VLLM
may produce a non-transitive, cyclic ranking. To
circumvent this, we query the model with consecu-
tive caption pairs, prompting the final pair only if
multiple orderings are possible. For instance, given captions A, B, and C, if the model predicts A ≺ B
and B ≺ C, the overall order A ≺ B ≺ C can be directly inferred. However, if it instead ranks B ≺ A , as
shown in Figure 4, we additionally include a third comparison between A and C to resolve any ambiguity in
determining in the final order.

Notably, our relative caption ordering task is more challenging than previous binary questions. This complexity
arises from certain paired questions in VidHal where both options are hallucinatory, making them harder to
distinguish as opposed to 〈positive, hallucinatory〉 pairs.
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4.2 Evaluation Metrics

Notations For a particular video instance V i, we define the ground truth caption order for V i to be
Yi

∗ = (yi
+, yi,1

− , · · · , yi,M−1
− ). Further let the jth element in this ordering be indexed as Yi,j

∗ .

MCQA We employ the standard accuracy metric for the MCQA task:

Accuracy = 1
N

N∑
i=1

I
[
RMCQA(V i,Yi) = yi

+
]

, (1)

where N is the number of video instances, I denotes the indicator function, and RMCQA(V i,Yi) represents
the best matched caption from Yi for V i as predicted by a VLLM.

Caption Ranking Inspired by metrics from the information retrieval domain (Gao et al., 2023), we adapt
the well-established Normalized Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2002) for
hallucination assessment in VidHal. Unlike previous metrics like POPE (Li et al., 2023e), our metric awards
partial credit for correctly ordered caption pairs even when the optimal ranking is not achieved. As such, we
expect the metric to effectively capture and distinguish both subtle and severe hallucinations generated by
video-based VLLMs. Formally, we define our adapted NDCG metric as follows:

NDCG = 1
N

N∑
i=1

DCGi − rDCGi

iDCGi − rDCGi
, (2)

where DCGi is formulated as:

DCGi =
M∑

j=1

r
(
ŷi,j ,Yi

∗
)

log(j + 1) , (3)

and ŷi,j represents jth caption in the ranked order predicted by the VLLM. The perfect ordering is achieved
when ŷi,1 = yi

+ and {ŷi,j = yi,j−1
− }j=2→M . To evaluate predicted caption orders relative to this ideal sequence,

a relevance function r
(
ŷi,j ,Yi

∗
)

is designed to assign higher scores to ŷi,j with lower hallucinatory extent.

r(ŷi,j ,Yi
∗) = M + 1− pos(ŷi,j ,Yi

∗), (4)

where pos(ŷi,j ,Yi
∗) denotes the position of ŷi,j in Yi

∗. Finally, DCGi is normalized to a range of [0, 1] using
iDCGi and rDCGi, with a score of 1 indicating perfect alignment of the predicted order with Yi

∗. Specifically,
these terms represent the maximum and minimum DCGi scores obtained from the optimal ordering Yi

∗ and
its reverse, respectively,

iDCGi =
M∑

j=1

r
(
Yi,j

∗ ,Yi
∗

)
log(j + 1) , rDCGi =

M∑
j=1

r
(
Yi,M−j

∗ ,Yi
∗

)
log(j + 1) . (5)

5 Experiments

5.1 Experimental Settings

Models. We evaluated twenty-three VLLMs from thirteen different model families, including ten open-
source models: VideoChat (Li et al., 2023d), LLaMA-VID (Li et al., 2024c), VideoChat2 (Li et al., 2024b),
mPLUG-Owl3 (Ye et al., 2024), LLaVA-NeXT-Video (Zhang et al., 2024), VideoLLaMA2 (Cheng et al., 2024),
MiniCPM-V (Yao et al., 2024), LongVU (Shen et al., 2024), InternVL2.5 (Chen et al., 2024c) and Qwen2.5-
VL (Bai et al., 2025), and two proprietary models: GPT-4o (OpenAI, 2023), GPT-4.1 and Gemini (Reid et al.,
2024; Comanici et al., 2025). These models represent a wide variety of architectural designs and training
paradigms. Additionally, we included a random baseline that selects and ranks candidate options randomly.

Implementation Details. All experiments were conducted using four NVIDIA A100 40GB GPUs and
inference APIs. The input captions in Yi were randomized using a fixed, predefined randomization seed across
experiments. We adhered to the inference and model hyperparameters outlined in the respective original
models, and employed greedy decoding during generation for a fair comparison.
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Model Vision Encoder LLM #Params #Frames Accuracy NDCG
Naive Relative

Baseline
Random - - - - 0.326 0.505 0.480

Open-Source Models
VideoChat EVA-CLIP-G Vicuna 7B 8 0.381 0.475 0.488
LLaMA-VID EVA-CLIP-G Vicuna 7B 1fps 0.358 0.486 0.521
VideoChat2 (Vicuna) UMT-L Vicuna 7B 16 0.426 0.486 0.577
VideoChat2 (Mistral) UMT-L Mistral 7B 16 0.443 0.503 0.475
VideoChat2 (Phi) UMT-L Phi3 3.8B 16 0.514 0.626 0.612
mPLUG-Owl3 SigLIP/SO400M Qwen2 7B 16 0.596 0.641 0.707
LLaVA-NeXT-Video (7B) SigLIP/SO400M Vicuna 7B 32 0.509 0.518 0.620
LLaVA-NeXT-Video (32B) SigLIP/SO400M Qwen1.5 32B 32 0.663 0.641 0.747
VideoLLaMA2 (7B) CLIP ViT-L/14 Mistral 7B 8 0.541 0.564 0.622
VideoLLaMA2 (72B) CLIP ViT-L/14 Qwen2 72B 8 0.647 0.787 0.760
MiniCPM-V 2.6 SigLIP/SO400M Qwen2 7B 1fps 0.377 0.530 0.523
LongVU SigLIP/SO400M Qwen2 7B 1fps 0.795 0.453 0.846
InternVL2.5 (8B) InternViT-300M (V2.5) InternLM2.5 7B 16 0.773 0.475 0.827
InternVL2.5 (26B) InternViT-6B (V2.5) InternLM2.5 20B 16 0.742 0.498 0.775
Qwen2.5-VL (7B) Qwen2.5-ViT Qwen2.5 7B 1fps 0.76 0.825 0.826
Qwen2.5-VL (32B) Qwen2.5-ViT Qwen2.5 32B 1fps 0.732 0.811 0.800
Qwen2.5-VL (72B) Qwen2.5-ViT Qwen2.5 72B 1fps 0.74 0.807 0.793

Proprietary Models
GPT-4o - - - 1fps 0.772 0.840 0.826
GPT-4.1 - - - 1fps 0.777 0.845 0.834
Gemini-1.5 (Flash) - - - 1fps 0.657 0.738 0.745
Gemini-1.5 (Pro) - - - 1fps 0.671 0.765 0.753
Gemini-2.5 (Flash) - - - 1fps 0.814 0.875 0.860
Gemini-2.5 (Pro) - - - 1fps 0.814 0.876 0.861

Table 2: Overall benchmark performance of VLLMs on our VidHal dataset. #Params refers to the number of
parameters of the base LLM used. The best performance for each task is highlighted in bold for open-source
models, and underlined for proprietary models.

5.2 Overall Results

Benchmark Results. We present the overall results of representative VLLMs in Table 2 across both
MCQA and caption ordering tasks. We make three key observations from this table:

Competitive Performance of Open-Source Models. Open-source VLLMs achieve performance comparable to
proprietary models, particularly on MCQA and relative caption ordering tasks. Notably, LongVU achieves
the highest performance among open-source models and surpasses strong proprietary models such as GPT-4o,
GPT-4.1, and Gemini-1.5 on these tasks.

Parameter Scale vs. Performance. Among open-source VLLMs, smaller variants (e.g., 7B parameter models)
outperform their larger counterparts within the same model family, as observed with InternVL2.5 and
Qwen2.5-VL. This suggests that simply increasing model capacity may provide limited benefits for reducing
video-based hallucinations in current VLLM development.

Impact of Architecture Design. Model families that achieve high scores across both tasks often incorporate
design efforts specifically targeting visual understanding, such as dynamic resolution scaling (InternVL2.5,
Qwen2.5-VL) and temporal reduction techniques (LongVU). These findings may suggest that specialized
architectural innovations are key factors in mitigating temporal hallucinations.

Aspect-aware Results. Figure 5a highlights the fine-grained, aspect-specific performance of the notable
VLLMs. Notably, VLLMs demonstrate substantially stronger results on the Action and Object aspects
compared to others. This can likely be attributed to current visual instruction tuning datasets predominantly
emphasizing object-centric recognition and coarse-grained activity classification, potentially encouraging
strong reliance on image-based priors when generating predictions. In contrast, these models tend to
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(b) NDCG scores for Attribute (Left) and Object (Right)
sub-aspects in relative caption ordering.

Figure 5: Performance of VLLMs across individual aspects and sub-aspects in VidHal

underperform on temporally nuanced aspects such as direction and event order, which are inherently unique
to the video modality.

We further analyzed the distribution of results for the relative caption ranking task across sub-aspects of
the Attribute and Object aspects in Figure 5b. While VLLMs generally maintain consistent performance
across Attribute sub-aspects, their effectiveness declines slightly when reasoning about Count and Color,
suggesting that reasoning over such fine-grained visual properties remains challenging for VLLMs. For
the Object aspect, several models performed significantly worse in Interaction Classification than in Object
Recognition, highlighting the need to better model object interactions to bridge the gap between recognition
and understanding.

5.3 Ablation Studies

Hallucination Differentiation Sensitivity. We investigate the tendency of VLLMs to favor captions
with higher hallucination over those with lower degree in the relative caption ranking task. Formally, for two
captions with different hallucination levels j, k where j > k, we introduce the following metric to quantify
such hallucination misalignment cases:

HMj→k = 1
N

N∑
i=1

I
[
Yi,j

∗ ≺ Yi,k
∗

]
. (6)

0.1 0.2 0.3 0.4 0.5

MiniCPM-V (8B)

LLaVA-NeXT-Video (7B)

VideoLLaMA2 (7B)

LLaVA-NeXT-Video (32B)

InternVL2.5 (26B)

VideoLLaMA2 (72B)

Qwen2.5-VL (72B)

Qwen2.5-VL (32B)

GPT-4o

InternVL2.5 (8B)

Qwen2.5-VL (7B)

GPT-4.1

LongVU (7B) HM 3→1 
HM 3→2 
HM 2→1 

 Random

1.89x Lower 

4.24x Lower 

Figure 6: Hallucination misalignment (HM) scores on VidHal, with Random representing HM scores from
the random baseline.
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Figure 7: Overlapping ratios of model predictions under single-frame and full-video inputs for correct, incorrect
and overall predictions in the (Left) naive and (Right) relative caption ordering tasks. Complete Reliance
indicates that the VLLM always produces the same response for both video and single frames.

which reflects the proportion of cases in which the VLLM selects the caption with a higher level of hallucination
j over k. Specifically, we examine three key cases: when the most hallucinatory caption is chosen over both
the lower-hallucination and anchor captions, and when the lower-hallucination caption is selected over the
anchor caption. These cases are represented by HM3→1, HM3→2, and HM2→1, respectively, with results
presented in Figure 6.

Our findings show that advanced VLLMs, such as VideoLLaMA2 (72B), GPT-4.1 and Qwen2.5-VL models
can generally distinguish positive captions from severely hallucinated ones, reflected by their low HM3→1
scores in Figure 6. However, two key observations emerge from our experiments: First, most VLLMs
struggle to differentiate the lower hallucinatory caption from the anchor, as evidenced by the gap between
HM3→1 and HM2→1. Second, all models exhibit high HM3→2 scores, indicating difficulty in distinguishing
between two hallucinatory captions with varying degrees. These results suggest gaps in nuanced video
reasoning may contribute to hallucinatory behavior in VLLMs, a challenge not addressed by existing 〈positive,
hallucinatory〉-based evaluation methods. (Li et al., 2023e; Wang et al., 2024b; Guan et al., 2024).

Image Prior Reliance. Previous research shows that VLLMs often rely on image priors for reasoning (Lei
et al., 2023; Buch et al., 2022), overlooking key spatiotemporal features. This is exemplified by dominant
influence of a few frames on response generation. To examine how this bias affects video-based hallucinations,
we used a video summarization algorithm (Son et al., 2024) to extract the most salient frame vi from V i.
We then generated VLLM responses on VidHal using vi instead of V i as visual input. The effect of image
priors is evaluated by identifying overlapping instances where responses from V i and vi remain consistent
across both correct and incorrect orderings. As shown in Figure 7, results reveal that VLLMs heavily rely on
image priors. This is especially pronounced in smaller models such as VideoLLaMA2 (7B).

Transitive Robustness. Although the relative caption ranking task enhances VLLM stability in caption
ordering, it may reveal transitive inconsistencies between the final caption order and individual paired orders.
For instance, the predicted order Ŷi = [ŷi,1, ŷi,2, ŷi,3] may be inferred when the VLLM predicts ŷi,1 ≺ ŷi,2

and ŷi,2 ≺ ŷi,3, but it may predict ŷi,3 ≺ ŷi,1 when prompted to order these two captions, contradicting
the initial order. We quantify such errors by measuring the proportion of instances where Ŷi fails to entail

Metric VideoChat2 (7B) mPLUG-Owl3 LLaVA-NeXT-Video (7B) VideoLLaMA2 (7B)

P (IsCyclic(Ŷ)) 0.073 0.030 0.037 0.040

Table 3: Proportion of VidHal instances where the predicted caption ordering Ŷ is cyclic.
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Figure 8: Qualitative examples of VLLM responses on the caption ordering tasks, for the Attribute, Order
and Action aspects.

ŷi,3 ≺ ŷi,1. This is formally defined as:

P (IsCyclic(Ŷ)) = 1
N

N∑
i=1

I
[
RMCQA(V i, {ŷi,1, ŷi,3}) = ŷi,3]

. (7)

The results, presented in Table 3, demonstrate that even the least performant models exhibit strong consistency
between pairwise caption preferences and final caption orderings. These results indicate that our proposed
caption-ordering task is robust against anomalous scoring stemming from unintended cyclic preferences.

5.4 Qualitative Results

We conducted a qualitative analysis of VLLM-generated responses for the caption ordering task, with
representative examples shown in Figure 8. Our analysis reveals two notable patterns:

Relative caption ordering consistently elicits more accurate VLLM responses compared to naive ordering, with
this improvement being more pronounced in weaker models. The enhanced performance is evidenced by
increased ordering correctness when transitioning from naive to relative ordering, as pairwise comparison
prompts enable models to make finer-grained distinctions between caption quality levels.

Advanced VLLMs demonstrate greater stability across both ordering paradigms, exhibiting lower variance
in predictions between both ordering tasks. This consistency suggests that stronger models maintain more
coherent internal representations of caption quality, regardless of prompt strategy or task format.

These observations indicate that relative ordering provides a fairer and balanced evaluation method across
models of varying capability levels, while naive ordering better discriminates among high-performing models
with stronger general capabilities.

6 Conclusion

Summary. In this work, we introduce the VidHal benchmark to address gaps in the video-based hallucination
evaluation of VLLMs. VidHal features video instances spanning five temporal aspects. Additionally, we
propose a novel caption ordering evaluation task to probe the fine-grained video understanding capabilities
of VLLMs. We conduct extensive experiments on VidHal through the evaluation of twenty-three VLLMs,
exposing their limitations in unexpected hallucination generation. Our empirical results shed light on
several promising directions for future work: e.g., incorporating a broader range of temporal features during
pretraining and mitigating single-frame priors to enhance temporal reasoning. These advancements will help
to address the hallucination problem in video-based VLLMs, enhancing their robustness for real-world video
understanding applications.

Limitations. We acknowledge that the VidHal evaluation suite relies on synthetic captions generated
by GPT-4o, which may contain biases inherently present in the model. We note that this design choice is
consistent with prior research, as several established language-only and vision-language benchmarks similarly
use GPT-4o for dataset construction (Liu et al., 2024e; Li et al., 2024a;b; 2023a;c) or response evaluation
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(Guan et al., 2024; Sun et al., 2024; Liu et al., 2024a). To reduce over-alignment to GPT-4o’s preferences, we
incorporate additional strong LLMs, including Gemini-1.5 (Reid et al., 2024) and LLaMA2 (70B) (Touvron
et al., 2023) to assess and filter generated captions. We further conduct a final step of manual verification
and editing to address residual misalignments not captured by automated filtering. While these measures
enhance annotation robustness, fully eliminating LLM-induced biases in synthetic caption generation remains
an open challenge.
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Appendix
A Benchmark Construction Details

A.1 Dataset Statistics
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Figure 9: Distribution of visual instances in VidHal by (Left) public dataset source, categorized by the five
temporal aspects, and (Right) temporal aspects and their sub-aspects.

Figure 9 presents the distribution of visual instances in VidHal by public dataset sources and temporal
aspects. Additionally, Figure 10 further shows the distribution of ground truth answers for the MCQA and
caption ordering tasks. One can observe that both temporal aspects and ground truth options are uniformly
distributed across our benchmark. The distribution of video caption lengths and video durations is also
presented in Figure 11.

A.2 Dataset Development Pipeline

Visual Instance Selection To ensure a rich coverage of temporal aspects and visual diversity, we
methodically selected video instances from four public datasets: TempCompass Liu et al. (2024g), Perception
Test Patraucean et al. (2023), MVBench Li et al. (2024b), and AutoEval Video Chen et al. (2023). Given the
unique characteristics of each dataset, we outline the specific guidelines adopted for each dataset below:
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Figure 11: Distribution of (Left) caption lengths with an average of 11.2 words, and (Right) duration of
videos in VidHal with an average of 15.8s.

• TempCompass encompasses five temporal aspects: Action, Speed, Direction, Event Order, and Attribute
Change. As most of these aspects align with those chosen to construct VidHal, we retain all video
instances except those related to speed. TempCompass includes four evaluation tasks: MCQA, Yes/No
QA, caption matching, and caption generation. Given the conciseness of captions in the latter two tasks,
their information can often be subsumed within the more detailed QA-based annotations. Therefore, we
focus exclusively on MCQA and Yes/No QA annotations to create an informative anchor caption.

• Perception Test spans various skill and reasoning domains to thoroughly evaluate VLLMs’ perception
and understanding abilities. Our inspection of these evaluation dimensions reveals alignment between the
semantics, physics, and memory skill areas, as well as descriptive and explanatory reasoning dimensions,
with the temporal aspects of action, order, and event order. Accordingly, we limit our video selection in
Perception Test to these specific pillars. Additionally, we review the question templates adopted in these
areas and select video instances with question-answer pairs that support VidHal’s evaluation objectives.
The specific skills and associated questions chosen are detailed in Figure 12.

• MVBench includes twenty video understanding tasks with question-answer pairs designed to challenge
the reasoning capabilities of VLLMs. Similar to the Perception Test, we identify the tasks relevant to the
temporal aspects in VidHal and focus on collecting videos belonging from these tasks. The specific tasks
for each aspect are presented in Figure13. We observe that MVBench contains repeated use of certain
scenarios across tasks, indicated by similar question templates. To enhance caption diversity and minimize
redundancy, we limit the number of examples for each unique scenario. The collected instances cover all
five temporal aspects of VidHal.

• AutoEval-Video evaluates open-ended response generation in VLLMs through questions with detailed
answers across nine skill dimensions. We focus on instances related to the state transition area, specifically
assessing changes in object and entity attributes. For each instance, we retain the only answers to associated
questions as they act as informative, long-form captions for the video.

Object Recognition [Object]:
What object does the person use to hit other objects?
What ingredients did the person put in the bowl or on the plate?
Which object was removed by the person from the tabletop?
What geometric shapes did the person put on the table?
What objects did the person hit?
What is the order of the letters on the table at the end?
What letters did the person type on the computer in order?
Distractor Action [Action]:
What is the person preparing?
Motion [Action]:
What happens with the object after being placed on the slanted plane?
What happened once the person removed an object from the tabletop?

Action Recognition [Action]:
What object does the person use to hit other objects?
What objects did the person hit?
What is the person preparing?
Which statement describes better the actions done by the person?
Sequencing [Event Order]:
What letters did the person show in order?
What is the order of the letters at the end?",
In what order did the person put the objects in the backpack?
What is the order of the letters on the table at the end?

Figure 12: Specific skills and corresponding questions from the Perception Test dataset chosen for VidHal
instance selection, with the matched aspects indicated in brackets.
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Action: Action Sequence, Fine-Grained Action and Fine-Grained Pose
Direction: Moving Direction.
Object: Object Interaction, Object Existence.
Attribute: Moving Attribute, Moving Count.
Order: Action Sequence

Figure 13: Evaluation tasks in MVBench aligned with temporal aspects in VidHal, categorized by aspect.

Incorrect Anchor Captions A minority of videos contain anchor captions misaligned with their content,
often due to noisy metadata. Such discrepancies subsequently lead to undesirable hallucinatory captions. To
remove such instances, we use BLIP2 Li et al. (2023b) to calculate frame-text matching scores across all
video frames, selecting the maximum score as the representative video-text alignment score. Examples with
incorrect anchor captions typically achieve low alignment scores, which are discarded as noisy instances.

LLM-based Caption Generation We utilize GPT-4o’s OpenAI (2023) text processing and generation
capabilities to generate an anchor caption for each selected video, based on metadata from its original public
dataset source. This metadata includes QA-based annotations for TempCompass, Perception Test, and
MVBench, along with long-form answers for AutoEval-Video. The anchor caption is subsequently used as
input for GPT-4o to generate corresponding hallucinatory captions.

To ensure the generated hallucinatory captions meet high-quality standards, we employ a detailed prompt
adopting the following strategies to guide GPT-4o’s output:

• Aspect-specific definitions which outline the characteristics of each aspect to be varied, prompting GPT-4o
to modify anchor captions accordingly.

• Caption construction guidelines that define the structure, format, and hallucination levels required for the
generated captions.

• In-context examples to illustrate the desired form of each hallucinatory caption for each aspect.

The prompts for generating anchor and hallucinatory captions are shown in Figures 14 to 17a, respectively,
with definitions for each aspect are provided in Figure 16. Aspect-specific in-context examples are detailed in
Figures 17b to 21. Separate in-context examples are provided for each Attribute subaspect of Shape, Size,
Color, Count, and State Change to account for their distinct natures.

Caption Quality Scoring To identify video instances with the high quality generated captions, we utilize
powerful LLMs to evaluate the quality of generated captions. The captions are assessed is based on three
specific criteria:

You are given a long caption describing the content of a video. Your
task is to provide a summarised and concise version of this caption.
Ensure that you keep all essential detail in the original caption.

<metadata>

Video description:

Figure 14: Prompts used for generating the anchor caption from long-form captions.
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You are a chatbot tasked with generating hallucinatory captions for a video given the input ground truth caption provided. Your objective is to modify
the <aspect> present in the provided caption to generate 2 incorrect captions of different levels of hallucination. <aspect_definition>. The extent
of hallucination of each caption is measured on a scale of 1 to 3 in increasing levels of hallucination, with 1 denoting no hallucinations present and 3
denoting a large extent of hallucination. A description of the extent of hallucination represented by each score is given as follows:

1. The caption contains no hallucination. The caption that representing this score is the ground truth caption.
2. The caption includes moderate hallucination, describing an event that is different from the ground truth, yet possible given the context of the video
3. The caption contains high hallucination, describing an event that is realistic, but typically unlikely to happen given context reflected by the original
caption.

The generated hallucinated captions should follow the guidelines below.

Guidelines:
1. Focus only on modifying the temporal aspect provided in the instruction. Do not change any other temporal aspect associated with objects or subjects in
the video.
2. Keep your modifications brief but coherent. Your generated captions should be of similar length to the original caption.
3. Ensure that your generated captions depict realistic and believable scenarios even as they deviate from the original context. For example, avoid creating
fictitious scenarios such as "Person flying on a broomstick" and "Monkey painting a picture".
4. You may rephrase the provided caption to maintain consistent sentence structure across all captions. However, make sure the factual content of the ground
truth caption remains unchanged.
5. Each generated hallucinatory caption should be of the form <score> : <caption>, <score> takes a value from the hallucination scale defined and
<caption> represents your provided hallucinatory caption.
6. No two generated <caption> should share the same <score>, and each caption should take on a unique level of hallucination from 2 to 3.

Here are some examples of how hallucinatory captions are expected to be constructed.

<in_context_examples>

Now, generate hallucinatory captions for the following video description.

Original Caption:
<anchor_caption>
Hallucinated Captions:

Figure 15: Prompt for generating aspect-specific hallucinatory captions based on anchor captions and
in-context examples.

• Realism determines whether generated scenarios are plausible.

• Ordering Quality evaluates whether the hallucination level ordering is appropriate.

• Relevance ensures that deviations from the anchor caption align with the designated aspect.

Binary questions are used to evaluate captions for each criterion, assigning a score of 1 for positive responses,
i.e., "yes", and 0 otherwise. The scores for each criterion are averaged across all models and prompts, and
then summed across all criteria to produce a final quality assessment score for the generated captions of a
video instance.

Action: Actions refer to observable movements or activities performed by entities that may involve interaction with objects or the environment in the video.
Direction: Direction refers to the course or path along which objects or subjects move in the video.
Order: Order refers to the sequential arrangement of events that occur in the video.
Object: Objects refer to inanimate, physical entities or items present within the video.
State: State refers to the condition or status of an object or subject, indicating its current properties, position or the phase of action the subject is taking or
phase of process the object is undergoing.
Count: Count refers to the frequency of an action being performed or an event occurring. It may also refer to the number of objects or subjects involved in
an event or interaction.
Color: Color refers to the hue or shade of an object or subject.
Shape: Shape refers to the form or outline of an object or subject.
Size: Size refers to the dimensions or magnitude of an object or subject.

Figure 16: Definitions incorporated into the prompt for generating hallucinatory captions for each aspect,
with separate definitions provided for each sub-aspect in the Attribute aspect.
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You are given one or more questions targeted at content of a video
and their corresponding answers. You are tasked with generating an
appropriate and informative single line caption for the video using
this information given to you. Ensure that you restrict yourself to
only information present in the question-answer pairs provided. If
the answers to the questions provide various types of information,
concentrate on the color related to the subjects and objects in the
video in your caption. Focus on providing clear and concise
descriptions without using overly elaborate language.

<metadata>

Video description:

(a) Prompt used for generating the anchor caption from
QA-based annotations.

Original Caption:
1 : A red bucket of liquid goes from empty to half full.
Hallucinated Captions:
2 : A red bucket of liquid goes from empty to completely full.
3 : A red bucket of liquid goes from completely full to empty.

Original Caption:
1 : The light in the room is slowly dimming.
Hallucinated Captions:
2 : The light in the room slowly dims, then brightens again.
3 : The light in the room is slowly getting brighter.

Original Caption:
1 : The sky changes from clear to partly cloudy.
Hallucinated Captions:
2 : The sky changes from clear to completely overcast.
3 : The sky changes from partly cloudy to clear.

(b) In-context examples for the State sub-aspect under the
Attribute aspect.

Figure 17: (Left) Prompts used for generating the anchor caption, and (Right) in-context examples for the
State sub-aspect.

Original Caption:
1 : A boy inflates the balloon, which grows vertically.
Hallucinated Captions:
2 : A boy inflates the balloon, which grows horizontally.
3 : A boy deflates the balloon, which shrinks horizontally.

Original Caption:
1 : The bag expands in height as items are being placed inside.
Hallucinated Captions:
2 : The bag expands in width as items are being placed inside.
3 : The bag shrinks in height as items are being placed inside.

Original Caption:
1 : The size of the puddle of water is increasing.
Hallucinated Captions:
2 : The size of the puddle of water is decreasing.
3 : The size of the puddle of water remains unchanged.

Original Caption:
1 : A circle shaped block is placed in a wooden box.
Hallucinated Captions:
2 : A square shaped block is placed in a wooden box.
3 : A star shaped block is placed in a wooden box.

Original Caption:
1 : Cubes are transforming into cylinders.
Hallucinated Captions:
2 : Cubes are transforming into cones.
3 : Cubes are transforming into spheres.

Original Caption:
1 : The clouds form a fluffy circle in the sky.
Hallucinated Captions:
2 : The clouds form a fluffy square in the sky.
3 : The clouds form a fluffy triangle in the sky.

Figure 18: In-context examples for the Size (Left) and Shape (Right) sub-aspects.

Original Caption:
1 : A leaf with holes turns green to red.
Hallucinated Captions:
2 : A leaf with holes turns from green to orange.
3 : A leaf with holes turns from yellow to orange.

Original Caption:
1 : A yellow ball bounces on the ground, and lands in the pool.
Hallucinated Captions:
2 : A red ball bounces on the ground, and lands in the pool.
3 : A blue ball bounces on the ground, and lands in the pool.

Original Caption:
1 : A stationary purple cup appears at the beginning of the video.
Hallucinated Captions:
2 : A stationary blue cup appears at the beginning of the video.
3 : A stationary green cup appears at the beginning of the video.

Original Caption:
1 : The man wearing a jacket performed three backflips.
Hallucinated Captions:
2 : The man wearing a jacket performed four backflips.
3 : The man wearing a jacket performed five backflips.

Original Caption:
1 : Four birds perched on the wire.
Hallucinated Captions:
2 : Five birds perched on the wire.
3 : Six birds perched on the wire.

Original Caption:
1 : One car drove down the road.
Hallucinated Captions:
2 : Two cars drove down the road.
3 : Three cars drove down the road.

Figure 19: In-context examples for the Color (Left) and Count (Right) sub-aspects.
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Original Caption:
1 : The man hits another object with a bat.
Hallucinated Captions:
2 : The man hits another object with a racket.
3 : The man hits another object with a broom.

Original Caption:
1 : The ball bounces down the slanted plane.
Hallucinated Captions:
2 : The ball rolls down the slanted plane.
3 : The ball zigzags down the slanted plane.

Original Caption:
1 : A person puts two rectangles and one circle into the bag.
Hallucinated Captions:
2 : A person puts a rectangle, a square and a circle into the bag.
3 : A person puts two squares and a circle into the bag.

Original Caption:
1 : A person puts a bottle in the bag. Then, he puts a book in the bag. Lastly, he puts
a pencil case into the bag.
Hallucinated Captions:
2 : A person puts a book in the bag. Then, he puts a bottle in the bag. Lastly, he puts
a pencil case into the bag.
3 : A person puts a pencil case in the bag. Then, he puts a book in the bag. Lastly, he
puts a bottle into the bag.

Original Caption:
1 : A man writes letters in the following order: A, V, T, Y.
Hallucinated Captions:
2 : A man writes letters in the following order: A, Y, T, V.
3 : A man writes letters in the following order: Y, T, V, A.

Original Caption:
1 : A woman with white coat places a book on the table. She takes two vials of
liquid and mixes them together.
Hallucinated Captions:
2 : A woman with white coat places a book on the table. She takes off her coat.
Then, she takes two vials of liquid and mixes them together.
3 : A woman with white coat takes two vials of liquid and mixes them together. She
then places a book on the table.

Figure 20: In-context examples for the Object (Left) and Event-Order (Right) aspects.
Original Caption:
1 : The people are cooking in the video.
Hallucinated Captions:
2 : The people are chopping in the video.
3 : The people are washing in the video.

Original Caption:
1 : A car is driving down the road.
Hallucinated Captions:
2 : A car is reversing down the road.
3 : A car is being repaired along the road.

Original Caption:
1 : A dog is digging a hole near the tree.
Hallucinated Captions:
2 : A dog is scratching the tree.
3 : A dog is barking at the tree

Original Caption:
1 : An eagle is flying from left to right diagonally upwards.
Hallucinated Captions:
2 : An eagle is flying from left to right horizontally.
3 : An eagle is flying from left to right diagonally downwards.

Original Caption:
1 : The car drives forward and makes a right turn.
Hallucinated Captions:
2 : The car drives forward and continues driving straight.
3 : The car drives forward and makes a left turn.

Original Caption:
1 : The ball on the table rolls away from the camera.
Hallucinated Captions:
2 : The ball on the table rolls from left to right.
3 : The ball on the table rolls towards the camera.

Figure 21: In-context examples for the Action (Left) and Direction (Right) aspects.

We evaluate each set of captions using three LLMs: GPT-4o, Gemini-1.5 Flash Reid et al. (2024), and
LLaMA3 (70B) Dubey et al. (2024) along with three variants for each binary question. This ensemble of
both models and prompts enhances the robustness of our evaluation.. Figures 22 and 23 provide details of
the criterion-specific quality assessment queries and the prompt templates employed for each LLM. We select
the top 1,000 examples with the highest quality assessment scores to construct VidHal.
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GPT-4o & Gemini-1.5 Flash:
You are provided with a ground truth description of a video, and 2 other captions that contain hallucinations in the aspect of <aspect>. The hallucinated
captions are displayed in increasing order of hallucination, where the first caption contains the least amount of hallucinated elements and the last caption
having significant hallucination. You are tasked with answering a question regarding the quality of the hallucinated captions. Provide your answer as
detailed in the question, without further explanation of your answer.

Ground truth caption:
<anchor_caption>

Hallucinated captions:
<hallucinatory_captions>

Question:
<quality_assessment_question>

Answer:

LLaMA3 (70B):
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are provided with a ground truth description of a video, and 2 other captions that contain hallucinations in the aspect of <aspect>. The hallucinated
captions are displayed in increasing order of hallucination, where the first caption contains the least amount of hallucinated elements and the last caption
having significant hallucination. You are tasked with answering a question regarding the quality of the hallucinated captions. Provide your answer as
detailed in
the question, without further explanation of your answer.
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Ground truth caption:
<anchor_caption>

Hallucinated captions:
<hallucinatory_captions>

Question:
<quality_assessment_question>

Answer:
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

Figure 22: Prompt template for evaluating the quality of generated captions for the GPT-4o, Gemini-1.5
Flash, and LLaMA3 (70B) models.
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Realism:
1. Is the scenario presented in caption <option> realistic? Provide your answer only as a single "yes" or "no".
2. Is the event in caption <option> believable? Provide your answer only as a single "yes" or "no".
3. Is the setting present in caption <option> plausible? Provide your answer only as a single "yes" or "no".

Order Quality:
1. Which caption better matches the ground truth description: Caption <option_A> or <option_B>? Provide your answer only as a single number
(<option_A> or <option_B>)
2. Which caption aligns more closely with the ground truth description: Caption <option_A> or <option_B>? Provide your answer only as a single
number (<option_A> or <option_B>)
3. Which caption is more faithful to the ground truth description: Caption <option_A> or <option_B>? Provide your answer only as a single number
(<option_A> or <option_B>)

Relevance:
1. Does hallucinated caption <option> differ from the ground truth caption only in the <aspect>? Provide your answer only as a single "yes" or "no".
2. Is the only difference between hallucinated caption <option> and the ground truth caption the <aspect>? Provide your answer only as a single "yes"
or "no".
3. Did hallucinated caption <option> change the ground truth caption only with respect to the <aspect>? Provide your answer only as a single "yes" or
"no".

Figure 23: Question prompts for evaluating caption quality based on the three assessment criteria. Prompts
with the placeholder <option> are applied individually to the anchor and hallucinatory captions. For question
associated with order quality, <option_A> and <option_B> are replaced with the corresponding hallucinatory
caption options shown to the LLMs.
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A.3 Additional Dataset Examples

We provide additional qualitative examples of video instances and their corresponding captions in Figure 24
for each of the five temporal aspects.

C: Person in white vest
performs six sit-ups.

A: Person in white vest
performs three sit-ups.

B: Person in white vest
performs four sit-ups.

Attribute

A: Glacier breaking and
falling into water.

B: Glacier rapidly
melting and falling into

water.
C: Glacier slowly

forming from still water.
A: The traffic lights are
changing from red to

green.

B: The traffic lights are
changing from red to

yellow.

C: The traffic lights are
changing from green to

red.

Object

C: Person eats a salad
with tomato, salad

leaves, and cucumber.

A: Person prepares a
salad with tomato, salad
leaves, and cucumber.

B: Person serves a
salad with tomato, salad
leaves, and cucumber.

A: Person removing a
diary from the tabletop.

B: Person removing a
parcel from the tabletop.

C: Person removing a
towel from the tabletop.

A: Person puts down a
towel.

B: Person puts down a
bedsheet.

C: Person puts down a
pillow.

Action

C: Person demonstrates
a spinning kick.

A: Person demonstrates
a side kick.

B: Person demonstrates
a front kick.

C: The man is juggling
arrows in an archery

activity.

A: The man is shooting
an arrow in an archery

activity.

B: The man is adjusting
the bow in an archery

activity.
A: A dog is driving a car. B: A dog is sitting in a

car.
C: A dog is washing a

car.

Direction

C: A red cylinder moves
up and to the right.

A: A red cylinder moves
down and to the left.

B: A red cylinder moves
down and to the right.

C: The light is rotating
upwards.

A: The light is rotating
clockwise.

B: The light is rotating
counterclockwise.

A: A puppy is walking
out of a wigwam.

B: A puppy is walking
into the wigwam.

C: A puppy is walking to
the side the wigwam.

Event Order

C: Person throws the
pillow, sits on the couch
and opens the laptop.

A: Person sits on the
couch, opens the laptop
and throws the pillow.

B: Person sits on the
couch, throws the pillow
and opens the laptop.

C: Dolphins get fed fish,
swim to the shore and

emerges from the water.

A: Dolphins swim to the
shore, emerges from the
water and get fed fish.

B: Dolphins emerge
from the water, swim to
shore and get fed fish.

A: The person puts a
hoodie, book, laptop,
and pen in the bag.

B: The person puts a
book, hoodie, laptop,
and pen in the bag.

C: The person puts a
pen, laptop, hoodie, and

book in the bag.

Figure 24: Qualitative examples of video instances and their corresponding generated captions in the VidHal
Benchmark, across the five temporal aspects.

B Human Validation Details

B.1 Human Validation Process

As varying hallucination levels are a distinctive feature of our benchmark, we prioritize validating the
robustness of caption ordering produced by our annotation pipeline. Each anchor caption is derived from the
original video metadata, making it the most accurate reflection of the video content. Our primary objective
is to ensure that the ordering of hallucinatory captions aligns with human judgment. To achieve this, human
annotators are shown the video instance along with both hallucinatory captions and are tasked with selecting
the caption that better aligns with the video content, as illustrated in Figure 25. Each video instance is
reviewed by multiple annotators, with the final human-aligned order determined through a majority vote and
compared with our automatically generated order.

B.2 Analysis of Misaligned Instances

Table 4 lists video instances that fail to meet the majority agreement threshold established by our annotation
process along with their corresponding human agreement scores. To assess the impact of disagreement samples
on the VidHal evaluation suite, we evaluated several models on these instances using the full evaluation
protocol. Table 5 presents the results, demonstrating that model performance on disagreement samples
closely aligns with their performance on the complete benchmark, indicating that these instances do not
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Video Instance Verification Question

There are no stationary metal
objects at the start of the video

There is one stationary metal
object at the start of the video

There are two stationary metal
objects at the start of the video

Human RespondentQuestion:

Options:

There is one stationary metal
object at the start of the video

There are two stationary metal
objects at the start of the video

Captions:

B:

A:

Which of the two captions shown
below better describes the content
of the video?

Option B

Automatic Pipeline

Option B

In
cr
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ng
H
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n 
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Video:Video:

Figure 25: Pipeline for validating the quality of generated caption orders in VidHal. For each instance,
human annotators are provided with the video and its associated hallucinatory captions. The annotators
then select the caption that best aligns with the video content. The selected response is subsequently checked
for consistency with the caption with lower hallucination according to our annotation process.

adversely affect the overall evaluation. Upon manual inspection, we found that these disagreement cases
predominantly involve visually complex scenarios that are challenging even for some human annotators to
verify. Such difficult cases serve as valuable probes for detecting fine-grained hallucinations and distinguishing
between state-of-the-art models under perceptually demanding conditions.

C Evaluation Pipeline Details

C.1 Model and Inference Hyperparameters

We provide additional details on the inference and generation settings used across all evaluated models in
Table 6, as well as hyperparameters specific to LlaVA-NeXT-Video models in Table 7.

Video ID Agreement Score

action_55 0.429
action_88 0
action_90 0.308
action_118 0.200
action_153 0.250
order_60 0.500
order_109 0.154
attribute_90 0.400
attribute_180 0.071
attribute_192 0.188
object_25 0.375
object_170 0
direction_188 0.400

Table 4: Instances where generated caption orders diverge from human preference in quality checks. The
agreement score reflects the proportion of respondents who chose our annotated order.
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Model Accuracy NDCG
Naive Relative

InternVL2.5 (8B) 0.769 0.491 0.816
Qwen2.5-VL (7B) 0.923 0.814 0.777
Gemini-2.5. (Flash) 0.846 0.931 0.834

Table 5: Performance of VLLMs on disagreement samples from VidHal.

Hyperparameter Value
Data Processing
Video Sampling Rate (FPS) 30
Generation
do_sample False
temperature 0.0
repetition_penalty 1.0
max_new_tokens 128
Computation
Precision FP16

Table 6: Hyperparameter configuration used in VidHal evaluation across all models.

Hyperparameter LLaVA-NeXT-Video (7B) LLaVA-NeXT-Video (32B)
mm_spatial_pool_mode average average
mm_newline_position no_token grid
mm_pooling_position after after

Table 7: Model-specific hyperparameters for LLaVA-NeXT-Video models.

C.2 Evaluation Task Prompts

Figures 26 and 27 present the prompts used for the MCQA and naive caption ordering tasks, respectively.
The same prompt used for both the MCQA task and the paired questions in the relative caption ordering task.
Our manual inspection of these instances reveals that these videos often feature visually complex content,
making them challenging even for human annotators.

C.3 Relative Order Parsing

Prompting the VLLM to predict the order of captions based on their hallucinatory level in the relative
caption ordering task involves asking a series of paired questions derived from different caption combinations.
However, providing the model with all possible pairs at once may result in cyclic and non-transitive orderings.
To address this, we present each caption pair to the VLLM in a systematically selected sequence, beginning

You are provided with a video and a set of several captions. Your task is to watch the video provided carefully, and select the caption that best describes the
video. Provide your answer only as a single letter representing the option whose caption that best describes the video, without any explanation.

Watch the video provided, and choose the option whose caption describes the video most accurately.

A. <caption_A>
B. <caption_B>

Figure 26: Prompt template for the MCQA and relative caption ordering evaluation tasks.
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Watch the video provided, and rank the captions below in order from the most accurate to the least accurate in describing the video. Provide your response
only as a sequence of comma separated option letters matching the corresponding captions. Do not give any additional explanation for your answer.

For example, if option B contains the caption that best describes the video, option A contains the caption that describes the video second best and option C
contains the caption that describes the video least accurately, provide your response as: B, A, C.

A. <caption_A>
B. <caption_B>
C. <caption_C>

Figure 27: Prompt template for the naive caption ordering evaluation task.

with two paired questions. The final paired question is presented to the model to resolve inconsistencies if the
multiple possible orderings can be derived from the responses to the first two paired questions. The responses
across all paired questions presented to the VLLM is then parsed according to the workflow illustrated in
Figure 28.

Y N

Y N

Y N

YN

Y N

Y

Figure 28: Decision tree for determining the final caption order based on VLLM responses to paired questions
in the relative caption ordering evaluation task.

D Additional Experiments

D.1 Input Order Sensitivity

To assess the robustness of VLLM responses to the order of displayed captions, we conducted additional
experiments by evaluating three VLLMs using a fixed static display order across all instances. We repeated
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MCQA Naive CO Relative CO
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0.8

1

LLaVA-NeXT-Video (32B)
VideoLLaMA2 (7B)
VideoLLaMA2 (72B)

Figure 29: Distribution of results of VLLMs across varied input caption orders for the three evaluation tasks.

this process across all different permutations of input caption order, presenting the results of these models in
Figure 29. We observe that the performance of these VLLMs is highly sensitive to the order in which captions
are displayed, reflected by their varying results across different order permutations. This instability intensifies
with smaller model sizes, with VideoLLaMA2 (7B) showing the highest variance in evaluation results and
VideoLLaMA2 (72B) the lowest. Our findings suggest that VLLMs may be particularly vulnerable to input
caption order, potentially confounding their performance.

D.2 Naive Caption Ordering Response Quality

To analyze VLLMs’ ability to handle naive caption ordering tasks, which possess unique task structures
compared to conventional video understanding tasks, we employ two quantitative metrics. Regurgitation
Rate (RR) captures the model’s propensity to consistently generate identical responses regardless of input,
defined as the maximum proportion of instances in VidHal where a specific caption order is predicted across
all possible orderings. Invalid Response Rate (IRR) measures the proportion of responses that fail to provide
valid caption orders for the naive ordering task. Figure 30 presents IRR and RR scores for all evaluated
models, revealing two key observations. First, many models exhibit high IRR scores, frequently outputting
incomplete caption orders (e.g., generating only a single option). Second, despite formulating responses with
correct structure, many VLLMs produce identical caption orders regardless of the input video V i, as reflected
by high RR scores, a behavior observed even in models performing well on MCQA and relative caption
ordering tasks, such as InternVL2.5.

D.3 Image Prior Reliance - Ablation Study on Video Summarization Algorithm

We conduct additional single-frame bias experiments using uniform and motion-based sampling strategies
with varying clip lengths (1, 2, and 4 frames), with results presented in Tables 8 and 9. The overlap
ratios demonstrate consistency across all three video summarization methods (saliency-based, uniform, and
motion-based sampling) for extracting frames vi. In particular, single-frame outputs substantially overlap
with full-video inputs regardless of the summarization algorithm employed. These additional results confirm
that our single-frame bias study is robust across different frame selection methods, with VLLMs relying on
single-frame information for over half of the queries in VidHal.
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LongVU (7B)

InternVL2.5 (8B)

InternVL2.5 (26B)

MiniCPM-V (8B)

mPLUG-Owl3

VideoChat2

LLaVA-NeXT-Video (32B)

GPT-4.1

Qwen2.5-VL (7B)

Gemini-1.5 Pro

Others
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 1.97x Higher
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LongVU (7B)

InternVL2.5 (8B)

LLaVA-NeXT-Video (7B)

VideoLLaMA2 (7B)

VideoChat2

LLaVA-NeXT-Video (32B)

mPLUG-Owl3

Gemini-1.5 Flash

VideoLLaMA2 (72B)

Qwen2.5-VL (72B)

Gemini-2.5 Flash

GPT-4.1
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Figure 30: (Top) Invalid response rates across all models. VLLMs with no invalid responses are grouped
under Others. (Bottom) Regurgitation rates of VLLMs on VidHal. Random and Dataset Statistic indicate
the regurgitation rates of the random baseline and ground truth answers, respectively. For both metrics, a
lower value indicates better model performance.

1 Frame 2 Frames 4 Frames
Model C I O C I O C I O
VideoLLaMA2 (7B) 0.674 0.708 0.700 0.781 0.798 0.794 0.846 0.829 0.833
LLaVA-NeXT-Video (32B) 0.680 0.570 0.620 0.735 0.649 0.688 0.831 0.706 0.763

Table 8: Overlapping ratios of model predictions under single-frame and full-video inputs for (C)orrect,
(I)ncorrect and (O)verall predictions using uniformly sampled frames vi, across multiple frame sampling rates.

1 Frame 2 Frames 4 Frames
Model C I O C I O C I O
VideoLLaMA2 (7B) 0.521 0.495 0.515 0.558 0.507 0.519 0.670 0.653 0.657
LLaVA-NeXT-Video (32B) 0.634 0.550 0.558 0.658 0.546 0.597 0.675 0.563 0.614

Table 9: Overlapping ratios of model predictions under single-frame and full-video inputs for (C)orrect,
(I)ncorrect and (O)verall predictions using motion-based sampled frames vi, across multiple frame sampling
rates.
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