
Knowledge Enhanced Graph Neural Networks for Graph Completion

Luisa Werner1,2 , Nabil Layaı̈da2 , Pierre Genevès1,3 and Sarah Chlyah1

1Institut National de Recherche en Sciences et Technologies du Numérique (INRIA)
2Université Grenoble Alpes (UGA)

3Centre National de la Recherche Scientifique (CNRS)
luisa.werner@inria.fr, nabil.layaida@inria.fr, pierre.geneves@inria.fr, sarah.chlyah@inria.fr

Abstract
Graph data is omnipresent and has a wide variety1

of applications, such as in natural science, social2

networks, or the semantic web. However, while3

being rich in information, graphs are often noisy4

and incomplete. As a result, graph completion5

tasks, such as node classification or link prediction,6

have gained attention. On one hand, neural meth-7

ods, such as graph neural networks, have proven8

to be robust tools for learning rich representations9

of noisy graphs. On the other hand, symbolic10

methods enable exact reasoning on graphs. We11

propose Knowledge Enhanced Graph Neural Net-12

works (KeGNN), a neurosymbolic framework for13

graph completion that combines both paradigms as14

it allows for the integration of prior knowledge into15

a graph neural network model. Essentially, KeGNN16

consists of a graph neural network as a base upon17

which knowledge enhancement layers are stacked18

with the goal of refining predictions with respect to19

prior knowledge. We instantiate KeGNN in con-20

junction with two state of the art graph neural net-21

works, Graph Convolutional Networks and Graph22

Attention Networks, and evaluate KeGNN on mul-23

tiple benchmark datasets for node classification.24

1 Introduction25

Graphs are ubiquitous across diverse real-world applica-26

tions such as e-commerce [Liu et al., 2021], natural science27

[Sanchez-Gonzalez et al., 2018] or social networks [Wu et al.,28

2020]. Graphs connect nodes by edges and allow to enrich29

them with features. This makes them a versatile and powerful30

data structure that encodes relational information. As graphs31

are often derived from noisy data, incompleteness and errors32

are common issues. Consequently, graph completion tasks33

such as node classification or link prediction have become in-34

creasingly important. These tasks are approached from differ-35

ent directions. In the field of deep learning, research on graph36

neural networks (GNNs) has gained momentum. Numerous37

models have been proposed for various graph topologies and38

applications [Ma and Tang, 2021] [Wu et al., 2021] [Duan et39

al., 2022]. The key strength of GNNs is to find meaningful40

representations of noisy data, that can be used for prediction41

tasks [Wu et al., 2022]. Despite this advantage, as a subcate- 42

gory of deep learning methods, GNNs are criticized for their 43

limited interpretability and large data consumption [Susskind 44

et al., 2021]. Alongside, the research field of symbolic AI ad- 45

dresses the above-mentioned tasks. In symbolic AI, solutions 46

are found by performing logic-like reasoning steps that are 47

exact, interpretable and data-efficient. For large graphs, how- 48

ever, symbolic methods are often computationally expensive 49

or even infeasible. Since techniques from deep learning and 50

from symbolic AI have complementary pros and cons, the 51

field of neuro-symbolic AI aims to combine both paradigms. 52

Neuro-symbolic AI not only paves the way towards the ap- 53

plication of AI to learning with limited data, but also al- 54

lows for jointly using symbolic information (in the form of 55

logical rules) and sub-symbolic information (in the form of 56

real-valued data). This helps to overcome the blackbox na- 57

ture of deep learning methods and to improve interpretability 58

through symbolic representations [Susskind et al., 2021]. 59

In this paper, we present the neuro-symbolic approach 60

Knowledge enhanced Graph Neural Networks (KeGNN) to 61

conduct node classification given graph data and a set of prior 62

knowledge. In KeGNN, knowledge enhancement layers are 63

stacked on top of a GNN and adjust its predictions in order to 64

increase the satisfaction of a set of prior knowledge. In addi- 65

tion to the parameters of the GNN, the knowledge enhance- 66

ment layers contain learnable clause weights that reflect the 67

impact of the prior knowledge on the predictions. Both com- 68

ponents form an end-to-end differentiable model. KeGNN 69

can be seen as an extension to knowledge enhanced neural 70

networks (KENN) [Daniele and Serafini, 2022], which stack 71

knowledge enhancement layers onto a multi-layer perceptron 72

(MLP). However, an MLP is not powerful enough to incorpo- 73

rate graph structure into the representations. Thus, relational 74

information can only be introduced by binary predicates in 75

the symbolic part of KENN. In contrast, KeGNN is based on 76

GNNs that process the graph structure, which makes both the 77

neural and symbolic components sufficiently powerful to ex- 78

ploit the graph structure. In this work, we instantiate KeGNN 79

in conjunction with two popular GNNs: Graph Attention 80

Networks [Veličković et al., 2018] and Graph Convolutional 81

Networks [Kipf and Welling, 2017]. We apply KeGNN to 82

the benchmark datasets for node classification Cora, Citeseer, 83

PubMed [Yang et al., 2016] and Flickr [Zeng et al., 2020]. 84

2 Method: KeGNN85

KeGNN is a neuro-symbolic approach that can be applied to86

node classification tasks with the capacity of handling graph87

structure at the base neural network level. The model takes88

two types of input: (1) real-valued graph data and (2) prior89

knowledge expressed in first-order logic.90

2.1 Graph-structured Data91

A Graph G = (N,E) consists of a set of n nodes N and a set92

of k edges E where each edge of the form (vi, vj) connects93

two nodes vi ∈ N and vj ∈ N. The neighborhood N (vi) de-94

scribes the set of first-order neighbors of vi. For an attributed95

and labelled graph, nodes are enriched with features and la-96

bels. Each node has a feature vector x ∈ Rd of dimension97

d and a label vector y ∈ Rm. The label vector y contains98

one-hot encoded ground truth labels for m classes. In ma-99

trix notation, the features and labels of the entire graph are100

described as X ∈ Rn×d and Y ∈ Rn×m. A graph is typed101

if the type functions fE and fN assign edge types and node102

types to the edges and nodes, respectively. A graph with con-103

stant type functions (that assign the same edge and node type104

to all edges and nodes) is called homogeneous, whereas for105

heterogeneous graphs, nodes and edges may have different106

types [Ma and Tang, 2021].107

Example 2.1. A Citation Graph GCit consists of documents108

and citations. Fig. 1 shows an extract of the Citeseer ci-109

tation graph that is used as example to guide through the110

method section. The documents are represented by nodes111

NCit and citations by edges ECit. Documents can be at-112

tributed with features XCit that describe their content as113

Word2Vec [Adewumi et al., 2020] vectors. Each node is la-114

belled with one of six topic categories {AI, DB, HCI, IR, ML,115

AG} 1 that are encoded in YCit. Since all nodes (documents)116

and edges (citations) have the same type, GCit is homoge-117

neous.

Figure (1) Example extract of the Citeseer citation graph.

118

2.2 Prior Knowledge119

The prior knowledge K provided to KeGNN can be described120

as a set of ℓ logical clauses expressed in the logical language121

1The classes are abbreviations for the categories Artificial Intel-
ligence, Databases, Human-Computer Interaction, Information Re-
trieval, Machine Learning and Agents.

L that is defined as sets of constants C, variables X and pred- 122

icates P . Predicates have an arity r of one (unary) or two 123

(binary): P = PU ∪ PB . Predicates of arity r > 2 are not 124

considered in this work. Unary predicates express proper- 125

ties, whereas binary predicates express relations. L supports 126

the operators negation (¬) and disjunction (∨). Each clause 127

φ ∈ K = {φ1, . . . , φℓ} can be formulated as a disjunction of 128

(possibly negated) atoms
∨q

j=1 oj with q atoms {o1, . . . , oq}. 129

Since the prior knowledge is general, all clauses are assumed 130

to be universally quantified. Clauses can be grounded by as- 131

signing constants to the free variables. A grounded clause is 132

denoted as φ[x1, x2, ...|c1, c2, ...] with variables xi ∈ X and 133

constants ci ∈ C. The set of all grounded clauses in a graph 134

is G(K, C). 135

Example 2.2. The graph GCit in Fig. 1 can be expressed
in L. Nodes are represented by a set of constants C =
{a, b, . . . , f}. Node labels are expressed as a set of unary
predicates PU = {AI,DB, . . . ,AG} and edges as a set of
binary predicates PB = {Cite}. L has a set of variables
X = {x, y}. The atom AI(x) expresses the membership of
x to the class AI and Cite(x, y) expresses the existence of a
citation between x and y. A set of prior knowledge K can be
written as ℓ = 6 disjunctive clauses in L. Here, the assump-
tion is denoted that two papers that cite each other have the
same document class:

∀xy¬AI(x) ∨ ¬Cite(x, y) ∨AI(y)

∀xy¬DB(x) ∨ ¬Cite(x, y) ∨DB(y)

. . .

The atoms are grounded by replacing the variables x and 136

y with the constants {a, b, . . . f} to obtain sets of unary 137

groundings {AI(a),ML(b), . . . , IR(f)} and binary ground- 138

ings {Cite(a,d),Cite(a, e), . . . ,Cite(a, f)}. Assuming a 139

closed world and exclusive classes, other facts could be de- 140

rived, such as {¬DB(a),¬IR(a), . . . ,¬Cite(a,b)}. For the 141

sake of simplicity, these are omitted here. 142

2.3 Node Classification 143

Node classification is a subtask of knowledge graph comple- 144

tion on a graph G with the objective to assign classes to nodes 145

where they are unknown. This task is accomplished given 146

node features X, edges E and some prior knowledge K en- 147

coded as a set of clauses in L. A predictive model is trained 148

on a subset of the graph Gtrain with ground truth labels Ytrain 149

and validated on a test set Gtest for which the ground truth 150

labels are compared to the predictions in order to assess the 151

predictive performance. Node classification can be studied in 152

a transductive or inductive setting. In a transductive setting, 153

the entire graph is available for training, but the true labels 154

of the test nodes are masked. In an inductive setting, only 155

the nodes in the training set and the edges connecting them 156

are available, making it more challenging to classify unseen 157

nodes. 158

2.4 Fuzzy Semantics 159

Let us consider an attributed and labelled graph G and a set of 160

prior knowledge K. While K can be defined in the logic lan- 161

guage L, the neural component in KeGNN relies on contin- 162

uous and differentiable representations. To interpret Boolean 163

logic in the real-valued domain, KeGNN uses fuzzy logic164

[Zadeh, 1988], which maps Boolean truth values to the con-165

tinuous interval [0, 1] ⊂ R. A constant in C is interpreted as166

a real-valued feature vector x ∈ Rd. A predicate in P with167

arity r is interpreted as a function fP : Rr×d 7→ [0, 1] that168

takes r feature vectors as input and returns a truth value.169

Example 2.3. In the example, a unary predicate PU ∈ PU =
{AI,DB, . . .} is interpreted as a function fPU

: Rd 7→ [0, 1]
that takes a feature vector x and returns a truth value indi-
cating whether the node belongs to the class encoded as PU .
The binary predicate Cite ∈ PB is interpreted as the function

fCite(vi, vj) =

{
1, if (vi, vj) ∈ ECit

0, else.

fCite returns 1 (true) if there is an edge between two nodes vi170

and vj in GCit and 0 otherwise.171

T-conorm functions ⊥ : [0, 1]× [0, 1] 7→ [0, 1] [Klement et
al., 2013] take real-valued truth values of two literals2 and de-
fine the truth value of their disjunction. The Gödel t-conorm
function for two truth values ti, tj is defined as

⊥(ti, tj) 7→ max(ti, tj).

To obtain the truth value of a clause φ : o1 ∨ ... ∨ oq ,172

the function ⊥ is extended to a vector t of q truth values:173

⊥(t1, t2, ..., tq) = ⊥(t1,⊥(t2...⊥(tq−1, tq))). Fuzzy nega-174

tion over truth values is defined as t 7→ 1− t [Zadeh, 1988].175

Example 2.4. Given the clause φAI : ∀xy ¬AI(x) ∨176

¬Cite(x, y) ∨ AI(y) and its grounding φAI[x, y|a, b] :177

AI(a)∨¬Cite(a,b)∨AI(b) to the constants a and b and truth178

values for the grounded predicates AI(a) = t1, AI(b) = t2179

and Cite(a,b) = t3, the truth value of φAI[x, y|a, b] is180

max{max{(1− t1), (1− t3)}, t2}.181

2.5 Model Architecture182

The way KeGNN computes the final predictions can be di-183

vided in two stages. First, a GNN predicts the node classes184

given the features and the edges. Subsequently, the knowl-185

edge enhancement layers use the predictions as truth values186

for the grounded unary predicates and update them with re-187

spect to the knowledge. An overview of KeGNN is given in188

Fig. 2.189

Neural Component190

The role of the GNN in the neural component is to exploit
feature information in the graph structure. The key strength
of a GNN is to enrich node representations with graph struc-
ture by nesting k message passing layers [Wu et al., 2022].
Per layer, the representations of neighboring nodes are aggre-
gated and combined to obtain updated representations. The
node representation vk+1

i in the k-th message passing layer is

vk+1
i = combine

(
vki , aggregate

(
{vkj |vkj ∈ N (vi)}

))
.

The layers contain learnable parameters that are optimized191

with backpropagation. In this work, we consider two well-192

known GNNs as components for KeGNN: Graph Convolu-193

tional Networks (GCN) [Kipf and Welling, 2017] and Graph194

2A literal is a (possibly negated) grounded atom, e.g. AI(a)

Attention Networks (GAT) [Veličković et al., 2018]. While 195

GCN considers the graph structure as given, GAT allows 196

for assessing the importance of the neighbors with attention 197

weights αij between node vi and node vj . In case of multi- 198

head attention, the attention weights are calculated multiple 199

times and concatenated which allows for capturing different 200

aspects of the input data. In KeGNN, the GNN implements 201

the functions fPU
(see Section 2.4). In other words, the pre- 202

dictions are used as truth values for the grounded unary pred- 203

icates in the symbolic component. 204

Symbolic Component 205

To refine the predictions of the GNN, one or more knowl-
edge enhancement layers are stacked onto the GNN to update
its predictions Y to Y′. The goal is to increase the satisfac-
tion of the prior knowledge. The predictions Y of the GNN
serve as input to the symbolic component where they are in-
terpreted as fuzzy truth values for the unary grounded predi-
cates U := Y with U ∈ Rn×m. Fuzzy truth values for the
groundings of binary predicates are encoded as a matrix B
where each row represents an edge (vi, vj) and each column
represents an edge type e. In the context of node classifica-
tion, the GNN returns only predictions for the node classes,
while the edges are assumed to be given. A binary grounded
predicate is therefore set to truth value 1 (true) if an edge be-
tween two nodes vi and vj exists:

B[(vi,vj),e] =

{
1, if (vi, vj) of type e ∈ E

0, else.

Example 2.5. In case of the beforementioned citation graph
of Fig. 1, U and B are defined as:

U :=


AI(a) . . . AG(a)
AI(b) . . . AG(b)

...
...

AI(f) . . . AG(f)

 B :=


Cite(a,d)
Cite(a, e)
Cite(a, c)

...
Cite(c, e)
Cite(e, f)


To enhance the satisfaction of clauses that contain both 206

unary and binary predicates, their groundings are joined into 207

one matrix M ∈ Rk×P with P = 2 · |PU | + PB |. M is 208

computed by joining U and B so that each row of M repre- 209

sents an edge (vi, vj). As a result, M contains all required 210

grounded unary predicates for vi and vj . 211

Example 2.6. For the example citation graph, we obtain M 212

as follows: 213

For each clause φ ∈ K, a clause enhancer is instantiated.
Its aim is to compute updates δMφ for the groundings in M

Figure (2) Overview of KeGNN.

that increase the satisfaction of φ. First, fuzzy negation is ap-
plied to the columns of M that correspond to negated atoms
in φ. Then δMφ is computed by a t-conorm boost function
ϕ [Daniele and Serafini, 2020]. ϕ : [0, 1]q 7→ [0, 1]q takes
q truth values and returns changes to those truth values such
that ⊥(t) ≤ ⊥(t + ϕ(t)). [Daniele and Serafini, 2020] pro-
pose the following differentiable t-conorm boost function

ϕwφ
(t)i = wφ · eti∑q

j=1 e
tj
.

The boost function ϕwφ employs a clause weight wφ as a214

learnable parameter so that the updates for the groundings are215

proportional to wφ. Therefore, wφ determines the magnitude216

of the update and thus reflects the impact of a clause. The217

changes to atoms that do not appear in a clause are set to zero.218

The boost function is applied row-wise to M as illustrated in219

the following example.220

Example 2.7. Given the clause φAI : ∀xy¬AI(x) ∨
¬Cit(x, y) ∨ AI(y) with the clause weight wAI, the changes
for this clause are δMφAI

=

wAI ·


δ¬AIx(a) 0 . . . δAIy(c) 0 . . . δ¬Cit(a,c)

δ¬AIx(a) 0 . . . δAIy(e) 0 . . . δ¬Cit(e,a)

δ¬AIx(a) 0 . . . δAIy(d) 0 . . . δ¬Cit(c,d)

...
...

...
δ¬AIx(e) 0 . . . δAIy(f) 0 . . . δ¬Cit(e,f)


The values of δMφAI

are calculated by ϕwAI
, for example:

δ¬AIx(a) = ϕwAI(z)a = − e−zAI(a)

e−zAI(a) + e−zCit(a,c) + ezAI(c)

A clause enhancer is instantiated for each clause φ ∈ K.
Each clause enhancer computes updates δMφ for a clause in-
dependently. The updates of all clause enhancers are finally
added, resulting in a matrix δM =

∑
φ∈K δMφ. To apply

the updates to the initial predictions, δM has to be added to
Y. The updates in δM can not directly be applied to the pre-
dictions Y of the GNN. Since the unary groundings U were
joined with B, multiple changes may be proposed for the
same grounded unary atom. For example, for the grounded
atom AI(c) the changes δ¬AIy(c) and δ¬AIx(c) are proposed,

since c appears in first place of edge (a, c) and in second place
of edge (c, e). Therefore, all updates for the same grounded
atom are summed, reducing the size of M to the size of U.
To ensure that the updated predictions remain truth values in
the range of [0, 1], the knowledge enhancer works with the
preactivations Z of the GNN and applies the activation func-
tion σ to the updated preactivations Z′ to obtain the final pre-
dictions: Y′ = σ(Z′). Therefore, the knowledge enhancer
transforms Z to Z′ (with Z,Z′ ∈ Rn×m). Regarding the
binary groundings, the values in B are set to a high positive
value that results in one when σ is applied. In the last step, the
updates by the knowledge enhancer are added to the preacti-
vations Z of the GNN and passed to σ to obtain the updated
predictions

Y′ = σ

(
Zx+

∑
φ∈K

δUφ

)
where δUφ is the matrix obtained by extracting the changes 221

to the unary predicates from δMφ. 222

3 Related Work 223

The field of knowledge graph completion is addressed from 224

several research directions. Symbolic methods exist that con- 225

duct link prediction given a set of prior knowledge [Dou et 226

al., 2015] [Meilicke et al., 2019]. Embedding-based meth- 227

ods [Dai et al., 2020] are mostly sub-symbolic methods to 228

obtain node embeddings that are used for knowledge graph 229

completion tasks. Usually, their common objective is to find 230

similar embeddings for nodes that are located closely in the 231

graph. The majority of these methods only encodes the graph 232

structure, but does not consider node-specific feature infor- 233

mation [Abboud and Ceylan, 2021]. However, KeGNN is 234

based on GNNs that are suited for learning representations 235

of graphs attributed with node features. It stacks additional 236

layers that interpret the outputs of the GNN in fuzzy logic 237

and modify them to increase the satisfiability. Therefore, it 238

is considered a neuro-symbolic method. In the multifaceted 239

neuro-symbolic field, KeGNN can be placed in the category 240

of knowledge-guided learning [Daniele and Serafini, 2020], 241

where the focus lies on learning in the presence of additional 242

supervision introduced as prior knowledge. Within this cate- 243

gory, KeGNN belongs to the model-based approaches, where244

prior knowledge in the form of knowledge enhancement lay-245

ers is an integral part of the model. Beyond, loss-based meth-246

ods such as logic tensor networks [Badreddine et al., 2022]247

exist that encode the satisfiability of prior knowledge as an248

optimization objective.249

Further, in [DeLong et al., 2023] neuro-symbolic ap-250

proaches dealing with graph structures are classified into251

three categories. First, logically informed embedding ap-252

proaches [Li et al., 2023] [Jain et al., 2021] use predefined253

logical rules that provide knowledge to a neural system, while254

both components are mostly distinct. Second, approaches for255

knowledge graph embedding with logical constraints [Fatemi256

et al., 2019] [Guo et al., 2016] use prior knowledge as con-257

straints on the neural knowledge graph embedding method in258

order to modify predictions or embeddings. Thirdly, neuro-259

symbolic methods are used for learning rules for graph rea-260

soning tasks [Hu et al., 2020] [Qu et al., 2021]. This allows261

for rule generation or confidence scores for prior knowledge262

and makes the models robust to exceptions or soft knowledge.263

KeGNN best falls into the second category, since the prior264

knowledge is interpreted in fuzzy logic to be integrated with265

the neural model and update the GNN’s predictions. The idea266

of confidence values in category three shares the common267

property of relativating knowledge as with KeGNN’s clause268

weights. However, even though KeGNN’s clause weights in-269

troduce a notion of impact of a clause when predictions are270

made, they cannot directly be interpreted as the confidence in271

a rule. In the well-known Kautz Taxonomy [Kautz, 2022] that272

classifies neuro-symbolic approaches according to the inte-273

gration of neural and symbolic modules, KeGNN falls best274

into the category Neuro[Symbolic] (Type 6) of fully-275

integrated neuro-symbolic systems that embed symbolic rea-276

soning in a neural architecture.277

4 Experimental Evaluation278

To evaluate the performance of KeGNN, we apply it to the279

datasets Citeseer, Cora, PubMed and Flickr that are com-280

mon benchmarks for node classification in a transductive set-281

ting. In the following, KeGNN is called KeGCN and KeGAT282

when instantiated to a GCN or a GAT, respectively. As ad-283

ditional baseline, we consider KeMLP, that stacks knowledge284

enhancement layers onto an MLP, as proposed in [Daniele285

and Serafini, 2022]. Further, the standalone neural models286

MLP, GCN and GAT are used as baselines. While Citeseer,287

Cora and PubMed are citation graphs that encode citations288

between scientific papers (as in Example 2.2), Flickr contains289

images and shared properties between them. All datasets can290

be modelled as homogeneous, labelled and attributed graphs291

as defined in Section 2.1. The set of prior logic for the knowl-292

edge enhancement layers is given explicitly. In this work,293

we encode the assumption that the existence of an edge for294

a node pair points to their membership to the same class and295

hence provides added value to the node classification task.296

In the context of citation graphs, this implies that two docu-297

ments that cite each other refer to the same topic, while for298

Flickr, linked images share the same properties. Following299

this pattern for all datasets, a clause φ: ∀xy : ¬Clsi(x)∨300

0 1 2 3 4 5 > 5
Node Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Accuracy Grouped by Node Degree
MLP
KeMLP

0 1 2 3 4 5 > 5
Node Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Accuracy Grouped by Node Degree
GCN
KeGCN

Figure (3) The accuracy grouped by the node degree for MLP vs.
KeMLP (above) and GCN and KeGCN (below) on Citeseer.

¬Link(x, y)∨Clsi(y) is instantiated for each node class Clsi. 301

More details on the experiments are given in Appendix A. 302

The implementation and the experiments is publicly available 303

on Gitlab3. 304

4.1 Results 305

To compare the performance of all models, we examine the 306

average test accuracy over 50 runs (10 for Flickr) for the 307

knowledge enhanced models KeMLP, KeGCN, KeGAT and 308

the standalone base models MLP, GCN, GAT on the named 309

datasets. The results are given in Tab. 1 and visualized in 310

Fig. 7 (see Appendix A.3). For Cora and Citeseer, KeMLP 311

leads to a significant improvement over MLP (p-value of one- 312

sided t-test ≪ 0.05). In contrast, no significant advantage 313

of KeGCN or KeGAT in comparison to the standalone base 314

model is observed. Nevertheless, all GNN-based models are 315

significantly superior to KeMLP for Cora. This includes not 316

only KeGCN and KeGAT, but also the GNN baselines. For 317

Citeseer, KeGAT and GAT both outperform KeMLP. In the 318

case of PubMed, only a significant improvement of KeMLP 319

over MLP can be observed, while the GNN-based models 320

and their enhanced versions do not provide any positive ef- 321

fect. For Flickr, no significant improvement between the base 322

model and the respective knowledge enhanced model can be 323

observed. Nevertheless, all GNN-based models outperform 324

KeMLP, reporting significantly higher mean test accuracies 325

for KeGAT, GAT, GCN and KeGCN. 326

Exploitation of the Graph Structure 327

It turns out that the performance gap between MLP and 328

KeMLP is larger than for KeGCN in comparison to the stan- 329

dalone GCN (or KeGAT vs. GAT, respectively). To explain 330

this observation, we examine how the graph structure affects 331

the prediction performance. Therefore, in Fig. 3 we analyze 332

the accuracy grouped by the node degree for the entire graph 333

3https://gitlab.inria.fr/tyrex/kegnn

MLP KeMLP GCN KeGCN GAT KeGAT

Cora 0.7098
(0.0080)

0.8072
(0.0193)

0.8538
(0.0057)

0.8587
(0.0057)

0.8517
(0.0068)

0.8498
(0.0066)

CiteSeer 0.7278
(0.0081)

0.7529
(0.0067)

0.748
(0.0102)

0.7506
(0.0096)

0.7718
(0.0072)

0.7734
(0.0073)

PubMed 0.8844
(0.0057)

0.8931
(0.0048)

0.8855
(0.0062)

0.8840
(0.0087)

0.8769
(0.0040)

0.8686
(0.0081)

Flickr 0.4656
(0.0018)

0.4659
(0.0012)

0.5007
(0.0063)

0.4974
(0.0180)

0.4970
(0.0124)

0.4920
(0.0189)

Table (1) Average test accuracy of 50 runs (10 for Flickr). The standard deviations are reported in brackets.

for MLP vs. KeMLP and GCN vs. KeGCN 4. It is observed334

that KeMLP performs better compared to MLP as the node335

degree increases. By contrast, when comparing GCN and336

KeGCN, for both models, the accuracy increases for nodes337

with a higher degree. This shows that rich graph structure338

is helpful for the node classification in general. Indeed, the339

MLP is a simple model that misses information on the graph340

structure and thus benefits from graph structure in the form341

of binary predicates contributed by KeMLP. On the contrary,342

standalone GNNs can process graph structure by using mes-343

sage passing techniques to transmit learned node representa-344

tions between neighbors. The prior knowledge introduced in345

the knowledge enhancer is simple. It encodes that two neigh-346

bors are likely to be of the same class. An explanation for the347

small difference in performance is that GNNs may be able to348

capture and propagate this simple knowledge across neigh-349

bors implicitly, using its message passing technique. In other350

words we observe that, in this particular case, the introduced351

knowledge happens to be redundant for GNNs. However, the352

introduced knowledge significantly improves the accuracy of353

MLPs. In this context, we discuss perspectives for future354

work in Section 5.355

Robustness to wrong knowledge356

Furthermore, a question of interest is how the knowledge en-357

hanced model finds a balance between knowledge and graph358

data in case of knowledge that is not consistent with the359

graph data. In other words, can the KeGNN successfully deal360

with nodes having mainly neighbors that belong to a differ-361

ent ground truth class and thus contribute misleading infor-362

mation to the node classification? To analyze this question,363

we categorize the accuracy by the proportion of misleading364

nodes in the neighborhood, see Fig. 4. Misleading nodes are365

nodes that have a different ground truth class than the node to366

be classified. It turns out that KeMLP is particularly helpful367

over MLP when the neighborhood provides the right informa-368

tion. However, if the neighborhood is misleading (if most or369

even all of the neighbors belong to a different class), an MLP370

that ignores the graph structure can lead to even better results.371

When comparing KeGCN and GCN, there is no clear differ-372

ence. This is expected, since both models are equally affected373

by misleading nodes as they utilise the graph structure. Just as374

a GCN, the KeGCN is not necessarily robust to wrong prior375

knowledge since the GCN component uses the entire neigh-376

borhood, including the misleading nodes. When comparing377

4The findings for KeGAT are in line with those for KeGCN, see
Fig. 8 in Section A.3

Figure (4) The accuracy grouped by the ratio of misleading first-
order neighbors for GCN vs. KeGCN (left), MLP vs. KeMLP
(right), GCN vs. KeMLP (below) on Citeseer.

GCN to KeMLP, see plot below in Fig.4, KeMLP is more ro- 378

bust to misleading neighbors. While GCN takes the graph 379

structure as given and includes all neighbors equally in the 380

embeddings by graph convolution, the clause weights in the 381

knowledge enhancement methods provide a way to devalue 382

knowledge. If the data frequently contradicts a clause, the 383

model has the capacity to reduce the respective clause weight 384

in the learning process and reduce its impact. 385

Clause Weight Learning 386

The clause weights learned during training provide insights 387

on the updates made by a clause. The clause compliance (see

Figure (5) Learned clause weights vs. clause compliance for
KeMLP (left) and KeGCN (right) on Citeseer.

388

0 10 20 30
Epoch

0.6

0.7

0.8

0.9
Co

m
pl

ia
nc

e
Evolution of compliance

-- = base NN, line = after enhancement

0 10 20
Epoch

0.0

0.2

0.4

0.6

Co
m

pl
ia

nc
e

Evolution of compliance

-- = base NN, line = after enhancement

Figure (6) Clause compliance during training for GCN vs.
KeGCN (left) and MLP vs. KeMLP (right) on Citeseer.

Appendix B) [Daniele and Serafini, 2020] measures how well389

the prior knowledge is satisfied in a graph. It can be calcu-390

lated on the ground truth classes or the predicted classes. As391

a reference, we measure the clause compliance based on the392

ground truth labels in the training set. Fig. 5 displays the393

learned clause weights for KeGCN and KeMLP versus the394

clause compliance. For KeMLP, a positive correlation be-395

tween the learned clause weights and the clause compliance396

on the training set is observed. This indicates that higher397

clause weights are learned for clauses that are satisfied in the398

training set. Consequently, these clauses have a higher im-399

pact on the updates of the predictions. In addition, the clause400

weights corresponding to clauses with low compliance values401

make smaller updates to the initial predictions. Accordingly,402

clauses that are rarely satisfied learn lower clause weights403

during the training process. In the case of KeGCN, the clause404

weights are predominantly set to values close to zero. This is405

in accordance with the absence of a significant performance406

gap between GCN and KeGCN. Since the GCN itself already407

leads to valid classifications, smaller updates are required by408

the clause enhancers.409

Furthermore, we analyse how the compliance evolves dur-410

ing training to investigate whether the models learn predic-411

tions that increase the satisfaction of the prior knowledge.412

Fig. 6 plots the evolution of the clause compliance for the413

six clauses for GCN vs. KeGCN and MLP vs. KeMLP. It414

is observed that GCN and KeGCN yield similar results as the415

evolution of the compliance during training for both models is416

mostly aligned. For MLP vs. KeMLP the clause compliance417

of the prediction of the MLP converges to lower values for all418

classes than the clause compliance obtained with the KeMLP.419

This gives evidence that the knowledge enhancement layer420

actually improves the satisfiability of the prior knowledge. As421

already observed, the GCN is also able to implicitly satisfy422

the prior knowledge even though it is not explicitly defined.423

5 Limitations and Perspectives424

The method of KeGNN is limited in some aspects, which we425

present in this section. In this work, we focused on homoge-426

neous graphs. In reality, however, graphs are often heteroge-427

neous with multiple node and edge types [Yang et al., 2022].428

Adaptations are necessary on both the neural and the sym- 429

bolic side to apply KeGNN to heterogeneous graphs. The re- 430

striction to homogeneous graphs also limits the scope of for- 431

mulating complex prior knowledge. Eventually, the datasets 432

used in this work and the set of prior knowledge are too sim- 433

ple for KeGNN to exploit its potential and lead to a signifi- 434

cant improvement over the GNN. Experimental results show 435

that knowledge encoded by the symbolic component leads 436

to significant improvement over a model that is not capable 437

to capture and learn that knowledge. This indicates that for 438

more complex knowledge that is harder for a GNN to learn, 439

KeGNN has the potential to bring higher improvements. A 440

perspective for further work is the extension of KeGNN to 441

more generic data structures such as incomplete and hetero- 442

geneous knowledge graphs in conjunction with more com- 443

plex prior knowledge. 444

Another limitation of KeGNN is scalability. With an in- 445

creasing number of stacked knowledge enhancement layers, 446

the affected node neighborhood grows exponentially, which 447

can lead to significant memory overhead. This problem 448

is referred as neighborhood explosion [Duan et al., 2022] 449

and is particularly problematic in the context of training on 450

memory-constrained GPUs. This affects both the GNN and 451

the knowledge enhancement layers that encode binary knowl- 452

edge. Methods from scalable graph learning [Fey et al., 2021] 453

[Zeng et al., 2020] [Hamilton et al., 2017] represent po- 454

tential solutions for the neighborhood explosion problem in 455

KeGNN. 456

Furthermore, limitations appear in the context of link pre- 457

diction with KeGNN. For link prediction, a neural component 458

is required that predicts fuzzy truth values for binary predi- 459

cates. At present, KeGNN can handle clauses containing bi- 460

nary predicates, but their truth values are initialized with ar- 461

tificial predictions, where a high value encodes the presence 462

of an edge. This limits the application of KeGNN to datasets 463

for which the graph structure is complete and known a priori. 464

6 Conclusion 465

In this work, we introduced KeGNN, a neuro-symbolic model 466

that integrates GNNs with symbolic knowledge enhancement 467

layers to create a fully differentiable end-to-end model. This 468

allows the use of prior knowledge to improve node classi- 469

fication while exploiting the expressive representations of a 470

GNN. Experimental studies show that the inclusion of prior 471

knowledge has the potential to improve simple neural models 472

(as observed in the case of MLP). However, the knowledge 473

enhancement of GNNs is harder to achieve on the underly- 474

ing and limited benchmarks for which the injection of sim- 475

ple knowledge concerning local neighborhood is redundant 476

with the representations that GNNs are able to learn. Never- 477

theless, KeGNN has not only the potential to improve graph 478

completion tasks from a performance perspective, but also to 479

increase interpretability through clause weights. This work is 480

a step towards a holistic neuro-symbolic method on incom- 481

plete and noisy semantic data, such as knowledge graphs. 482

A Experiment Details483

A.1 Implementation484

The implementation of KeGNN and the described experi-485

ments is publicly available on GitLab5. The code is based on486

PyTorch [Paszke et al., 2019] and the graph learning library487

PyTorch Geometric [Fey and Lenssen, 2019]. The Weights488

& Biases tracking tool [Biewald, 2020] is used to monitor the489

experiments. All experiments are conducted on a machine490

running an Ubuntu 20.4 equipped with an Intel(R) Xeon(R)491

Silver 4114 CPU 2.20GHz processor, 192G of RAM and one492

GPU Nvidia Quadro P5000.493

A.2 Datasets494

Tab. 2 gives an overview of the named datasets in this work.495

The datasets are publicly available on the dataset collection6496

of PyTorch Geometric [Fey and Lenssen, 2019]. For the split497

into train, valid and test set, we take the predefined splits in498

[Chen et al., 2018] for the citation graphs and in [Zeng et al.,499

2020] for Flickr. Word2Vec vectors [Adewumi et al., 2020]500

are used as node features for the citation graphs and image501

data for Flickr. Fig. 1 visualizes the graph structure of the502

underlying datasets in this work as a homogeneous, attributed503

and labelled graph (on the example of Citeseer).504

A.3 Results505

The average test accuracies obtained for the node classifica-506

tion experiments on Cora, Citeseer, PubMed and Flickr over507

all tested models are visualized in Fig. 7. The average run-508

times per epoch on the Citeseer dataset are compared for all509

models in Tab 3. The runtimes were calculated for models510

with three hidden layers and three knowledge enhancement511

layers in full-batch training. It can be noted that the knowl-512

edge enhancement layers lead to increased epoch times since513

the model complexity is higher.514

Model Avg Epoch Time
MLP 0.02684
GCN 0.03109
GAT 0.06228

KeMLP 0.04304
KeGCN 0.03747
KeGAT 0.08384

Table (3) Comparison of the average epoch times for all models
on the Citeseer dataset.

Fig. 8 shows the accuracy grouped by node degree for GAT515

vs. KeGAT.516

5https://gitlab.inria.fr/tyrex/kegnn
6https://pytorch-geometric.readthedocs.io/en/latest/modules/

datasets.html

MLP KeMLP GCN KeGCN GAT KeGAT
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

te
st

 a
cc

ur
ac

y

Cora

MLP KeMLP GCN KeGCN GAT KeGAT
0.60

0.65

0.70

0.75

0.80

0.85

te
st

 a
cc

ur
ac

y

CiteSeer

MLP KeMLP GCN KeGCN GAT KeGAT
0.70

0.75

0.80

0.85

0.90

0.95

te
st

 a
cc

ur
ac

y

Pubmed

MLP KeMLP GCN KeGCN GAT KeGAT
0.30

0.35

0.40

0.45

0.50

0.55

0.60

av
er

ag
e

te
st

 a
cc

ur
ac

y

Flickr

Figure (7) Average test accuracies over 50 runs for Cora, CiteSeer
and PubMed and 10 runs on Flickr. Error bars denote standard devi-
ation.

0 1 2 3 4 5 > 5
Node Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Accuracy Grouped by Node Degree
GAT
KeGAT

Figure (8) The accuracy grouped by the node degree for GAT vs.
KeGAT on Citeseer.

A.4 Hyperparameter Tuning 517

KeGNN contains a set of hyperparameters. Batch normal- 518

ization [Ioffe and Szegedy, 2015] is applied after each hid- 519

den layer of the GNN. The Adam optimizer [Kingma and Ba, 520

2015] is used as optimizer for all models. Concerning the hy- 521

perparameters specific to the knowledge enhancement layers, 522

the initialization of the preactivations of the binary predicates 523

(which are assumed to be known) is taken as a hyperparam- 524

eter. They are set to a high positive value for edges that are 525

known to exist and correspond to the grounding of the bi- 526

nary predicate. Furthermore, different initializations of clause 527

weights and constraints on them are tested. Moreover, the 528

number of stacked knowledge enhancement layers is a hyper- 529

parameter. We further allow the model to randomly neglect 530

a proportion of edges by setting an edges drop rate parame- 531

ter. Further, we test whether the normalization of the edges 532

with the diagonal matrix D̃ =
∑

j Ãi,j (with Ã = A+ I) is 533

helpful. 534

To find a suitable set hyperparameters for each dataset and 535

model, we perform a random search with up to 800 runs and 536

48h time limit and choose the parameter combination which 537

leads to the highest accuracy on the validation set. The hyper- 538

parameter tuning is executed in Weights and Biases [Biewald, 539

2020]. The following hyperparameter values are tested: 540

• Adam optimizer parameters: β1: 0.9, β2: 0.99, ϵ: 1e-07 541

https://gitlab.inria.fr/tyrex/kegnn
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

Name #nodes #edges #features #Classes train/valid/test split
Citeseer 3,327 9,104 3,703 6 1817/500/1000
Cora 2,708 10,556 1,433 7 1208/500/1000
PubMed 19,717 88,648 500 3 18217/500/1000
Flickr 89,250 899,756 500 7 44624/22312/22312

Table (2) Overview of the datasets Citeseer, Cora, PubMed and Flickr

• Attention heads: {1, 2, 3, 4, 6, 8, 10}542

• Batch size: {128, 512, 1024, 2048, full batch}543

• Binary preactivation: {0.5, 1.0, 10.0, 100.0, 500.0}544

• Clause weights initialization: {0.001, 0.1, 0.25, 0.5, random545

uniform distribution on [0,1)}546

• Dropout rate: 0.5547

• Edges drop rate: random uniform distribution [0.0, 0.9]548

• Edge normalization: {true, false}549

• Early stopping: δmin : 0.001, patience: {1, 10, 100}550

• Hidden layer dimension: {32, 64, 128, 256}551

• Learning rate: random uniform distribution [0.0001, 0.1]552

• Clause weight clipping: wmin : 0.0, wmax: random uniform553

distribution: [0.8, 500.0]554

• Number of knowledge enhancement layers: {1, 2, 3, 4, 5, 6}555

• Number of hidden layers: {2, 3, 4, 5, 6}556

The obtained parameter combinations for the models KeMLP,557

KeGCN and KeGAT for Cora, Citeseer, PubMed and Flickr558

are displayed in Tab. 5 and Tab. 4. The reference models559

MLP, GCN and GAT are trained with the same parameter set560

as the respective knowledge enhanced models.561

B Clause Weight Evaluation562

The clause compliance [Daniele and Serafini, 2020] indicates563

the level of satisfaction of a clause in the data in this exper-564

imental setting. Given a clause φ, a class Clsm, the set of565

training nodes Vtrain, the set of nodes of the class Clsm:566

Vm = {vi|vi ∈ Vtrain ∧ Cls(vi) == m}, and the neigh-567

borhood N (vi) of vi, the clause compliance on graph G is568

defined as follows:569

Compliance(G, φ) =

∑
vi∈Vk

∑
vj∈N (v) 1[if vj ∈ Vm]∑
vi∈Vm

|N (vi)|
(1)

570

0 1 2 3 4 5
Clause

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Co
m

pl
ia

nc
e

0.285714

0.417582

0.657143

0.534483

0.621053

0.727273
Citeseer Compliance

forall xy: not Cls 0(x) or not Cite(x,y) or Cls0(y)
forall xy: not Cls 1(x) or not Cite(x,y) or Cls1(y)
forall xy: not Cls 2(x) or not Cite(x,y) or Cls2(y)
forall xy: not Cls 3(x) or not Cite(x,y) or Cls3(y)
forall xy: not Cls 4(x) or not Cite(x,y) or Cls4(y)
forall xy: not Cls 5(x) or not Cite(x,y) or Cls5(y)

Figure (9) The clause compliance on the ground truth graph on the
training set for Citeseer.

In other words, the clause compliance counts how often 571

among nodes of a class the neighboring nodes are of the same 572

class. [Daniele and Serafini, 2020] 573

PubMed Flickr
Parameter KeMLP KeGCN KeGAT KeMLP KeGCN KeGAT
adam beta 1 0.9 0.9 0.9 0.9 0.9 0.9
ada beta 2 0.99 0.99 0.99 0.99 0.99 0.99
adam epsilon 1e-07 1e-07 1e-07 1e-07 1e-07 1e-07
attention heads - - 8 - - 8
batch size 1024 full batch 1024 128 1024 2048
binary preactivation 10.0 1.0 10.0 10.0 500.0 500.0
clause weight initialization 0.001 random 0.5 0.001 0.001 0.1
dropout rate 0.5 0.5 0.5 0.5 0.5 0.5
edges drop rate 0.22 0.66 0.07 0.2 0.24 0.12
epochs 200 200 200 200 200 200
early stopping enabled true true true true true true
early stopping min delta 0.001 0.001 0.001 0.001 0.001 0.001
early stopping patience 100 10 10 10 10 100
hidden channels 256 256 256 32 128 64
learning rate 0.057 0.043 0.016 0.001 0.016 0.0039
max clause weight 350.0 322.0 118.0 55.0 135 113.0
min clause weight 0.0 0.0 0.0 0.0 0 0.0
normalize edges false false true true true false
KE layers 2 1 5 1 4 1
hidden layers 4 2 2 2 4 3
runs 50 50 50 10 10 10
seed 1234 1234 1234 1234 1234 1234

Table (4) Hyperparameters and experiment configuration for PubMed and Flickr

Cora CiteSeer
Parameter KeMLP KeGCN KeGAT KeMLP KeGCN KeGAT
adam beta 1 0.9 0.9 0.9 0.9 0.9 0.9
ada beta 2 0.99 0.99 0.99 0.99 0.99 0.99
adam epsilon 1e-07 1e-07 1e-07 1e-07 1e-07 1e-07
attention heads - - 1 - - 3
batch size 512 512 full batch 128 full batch 1024
binary preactivation 10.0 500.0 1.0 10.0 0.5 0.5
clause weight initialization 0.5 random 0.5 0.5 0.25 0.1
dropout rate 0.5 0.5 0.5 0.5 0.5 0.5
edges drop rate 0.47 0.17 0.27 0.01 0.35 0.88
epochs 200 200 200 200 200 200
early stopping enabled true true true true true true
early stopping min delta 0.001 0.001 0.001 0.001 0.001 0.001
early stopping patience 1 1 10 10 10 10
hidden channels 32 256 64 256 128 32
learning rate 0.026 0.032 0.033 0.028 0.037 0.006
max clause weight 104.0 254.0 250.0 34.0 243.0 110.0
min clause weight 0.0 0.0 0.0 0.0 0.0 0.0
normalize edges true false true true false true
KE layers 4 2 1 1 3 2
Hidden layers 2 2 2 2 5 2
runs 50 50 50 50 50 50
seed 1234 1234 1234 1234 1234 1234

Table (5) Hyperparameter and experiment configuration for Citeseer and Cora

References574

[Abboud and Ceylan, 2021] Ralph Abboud and Ismail Ilkan575

Ceylan. Node classification meets link prediction576

on knowledge graphs. https://arxiv.org/abs/2106.07297,577

2021.578

[Adewumi et al., 2020] Tosin P. Adewumi, Foteini Liwicki,579

and Marcus Liwicki. Word2vec: Optimal hyper-580

parameters and their impact on nlp downstream tasks.581

https://arxiv.org/abs/2003.11645, 2020.582

[Badreddine et al., 2022] Samy Badreddine, Artur d'Avila583

Garcez, Luciano Serafini, and Michael Spranger. Logic584

tensor networks. Artificial Intelligence, 303:103649, feb585

2022.586

[Biewald, 2020] Lukas Biewald. Experiment tracking with587

weights and biases. https://www.wandb.com/, 2020. Soft-588

ware available from wandb.com.589

[Chen et al., 2018] Jie Chen, Tengfei Ma, and Cao Xiao.590

Fastgcn: Fast learning with graph convolutional networks591

via importance sampling. In ICLR (Poster). OpenRe-592

view.net, 2018.593

[Dai et al., 2020] Yuanfei Dai, Shiping Wang, Neal N.594

Xiong, and Wenzhong Guo. A survey on knowledge graph595

embedding: Approaches, applications and benchmarks.596

Electronics, 9(5), 2020.597

[Daniele and Serafini, 2020] Alessandro Daniele and Lu-598

ciano Serafini. Neural networks enhancement with logical599

knowledge. https://arxiv.org/abs/2009.06087, 2020.600

[Daniele and Serafini, 2022] Alessandro Daniele and Lu-601

ciano Serafini. Knowledge enhanced neural networks602

for relational domains. https://arxiv.org/abs/2205.15762,603

2022.604

[DeLong et al., 2023] Lauren Nicole DeLong, Ra- 605

mon Fernández Mir, Matthew Whyte, Zonglin 606

Ji, and Jacques D. Fleuriot. Neurosymbolic ai 607

for reasoning on graph structures: A survey. 608

https://arxiv.org/abs/2302.07200, 2023. 609

[Dou et al., 2015] Dejing Dou, Hao Wang, and Haishan Liu. 610

Semantic data mining: A survey of ontology-based ap- 611

proaches. In Proceedings of the 2015 IEEE 9th Interna- 612

tional Conference on Semantic Computing (IEEE ICSC 613

2015), pages 244–251, 2015. 614

[Duan et al., 2022] Keyu Duan, Zirui Liu, Peihao Wang, 615

Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu, 616

and Zhangyang Wang. A comprehensive study on large- 617

scale graph training: Benchmarking and rethinking. In 618

Thirty-sixth Conference on Neural Information Processing 619

Systems Datasets and Benchmarks Track, 2022. 620

[Fatemi et al., 2019] Bahare Fatemi, Siamak Ravanbakhsh, 621

and David Poole. Improved knowledge graph embedding 622

using background taxonomic information. Proceedings of 623

the AAAI Conference on Artificial Intelligence, 33:3526– 624

3533, 07 2019. 625

[Fey and Lenssen, 2019] Matthias Fey and Jan E. Lenssen. 626

Fast graph representation learning with PyTorch Geomet- 627

ric. In ICLR 2019 Workshop on Representation Learning 628

on Graphs and Manifolds, 2019. 629

[Fey et al., 2021] Matthias Fey, Jan E. Lenssen, Frank We- 630

ichert, and Jure Leskovec. Gnnautoscale: Scalable and ex- 631

pressive graph neural networks via historical embeddings. 632

In Marina Meila and Tong Zhang, editors, Proceedings 633

of the 38th International Conference on Machine Learn- 634

ing, volume 139 of Proceedings of Machine Learning Re- 635

search, pages 3294–3304. PMLR, 18–24 Jul 2021. 636

[Guo et al., 2016] Shu Guo, Quan Wang, Lihong Wang, Bin 637

Wang, and Li Guo. Jointly embedding knowledge graphs 638

and logical rules. In Proceedings of the 2016 Conference 639

on Empirical Methods in Natural Language Processing, 640

pages 192–202, Austin, Texas, November 2016. Associa- 641

tion for Computational Linguistics. 642

[Hamilton et al., 2017] William L. Hamilton, Rex Ying, and 643

Jure Leskovec. Inductive representation learning on large 644

graphs. In Proceedings of the 31st International Confer- 645

ence on Neural Information Processing Systems, NIPS’17, 646

page 1025–1035, Red Hook, NY, USA, 2017. Curran As- 647

sociates Inc. 648

[Hu et al., 2020] Yuwei Hu, Zihao Ye, Minjie Wang, Jiali 649

Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru Zhang, and 650

Yida Wang. Featgraph: A flexible and efficient backend 651

for graph neural network systems. In SC20: International 652

Conference for High Performance Computing, Network- 653

ing, Storage and Analysis, pages 1–13, 2020. 654

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian 655

Szegedy. Batch normalization: Accelerating deep net- 656

work training by reducing internal covariate shift. In 657

Francis Bach and David Blei, editors, Proceedings of the 658

32nd International Conference on Machine Learning, 659

https://arxiv.org/abs/2106.07297
https://arxiv.org/abs/2003.11645
https://www.wandb.com/
https://arxiv.org/abs/2009.06087
https://arxiv.org/abs/2205.15762
https://arxiv.org/abs/2302.07200

volume 37 of Proceedings of Machine Learning Research,660

pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.661

[Jain et al., 2021] Nitisha Jain, Trung-Kien Tran, Mo-662

hamed H. Gad-Elrab, and Daria Stepanova. Improving663

knowledge graph embeddings with ontological reasoning.664

In The Semantic Web – ISWC 2021: 20th International665

Semantic Web Conference, ISWC 2021, Virtual Event, Oc-666

tober 24–28, 2021, Proceedings, page 410–426, Berlin,667

Heidelberg, 2021. Springer-Verlag.668

[Kautz, 2022] Henry A. Kautz. The third ai summer: Aaai669

robert s. engelmore memorial lecture. https://onlinelibrary.670

wiley.com/doi/10.1002/aaai.12036, 2022.671

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Ba.672

Adam: A method for stochastic optimization. In Yoshua673

Bengio and Yann LeCun, editors, 3rd International Con-674

ference on Learning Representations, ICLR 2015, San675

Diego, CA, USA, May 7-9, 2015, Conference Track Pro-676

ceedings, 2015.677

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.678

Semi-Supervised Classification with Graph Convolutional679

Networks. In Proceedings of the 5th International Confer-680

ence on Learning Representations, ICLR ’17, 2017.681

[Klement et al., 2013] E.P. Klement, R. Mesiar, and E. Pap.682

Triangular Norms. Trends in Logic. Springer Netherlands,683

2013.684

[Li et al., 2023] Weidong Li, Rong Peng, and Zhi Li. Knowl-685

edge graph completion by jointly learning structural fea-686

tures and soft logical rules. IEEE Transactions on Knowl-687

edge and Data Engineering, 35(3):2724–2735, 2023.688

[Liu et al., 2021] Weiwen Liu, Yin Zhang, Jianling Wang,689

Yun He, James Caverlee, Patrick Chan, Daniel Yeung, and690

Pheng-Ann Heng. Item relationship graph neural networks691

for e-commerce. IEEE Transactions on Neural Networks692

and Learning Systems, PP:1–15, 03 2021.693

[Ma and Tang, 2021] Yao Ma and Jiliang Tang. Deep Learn-694

ing on Graphs. Cambridge University Press, 2021.695

[Meilicke et al., 2019] Christian Meilicke,696

Melisachew Wudage Chekol, Daniel Ruffinelli, and697

Heiner Stuckenschmidt. Anytime bottom-up rule learning698

for knowledge graph completion. In Proceedings of699

the 28th International Joint Conference on Artificial700

Intelligence, IJCAI’19, page 3137–3143. AAAI Press,701

2019.702

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco703

Massa, Adam Lerer, James Bradbury, Gregory Chanan,704

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca705

Antiga, Alban Desmaison, Andreas Köpf, Edward Yang,706

Zach DeVito, Martin Raison, Alykhan Tejani, Sasank707

Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and708

Soumith Chintala. Pytorch: An imperative style, high-709

performance deep learning library, 2019.710

[Qu et al., 2021] Meng Qu, Junkun Chen, Louis-Pascal711

Xhonneux, Yoshua Bengio, and Jian Tang. {RNNL}ogic:712

Learning logic rules for reasoning on knowledge graphs.713

In International Conference on Learning Representations,714

2021.715

[Sanchez-Gonzalez et al., 2018] Alvaro Sanchez-Gonzalez, 716

Nicolas Heess, Jost Tobias Springenberg, Josh Merel, 717

Martin Riedmiller, Raia Hadsell, and Peter Battaglia. 718

Graph networks as learnable physics engines for inference 719

and control. In Jennifer Dy and Andreas Krause, edi- 720

tors, Proceedings of the 35th International Conference on 721

Machine Learning, volume 80 of Proceedings of Machine 722

Learning Research, pages 4470–4479. PMLR, 10–15 Jul 723

2018. 724

[Susskind et al., 2021] Zachary Susskind, Bryce Arden, 725

Lizy K. John, Patrick Stockton, and Eugene B. John. 726

Neuro-symbolic AI: an emerging class of AI workloads 727

and their characterization. CoRR, abs/2109.06133, 2021. 728

[Veličković et al., 2018] Petar Veličković, Guillem Cucurull, 729

Arantxa Casanova, Adriana Romero, Pietro Liò, and 730

Yoshua Bengio. Graph attention networks. In Interna- 731

tional Conference on Learning Representations, 2018. 732

[Wu et al., 2020] Yongji Wu, Defu Lian, Yiheng Xu, Le Wu, 733

and Enhong Chen. Graph convolutional networks with 734

markov random field reasoning for social spammer detec- 735

tion. Proceedings of the AAAI Conference on Artificial 736

Intelligence, 34(01):1054–1061, Apr. 2020. 737

[Wu et al., 2021] Zonghan Wu, Shirui Pan, Fengwen Chen, 738

Guodong Long, Chengqi Zhang, and Philip S. Yu. A 739

comprehensive survey on graph neural networks. IEEE 740

Transactions on Neural Networks and Learning Systems, 741

32(1):4–24, jan 2021. 742

[Wu et al., 2022] Lingfei Wu, Peng Cui, Jian Pei, and Liang 743

Zhao. Graph Neural Networks: Foundations, Frontiers, 744

and Applications. Springer Singapore, Singapore, 2022. 745

[Yang et al., 2016] Zhilin Yang, William W. Cohen, and 746

Ruslan Salakhutdinov. Revisiting semi-supervised learn- 747

ing with graph embeddings. In Proceedings of the 33rd 748

International Conference on International Conference on 749

Machine Learning - Volume 48, ICML’16, page 40–48. 750

JMLR.org, 2016. 751

[Yang et al., 2022] Xiaocheng Yang, Mingyu Yan, Shirui 752

Pan, Xiaochun Ye, and Dongrui Fan. Simple and efficient 753

heterogeneous graph neural network. https://arxiv.org/abs/ 754

2207.02547, 2022. 755

[Zadeh, 1988] L.A. Zadeh. Fuzzy logic. Computer, 756

21(4):83–93, 1988. 757

[Zeng et al., 2020] Hanqing Zeng, Hongkuan Zhou, Ajitesh 758

Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph- 759

saint: Graph sampling based inductive learning method. 760

In International Conference on Learning Representations, 761

2020. 762

https://onlinelibrary.wiley.com/doi/10.1002/aaai.12036
https://onlinelibrary.wiley.com/doi/10.1002/aaai.12036
https://onlinelibrary.wiley.com/doi/10.1002/aaai.12036
https://arxiv.org/abs/2207.02547
https://arxiv.org/abs/2207.02547
https://arxiv.org/abs/2207.02547

	Introduction
	Method: KeGNN
	Graph-structured Data
	Prior Knowledge
	Node Classification
	Fuzzy Semantics
	Model Architecture
	Neural Component
	Symbolic Component

	Related Work
	Experimental Evaluation
	Results
	Exploitation of the Graph Structure
	Robustness to wrong knowledge
	Clause Weight Learning

	Limitations and Perspectives
	Conclusion
	Experiment Details
	Implementation
	Datasets
	Results
	Hyperparameter Tuning

	Clause Weight Evaluation

