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ABSTRACT

This paper investigates approaches to enhance the reasoning capabilities of Large
Language Model (LLM) agents using Reinforcement Learning (RL). Specifically,
we focus on long-horizon multi-turn agent scenarios, which can be naturally
modeled as Markov Decision Processes. Although RL algorithms such as Group
Relative Policy Optimization (GRPO) and Proximal Policy Optimization (PPO)
have been widely applied to train multi-turn LLM agents, they typically rely only on
a sparse final reward and lack dense intermediate signals across multiple decision
steps, limiting their performance on complex reasoning tasks. To bridge this gap,
we propose a turn-level reward design strategy to enhance RL algorithms in multi-
turn agent tasks. By integrating turn-level rewards, we extend GRPO and PPO to
their respective multi-turn variants, enabling fine-grained credit assignment. We
conduct case studies on multi-turn reasoning-augmented search agents, where we
carefully design two types of turn-level rewards: verifiable and LLM-as-judge.
Our experiments on multi-turn search tasks demonstrate that incorporating well-
designed turn-level rewards enables RL algorithms to significantly outperform
baseline methods with outcome-level rewards. Both training and validation reward
curves illustrate that our method achieves greater stability, faster convergence, and
higher accuracy. Numerical results across diverse question-answering datasets
further show that our approach consistently delivers highest answer correctness
and 100% format correctness.

1 INTRODUCTION

Reinforcement Learning (RL) has recently emerged as a powerful approach for improving the
reasoning capabilities of Large Language Models (LLMs), allowing them to explore and refine long
Chains of Thought (CoT) (Wei et al., 2022) in complex decision-making tasks. Building on this
paradigm, reasoning-based LLMs, such as OpenAI’s o1 (Jaech et al., 2024) and DeepSeek’s R1 (Guo
et al., 2025a), demonstrate remarkable performance in textual reasoning tasks by learning analytical
thinking and self-reflection. Despite these advancements, LLMs that rely solely on textual reasoning
remain limited in tasks that require precise and complex numerical computation, information retrieval
from web pages or local databases, or code execution. Equipping LLMs as autonomous agents
with access to external tools, such as search engines, scientific calculators, or code interpreters, can
significantly extend their capabilities beyond pure text-based reasoning (Gou et al., 2023).

Training LLMs to operate as autonomous agents in interactive environments faces unique challenges.
Agent settings often require models to make sequential, multi-turn decisions in complex reasoning
tasks. Many existing approaches (Chen et al., 2025b; Jin et al., 2025b; Feng et al., 2025a) formulate
these multi-turn interactive tasks as single-turn problems, relying solely on a final outcome-level
reward such as answer correctness. Popular RL algorithms, including Group Relative Policy Opti-
mization (GRPO) (Shao et al., 2024) and Proximal Policy Optimization (PPO) (Schulman et al., 2017),
are applied in this setting. However, such single-turn formulation is inadequate for long-horizon
multi-turn reasoning as it treats the entire trajectory as a single decision step, ignoring the multi-turn
structure of the interactive tasks. In particular, it ignores intermediate signals that evaluate each
complete agent-environment interaction, such as a tool call and its result, providing feedback at the
granularity of a single turn in multi-turn tasks (Lightman et al., 2023; Zhang et al., 2025b; Ma et al.,
2023; Choudhury, 2025). Without access to dense turn-level feedback, agents struggle to refine their
behavior, making it difficult to interact effectively with dynamic environments over multiple steps.
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For example, in a search agent (Chen et al., 2025b; Jin et al., 2025a), selecting a good query early on
is crucial for retrieving relevant information; without turn-level feedback, the agent may not learn
which queries contribute to correct answers.

Recent studies (Li et al., 2025a; Qian et al., 2025; Wang et al., 2025a; Labs, 2025; Wang et al., 2025b;
Singh et al., 2025; Zhang et al., 2025a; Jin et al., 2025a) model multi-turn agentic tasks as Markov
Decision Processes (MDPs) and incorporate intermediate rewards like tool execution. However, these
approaches suffer from the credit assignment problem: they merge final outcome and intermediate
rewards into a sparse trajectory-level signal. This makes advantage estimation inaccurate and prevents
RL algorithms from providing fine-grained supervision across intermediate rounds of interaction
(Guo et al., 2025b; Feng et al., 2025b; Zhang et al., 2025c).

Motivated by this, we investigate turn-level reward design for both RL algorithms and agent appli-
cations. To the best of our knowledge, this is the first systematic study of turn-level rewards in the
context of multi-turn RL for LLM agents. Our key contributions are as follows:

• To train multi-turn LLM agents effectively under the MDP framework, we propose a turn-
level reward design strategy to enhance RL algorithms in multi-turn agent tasks. Specifically,
we extend GRPO and PPO to their multi-turn variants by incorporating both final outcome
rewards and intermediate turn-level rewards, enabling fine-grained credit assignment. While
multi-turn GRPO requires exponential rollout samples to compute intermediate advantages,
multi-turn PPO leverages a critic model, offering a more efficient and scalable solution.

• To highlight the importance of turn-level rewards, we conduct a case study using a reasoning-
augmented search agent that performs multiple rounds of reasoning and search before
producing the final answer. We carefully design turn-level verifiable rewards and turn-level
LLM-as-judge rewards for training the search agent. While verifiable rewards are rigid, the
LLM-as-judge enables a more flexible and nuanced evaluation.

• Building on this case study, our experiments on multi-turn reasoning-augmented search tasks
show that integrating turn-level rewards enables RL algorithms to significantly outperform
baseline methods with the only outcome reward. Both training and validation reward
curves obtained with the Qwen2.5-7B model demonstrate that our algorithm with turn-level
rewards achieves more stable training, faster convergence, and higher accuracy for both
verifiable and LLM-as-judge rewards. Furthermore, benchmarks on both in-domain and
out-of-domain tasks show that our approach consistently achieves the highest accuracy and
reliably produces outputs with 100% correct format.

2 PROBLEM FORMULATION FOR MULTI-TURN AGENT INTERACTION

Let x denote the input prompt sampled from the dataset D, and y = [l1, f1, . . . , lK , fK ] denote the
complete output response produced through interaction with the LLM agent, where lk is the response
generated from an LLM agent and fk is the corresponding environment feedback at the k-th turn.

2.1 SINGLE-TURN PROBLEM FORMULATION

Many existing studies typically formulate the multi-turn agent task as the single-turn problem, relying
only on a final outcome-level reward, such as answer correctness. The objective can be expressed as
maximizing the expected final reward R(x, y):

max
πθ

Ex∼D, y∼πθ(·|x) [R(x, y)] (1)

which can be interpreted as a contextual bandit problem (Bouneffouf & Feraud, 2025; Baheri & Alm,
2023). Such single-turn formulation is inadequate as it treats the entire trajectory as a single decision
step, ignoring the multi-turn structure of the task. More specifically, it ignores intermediate rewards
that evaluate each complete agent-environment interaction.

2.2 MULTI-TURN PROBLEM FORMULATION

LLM agents operate in interactive environments where each turn yields stochastic feedback. To
capture these dynamics, we formulate the multi-turn agent task as a turn-level MDP, which is formally
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defined as M = {S,A, P,R}. Here, S denotes the state space, and A denotes the action space; A
state s ∈ S typically corresponds to an interaction history, while an action a ∈ A often corresponds
to a sequence of generated tokens; P represents the transition dynamics; R is the turn-level reward.

At the k-th turn, conditioned on the current state sk, the agent makes an action ak according to the
policy πθ, where ak = [lk, fk] if environment feedback exists, otherwise ak = lk. The agent then
receives a turn-level reward Rk = R(sk, ak), and transitions to the next state sk+1. In the turn-level
MDP framework, the objective can be written as maximizing the cumulative reward at the turn level:

max
πθ

Esk, ak∼πθ(·|sk)

[
K∑

k=1

R(sk, ak)

]
(2)

where the discount factor is set to be 1. If only an outcome reward is provided and intermediate
rewards are zero, i.e.,1

Rk = R(sk, ak) = 0, for k = 1, 2, . . . ,K − 1, RK = R(sK , aK) = R(x, y),

then the MDP formulation in Eq. (2) reduces to Problem (1).

Remark. The turn-level MDP with a final outcome in Eq. (1) can be viewed as an MDP with only a
terminal reward (Arjona-Medina et al., 2019). This simplicity comes at a price: without intermediate
rewards, the system must exhaustively simulate entire trajectories, lacking any mechanism to prune or
attenuate trajectories that are clearly suboptimal at early stages (Wu et al., 2023; Singhal et al., 2025).

3 GRPO WITH TURN-LEVEL REWARDS FOR MULTI-TURN AGENTIC TASKS

3.1 GRPO FOR SINGLE-TURN FORMULATION

GRPO. Recently, the Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024)
has been widely used to enhance the reasoning capabilities of LLMs, which estimates the advantage
in a group-relative manner. Specifically, for each input question x, it samples a group of responses
{y1, y2, . . . , yG} from the reference policy πref. GRPO optimizes the policy by maximizing the
following objective function:

JGRPO(θ) = Ex∼D, {yi}G
i=1∼πold(·|x) 1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min (wi,t(θ)Ai,t, clip (wi,t(θ), 1− ϵ, 1 + ϵ)Ai,t)− βDKL [πθ ∥πref]

 , (3)

where wi,t(θ) =
πθ(yi,t|x,yi,<t)
πold(yi,t|x,yi,<t)

is the token-level importance sampling ratio between the current
policy πθ and the previous policy πold, ϵ is the clipping parameter, and β is the KL divergence
coefficient. Given a group of final outcome rewards {Ri}Gi=1, the advantage of the i-th response Ai,t

is calculated by

Ai,t =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
, Ri = R(x, yi). (4)

It is straightforward to observe that GRPO is well-suited for the single-turn problem (1). The
advantage is computed by normalizing the final outcome rewards within the sampled group.

Limitations of GRPO in Multi-Turn Settings. In multi-turn tasks, intermediate signals are often
available to guide the LLM agent. However, GRPO does not naturally incorporate such intermediate
rewards into advantage estimation, making it difficult to leverage them effectively. A naive solution
to Problem (2) is to merge the intermediate rewards and the final outcome reward as a single sparse
trajectory-level reward, that is,

Ai,t =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
, Ri =

K∑
k=1

Ri,k =

K∑
k=1

R(si,k, ai,k) (5)

1In this paper, we denote R(x, y) as the final outcome reward and R(s, a) as the general turn-level reward in
the multi-turn setting.
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where Ri,k denotes the intermediate reward given the state si,k and action ai,k in the k-th turn. For
the two advantage estimation strategies in Eq. (4) and Eq. (5) used by GPRO, the advantage function
Ai,t is computed at the trajectory level, i.e., Ai,1 = Ai,2 = · · · = Ai,t = · · · = Ai,|yi|, due to reward
sparsity. This means the same advantage is assigned uniformly across the entire trajectory, without
distinguishing the contributions of individual turns or tokens. For long-horizon multi-turn tasks, such
coarse-grained credit assignment often leads to unstable training and suboptimal performance (Guo
et al., 2025b; Feng et al., 2025b; Zhang et al., 2025c).

3.2 TURN-LEVEL CREDIT ASSIGNMENT FOR GRPO: A SIMPLE ATTEMPT

MT-GPRO. To highlight the importance of turn-level rewards and fine-grained credit assignment
in GRPO, we consider a simple two-turn agent setting. In this case, the agent receives a group
of intermediate rewards {Ri,1}Gi=1 in the first turn and final rewards {Ri,2}Gi=1 in the second turn.
Based on these signals, we propose our turn-level credit assignment strategy for GRPO. The resulting
turn-level advantages in the first and second turns are given by:

Āi,1 = Ai,1 +Ai,2, Āi,2 = Ai,2, (6)

where

Ai,1 =
Ri,1 − mean({Ri,1}Gi=1)

std({Ri,1}Gi=1)
, Ai,2 =

Ri,2 − mean({Ri,2}Gi=1)

std({Ri,2}Gi=1)
(7)

By leveraging intermediate rewards, all tokens within a single turn share a unified advantage signal.
Moreover, the advantage of a turn depends not only on the rewards from that turn but also on the
contributions of subsequent turns. We refer to this algorithm as multi-turn GRPO (MT-GRPO). A
detailed derivation of MT-GRPO for the general multi-turn setting is provided in Appendix D.

Case Study on a Two-Turn Agent Task. We conduct experiments to evaluate the proposed MT-
GRPO method in a two-turn agent setting, where the agent first calls the search tool with reasoning
in the initial turn and then produces the final answer in the subsequent turn (see Appendix E for
details). Beyond the outcome-level exact-match reward, we design intermediate rewards based on
tool-execution feedback, for MT-GRPO. Figure 1 presents training reward curves for GRPO and
MT-GRPO, which show that MT-GRPO achieves more stable tool usage (left figure) and higher
exact-match accuracy (right figure), highlighting the importance of fine-grained credit assignment in
multi-turn agent tasks.
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Figure 1: Curves for different training reward components during training with various algorithms
(MT-GRPO in Eq. (6), GRPO-OR in Eq. (4), and GRPO-MR in Eq. (5)). Each plot shows the training
reward score over training steps. Dotted lines represent the average reward across 10 runs, while
solid lines show trends smoothed using the Exponential Moving Average (EMA).

Limitations of MT-GPRO. (1) In MT-GRPO, computing the intermediate advantages requires G
rollout samples at each turn. Therefore, over a horizon of K turns, this results in GK−1 rollout
trajectories in total. Such exponential growth in complexity makes the approach computationally
prohibitive for long-horizon multi-turn tasks. (2) This strategy also assumes that all rollout samples in
a group must contain the same number of turns, which requires enforcing this constraint in the system
prompt and leads to a fixed-turn setting. Such a restriction limits the flexibility and applicability of
GRPO in more diverse scenarios. For example, in a search task, one question may be resolved in a
single tool call or require multiple calls to retrieve, filter, and refine results in a sampled group.
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4 PPO WITH TURN-LEVEL REWARDS FOR MULTI-TURN AGENTIC TASKS

In the previous section, we illustrated the importance of turn-level rewards and fine-grained credit
assignment in GPRO, which improves the performance of LLM agents in multi-turn interactions.
However, the exponential computational cost, together with the fixed-turn constraint, limits the
applicability of MT-GRPO to general agent tasks. In this section, we present the PPO alogrithm with
turn-level rewards, aiming to provide a more flexible, scalable, and efficient solution.

PPO. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a popular actor-critic RL
algorithm commonly used for LLM training (Ouyang et al., 2022). PPO updates the policy by
maximizing the following surrogate objective:

JPPO(θ) = Ex∼D, y∼πold(·|x)

 1

|y|

|y|∑
t=1

min (wt(θ)At, clip (wt(θ), 1− ϵ, 1 + ϵ)At)

 , (8)

The advantage estimate At is computed using Generalized Advantage Estimation (GAE) (Schulman
et al., 2015), based on rewards and a learned value function (critic model). Formally, for a trajectory
of length T , the GAE At at time step t is computed as:

At =

T−t−1∑
l=0

(γλ)lδt+l, δt = rt + γVt+1 − Vt (9)

where γ is the discount factor, λ ∈ [0, 1] is the GAE parameter, δt is the temporal-difference error, rt
is the token-level reward and Vt is the token-level value at step t. Through the mechanism of GAE,
the token-level value function enables token-level advantage estimation.

Turn-Level Rewards in PPO. With explicit intermediate rewards, GAE provides fine-grained
training signals at each turn. Given both intermediate rewards RI and the final reward RF , the
token-level reward rt is assigned as

rt =


RF if t is the last token of the entire trajectory
RI if t is the last token of the current turn
0 otherwise

(10)

For clarity, we refer to PPO trained with both intermediate and final rewards as multi-turn PPO (MT-
PPO), while PPO trained with only a sparse trajectory-level reward is referred to as PPO. Compared
to MT-GRPO, which requires exponential rollout samples to compute intermediate advantages,
MT-PPO leverages a critic model with GAE, offering a more efficient and scalable solution.

Table 1: Comparison of granularity of reward assign-
ment and advantage estimation across different RL
algorithms for multi-turn LLM agents.

RL Algo. Granularity

Reward Advantage

GRPO Trajectory-Level Trajectory-Level
MT-GRPO Turn-Level Turn-Level
PPO Trajectory-Level Token-Level
MT-PPO Turn-Level Token-Level

Summary. Table 1 summarizes the granu-
larity of reward assignment and advantage
estimation across different RL algorithms.
As shown, MT-PPO provides fine-grained
turn-level rewards and token-level advan-
tage estimation. This higher granularity en-
ables more precise credit assignment, which
is particularly beneficial for multi-turn LLM
agents where successful outcomes often de-
pend on a sequence of intermediate deci-
sions. In contrast, trajectory-level meth-
ods provide coarser feedback, which often
leads to weaker learning signals and unsta-
ble training. These insights will be empirically validated in the following experiments.

5 CASE STUDY: MULTI-TURN REASONING-AUGMENTED SEARCH AGENT

5.1 TASK FORMULATION

We study an LLM agent that performs multi-turn reasoning with search engine interactions. The
task can be naturally formulated under the turn-level MDP framework, as discussed in Section 2.2,

5
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Figure 2: Overview of the multi-turn reasoning-augmented search agent pipeline. Given a system
prompt and a question, each iteration of the LLM-based search agent proceeds as follows: (1) The
agent begins with reasoning, analyzing the current context to identify missing information. (2) It
then formulates a search query to retrieve relevant information from an external database, which is
integrated into the evolving context. (3) This cycle continues until the agent judges that the context is
sufficient, at which point it performs a final round of reasoning to generate the answer.

where each action a corresponds either to a reasoning-augmented search step or to producing the
final answer. The goal is to improve the agent’s performance through effective integration of external
search. Specifically, the agent learns to leverage a Wikipedia search engine to retrieve relevant
information and generate an accurate answer. Without search calling, the agent must rely solely on its
internal knowledge to answer questions, which can limit accuracy, especially for fact-based queries
requiring up-to-date or domain-specific information.

The overall interaction follows a multi-turn reasoning–search loop, as shown in Figure 2. These
steps impose strict constraints, such as permitting only a single search step and requiring the use of
specific XML-like tags to delineate each stage of the interaction. Following (Jin et al., 2025b), rea-
soning steps are enclosed within <think> </think>, search queries are wrapped in <search>
</search>, retrieved information is inserted into <information> </information>, and
the final answer is placed within <answer> </answer>.

5.2 TURN-LEVEL VERIFIABLE REWARD DESIGN

Unlike most approaches (Chen et al., 2025b; Jin et al., 2025b), which assign rewards based solely
on final-answer correctness for the entire trajectory, we design turn-level verifiable rewards for both
intermediate and final turns to better align with the environment of the LLM-based search agent.

Final Verifiable Rewards evaluate the model-generated responses in the last turn, focusing on both
the correctness of the answer and the adherence to the required output format.

• Final Exact Match Reward fem evaluates whether the extracted answer (from the <answer>
tag) exactly matches any accepted ground-truth answer after normalization (e.g., lowercasing
and whitespace removal):

• Final Format Reward fformat ensures format correctness by verifying that: (1) only <think>
and <answer> tags appear (no extra tags), (2) each tag appears exactly once, and (3)
<think> precedes <answer>.

The final reward is defined as

RF =


1 fem = True, fformat = True,
0.2 fem = False, fformat = True,
−1 fformat = False,

6
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A smaller positive reward is given when the answer is incorrect but the output follows the required
format, encouraging structural correctness during training. A negative reward (penalty) is applied
when the format is incorrect, ensuring that the agent adheres to the required structure.

Intermediate Verifiable Rewards guide the agent’s behavior in intermediate turns by evaluating
the presence of ground-truth answers in retrieved content, enforcing proper format usage, and
discouraging excessive search calls.

• Intermediate Retrieval Existence Reward evaluates whether any accepted answer appears in
the one-round search result (from <information> tag), using case-insensitive matching.
RI

retrieval = 0.3 if retrieved information contains any ground-truth, otherwise 0.
• Intermediate Format Reward ensures format correctness by verifying that: (1) only
<think>, <search>, and <information> tags appear (no extra tags), (2) each tag
appears exactly once, and (3) <think> precedes <search> and <information>.
RI

format = 0.1 if the format is correct, otherwise −0.2.
• Intermediate Search Count Reward penalizes excessive search usage.

RI
search = −λs · nsearch,

where λs is a predefined positive constant controlling the weight of the search count reward,
nsearch denotes the cumulative number of search invocations from the first turn up to the
current turn.

The intermediate reward is defined as RI = RI
retrieval + RI

format + RI
search. Retrieval correctness is

similarly assigned a smaller weight than answer correctness, again to reduce the risk of reward hacking.
In addition, we introduce an intermediate search penalty to discourage excessive or unnecessary
search calls, preventing the agent from either avoiding the avoiding the question answering or failing
due to crashes.

5.3 LLM AS JUDGE FOR TURN-LEVEL EVALUATION

Verifiable rewards, such as exact match, provide a strict and objective form of evaluation. However,
they can be overly rigid: an agent may produce a correct answer that differs slightly in form from
the ground truth but still receives negative feedback. To complement such verifiable signals, we
adopt the LLM-as-judge paradigm, where a strong LLM evaluates agent outputs. The LLM-as-judge
framework consists of two key components: step-by-step reasoning and rubric-based scoring.

Reasoning. We employ a generative reasoning model (GRM) (Li et al., 2025b) as the judge,
prompting it to generate detailed justifications before assigning a score. The step-by-step reasoning
process encourages the judge to evaluate output quality using rubric-based criteria rather than relying
on shallow correlations.

Rubrics. Rubric-based scoring provides structured evaluation criteria that improve both consistency
and reliability across assessments. Unlike outcome-level evaluation that only considers the final an-
swer, our framework assesses each turn’s output. This fine-grained assessment offers richer feedback
and aligns naturally with multi-turn agent tasks, where intermediate steps critically influence overall
success. The judge model evaluates format correctness, reasoning quality, and search effectiveness,
while also applying a search penalty to discourage excessive or unnecessary tool calls. Additional
implementation details are provided in Appendix C.3.

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

In our experiments, we build our codebase upon the open-source project Search-R1 (Jin et al., 2025b),
which trains LLM agents for multi-turn reasoning-augmented search tasks.

Datasets. These datasets are categorized as follows: (1) General Question Answering: NQ
(Karpukhin et al., 2020), TriviaQA (Joshi et al., 2017), and PopQA (Mallen et al., 2022). (2)
Multi-Hop Question Answering: HotpotQA (Yang et al., 2018) 2WikiMultiHopQA (Ho et al., 2020),
and Musique (Trivedi et al., 2022). These datasets cover a diverse range of search and reasoning
challenges, providing a comprehensive basis for evaluation.
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Figure 3: Training reward curves recorded during training for PPO and MT-PPO on the NQ and
HotpotQA datasets. The rewards include answer correctness, format correctness, and retrieval
correctness. Solid lines show mean reward values, while shaded regions indicate variability across
five independent runs.

Evaluated Methods. We compare our proposed MT-PPO with vanilla PPO: (1) PPO (Jin et al.,
2025b): original PPO with a binary final answer correctness reward, and (2) MT-PPO (ours): PPO
variant with both intermediate and final rewards, as described in Section 5.2, where λs = 0.1.

Evaluation Metrics. We evaluate model performance using three types of rewards during both
training and validation: (1) answer correctness reward, (2) format correctness reward, and (3) retrieval
correctness reward. Each reward is assigned a value of 1.0 if the criterion is satisfied and 0 otherwise.
The detailed reward rules are provided in Appendix C.1.

Training Details. We use Qwen2.5-7B (Yang et al., 2024) as the base model, E5 (Wang et al., 2022)
as the retriever, and 2018 Wikipedia dump (Karpukhin et al., 2020) as the corpus. We set the number
of retrieved passages to 3, and the maximum turns to 4. The system prompt follows that of Search-R1
(Jin et al., 2025b). For all methods, we enable policy loss masking on retrieved tokens. Since PPO
baseline often crashes, we use either the final checkpoint or the last checkpoint prior to collapse.
More details on experimental settings can be found in Appendix C.2.

6.2 MAIN RESULTS

Figures 3 and 5 show training and validation reward curves for PPO and MT-PPO. MT-PPO achieves
substantially more stable training, converging faster in the early phase (first 100 steps) thanks to
intermediate rewards that provide stronger guidance. As training progresses, PPO exhibits high
variance and even performance degradation, especially on HotpotQA, while MT-PPO maintains
consistent improvement. MT-PPO attains higher average accuracy than PPO, demonstrating greater
robustness. Format reward curves show that MT-PPO consistently follows the correct output format,
while PPO struggles, especially on HotpotQA, where formatting mistakes prevent correct evaluation.
This indicates that turn-level rewards in MT-PPO stabilize training and enforce structural correctness.
Retrieval curves further show that MT-PPO achieves more consistent accuracy by leveraging inter-
mediate signals to guide reasoning. We omit GRPO training curves since, as reported in (Jin et al.,
2025b), GRPO consistently crashes.

Figure 6 presents training curves for MT-PPO and PPO with judge rewards, where MT-PPO again
demonstrates stable optimization.

Table 2 reports results on six QA datasets, spanning both general and multi-hop reasoning tasks.
MT-PPO consistently outperforms PPO and GRPO in answer correctness, with the largest gains on
multi-hop tasks such as HotpotQA and 2Wiki. Moreover, MT-PPO nearly perfects format correctness,
reaching close to 100% across datasets, underscoring the effectiveness of multi-turn credit assignment
in producing both accurate and well-structured outputs.
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Table 2: The performance results of different methods on six datasets. Bold numbers indicate the
best performance for each dataset and metric.

Methods General QA Multi-Hop QA Avg.

NQ TriviaQA PopQA HotpotQA 2wiki Musique

Answer Correctness (Exact Match)

Qwen2.5-7B-Base 0.177 0.319 0.181 0.160 0.167 0.040 0.174
Qwen2.5-7B-Instruct 0.320 0.563 0.349 0.292 0.277 0.118 0.320
GRPO 0.391 0.560 0.388 0.331 0.306 0.129 0.351
PPO 0.483 0.639 0.456 0.435 0.382 0.199 0.432
MT-PPO 0.490 0.647 0.459 0.453 0.424 0.209 0.447

Format Correctness

Qwen2.5-7B-Base 0.118 0.118 0.105 0.098 0.084 0.082 0.101
Qwen2.5-7B-Instruct 0.183 0.267 0.067 0.109 0.037 0.071 0.122
GRPO 0.706 0.685 0.597 0.513 0.376 0.328 0.534
PPO 0.909 0.954 0.952 0.916 0.806 0.834 0.895
MT-PPO 0.999 0.997 0.999 0.998 0.999 0.999 0.999
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Figure 4: Ablation study on the search count reward λs. We compare MT-PPO with λs = 0.1 and
λs = 0.0 on the NQ dataset. The left panel reports answer correctness, while the right panel shows
the average number of turns.

6.3 ABLATION STUDY ON REWARD DESIGN

We conduct an ablation study on reward design to examine the impact of the search count reward.
As shown in Figure 4, incorporating λs = 0.1 into MT-PPO improves training stability and final
accuracy. During the initial training stage, excessive search calls lead to instability; the search count
reward mitigates this by discouraging overuse of the tool. Consequently, the number of turns first
decreases and later increases, reflecting a dynamic adjustment in the agent’s search strategy. In
contrast, removing this reward term (λs = 0.0) results in unstable training and degenerate behaviors,
such as uncontrolled search usage or failure to converge. With λs = 0.0, the rollout sample in Table 4
shows that the model often fails to stop before exhausting the maximum number of search calls and
produces no final answer, ultimately causing training to crash.

7 CONCLUSION AND FUTURE WORK

In this paper, we highlighted the importance of turn-level rewards for multi-turn agent tasks. By
introducing carefully designed intermediate signals, we extended GRPO and PPO into multi-turn
variants, allowing LLM agents to receive more informative feedback at each stage of interaction.
Experiments on reasoning-augmented search agents show that incorporating turn-level rewards
substantially improves both the stability and accuracy of training across different RL algorithms. To
the best of our knowledge, this is the first systematic study of turn-level rewards in the context of
multi-turn RL for LLM agents. We believe that turn-level rewards have broad applicability beyond
search, offering a general mechanism for improving the effectiveness of multi-turn agents in diverse
interactive environments.
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A LLM USAGE

In this work, LLMs were used exclusively for polishing the writing. No part of the technical content,
experimental design, or analysis relied on LLMs. The authors retain full responsibility for the
correctness and originality of the ideas, methods, and results.

B RELATED WORK

B.1 REWARD DESIGN AND CREDIT ASSIGNMENT IN RL

In classical RL domains such as games and robotic control (Schrittwieser et al., 2020; Liu et al.,
2022; Sun et al., 2025), dense rewards provide feedback at nearly every decision step. This shaping
shortens the credit assignment horizon and typically improves sample efficiency and training stability,
though it also risks mis-specification and reward hacking when poorly designed (Hadfield-Menell
et al., 2017). In the context of LLM reasoning (Lightman et al., 2023; Uesato et al., 2022), dense
rewards often take the form of process-based signals that supervise intermediate steps rather than
only final outcomes, and they have been shown to be highly effective, frequently outperforming
outcome-only rewards. The credit assignment problem (Pignatelli et al., 2023) has recently attracted
growing attention in LLM reasoning research (Shao et al., 2024; Cui et al., 2025; Cheng et al., 2025;
Feng et al., 2025b; Guo et al., 2025b), particularly in textual reasoning tasks such as mathematical
problem solving. In multi-turn agent interaction tasks, turn-level rewards assess each complete
agent–environment interaction, such as a tool call and its result, providing feedback at the granularity
of a single turn. This setting naturally highlights the benefits of process-level rewards and credit
assignment However, the design of effective rewards for multi-turn agents, as well as RL algorithms
with fine-grained credit assignment, remains underexplored.

B.2 RL FOR LLM AGENTS

RL has been applied to train long-horizon multi-turn LLM agents in diverse domains, including
search (Chen et al., 2025b; Jin et al., 2025b;a), tool use (Feng et al., 2025a; Li et al., 2025a; Qian
et al., 2025; Wang et al., 2025a; Labs, 2025; Zhang et al., 2025a; Singh et al., 2025), text-based
games (Yao et al., 2020; Carta et al., 2023; Zhai et al., 2024; Wang et al., 2025b), web shopping (Yao
et al., 2022), digital app interaction (Chen et al., 2025a), and mobile device control (Bai et al., 2024).
A number of these studies (Jin et al., 2025a; Feng et al., 2025a; Li et al., 2025a; Qian et al., 2025;
Wang et al., 2025a; Labs, 2025; Zhang et al., 2025a; Singh et al., 2025) apply RL algorithms such as
GRPO and PPO to train tool-using LLM agents, including calculators, code interpreters, and search
engines, thus enabling reasoning with external tools. However, these methods generally collapse
outcome- and turn-level signals into a single trajectory-level reward, limiting fine-grained credit
assignment. The most closely related work is StepSearch (Wang et al., 2025c), which incorporates
PPO with turn-level rewards for multi-turn search. However, its approach primarily relies on data
augmentation and requires prompt modifications during preprocessing. In contrast, our method avoids
such preprocessing and prompt engineering, providing a cleaner and more general framework for
turn-level reward design. Furthermore, our framework is orthogonal to existing search-agent methods
(Wang et al., 2025c) and is broadly applicable to multi-turn LLM agents beyond search tasks.

C PPO EXPERIMENTS

C.1 EVALUATION METRICS (PPO)

For each trajectory, we evaluate the following metrics:

Answer correctness. The answer correctness reward evaluates whether the extracted answer (from
the <answer> tag) exactly matches any accepted ground-truth answer after normalization (e.g.,
lowercasing and whitespace removal).

Format correctness. The format correctness reward ensures structural validity by verifying that the
outputs in both the final turn and all intermediate turns comply with the specifications described in
Section 5.2.
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Retrieval correctness. The retrieval correctness reward evaluates whether any accepted answer
appears in at least one search result (from the <information> tag), using case-insensitive string
matching.

Each reward is assigned a value of 1.0 if the criterion is satisfied and 0 otherwise.

C.2 IMPLEMENTATION DETAILS (PPO)

We follow most of the experimental settings in Search-R1 (Jin et al., 2025b).

PPO Training. All experiments are conducted on 8 NVIDIA H100 GPUs. We enable gradient
checkpointing and adopt Fully Sharded Data Parallel (FSDP) with CPU offloading. The learning
rates of the policy and critic models are set to 1e−6 and 1e−5, respectively. Training is performed
for 500 steps over 4 epochs, with warm-up ratios of 0.285 and 0.015 for the policy and critic models,
respectively. The total batch size is 512, with a mini-batch size of 256 and a micro-batch size of 64
for policy updates, and a micro-batch size of 8 for critic updates. We adopt GAE with λ = 1 and
γ = 1. The maximum sequence length is set to 4,096 tokens, with a maximum response length of
500 tokens and a maximum retrieved content length of 500 tokens. The KL-divergence regularization
coefficient β and clipping ratio ϵ are set to 0.001 and 0.2, respectively.

Rollout Generation. We use vLLM (Kwon et al., 2023) with a tensor parallel size of 4, a GPU
memory utilization ratio of 0.6, a temperature of 1.0, and a top-p value of 1.0.

C.3 LLM JUDGE SETUP FOR TURN-LEVEL EVALUATION (PPO)

In our experiments, we use gpt-oss-120b2 as the judge model. We provide both outcome-level and
turn-level LLM-as-judge prompts, where the outcome-level and turn-level scores are used for PPO
and MT-PPO training.

Outcome-Level LLM-as-Judge Prompt

You are an expert evaluator for multi-turn search-augmented reasoning systems. Given a user
prompt, ground truth answer, and multi-turn generated response, determine whether the final
answer matches the ground truth.

## EVALUATION TASK
Evaluate whether the multi-turn response provides a correct final answer that matches the ground
truth.

## SCORING CRITERIA
Score 1.0 (Correct):

• The answer within <answer></answer> tags matches the ground truth.
Score 0.0 (Incorrect):

• No <answer></answer> tags found, or
• The answer within <answer></answer> tags does not match the ground truth, or
• The answer in <answer> tag exceeds 5 tokens.

## OUTPUT FORMAT
Provide your evaluation using this format:

• <reasoning> Your step-by-step reasoning about whether the answer matches the
ground truth </reasoning>

• <score> 1.0 or 0.0 </score>

REQUIREMENTS:
• First provide reasoning, then the score.
• Score must be exactly 1.0 or 0.0.

2https://huggingface.co/openai/gpt-oss-120b
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## EVALUATION DATA
{prompt_text}
{turns_text}
{ground_truth_text}

## Your Evaluation

Turn-Level LLM-as-Judge Prompt

You are an expert evaluator for multi-turn search-augmented reasoning systems. Given a
user prompt, ground truth answer, and multi-turn generated response, evaluate each turn’s
effectiveness and compliance.

## EVALUATION TASK
Assess each turn’s format compliance, content quality, and contribution toward the ground truth
answer.

## SCORING CRITERIA
FINAL TURN (Last Turn) - Score Range: [-1.0 to 1.0]
Format Compliance:

• Required: <think>...</think><answer>...</answer> (tags only, once
each, in order)

• Answer in <answer> tag must not exceed 5 tokens
Answer Correctness:

• Correct and complete answer in <answer> tag that matches the ground truth
Scoring Rules:

• If format is incorrect: Final Turn Score = -1.0
• If format is correct, answer is incorrect: Final Turn Score = 0.2
• If format is correct, answer is correct: Final Turn Score = 1.0

INTERMEDIATE TURNS - Score Range: [-1.0 to 1.0]
Format Compliance:

• Required: <think>...</think><search>...</search>
<information>...</information> (tags only, once each, in order)

• Correct format: +0.1
• Incorrect format: -0.2

Information Quality:
• Relevant information in <information> tag that helps toward the ground truth

answer (e.g., ground truth exists in the retrieved result within <information> tag):
+0.3

• Irrelevant or unhelpful information in <information> tag: +0.0
Search Efficiency Penalty:

• Number of searches = Total count of <search> tags across all turns from Turn 1 up
to and including the current turn

• Search penalty = Number of searches × (-0.1)
• Encourages finding answers with fewer searches

Intermediate Turn Score = Format Compliance + Information Quality + Search Penalty

## OUTPUT FORMAT
Provide your evaluation using ONLY these XML tags:

<reasoning>
Systematically evaluate each turn: check format compliance,
assess content quality, calculate scores with clear explanations
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</reasoning>

<score>
Turn1: X.X
Turn2: X.X
Turn3: X.X
...
</score>

REQUIREMENTS:
• Must provide exactly {len(turns)} scores (one per turn)
• Use decimal format (e.g., 0.5, -0.3, 1.0)
• Use only the specified XML tags, no additional text

## EVALUATION DATA
{prompt_text}
{turns_text}
{ground_truth_text}
TURNS TO EVALUATE: {len(turns)}

## Your Evaluation
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C.4 ADDITIONAL EXPERIMENT RESULTS (PPO)
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Figure 5: Validate reward curves recorded during training for PPO and MT-PPO on the NQ and
HotpotQA datasets. The rewards include answer correctness, format correctness, and retrieval
correctness. Solid lines show mean reward values, while shaded regions indicate variability across
five independent runs.
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Figure 6: Training reward curves recorded during training for PPO and MT-PPO on the NQ dataset.
The rewards include outcome judge reward, answer correctness (exact match), format correctness, and
retrieval correctness. Solid lines show mean reward values, while shaded regions indicate variability
across five independent runs.
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C.5 ROLLOUT EXMAPLES (PPO)

Table 3: A rollout example of generating a response with a correct format.

Question: who will take the throne after the queen dies?

<think> I need to find out who will take the throne after the queen dies. I’ll search for it. </think>

<search> who will take the throne after the queen dies </search>

<information> Doc 1(Title: “Succession to the British throne”) Catholics are eligible. Queen
Elizabeth II is the sovereign, and her .. Doc 2(Title: “Monarchy of the United Kingdom”)
Monarchy of the United Kingdom The monarchy of the United Kingdom, commonly referred to
as ... Doc 3(Title: “Demise of the Crown”) the Crown. This erroneous meaning is undermined
by the principle in constitutional law of the continuity ... </information>

<think> I found out that after the queen dies, her heir apparent will take the throne. I need to
find out who the heir apparent is for Queen Elizabeth II. </think>

<search> heir apparent for Queen Elizabeth II </search>

<information> Doc 1(Title: “Heir apparent”) rank behind her brothers regardless of their ages
or her age. Thus, normally, even an only ... Doc 2(Title: “Heir apparent”) to the 16 thrones
of Elizabeth II to absolute primogeniture, except for male heirs born ... Doc 3(Title: “Heir
presumptive”) or the senior member of a collateral line (if the monarch is childless); the birth ...
</information>

<think> I found out that the heir apparent for Queen Elizabeth II is her eldest son, Charles,
Prince of Wales. Now I can provide the answer. </think>

<answer> Charles, Prince of Wales </answer>
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Table 4: A rollout example of generating a response with an incorrect format, where there is no
answer in the last turn

Question: in which sea pearl is found in india?

<think> I need to find out in which sea pearl is found in India. I’ll search for it. </think>

<search> in which sea pearl is found in India </search>

<information> Doc 1(Title: Pearl) pearl: saltwater and freshwater pearls come in ... Doc
2(Title: Pearl) is a particularly large one weighing 14 lb (6.4 kg). The largest ... Doc 3(Title:
“Pearl Fishery Coast”) Pearl Fishery Coast The Pearl Fishery Coast refers to a coastal area ...
</information>

<think> I found out that pearls are found in the Indian Ocean. Now I need to find out in which
sea pearls are found in India. </think>

<search> in which sea are pearls found in India </search>

<information> Doc 1(Title: Pearl) pearl: saltwater and freshwater pearls come in many different
... Doc 2(Title: “Geography of India”) Great Nicobar Island); Rama’s Bridge, and Point Calimere.
The Arabian ... Doc 3(Title: “Bay of Bengal”) the gems of Sri Lanka. Garnet and other precious
gems are also found in abundance in the ... </information>

<think> I found out that pearls are found in the Indian Ocean. Now I need to find out in which
sea pearls are found in India. </think>

<search> in which sea pearls are found in India </search>

<information> Doc 1(Title: Pearl) pearl: saltwater and freshwater pearls come in many different
colors. While white, and ... Doc 2(Title: Pearl) pearls”. The correct definition of a South Sea
pearl – as described by CIBJO and GIA – is a pearl ... Doc 3(Title: Pearl) is a particularly large
one weighing 14 lb (6.4 kg). The largest known pearl (also from ... </information>

<think> I found out that pearls are found in the Indian Ocean. Now I need to find out in which
sea pearls are found in India. </think>

<search> in which sea are pearls found in India </search>
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D DERIVATION OF MT-GRPO FOR GENERAL MULTI-TURN SETTINGS

We first define the intermediate turn-level advantage Ai,(k), computed by normalizing the intermediate
rewards across the sampling group:

Ai,(k) =
Ri,(k) − mean({Ri,(k)}Gi=1)

std({Ri,(k)}Gi=1)
, Ri,(k) = R(sk, ai,k) (11)

where Ri,(k) = R(sk, ai,k) denotes the reward of the i-th sampled action ai,k given the state sk in the
k-th turn. Notably, we require G rollout actions {ai,k}Gi=1 at the state sk to compute the intermediate
advantage Ai,(k). Specifically, the final turn-level advantage in the last turn can be defined as

Ai,(K) =
Ri,K − mean({Ri,K}Gi=1)

std({Ri,K}Gi=1)
, Ri,K = R(si,K , ai,K) = R(x, yi) (12)

which is identical to the trajectory-level definition in Eq. (4).

We then define the cumulative turn-level advantage Āi,(k), which credits the current action by
aggregating current and future advantages:

Āi,(k) = Ai,(k) +

K∑
l=k+1

Ai,(l) (13)

To solve Problem (2), in our MT-GPRO algorithm, the cumulative turn-level advantage is used in the
GRPO loss function in Eq. (3) to guide policy optimization. This advantage is assigned uniformly to
all tokens generated within the k-th turn, i.e.,

Ai,1 = · · · = Ai,t = Āi,(k)

where t indexes tokens within the k-th turn,

E GRPO EXPERIMENTS

E.1 TASK FORMULATION (GRPO)

To emphasize the importance of fine-grained credit assignment in multi-turn agent interactions, we
formulate the task under the MDP framework, involving multiple steps of reasoning, tool use, and
answer summarization for question answering. Specifically, our tool-use environment is modeled on
a Wikipedia search setup, where the agent learns to leverage a Wikipedia search engine to retrieve
relevant information and generate accurate answers. The goal is to improve the agent’s performance
through effective integration of external tool use. Without tool calling, the agent must rely solely
on its internal knowledge to answer questions, which can limit accuracy, especially for fact-based
queries requiring up-to-date or domain-specific information.

To clearly illustrate the impact of credit assignment, we design a simplified two-turn tool-use
environment in which the LLM agent can interact with the search tool environment for a maximum of
two turns. In this setup, the agent is allowed to call the Wikipedia search engine at most once before
submitting an answer to the question. Figure 7 illustrates the pipeline of the multi-turn, tool-calling
LLM agent system. Given a system prompt and a question, the LLM agent first performs a reasoning
step and issues a tool call, specifying both the tool name and a query derived from its reasoning. The
external tool environment processes the query and returns a search result. Based on the retrieved
result, the agent performs a second round of reasoning to summarize the information and generate
the final answer. The whole process can be summarized as

reasoning → search → result → reasoning → answer

These steps are explicitly outlined in the system prompt, which also enforces strict constraints,
such as allowing only a single tool invocation and requiring the use of specific XML-like tags (e.g.,
<reasoning>, <tool>, <result>, <answer>) to delineate each stage of the interaction. The
full system prompt is provided in Appendix E.5. Table 6 presents an example rollout in which the
agent successfully calls the search tool. If the tool name or argument format is incorrect, the tool

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 7: Overview of the multi-turn LLM agent pipeline and comparison of different advantage
estimation methods. The agent interacts with the tool environment across multiple steps: reasoning,
tool use, and answer generation, receiving both turn-level and outcome-level rewards. GRPO is used
as a representative algorithm to illustrate the different advantage estimation strategies. GRPO-OR
and GRPO-MR serve as baselines with trajectory-level advantage estimation, while MT-GRPO is our
proposed variant with fine-grained turn-level advantage estimation.

environment returns an error message, indicated by the response beginning with “Error:”. If the
agent fails to include a tool-calling command in the first reasoning step, the tool environment will not
be invoked. If the XML format or tag usage is incorrect—for example, if tags are missing, nested
improperly, or misnamed—the environment may fail to parse the agent’s response, resulting in an
error or a skipped tool invocation. Additional rollout examples where the agent fails to call the tool
correctly are provided in Appendix E.6.

Moreover, following the reformulation strategy proposed in Seed-Thinking-v1.5 (Seed, 2025), which
converts multiple-choice questions into fill-in-the-blank or short-answer formats to reduce guessing
and better evaluate reasoning ability, we adopt a similar method. Specifically, we convert our tasks
into short-answer form and evaluate the model’s responses based on exact match with the ground-truth
answers.

E.2 REWARD DESIGN (GRPO)

Figure 7 illustrates the pipeline of the multi-turn, tool-calling LLM agent system. To align with the
environment of the tool-calling LLM agent, we design two types of verifiable reward functions.

Turn-Level Verifiable Rewards: These depend solely on the first turn performed by the LLM agent.
To compute turn-level rewards, we incorporate verifiers related to tool execution and search results.
These verifiers ensure that the search engine is correctly invoked and that the ground-truth answer
appears in the retrieved results.

• Tool Execution Reward: Awards 0.2 if the tool is correctly executed, determined by the
presence of properly formatted tool calls (<tool>...</tool>) and successful responses
(i.e., the environment’s response does not begin with “Error:”).

• Search Result Answer Presence: Awards 0.5 if any accepted answer appears in the search
results returned by the tool (extracted from the <result>...</result> tag), using a
case-insensitive comparison.
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Outcome-Based Verifiable Rewards: These evaluate the final model-generated responses. Specifi-
cally, they assess both the correctness of the answer and its formatting, ensuring that the output aligns
with the expected structure and content.

• Final Answer Presence Reward: Awards 0.5 if any accepted answer is present in the model’s
final response (extracted from the <answer>...</answer> tag).

• Exact Match Reward: Awards 1.0 if the model’s answer (extracted from
<answer>...</answer>) exactly matches any accepted answer after standard text
preprocessing (i.e., lowercasing and stripping whitespace).

• XML Format Reward: Evaluates the structural integrity of the model’s output based
on the expected schema: <reasoning>...</reasoning> followed by either
<tool>...</tool> or <answer>...</answer>. See the agent’s pipeline in Fig-
ure 7. Checks include: (1) the presence of at least one expected field (<reasoning>,
<tool>, <answer>), (2) correct spacing (no leading or trailing whitespace within tags),
(3) message starting with <reasoning>, and (4) message ending with </tool> or
</answer>. Partial credit is awarded based on these criteria (weighted: 40% field pres-
ence, 20% spacing, 20% correct starting tag, 20% correct ending tag), and the final score is
scaled by 0.2.

• XML Tag Usage Reward: Assesses the correct usage of XML tags for the defined fields. For
each tag, the reward verifies that exactly one opening and one closing tag are present. The
reward is the proportion of correctly used tags (normalized by the number of tags checked),
scaled by 0.2.

It is easy to observe that turn-level rewards evaluate only the performance of the agent’s first turn,
whereas outcome-level rewards assess the quality of the entire trajectory. This distinction leads to
several characteristic scenarios:

• Tool Invocation with Poor Final Answer: The agent correctly invokes a tool in the first turn,
satisfying the turn-level criteria, but fails to produce a correct or well-formatted final answer,
resulting in turn-level rewards but little or no outcome-level reward.

• Incorrect or Absent Tool Use with Valid Final Answer: The agent either skips tool usage
or invokes a tool incorrectly (e.g., due to malformed syntax or an error response), yet still
generates a correct and well-structured final answer. In this case, the agent receives partial
or full outcome-level rewards despite earning no turn-level rewards.

• Failure Across Both Levels: The agent neither invokes a tool correctly nor produces a valid
final answer, resulting in zero rewards and a strong negative learning signal.

E.3 EXPERIMENT SETUP (GRPO)

In our experiments, we build our codebase upon the open-source project verifiers (Brown, 2025),
which trains LLM agents for multi-turn tool-use tasks, including math calculators, code interpreters,
and search engines.

Task & Dataset. We focus on the multi-turn reasoning and search-based tool-use task. We use the
TriviaQA dataset (Joshi et al., 2017) to train the LLM agent for answering questions by interacting
with a Wikipedia search engine. TriviaQA offers a diverse set of challenging questions, making it a
suitable benchmark for evaluating multi-turn reasoning capabilities.

Evaluated Methods We compare our proposed MT-GPRO with vanilla GRPO.

• GRPO: original GRPO with trajectory-level advantage estimation
– GRPO-OR: GRPO using only outcome rewards
– GRPO-MR: GRPO using merged outcome and turn-level rewards

• MT-GRPO (ours): GPRO variant with turn-level advantage estimation using both outcome
and turn-level rewards

Training Details. We use Qwen2.5-7B (Yang et al., 2024) as the base model. Experiments are
conducted on a node equipped with 8 NVIDIA H100 GPUs: one GPU is dedicated to rollout
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Table 5: Performance comparison across different methods on reward scores evaluated on the
validation set. Values in parentheses indicate the reward range for each metric. Bold numbers indicate
the best performance for each reward type.

Model
Turn-Level Reward Outcome Reward

Tool Execution
(0-0.2)

Search Answer
(0-0.5)

XML Format
(0-0.2)

Exact Match
(0-1)

Qwen2.5-7B-Base 0.0559 0.0934 0.1562 0.0469

Qwen2.5-7B-Instruct 0.1626 0.2814 0.1982 0.1559

Qwen2.5-7B-Base + GRPO-OR 0 0 0.04 0

Qwen2.5-7B-Base + GRPO-MR 0.2 0.3724 0.1994 0.3346

Qwen2.5-7B-Base + MT-GRPO 0.2 0.3926 0.1996 0.5010

generation, while the remaining seven GPUs are used for model training. Rollout generation is
handled by vLLM (Kwon et al., 2023). Model training is performed using the Huggingface TRL
implementation of GRPO (von Werra et al., 2020).

Hyperparameters. For all methods, the number of rollout generations is set to 21. The maximum
completion length during generation is set to 1024 tokens. The KL divergence penalty is disabled by
setting β = 0. The learning rate is fixed at 1× 10−6. We use a per-device batch size of 12 and set
gradient accumulation steps to 4. Each batch undergoes two training iterations. The total number of
training steps is set to 300.

E.4 MAIN RESULTS (GRPO)

Figure 8 shows reward component curves during training across various algorithms. From the answer
presence and exact match reward curves, it is evident that MT-GRPO outperform GRPO-OR and
GRPO-MR, demonstrating that fine-grained credit assignment enhances the performance of multi-turn
LLM agents.

The turn-level rewards, including tool execution and search result answer presence rewards, reveal
that MT-GPRO achieves 100% success in tool execution while GRPO-OR gradually stops calling
search tools in question answering tasks and achieves worse final performance. This is because
GRPO-OR does not incorporate turn-level rewards effectively in its advantage estimation, which
indicates the importance of turn-level feedback in multi-turn interaction tasks.

Figures 9, 10, and 11 illustrate reward component curves during training with different algorithms,
where shaded regions represent the range between the maximum and minimum values across 10
runs, showcasing the variability in learning performance. Notably, the proposed MT-GRPO method
demonstrates lower variance during training, while GRPO-OR and GRPO-MR exhibit greater insta-
bility. An interesting observation is that the tool execution curve of MT-GRPO temporarily drops
sharply around step 230–250 but subsequently recovers and stabilizes. This demonstrates that even if
the agent forgets to call search tools in the middle of the training, it eventually learns to incorporate
them in the final stages. This finding further emphasizes the significance of credit assignment in our
proposed algorithms, contributing to more stable training.

Table 5 presents the validation reward scores across different models. MT-GRPO achieves the highest
performance in all reward metrics. Compared to GRPO-MR, which reaches 0.3724 in final search
answer and 0.3346 in exact match, MT-GRPO demonstrates clear improvements, especially in exact
match with a margin of +0.1664. In contrast, GRPO-OR performs poorly across all metrics, scoring
0 in turn-level rewards and only 0.04 in XML format. These results confirm that fine-grained credit
assignment in MT-GRPO leads to better turn-level decision-making and more accurate final outcomes
in multi-turn tasks.
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Figure 8: Curves for different training reward components during training with various algorithms
(MT-GRPO, GRPO-OR, and GRPO-MR). Each plot shows the training reward score over training
steps for turn-level rewards (Tool Execution, Search Result Answer Presence) and outcome rewards
(XML Tag Usage, XML Format, Final Answer Presence, Exact Match). Dotted lines represent the
average reward across 10 runs, while solid lines show trends smoothed using the Exponential Moving
Average (EMA).
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E.5 SYSTEM PROMPT (GRPO)

System Prompt

You have access to the following tools to help solve problems:

{tool_descriptions}

Follow these steps exactly once:
1. Think through your reasoning inside <reasoning> tags
2. Use a tool by writing a JSON command inside <tool> tags with:

• "name": the tool to use
• "args": the arguments for the tool

3. You will see the tool’s output inside <result> tags
4. Think through the tool’s output inside <reasoning> tags
5. Based on your reasoning, provide your final answer inside <answer> tags

Important:
• Use the tool exactly once – DO NOT attempt to call the tool again even if the first

search isn’t helpful
• Work with both your prior knowledge and the single tool call
• If the tool result is unhelpful, rely on your prior knowledge
• Tools expect valid JSON – follow the examples carefully
• Do not invent tools or arguments that aren’t listed
• Analyze the result in a reasoning step before giving your answer
• Your answer should match the expected ground-truth

Wiki Search Tool Descriptions

wiki_search: Searches Wikipedia and returns the top matching article
content.

Arguments:
- query

E.6 ROLLOUT EXAMPLES (GRPO)
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Table 6: A rollout example of successfully calling the search tool during training.

Question: What serial killer, who buried the remains of 26 of his victims in his Chicago crawl
space, was known as the “Killer Clown”?

<reasoning> To find out who was the serial killer known as the “Killer Clown,” we’ll use
the wiki_search tool to gather information about this specific individual. </reasoning>
<tool>

{
"name": "wiki_search",
"args": {

"query": "Killer Clown serial killer buried remains in Chicago crawl space"
}

}
</tool>

<result> John Wayne Gacy. John Wayne Gacy (March 17, 1942 – May 10, 1994) was an
American serial killer who raped, tortured, and murdered at least 33 teenage boys and young
men between 1972 and 1978 in Cook County, Illinois (a part of metropolitan Chicago). All of
Gacy’s known murders were committed inside his Norwood Park ranch house. . . </result>
<reasoning> From the information provided, John Wayne Gacy, referred to as the “Killer
Clown,” was a serial killer known for burying the remains of at least 26 of his victims in his
Chicago crawl space. He gained notoriety for using various methods to subdue his victims,
including deceiving young males into wearing handcuffs and using methods like garroting
and suffocation. His final confirmed victim was identified through DNA testing in 2011.
Investigations into potential accomplices and his connection to a sex trafficking ring also raise
questions about his broader involvement in criminal activity. </reasoning>
<answer> John Wayne Gacy </answer>

Table 7: A rollout example of failing to call the search tool and producing a wrong answer.

Question: In the horror film Them, what type of creatures were Them?

<reasoning> In the horror film “Them!”, the main creatures were giant ants. I know this
because I remember from my general knowledge that “Them!” is a 1954 science fiction horror
film about giant ants and the damage they cause in a coastal town. So, to answer the question,
the creatures in “Them!” were giant ants. </reasoning>
<answer> Giant </answer>

Table 8: A rollout example of generating a response with an incorrect format.

Question: Who was the Canadian jazz pianist (1925-2007), winner of eight Grammy Awards
who released over 200 recordings?

<reasoning> I need to identify the Canadian jazz pianist, born in 1925 and died in 2007,
who won eight Grammy Awards and released over 200 recordings. This person’s name should
be easy to find with a Wikipedia search since the question specifies Grammy Awards and a long
recording history. Once I find the Wikipedia article, I can read about the pianist’s career to
confirm the details mentioned in the question. </reasoning>
Error: Tool command not found or invalid XML format. Please ensure correct formatting.
<answer><tool>< reasoning> From the Wikipedia search I found that Oscar Peterson,
born in 1925 and deceased in 2007, was a Canadian jazz pianist who won eight
Grammy Awards and released over 200 recordings. </reasoning><answer>Oscar Peter-
son<answer><result><answer>Oscar Peterson</answer>
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E.7 ADDITIONAL EXPERIMENTAL RESULTS (GRPO)
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Figure 9: Curves for different training reward components during training using GRPO-OR, where
shaded regions represent the range between the maximum and minimum values across 10 runs.
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Figure 10: Curves for different training reward components during training using GRPO-MR, where
shaded regions represent the range between the maximum and minimum values across 10 runs.
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Figure 11: Curves for different training reward components during training using MT-GRPO, where
shaded regions represent the range between the maximum and minimum values across 10 runs.
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