
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

REINFORCING MULTI-TURN REASONING IN LLM
AGENTS VIA TURN-LEVEL REWARD DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates approaches to enhance the reasoning capabilities of Large
Language Model (LLM) agents using Reinforcement Learning (RL). Specifically,
we focus on long-horizon multi-turn agent scenarios, which can be naturally
modeled as Markov Decision Processes. Although RL algorithms such as Group
Relative Policy Optimization (GRPO) and Proximal Policy Optimization (PPO)
have been widely applied to train multi-turn LLM agents, they typically rely only on
a sparse final reward and lack dense intermediate signals across multiple decision
steps, limiting their performance on complex reasoning tasks. To bridge this gap,
we propose a turn-level reward design strategy to enhance RL algorithms in multi-
turn agent tasks. By integrating turn-level rewards, we extend GRPO and PPO to
their respective multi-turn variants, enabling fine-grained credit assignment. We
conduct case studies on multi-turn reasoning-augmented search agents, where we
carefully design two types of turn-level rewards: verifiable and LLM-as-judge.
Our experiments on multi-turn search tasks demonstrate that incorporating well-
designed turn-level rewards enables RL algorithms to significantly outperform
baseline methods with outcome-level rewards. Both training and validation reward
curves illustrate that our method achieves greater stability, faster convergence, and
higher accuracy. Numerical results across diverse question-answering datasets
further show that our approach consistently delivers highest answer correctness
and 100% format correctness.

1 INTRODUCTION

Reinforcement Learning (RL) has recently emerged as a powerful approach for improving the
reasoning capabilities of Large Language Models (LLMs), allowing them to explore and refine long
Chains of Thought (CoT) (Wei et al., 2022) in complex decision-making tasks. Building on this
paradigm, reasoning-based LLMs, such as OpenAI’s o1 (Jaech et al., 2024) and DeepSeek’s R1 (Guo
et al., 2025a), demonstrate remarkable performance in textual reasoning tasks by learning analytical
thinking and self-reflection. Despite these advancements, LLMs that rely solely on textual reasoning
remain limited in tasks that require precise and complex numerical computation, information retrieval
from web pages or local databases, or code execution. Equipping LLMs as autonomous agents
with access to external tools, such as search engines, scientific calculators, or code interpreters, can
significantly extend their capabilities beyond pure text-based reasoning (Gou et al., 2023).

Training LLMs to operate as autonomous agents in interactive environments faces unique challenges.
Agent settings often require models to make sequential, multi-turn decisions in complex reasoning
tasks. Many existing approaches (Chen et al., 2025b; Jin et al., 2025b; Feng et al., 2025a) formulate
these multi-turn interactive tasks as single-turn problems, relying solely on a final outcome-level
reward such as answer correctness. Popular RL algorithms, including Group Relative Policy Opti-
mization (GRPO) (Shao et al., 2024) and Proximal Policy Optimization (PPO) (Schulman et al., 2017),
are applied in this setting. However, such single-turn formulation is inadequate for long-horizon
multi-turn reasoning as it treats the entire trajectory as a single decision step, ignoring the multi-turn
structure of the interactive tasks. In particular, it ignores intermediate signals that evaluate each
complete agent-environment interaction, such as a tool call and its result, providing feedback at the
granularity of a single turn in multi-turn tasks (Lightman et al., 2023; Zhang et al., 2025b; Ma et al.,
2023; Choudhury, 2025). Without access to dense turn-level feedback, agents struggle to refine their
behavior, making it difficult to interact effectively with dynamic environments over multiple steps.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

For example, in a search agent (Chen et al., 2025b; Jin et al., 2025a), selecting a good query early on
is crucial for retrieving relevant information; without turn-level feedback, the agent may not learn
which queries contribute to correct answers.

Recent studies (Li et al., 2025a; Qian et al., 2025; Wang et al., 2025a; Labs, 2025; Wang et al., 2025b;
Singh et al., 2025; Zhang et al., 2025a; Jin et al., 2025a) model multi-turn agentic tasks as Markov
Decision Processes (MDPs) and incorporate intermediate rewards like tool execution. However, these
approaches suffer from the credit assignment problem: they merge final outcome and intermediate
rewards into a sparse trajectory-level signal. This makes advantage estimation inaccurate and prevents
RL algorithms from providing fine-grained supervision across intermediate rounds of interaction
(Guo et al., 2025b; Feng et al., 2025b; Zhang et al., 2025c).

Motivated by this, we investigate turn-level reward design for both RL algorithms and agent appli-
cations. To the best of our knowledge, this is the first systematic study of turn-level rewards in the
context of multi-turn RL for LLM agents. Our key contributions are as follows:

• To train multi-turn LLM agents effectively under the MDP framework, we propose a turn-
level reward design strategy to enhance RL algorithms in multi-turn agent tasks. Specifically,
we extend GRPO and PPO to their multi-turn variants by incorporating both final outcome
rewards and intermediate turn-level rewards, enabling fine-grained credit assignment. While
multi-turn GRPO requires exponential rollout samples to compute intermediate advantages,
multi-turn PPO leverages a critic model, offering a more efficient and scalable solution.

• To highlight the importance of turn-level rewards, we conduct a case study using a reasoning-
augmented search agent that performs multiple rounds of reasoning and search before
producing the final answer. We carefully design turn-level verifiable rewards and turn-level
LLM-as-judge rewards for training the search agent. While verifiable rewards are rigid, the
LLM-as-judge enables a more flexible and nuanced evaluation.

• Building on this case study, our experiments on multi-turn reasoning-augmented search tasks
show that integrating turn-level rewards enables RL algorithms to significantly outperform
baseline methods with the only outcome reward. Both training and validation reward
curves obtained with the Qwen2.5-7B model demonstrate that our algorithm with turn-level
rewards achieves more stable training, faster convergence, and higher accuracy for both
verifiable and LLM-as-judge rewards. Furthermore, benchmarks on both in-domain and
out-of-domain tasks show that our approach consistently achieves the highest accuracy and
reliably produces outputs with 100% correct format.

2 PROBLEM FORMULATION FOR MULTI-TURN AGENT INTERACTION

Let x denote the input prompt sampled from the dataset D, and y = [l1, f1, . . . , lK , fK] denote the
complete output response produced through interaction with the LLM agent, where lk is the response
generated from an LLM agent and fk is the corresponding environment feedback at the k-th turn.

2.1 SINGLE-TURN PROBLEM FORMULATION

Many existing studies typically formulate the multi-turn agent task as the single-turn problem, relying
only on a final outcome-level reward, such as answer correctness. The objective can be expressed as
maximizing the expected final reward R(x, y):

max
πθ

Ex∼D, y∼πθ(·|x) [R(x, y)] (1)

which can be interpreted as a contextual bandit problem (Bouneffouf & Feraud, 2025; Baheri & Alm,
2023). Such single-turn formulation is inadequate as it treats the entire trajectory as a single decision
step, ignoring the multi-turn structure of the task. More specifically, it ignores intermediate rewards
that evaluate each complete agent-environment interaction.

2.2 MULTI-TURN PROBLEM FORMULATION

LLM agents operate in interactive environments where each turn yields stochastic feedback. To
capture these dynamics, we formulate the multi-turn agent task as a turn-level MDP, which is formally

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

defined as M = {S,A, P,R}. Here, S denotes the state space, and A denotes the action space; A
state s ∈ S typically corresponds to an interaction history, while an action a ∈ A often corresponds
to a sequence of generated tokens; P represents the transition dynamics; R is the turn-level reward.

At the k-th turn, conditioned on the current state sk, the agent makes an action ak according to the
policy πθ, where ak = [lk, fk] if environment feedback exists, otherwise ak = lk. The agent then
receives a turn-level reward Rk = R(sk, ak), and transitions to the next state sk+1. In the turn-level
MDP framework, the objective can be written as maximizing the cumulative reward at the turn level:

max
πθ

Esk, ak∼πθ(·|sk)

[
K∑

k=1

R(sk, ak)

]
(2)

where the discount factor is set to be 1. If only an outcome reward is provided and intermediate
rewards are zero, i.e.,1

Rk = R(sk, ak) = 0, for k = 1, 2, . . . ,K − 1, RK = R(sK , aK) = R(x, y),

then the MDP formulation in Eq. (2) reduces to Problem (1).

Remark. The turn-level MDP with a final outcome in Eq. (1) can be viewed as an MDP with only a
terminal reward (Arjona-Medina et al., 2019). This simplicity comes at a price: without intermediate
rewards, the system must exhaustively simulate entire trajectories, lacking any mechanism to prune or
attenuate trajectories that are clearly suboptimal at early stages (Wu et al., 2023; Singhal et al., 2025).

3 GRPO WITH TURN-LEVEL REWARDS FOR MULTI-TURN AGENTIC TASKS

3.1 GRPO FOR SINGLE-TURN FORMULATION

GRPO. Recently, the Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024)
has been widely used to enhance the reasoning capabilities of LLMs, which estimates the advantage
in a group-relative manner. Specifically, for each input question x, it samples a group of responses
{y1, y2, . . . , yG} from the reference policy πref. GRPO optimizes the policy by maximizing the
following objective function:

JGRPO(θ) = Ex∼D, {yi}G
i=1∼πold(·|x) 1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min (wi,t(θ)Ai,t, clip (wi,t(θ), 1− ϵ, 1 + ϵ)Ai,t)− βDKL [πθ ∥πref]

 , (3)

where wi,t(θ) =
πθ(yi,t|x,yi,<t)
πold(yi,t|x,yi,<t)

is the token-level importance sampling ratio between the current
policy πθ and the previous policy πold, ϵ is the clipping parameter, and β is the KL divergence
coefficient. Given a group of final outcome rewards {Ri}Gi=1, the advantage of the i-th response Ai,t

is calculated by

Ai,t =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
, Ri = R(x, yi). (4)

It is straightforward to observe that GRPO is well-suited for the single-turn problem (1). The
advantage is computed by normalizing the final outcome rewards within the sampled group.

Limitations of GRPO in Multi-Turn Settings. In multi-turn tasks, intermediate signals are often
available to guide the LLM agent. However, GRPO does not naturally incorporate such intermediate
rewards into advantage estimation, making it difficult to leverage them effectively. A naive solution
to Problem (2) is to merge the intermediate rewards and the final outcome reward as a single sparse
trajectory-level reward, that is,

Ai,t =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
, Ri =

K∑
k=1

Ri,k =

K∑
k=1

R(si,k, ai,k) (5)

1In this paper, we denote R(x, y) as the final outcome reward and R(s, a) as the general turn-level reward in
the multi-turn setting.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

where Ri,k denotes the intermediate reward given the state si,k and action ai,k in the k-th turn. For
the two advantage estimation strategies in Eq. (4) and Eq. (5) used by GPRO, the advantage function
Ai,t is computed at the trajectory level, i.e., Ai,1 = Ai,2 = · · · = Ai,t = · · · = Ai,|yi|, due to reward
sparsity. This means the same advantage is assigned uniformly across the entire trajectory, without
distinguishing the contributions of individual turns or tokens. For long-horizon multi-turn tasks, such
coarse-grained credit assignment often leads to unstable training and suboptimal performance (Guo
et al., 2025b; Feng et al., 2025b; Zhang et al., 2025c).

3.2 TURN-LEVEL CREDIT ASSIGNMENT FOR GRPO: A SIMPLE ATTEMPT

MT-GPRO. To highlight the importance of turn-level rewards and fine-grained credit assignment
in GRPO, we consider a simple two-turn agent setting. In this case, the agent receives a group
of intermediate rewards {Ri,1}Gi=1 in the first turn and final rewards {Ri,2}Gi=1 in the second turn.
Based on these signals, we propose our turn-level credit assignment strategy for GRPO. The resulting
turn-level advantages in the first and second turns are given by:

Āi,1 = Ai,1 +Ai,2, Āi,2 = Ai,2, (6)

where

Ai,1 =
Ri,1 − mean({Ri,1}Gi=1)

std({Ri,1}Gi=1)
, Ai,2 =

Ri,2 − mean({Ri,2}Gi=1)

std({Ri,2}Gi=1)
(7)

By leveraging intermediate rewards, all tokens within a single turn share a unified advantage signal.
Moreover, the advantage of a turn depends not only on the rewards from that turn but also on the
contributions of subsequent turns. We refer to this algorithm as multi-turn GRPO (MT-GRPO). A
detailed derivation of MT-GRPO for the general multi-turn setting is provided in Appendix D.

Case Study on a Two-Turn Agent Task. We conduct experiments to evaluate the proposed MT-
GRPO method in a two-turn agent setting, where the agent first calls the search tool with reasoning
in the initial turn and then produces the final answer in the subsequent turn (see Appendix E for
details). Beyond the outcome-level exact-match reward, we design intermediate rewards based on
tool-execution feedback, for MT-GRPO. Figure 1 presents training reward curves for GRPO and
MT-GRPO, which show that MT-GRPO achieves more stable tool usage (left figure) and higher
exact-match accuracy (right figure), highlighting the importance of fine-grained credit assignment in
multi-turn agent tasks.

0 50 100 150 200 250 300
Steps

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

Re
wa

rd
 S

co
re

Tool Execution Reward (Turn-Level Reward)

MT-GRPO
GRPO-MR
GRPO-OR

0 50 100 150 200 250 300
Steps

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Re
wa

rd
 S

co
re

Exact Match Reward (Outcome Reward)

MT-GRPO
GRPO-MR
GRPO-OR

Figure 1: Curves for different training reward components during training with various algorithms
(MT-GRPO in Eq. (6), GRPO-OR in Eq. (4), and GRPO-MR in Eq. (5)). Each plot shows the training
reward score over training steps. Dotted lines represent the average reward across 10 runs, while
solid lines show trends smoothed using the Exponential Moving Average (EMA).

Limitations of MT-GPRO. (1) In MT-GRPO, computing the intermediate advantages requires G
rollout samples at each turn. Therefore, over a horizon of K turns, this results in GK−1 rollout
trajectories in total. Such exponential growth in complexity makes the approach computationally
prohibitive for long-horizon multi-turn tasks. (2) This strategy also assumes that all rollout samples in
a group must contain the same number of turns, which requires enforcing this constraint in the system
prompt and leads to a fixed-turn setting. Such a restriction limits the flexibility and applicability of
GRPO in more diverse scenarios. For example, in a search task, one question may be resolved in a
single tool call or require multiple calls to retrieve, filter, and refine results in a sampled group.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

4 PPO WITH TURN-LEVEL REWARDS FOR MULTI-TURN AGENTIC TASKS

In the previous section, we illustrated the importance of turn-level rewards and fine-grained credit
assignment in GPRO, which improves the performance of LLM agents in multi-turn interactions.
However, the exponential computational cost, together with the fixed-turn constraint, limits the
applicability of MT-GRPO to general agent tasks. In this section, we present the PPO alogrithm with
turn-level rewards, aiming to provide a more flexible, scalable, and efficient solution.

PPO. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a popular actor-critic RL
algorithm commonly used for LLM training (Ouyang et al., 2022). PPO updates the policy by
maximizing the following surrogate objective:

JPPO(θ) = Ex∼D, y∼πold(·|x)

 1

|y|

|y|∑
t=1

min (wt(θ)At, clip (wt(θ), 1− ϵ, 1 + ϵ)At)

 , (8)

The advantage estimate At is computed using Generalized Advantage Estimation (GAE) (Schulman
et al., 2015), based on rewards and a learned value function (critic model). Formally, for a trajectory
of length T , the GAE At at time step t is computed as:

At =

T−t−1∑
l=0

(γλ)lδt+l, δt = rt + γVt+1 − Vt (9)

where γ is the discount factor, λ ∈ [0, 1] is the GAE parameter, δt is the temporal-difference error, rt
is the token-level reward and Vt is the token-level value at step t. Through the mechanism of GAE,
the token-level value function enables token-level advantage estimation.

Turn-Level Rewards in PPO. With explicit intermediate rewards, GAE provides fine-grained
training signals at each turn. Given both intermediate rewards RI and the final reward RF , the
token-level reward rt is assigned as

rt =


RF if t is the last token of the entire trajectory
RI if t is the last token of the current turn
0 otherwise

(10)

For clarity, we refer to PPO trained with both intermediate and final rewards as multi-turn PPO (MT-
PPO), while PPO trained with only a sparse trajectory-level reward is referred to as PPO. Compared
to MT-GRPO, which requires exponential rollout samples to compute intermediate advantages,
MT-PPO leverages a critic model with GAE, offering a more efficient and scalable solution.

Table 1: Comparison of granularity of reward assign-
ment and advantage estimation across different RL
algorithms for multi-turn LLM agents.

RL Algo. Granularity

Reward Advantage

GRPO Trajectory-Level Trajectory-Level
MT-GRPO Turn-Level Turn-Level
PPO Trajectory-Level Token-Level
MT-PPO Turn-Level Token-Level

Summary. Table 1 summarizes the granu-
larity of reward assignment and advantage
estimation across different RL algorithms.
As shown, MT-PPO provides fine-grained
turn-level rewards and token-level advan-
tage estimation. This higher granularity en-
ables more precise credit assignment, which
is particularly beneficial for multi-turn LLM
agents where successful outcomes often de-
pend on a sequence of intermediate deci-
sions. In contrast, trajectory-level meth-
ods provide coarser feedback, which often
leads to weaker learning signals and unsta-
ble training. These insights will be empirically validated in the following experiments.

5 CASE STUDY: MULTI-TURN REASONING-AUGMENTED SEARCH AGENT

5.1 TASK FORMULATION

We study an LLM agent that performs multi-turn reasoning with search engine interactions. The
task can be naturally formulated under the turn-level MDP framework, as discussed in Section 2.2,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

System Prompt

think search information

think search information

think search information

think answer

....

Intermediate
Reward

Final Reward

Turn 1

Turn 2

Turn 3

Turn K

Retrieval Existence Reward
Format Reward
Search Count Reward

Exact Match Reward
Format Reward

LLM Agent 🤖 Env 📚 Reward ❤️

Verifiable
LLM-as-Judge

Figure 2: Overview of the multi-turn reasoning-augmented search agent pipeline. Given a system
prompt and a question, each iteration of the LLM-based search agent proceeds as follows: (1) The
agent begins with reasoning, analyzing the current context to identify missing information. (2) It
then formulates a search query to retrieve relevant information from an external database, which is
integrated into the evolving context. (3) This cycle continues until the agent judges that the context is
sufficient, at which point it performs a final round of reasoning to generate the answer.

where each action a corresponds either to a reasoning-augmented search step or to producing the
final answer. The goal is to improve the agent’s performance through effective integration of external
search. Specifically, the agent learns to leverage a Wikipedia search engine to retrieve relevant
information and generate an accurate answer. Without search calling, the agent must rely solely on its
internal knowledge to answer questions, which can limit accuracy, especially for fact-based queries
requiring up-to-date or domain-specific information.

The overall interaction follows a multi-turn reasoning–search loop, as shown in Figure 2. These
steps impose strict constraints, such as permitting only a single search step and requiring the use of
specific XML-like tags to delineate each stage of the interaction. Following (Jin et al., 2025b), rea-
soning steps are enclosed within <think> </think>, search queries are wrapped in <search>
</search>, retrieved information is inserted into <information> </information>, and
the final answer is placed within <answer> </answer>.

5.2 TURN-LEVEL VERIFIABLE REWARD DESIGN

Unlike most approaches (Chen et al., 2025b; Jin et al., 2025b), which assign rewards based solely
on final-answer correctness for the entire trajectory, we design turn-level verifiable rewards for both
intermediate and final turns to better align with the environment of the LLM-based search agent.

Final Verifiable Rewards evaluate the model-generated responses in the last turn, focusing on both
the correctness of the answer and the adherence to the required output format.

• Final Exact Match Reward fem evaluates whether the extracted answer (from the <answer>
tag) exactly matches any accepted ground-truth answer after normalization (e.g., lowercasing
and whitespace removal):

• Final Format Reward fformat ensures format correctness by verifying that: (1) only <think>
and <answer> tags appear (no extra tags), (2) each tag appears exactly once, and (3)
<think> precedes <answer>.

The final reward is defined as

RF =


1 fem = True, fformat = True,
0.2 fem = False, fformat = True,
−1 fformat = False,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

A smaller positive reward is given when the answer is incorrect but the output follows the required
format, encouraging structural correctness during training. A negative reward (penalty) is applied
when the format is incorrect, ensuring that the agent adheres to the required structure.

Intermediate Verifiable Rewards guide the agent’s behavior in intermediate turns by evaluating
the presence of ground-truth answers in retrieved content, enforcing proper format usage, and
discouraging excessive search calls.

• Intermediate Retrieval Existence Reward evaluates whether any accepted answer appears in
the one-round search result (from <information> tag), using case-insensitive matching.
RI

retrieval = 0.3 if retrieved information contains any ground-truth, otherwise 0.
• Intermediate Format Reward ensures format correctness by verifying that: (1) only
<think>, <search>, and <information> tags appear (no extra tags), (2) each tag
appears exactly once, and (3) <think> precedes <search> and <information>.
RI

format = 0.1 if the format is correct, otherwise −0.2.
• Intermediate Search Count Reward penalizes excessive search usage.

RI
search = −λs · nsearch,

where λs is a predefined positive constant controlling the weight of the search count reward,
nsearch denotes the cumulative number of search invocations from the first turn up to the
current turn.

The intermediate reward is defined as RI = RI
retrieval + RI

format + RI
search. Retrieval correctness is

similarly assigned a smaller weight than answer correctness, again to reduce the risk of reward hacking.
In addition, we introduce an intermediate search penalty to discourage excessive or unnecessary
search calls, preventing the agent from either avoiding the avoiding the question answering or failing
due to crashes.

5.3 LLM AS JUDGE FOR TURN-LEVEL EVALUATION

Verifiable rewards, such as exact match, provide a strict and objective form of evaluation. However,
they can be overly rigid: an agent may produce a correct answer that differs slightly in form from
the ground truth but still receives negative feedback. To complement such verifiable signals, we
adopt the LLM-as-judge paradigm, where a strong LLM evaluates agent outputs. The LLM-as-judge
framework consists of two key components: step-by-step reasoning and rubric-based scoring.

Reasoning. We employ a generative reasoning model (GRM) (Li et al., 2025b) as the judge,
prompting it to generate detailed justifications before assigning a score. The step-by-step reasoning
process encourages the judge to evaluate output quality using rubric-based criteria rather than relying
on shallow correlations.

Rubrics. Rubric-based scoring provides structured evaluation criteria that improve both consistency
and reliability across assessments. Unlike outcome-level evaluation that only considers the final an-
swer, our framework assesses each turn’s output. This fine-grained assessment offers richer feedback
and aligns naturally with multi-turn agent tasks, where intermediate steps critically influence overall
success. The judge model evaluates format correctness, reasoning quality, and search effectiveness,
while also applying a search penalty to discourage excessive or unnecessary tool calls. Additional
implementation details are provided in Appendix C.3.

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

In our experiments, we build our codebase upon the open-source project Search-R1 (Jin et al., 2025b),
which trains LLM agents for multi-turn reasoning-augmented search tasks.

Datasets. These datasets are categorized as follows: (1) General Question Answering: NQ
(Karpukhin et al., 2020), TriviaQA (Joshi et al., 2017), and PopQA (Mallen et al., 2022). (2)
Multi-Hop Question Answering: HotpotQA (Yang et al., 2018) 2WikiMultiHopQA (Ho et al., 2020),
and Musique (Trivedi et al., 2022). These datasets cover a diverse range of search and reasoning
challenges, providing a comprehensive basis for evaluation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0 100 200 300 400 500
Step

0.0

0.1

0.2

0.3

0.4

0.5

An
sw

er
 C

or
re

ct
ne

ss

Training Reward (NQ)
PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rm

at
 C

or
re

ct
ne

ss

Training Reward (NQ)
PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.2

0.4

0.6

0.8

Re
tr

ie
va

l C
or

re
ct

ne
ss

Training Reward (NQ)
PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

An
sw

er
 C

or
re

ct
ne

ss

Training Reward (HotpotQA)
PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rm

at
 C

or
re

ct
ne

ss

Training Reward (HotpotQA)
PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
tr

ie
va

l C
or

re
ct

ne
ss

Training Reward (HotpotQA)
PPO
MT-PPO

Figure 3: Training reward curves recorded during training for PPO and MT-PPO on the NQ and
HotpotQA datasets. The rewards include answer correctness, format correctness, and retrieval
correctness. Solid lines show mean reward values, while shaded regions indicate variability across
five independent runs.

Evaluated Methods. We compare our proposed MT-PPO with vanilla PPO: (1) PPO (Jin et al.,
2025b): original PPO with a binary final answer correctness reward, and (2) MT-PPO (ours): PPO
variant with both intermediate and final rewards, as described in Section 5.2, where λs = 0.1.

Evaluation Metrics. We evaluate model performance using three types of rewards during both
training and validation: (1) answer correctness reward, (2) format correctness reward, and (3) retrieval
correctness reward. Each reward is assigned a value of 1.0 if the criterion is satisfied and 0 otherwise.
The detailed reward rules are provided in Appendix C.1.

Training Details. We use Qwen2.5-7B (Yang et al., 2024) as the base model, E5 (Wang et al., 2022)
as the retriever, and 2018 Wikipedia dump (Karpukhin et al., 2020) as the corpus. We set the number
of retrieved passages to 3, and the maximum turns to 4. The system prompt follows that of Search-R1
(Jin et al., 2025b). For all methods, we enable policy loss masking on retrieved tokens. Since PPO
baseline often crashes, we use either the final checkpoint or the last checkpoint prior to collapse.
More details on experimental settings can be found in Appendix C.2.

6.2 MAIN RESULTS

Figures 3 and 5 show training and validation reward curves for PPO and MT-PPO. MT-PPO achieves
substantially more stable training, converging faster in the early phase (first 100 steps) thanks to
intermediate rewards that provide stronger guidance. As training progresses, PPO exhibits high
variance and even performance degradation, especially on HotpotQA, while MT-PPO maintains
consistent improvement. MT-PPO attains higher average accuracy than PPO, demonstrating greater
robustness. Format reward curves show that MT-PPO consistently follows the correct output format,
while PPO struggles, especially on HotpotQA, where formatting mistakes prevent correct evaluation.
This indicates that turn-level rewards in MT-PPO stabilize training and enforce structural correctness.
Retrieval curves further show that MT-PPO achieves more consistent accuracy by leveraging inter-
mediate signals to guide reasoning. We omit GRPO training curves since, as reported in (Jin et al.,
2025b), GRPO consistently crashes.

Figure 6 presents training curves for MT-PPO and PPO with judge rewards, where MT-PPO again
demonstrates stable optimization.

Table 2 reports results on six QA datasets, spanning both general and multi-hop reasoning tasks.
MT-PPO consistently outperforms PPO and GRPO in answer correctness, with the largest gains on
multi-hop tasks such as HotpotQA and 2Wiki. Moreover, MT-PPO nearly perfects format correctness,
reaching close to 100% across datasets, underscoring the effectiveness of multi-turn credit assignment
in producing both accurate and well-structured outputs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: The performance results of different methods on six datasets. Bold numbers indicate the
best performance for each dataset and metric.

Methods General QA Multi-Hop QA Avg.

NQ TriviaQA PopQA HotpotQA 2wiki Musique

Answer Correctness (Exact Match)

Qwen2.5-7B-Base 0.177 0.319 0.181 0.160 0.167 0.040 0.174
Qwen2.5-7B-Instruct 0.320 0.563 0.349 0.292 0.277 0.118 0.320
GRPO 0.391 0.560 0.388 0.331 0.306 0.129 0.351
PPO 0.483 0.639 0.456 0.435 0.382 0.199 0.432
MT-PPO 0.490 0.647 0.459 0.453 0.424 0.209 0.447

Format Correctness

Qwen2.5-7B-Base 0.118 0.118 0.105 0.098 0.084 0.082 0.101
Qwen2.5-7B-Instruct 0.183 0.267 0.067 0.109 0.037 0.071 0.122
GRPO 0.706 0.685 0.597 0.513 0.376 0.328 0.534
PPO 0.909 0.954 0.952 0.916 0.806 0.834 0.895
MT-PPO 0.999 0.997 0.999 0.998 0.999 0.999 0.999

0 100 200 300 400 500
Step

0.0

0.1

0.2

0.3

0.4

0.5

An
sw

er
 C

or
re

ct
ne

ss

Training Reward (NQ)
MT-PPO (=0.0)
MT-PPO (=0.1)

0 100 200 300 400 500
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
um

be
r

of
 T

ur
ns

Training Reward (NQ)
MT-PPO (=0.0)
MT-PPO (=0.1)

Figure 4: Ablation study on the search count reward λs. We compare MT-PPO with λs = 0.1 and
λs = 0.0 on the NQ dataset. The left panel reports answer correctness, while the right panel shows
the average number of turns.

6.3 ABLATION STUDY ON REWARD DESIGN

We conduct an ablation study on reward design to examine the impact of the search count reward.
As shown in Figure 4, incorporating λs = 0.1 into MT-PPO improves training stability and final
accuracy. During the initial training stage, excessive search calls lead to instability; the search count
reward mitigates this by discouraging overuse of the tool. Consequently, the number of turns first
decreases and later increases, reflecting a dynamic adjustment in the agent’s search strategy. In
contrast, removing this reward term (λs = 0.0) results in unstable training and degenerate behaviors,
such as uncontrolled search usage or failure to converge. With λs = 0.0, the rollout sample in Table 4
shows that the model often fails to stop before exhausting the maximum number of search calls and
produces no final answer, ultimately causing training to crash.

7 CONCLUSION AND FUTURE WORK

In this paper, we highlighted the importance of turn-level rewards for multi-turn agent tasks. By
introducing carefully designed intermediate signals, we extended GRPO and PPO into multi-turn
variants, allowing LLM agents to receive more informative feedback at each stage of interaction.
Experiments on reasoning-augmented search agents show that incorporating turn-level rewards
substantially improves both the stability and accuracy of training across different RL algorithms. To
the best of our knowledge, this is the first systematic study of turn-level rewards in the context of
multi-turn RL for LLM agents. We believe that turn-level rewards have broad applicability beyond
search, offering a general mechanism for improving the effectiveness of multi-turn agents in diverse
interactive environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brand-
stetter, and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. Advances in
Neural Information Processing Systems, 32, 2019.

Ali Baheri and Cecilia Alm. Llms-augmented contextual bandit. In NeurIPS 2023 Foundation Models
for Decision Making Workshop. NeurIPS 2023, 2023.

Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl:
Training in-the-wild device-control agents with autonomous reinforcement learning. Advances in
Neural Information Processing Systems, 37:12461–12495, 2024.

Djallel Bouneffouf and Raphael Feraud. Multi-armed bandits meet large language models. arXiv
preprint arXiv:2505.13355, 2025.

William Brown. Verifiers: Reinforcement learning with llms in verifiable environments. https:
//github.com/willccbb/verifiers, 2025.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pp. 3676–3713. PMLR, 2023.

Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger, Vladlen
Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive llm agents.
arXiv preprint arXiv:2502.01600, 2025a.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Fan Yang, Zenan Zhou,
Weipeng Chen, Haofen Wang, Jeff Z Pan, et al. Learning to reason with search for llms via
reinforcement learning. arXiv preprint arXiv:2503.19470, 2025b.

Jie Cheng, Ruixi Qiao, Lijun Li, Chao Guo, Junle Wang, Gang Xiong, Yisheng Lv, and Fei-Yue Wang.
Stop summation: Min-form credit assignment is all process reward model needs for reasoning.
arXiv preprint arXiv:2504.15275, 2025.

Sanjiban Choudhury. Process reward models for llm agents: Practical framework and directions.
arXiv preprint arXiv:2502.10325, 2025.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025a.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025b.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. arXiv
preprint arXiv:2309.17452, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Yiran Guo, Lijie Xu, Jie Liu, Dan Ye, and Shuang Qiu. Segment policy optimization: Effective
segment-level credit assignment in rl for large language models. arXiv preprint arXiv:2505.23564,
2025b.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. Advances in neural information processing systems, 30, 2017.

10

https://github.com/willccbb/verifiers
https://github.com/willccbb/verifiers

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060,
2020.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Bowen Jin, Jinsung Yoon, Priyanka Kargupta, Sercan O Arik, and Jiawei Han. An empirical
study on reinforcement learning for reasoning-search interleaved llm agents. arXiv preprint
arXiv:2505.15117, 2025a.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-r1:
Training llms to reason and leverage search engines with reinforcement learning. arXiv preprint
arXiv:2503.09516, 2025b.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and
Min-Yen Kan (eds.), Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL https:
//aclanthology.org/P17-1147/.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Bespoke Labs. Improving multi-turn tool use with reinforce-
ment learning. https://www.bespokelabs.ai/blog/
improving-multi-turn-tool-use-with-reinforcement-learning, 2025.
Accessed: 2025-04-17.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025a.

Yi-Chen Li, Tian Xu, Yang Yu, Xuqin Zhang, Xiong-Hui Chen, Zhongxiang Ling, Ningjing Chao,
Lei Yuan, and Zhi-Hua Zhou. Generalist reward models: Found inside large language models.
arXiv preprint arXiv:2506.23235, 2025b.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Runze Liu, Fengshuo Bai, Yali Du, and Yaodong Yang. Meta-reward-net: Implicitly differentiable
reward learning for preference-based reinforcement learning. Advances in Neural Information
Processing Systems, 35:22270–22284, 2022.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. arXiv preprint
arXiv:2310.10080, 2023.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories. arXiv preprint arXiv:2212.10511, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

11

https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://www.bespokelabs.ai/blog/improving-multi-turn-tool-use-with-reinforcement-learning
https://www.bespokelabs.ai/blog/improving-multi-turn-tool-use-with-reinforcement-learning

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van Hasselt, Olivier
Pietquin, and Laura Toni. A survey of temporal credit assignment in deep reinforcement learning.
arXiv preprint arXiv:2312.01072, 2023.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur,
and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958, 2025.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Bytedance Seed. Seed-thinking-v1. 5: Advancing superb reasoning models with re-
inforcement learning. Technical report, Technical report, ByteDance, 2025. URL
https://github.com/ByteDance-Seed/Seed-Thinking-v1.5/blob/main/
seed-thinking-v1.5.pdf.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Joykirat Singh, Raghav Magazine, Yash Pandya, and Akshay Nambi. Agentic reasoning and tool
integration for llms via reinforcement learning. arXiv preprint arXiv:2505.01441, 2025.

Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models. In International Conference on Machine Learning (ICML), 2025.

Shengjie Sun, Runze Liu, Jiafei Lyu, Jing-Wen Yang, Liangpeng Zhang, and Xiu Li. A large
language model-driven reward design framework via dynamic feedback for reinforcement learning.
Knowledge-Based Systems, 326:114065, 2025.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, Jiahao Qiu, Shijue Huang, Bowen Jin,
Mengdi Wang, Kam-Fai Wong, and Heng Ji. Otc: Optimal tool calls via reinforcement learning.
arXiv preprint arXiv:2504.14870, 2025a.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533, 2022.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Kefan Yu,
Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, et al. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025b.

12

https://github.com/ByteDance-Seed/Seed-Thinking-v1.5/blob/main/seed-thinking-v1.5.pdf
https://github.com/ByteDance-Seed/Seed-Thinking-v1.5/blob/main/seed-thinking-v1.5.pdf
https://github.com/huggingface/trl

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, and Yichao Wu.
Stepsearch: Igniting llms search ability via step-wise proximal policy optimization. arXiv preprint
arXiv:2505.15107, 2025c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Luhuan Wu, Brian L. Trippe, Christian A. Naesseth, David M. Blei, and John P. Cunningham.
Practical and asymptotically exact conditional sampling in diffusion models. In Advances in
Neural Information Processing Systems 36 (NeurIPS 2023), 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep CALM and
explore: Language models for action generation in text-based games. In Bonnie Webber,
Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 8736–8754, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.704. URL
https://aclanthology.org/2020.emnlp-main.704/.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via
reinforcement learning. Advances in neural information processing systems, 37:110935–110971,
2024.

Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu,
Zhiding Yu, and Guilin Liu. Nemotron-research-tool-n1: Tool-using language models with
reinforced reasoning. arXiv preprint arXiv:2505.00024, 2025a.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025b.

Zijing Zhang, Ziyang Chen, Mingxiao Li, Zhaopeng Tu, and Xiaolong Li. Rlvmr: Reinforcement
learning with verifiable meta-reasoning rewards for robust long-horizon agents. arXiv preprint
arXiv:2507.22844, 2025c.

13

https://aclanthology.org/2020.emnlp-main.704/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A LLM USAGE

In this work, LLMs were used exclusively for polishing the writing. No part of the technical content,
experimental design, or analysis relied on LLMs. The authors retain full responsibility for the
correctness and originality of the ideas, methods, and results.

B RELATED WORK

B.1 REWARD DESIGN AND CREDIT ASSIGNMENT IN RL

In classical RL domains such as games and robotic control (Schrittwieser et al., 2020; Liu et al.,
2022; Sun et al., 2025), dense rewards provide feedback at nearly every decision step. This shaping
shortens the credit assignment horizon and typically improves sample efficiency and training stability,
though it also risks mis-specification and reward hacking when poorly designed (Hadfield-Menell
et al., 2017). In the context of LLM reasoning (Lightman et al., 2023; Uesato et al., 2022), dense
rewards often take the form of process-based signals that supervise intermediate steps rather than
only final outcomes, and they have been shown to be highly effective, frequently outperforming
outcome-only rewards. The credit assignment problem (Pignatelli et al., 2023) has recently attracted
growing attention in LLM reasoning research (Shao et al., 2024; Cui et al., 2025; Cheng et al., 2025;
Feng et al., 2025b; Guo et al., 2025b), particularly in textual reasoning tasks such as mathematical
problem solving. In multi-turn agent interaction tasks, turn-level rewards assess each complete
agent–environment interaction, such as a tool call and its result, providing feedback at the granularity
of a single turn. This setting naturally highlights the benefits of process-level rewards and credit
assignment However, the design of effective rewards for multi-turn agents, as well as RL algorithms
with fine-grained credit assignment, remains underexplored.

B.2 RL FOR LLM AGENTS

RL has been applied to train long-horizon multi-turn LLM agents in diverse domains, including
search (Chen et al., 2025b; Jin et al., 2025b;a), tool use (Feng et al., 2025a; Li et al., 2025a; Qian
et al., 2025; Wang et al., 2025a; Labs, 2025; Zhang et al., 2025a; Singh et al., 2025), text-based
games (Yao et al., 2020; Carta et al., 2023; Zhai et al., 2024; Wang et al., 2025b), web shopping (Yao
et al., 2022), digital app interaction (Chen et al., 2025a), and mobile device control (Bai et al., 2024).
A number of these studies (Jin et al., 2025a; Feng et al., 2025a; Li et al., 2025a; Qian et al., 2025;
Wang et al., 2025a; Labs, 2025; Zhang et al., 2025a; Singh et al., 2025) apply RL algorithms such as
GRPO and PPO to train tool-using LLM agents, including calculators, code interpreters, and search
engines, thus enabling reasoning with external tools. However, these methods generally collapse
outcome- and turn-level signals into a single trajectory-level reward, limiting fine-grained credit
assignment. The most closely related work is StepSearch (Wang et al., 2025c), which incorporates
PPO with turn-level rewards for multi-turn search. However, its approach primarily relies on data
augmentation and requires prompt modifications during preprocessing. In contrast, our method avoids
such preprocessing and prompt engineering, providing a cleaner and more general framework for
turn-level reward design. Furthermore, our framework is orthogonal to existing search-agent methods
(Wang et al., 2025c) and is broadly applicable to multi-turn LLM agents beyond search tasks.

C PPO EXPERIMENTS

C.1 EVALUATION METRICS (PPO)

For each trajectory, we evaluate the following metrics:

Answer correctness. The answer correctness reward evaluates whether the extracted answer (from
the <answer> tag) exactly matches any accepted ground-truth answer after normalization (e.g.,
lowercasing and whitespace removal).

Format correctness. The format correctness reward ensures structural validity by verifying that the
outputs in both the final turn and all intermediate turns comply with the specifications described in
Section 5.2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Retrieval correctness. The retrieval correctness reward evaluates whether any accepted answer
appears in at least one search result (from the <information> tag), using case-insensitive string
matching.

Each reward is assigned a value of 1.0 if the criterion is satisfied and 0 otherwise.

C.2 IMPLEMENTATION DETAILS (PPO)

We follow most of the experimental settings in Search-R1 (Jin et al., 2025b).

PPO Training. All experiments are conducted on 8 NVIDIA H100 GPUs. We enable gradient
checkpointing and adopt Fully Sharded Data Parallel (FSDP) with CPU offloading. The learning
rates of the policy and critic models are set to 1e−6 and 1e−5, respectively. Training is performed
for 500 steps over 4 epochs, with warm-up ratios of 0.285 and 0.015 for the policy and critic models,
respectively. The total batch size is 512, with a mini-batch size of 256 and a micro-batch size of 64
for policy updates, and a micro-batch size of 8 for critic updates. We adopt GAE with λ = 1 and
γ = 1. The maximum sequence length is set to 4,096 tokens, with a maximum response length of
500 tokens and a maximum retrieved content length of 500 tokens. The KL-divergence regularization
coefficient β and clipping ratio ϵ are set to 0.001 and 0.2, respectively.

Rollout Generation. We use vLLM (Kwon et al., 2023) with a tensor parallel size of 4, a GPU
memory utilization ratio of 0.6, a temperature of 1.0, and a top-p value of 1.0.

C.3 LLM JUDGE SETUP FOR TURN-LEVEL EVALUATION (PPO)

In our experiments, we use gpt-oss-120b2 as the judge model. We provide both outcome-level and
turn-level LLM-as-judge prompts, where the outcome-level and turn-level scores are used for PPO
and MT-PPO training.

Outcome-Level LLM-as-Judge Prompt

You are an expert evaluator for multi-turn search-augmented reasoning systems. Given a user
prompt, ground truth answer, and multi-turn generated response, determine whether the final
answer matches the ground truth.

EVALUATION TASK
Evaluate whether the multi-turn response provides a correct final answer that matches the ground
truth.

SCORING CRITERIA
Score 1.0 (Correct):

• The answer within <answer></answer> tags matches the ground truth.
Score 0.0 (Incorrect):

• No <answer></answer> tags found, or
• The answer within <answer></answer> tags does not match the ground truth, or
• The answer in <answer> tag exceeds 5 tokens.

OUTPUT FORMAT
Provide your evaluation using this format:

• <reasoning> Your step-by-step reasoning about whether the answer matches the
ground truth </reasoning>

• <score> 1.0 or 0.0 </score>

REQUIREMENTS:
• First provide reasoning, then the score.
• Score must be exactly 1.0 or 0.0.

2https://huggingface.co/openai/gpt-oss-120b

15

https://huggingface.co/openai/gpt-oss-120b

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

EVALUATION DATA
{prompt_text}
{turns_text}
{ground_truth_text}

Your Evaluation

Turn-Level LLM-as-Judge Prompt

You are an expert evaluator for multi-turn search-augmented reasoning systems. Given a
user prompt, ground truth answer, and multi-turn generated response, evaluate each turn’s
effectiveness and compliance.

EVALUATION TASK
Assess each turn’s format compliance, content quality, and contribution toward the ground truth
answer.

SCORING CRITERIA
FINAL TURN (Last Turn) - Score Range: [-1.0 to 1.0]
Format Compliance:

• Required: <think>...</think><answer>...</answer> (tags only, once
each, in order)

• Answer in <answer> tag must not exceed 5 tokens
Answer Correctness:

• Correct and complete answer in <answer> tag that matches the ground truth
Scoring Rules:

• If format is incorrect: Final Turn Score = -1.0
• If format is correct, answer is incorrect: Final Turn Score = 0.2
• If format is correct, answer is correct: Final Turn Score = 1.0

INTERMEDIATE TURNS - Score Range: [-1.0 to 1.0]
Format Compliance:

• Required: <think>...</think><search>...</search>
<information>...</information> (tags only, once each, in order)

• Correct format: +0.1
• Incorrect format: -0.2

Information Quality:
• Relevant information in <information> tag that helps toward the ground truth

answer (e.g., ground truth exists in the retrieved result within <information> tag):
+0.3

• Irrelevant or unhelpful information in <information> tag: +0.0
Search Efficiency Penalty:

• Number of searches = Total count of <search> tags across all turns from Turn 1 up
to and including the current turn

• Search penalty = Number of searches × (-0.1)
• Encourages finding answers with fewer searches

Intermediate Turn Score = Format Compliance + Information Quality + Search Penalty

OUTPUT FORMAT
Provide your evaluation using ONLY these XML tags:

<reasoning>
Systematically evaluate each turn: check format compliance,
assess content quality, calculate scores with clear explanations

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

</reasoning>

<score>
Turn1: X.X
Turn2: X.X
Turn3: X.X
...
</score>

REQUIREMENTS:
• Must provide exactly {len(turns)} scores (one per turn)
• Use decimal format (e.g., 0.5, -0.3, 1.0)
• Use only the specified XML tags, no additional text

EVALUATION DATA
{prompt_text}
{turns_text}
{ground_truth_text}
TURNS TO EVALUATE: {len(turns)}

Your Evaluation

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C.4 ADDITIONAL EXPERIMENT RESULTS (PPO)

0 100 200 300 400 500
Step

0.0

0.1

0.2

0.3

0.4

0.5

An
sw

er
 C

or
re

ct
ne

ss
Validation Reward (NQ)

PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rm

at
 C

or
re

ct
ne

ss

Validation Reward (NQ)
PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
tr

ie
va

l C
or

re
ct

ne
ss

Validation Reward (NQ)
PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.1

0.2

0.3

0.4

An
sw

er
 C

or
re

ct
ne

ss

Validation Reward (HotpotQA)
PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rm

at
 C

or
re

ct
ne

ss

Validation Reward (HotpotQA)
PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
tr

ie
va

l C
or

re
ct

ne
ss

Validation Reward (HotpotQA)
PPO
MT-PPO

Figure 5: Validate reward curves recorded during training for PPO and MT-PPO on the NQ and
HotpotQA datasets. The rewards include answer correctness, format correctness, and retrieval
correctness. Solid lines show mean reward values, while shaded regions indicate variability across
five independent runs.

0 100 200 300 400 500
Step

0.0

0.1

0.2

0.3

0.4

0.5

O
ut

co
m

e
Ju

dg
e

Re
w

ar
d

Training Reward (NQ)
PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.1

0.2

0.3

0.4

0.5

An
sw

er
 C

or
re

ct
ne

ss

Training Reward (NQ)
PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rm

at
 C

or
re

ct
ne

ss

Training Reward (NQ)
PPO
MT-PPO

0 100 200 300 400 500
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
tr

ie
va

l C
or

re
ct

ne
ss

Training Reward (NQ)
PPO
MT-PPO

Figure 6: Training reward curves recorded during training for PPO and MT-PPO on the NQ dataset.
The rewards include outcome judge reward, answer correctness (exact match), format correctness, and
retrieval correctness. Solid lines show mean reward values, while shaded regions indicate variability
across five independent runs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

C.5 ROLLOUT EXMAPLES (PPO)

Table 3: A rollout example of generating a response with a correct format.

Question: who will take the throne after the queen dies?

<think> I need to find out who will take the throne after the queen dies. I’ll search for it. </think>

<search> who will take the throne after the queen dies </search>

<information> Doc 1(Title: “Succession to the British throne”) Catholics are eligible. Queen
Elizabeth II is the sovereign, and her .. Doc 2(Title: “Monarchy of the United Kingdom”)
Monarchy of the United Kingdom The monarchy of the United Kingdom, commonly referred to
as ... Doc 3(Title: “Demise of the Crown”) the Crown. This erroneous meaning is undermined
by the principle in constitutional law of the continuity ... </information>

<think> I found out that after the queen dies, her heir apparent will take the throne. I need to
find out who the heir apparent is for Queen Elizabeth II. </think>

<search> heir apparent for Queen Elizabeth II </search>

<information> Doc 1(Title: “Heir apparent”) rank behind her brothers regardless of their ages
or her age. Thus, normally, even an only ... Doc 2(Title: “Heir apparent”) to the 16 thrones
of Elizabeth II to absolute primogeniture, except for male heirs born ... Doc 3(Title: “Heir
presumptive”) or the senior member of a collateral line (if the monarch is childless); the birth ...
</information>

<think> I found out that the heir apparent for Queen Elizabeth II is her eldest son, Charles,
Prince of Wales. Now I can provide the answer. </think>

<answer> Charles, Prince of Wales </answer>

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 4: A rollout example of generating a response with an incorrect format, where there is no
answer in the last turn

Question: in which sea pearl is found in india?

<think> I need to find out in which sea pearl is found in India. I’ll search for it. </think>

<search> in which sea pearl is found in India </search>

<information> Doc 1(Title: Pearl) pearl: saltwater and freshwater pearls come in ... Doc
2(Title: Pearl) is a particularly large one weighing 14 lb (6.4 kg). The largest ... Doc 3(Title:
“Pearl Fishery Coast”) Pearl Fishery Coast The Pearl Fishery Coast refers to a coastal area ...
</information>

<think> I found out that pearls are found in the Indian Ocean. Now I need to find out in which
sea pearls are found in India. </think>

<search> in which sea are pearls found in India </search>

<information> Doc 1(Title: Pearl) pearl: saltwater and freshwater pearls come in many different
... Doc 2(Title: “Geography of India”) Great Nicobar Island); Rama’s Bridge, and Point Calimere.
The Arabian ... Doc 3(Title: “Bay of Bengal”) the gems of Sri Lanka. Garnet and other precious
gems are also found in abundance in the ... </information>

<think> I found out that pearls are found in the Indian Ocean. Now I need to find out in which
sea pearls are found in India. </think>

<search> in which sea pearls are found in India </search>

<information> Doc 1(Title: Pearl) pearl: saltwater and freshwater pearls come in many different
colors. While white, and ... Doc 2(Title: Pearl) pearls”. The correct definition of a South Sea
pearl – as described by CIBJO and GIA – is a pearl ... Doc 3(Title: Pearl) is a particularly large
one weighing 14 lb (6.4 kg). The largest known pearl (also from ... </information>

<think> I found out that pearls are found in the Indian Ocean. Now I need to find out in which
sea pearls are found in India. </think>

<search> in which sea are pearls found in India </search>

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

D DERIVATION OF MT-GRPO FOR GENERAL MULTI-TURN SETTINGS

We first define the intermediate turn-level advantage Ai,(k), computed by normalizing the intermediate
rewards across the sampling group:

Ai,(k) =
Ri,(k) − mean({Ri,(k)}Gi=1)

std({Ri,(k)}Gi=1)
, Ri,(k) = R(sk, ai,k) (11)

where Ri,(k) = R(sk, ai,k) denotes the reward of the i-th sampled action ai,k given the state sk in the
k-th turn. Notably, we require G rollout actions {ai,k}Gi=1 at the state sk to compute the intermediate
advantage Ai,(k). Specifically, the final turn-level advantage in the last turn can be defined as

Ai,(K) =
Ri,K − mean({Ri,K}Gi=1)

std({Ri,K}Gi=1)
, Ri,K = R(si,K , ai,K) = R(x, yi) (12)

which is identical to the trajectory-level definition in Eq. (4).

We then define the cumulative turn-level advantage Āi,(k), which credits the current action by
aggregating current and future advantages:

Āi,(k) = Ai,(k) +

K∑
l=k+1

Ai,(l) (13)

To solve Problem (2), in our MT-GPRO algorithm, the cumulative turn-level advantage is used in the
GRPO loss function in Eq. (3) to guide policy optimization. This advantage is assigned uniformly to
all tokens generated within the k-th turn, i.e.,

Ai,1 = · · · = Ai,t = Āi,(k)

where t indexes tokens within the k-th turn,

E GRPO EXPERIMENTS

E.1 TASK FORMULATION (GRPO)

To emphasize the importance of fine-grained credit assignment in multi-turn agent interactions, we
formulate the task under the MDP framework, involving multiple steps of reasoning, tool use, and
answer summarization for question answering. Specifically, our tool-use environment is modeled on
a Wikipedia search setup, where the agent learns to leverage a Wikipedia search engine to retrieve
relevant information and generate accurate answers. The goal is to improve the agent’s performance
through effective integration of external tool use. Without tool calling, the agent must rely solely
on its internal knowledge to answer questions, which can limit accuracy, especially for fact-based
queries requiring up-to-date or domain-specific information.

To clearly illustrate the impact of credit assignment, we design a simplified two-turn tool-use
environment in which the LLM agent can interact with the search tool environment for a maximum of
two turns. In this setup, the agent is allowed to call the Wikipedia search engine at most once before
submitting an answer to the question. Figure 7 illustrates the pipeline of the multi-turn, tool-calling
LLM agent system. Given a system prompt and a question, the LLM agent first performs a reasoning
step and issues a tool call, specifying both the tool name and a query derived from its reasoning. The
external tool environment processes the query and returns a search result. Based on the retrieved
result, the agent performs a second round of reasoning to summarize the information and generate
the final answer. The whole process can be summarized as

reasoning → search → result → reasoning → answer

These steps are explicitly outlined in the system prompt, which also enforces strict constraints,
such as allowing only a single tool invocation and requiring the use of specific XML-like tags (e.g.,
<reasoning>, <tool>, <result>, <answer>) to delineate each stage of the interaction. The
full system prompt is provided in Appendix E.5. Table 6 presents an example rollout in which the
agent successfully calls the search tool. If the tool name or argument format is incorrect, the tool

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 7: Overview of the multi-turn LLM agent pipeline and comparison of different advantage
estimation methods. The agent interacts with the tool environment across multiple steps: reasoning,
tool use, and answer generation, receiving both turn-level and outcome-level rewards. GRPO is used
as a representative algorithm to illustrate the different advantage estimation strategies. GRPO-OR
and GRPO-MR serve as baselines with trajectory-level advantage estimation, while MT-GRPO is our
proposed variant with fine-grained turn-level advantage estimation.

environment returns an error message, indicated by the response beginning with “Error:”. If the
agent fails to include a tool-calling command in the first reasoning step, the tool environment will not
be invoked. If the XML format or tag usage is incorrect—for example, if tags are missing, nested
improperly, or misnamed—the environment may fail to parse the agent’s response, resulting in an
error or a skipped tool invocation. Additional rollout examples where the agent fails to call the tool
correctly are provided in Appendix E.6.

Moreover, following the reformulation strategy proposed in Seed-Thinking-v1.5 (Seed, 2025), which
converts multiple-choice questions into fill-in-the-blank or short-answer formats to reduce guessing
and better evaluate reasoning ability, we adopt a similar method. Specifically, we convert our tasks
into short-answer form and evaluate the model’s responses based on exact match with the ground-truth
answers.

E.2 REWARD DESIGN (GRPO)

Figure 7 illustrates the pipeline of the multi-turn, tool-calling LLM agent system. To align with the
environment of the tool-calling LLM agent, we design two types of verifiable reward functions.

Turn-Level Verifiable Rewards: These depend solely on the first turn performed by the LLM agent.
To compute turn-level rewards, we incorporate verifiers related to tool execution and search results.
These verifiers ensure that the search engine is correctly invoked and that the ground-truth answer
appears in the retrieved results.

• Tool Execution Reward: Awards 0.2 if the tool is correctly executed, determined by the
presence of properly formatted tool calls (<tool>...</tool>) and successful responses
(i.e., the environment’s response does not begin with “Error:”).

• Search Result Answer Presence: Awards 0.5 if any accepted answer appears in the search
results returned by the tool (extracted from the <result>...</result> tag), using a
case-insensitive comparison.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Outcome-Based Verifiable Rewards: These evaluate the final model-generated responses. Specifi-
cally, they assess both the correctness of the answer and its formatting, ensuring that the output aligns
with the expected structure and content.

• Final Answer Presence Reward: Awards 0.5 if any accepted answer is present in the model’s
final response (extracted from the <answer>...</answer> tag).

• Exact Match Reward: Awards 1.0 if the model’s answer (extracted from
<answer>...</answer>) exactly matches any accepted answer after standard text
preprocessing (i.e., lowercasing and stripping whitespace).

• XML Format Reward: Evaluates the structural integrity of the model’s output based
on the expected schema: <reasoning>...</reasoning> followed by either
<tool>...</tool> or <answer>...</answer>. See the agent’s pipeline in Fig-
ure 7. Checks include: (1) the presence of at least one expected field (<reasoning>,
<tool>, <answer>), (2) correct spacing (no leading or trailing whitespace within tags),
(3) message starting with <reasoning>, and (4) message ending with </tool> or
</answer>. Partial credit is awarded based on these criteria (weighted: 40% field pres-
ence, 20% spacing, 20% correct starting tag, 20% correct ending tag), and the final score is
scaled by 0.2.

• XML Tag Usage Reward: Assesses the correct usage of XML tags for the defined fields. For
each tag, the reward verifies that exactly one opening and one closing tag are present. The
reward is the proportion of correctly used tags (normalized by the number of tags checked),
scaled by 0.2.

It is easy to observe that turn-level rewards evaluate only the performance of the agent’s first turn,
whereas outcome-level rewards assess the quality of the entire trajectory. This distinction leads to
several characteristic scenarios:

• Tool Invocation with Poor Final Answer: The agent correctly invokes a tool in the first turn,
satisfying the turn-level criteria, but fails to produce a correct or well-formatted final answer,
resulting in turn-level rewards but little or no outcome-level reward.

• Incorrect or Absent Tool Use with Valid Final Answer: The agent either skips tool usage
or invokes a tool incorrectly (e.g., due to malformed syntax or an error response), yet still
generates a correct and well-structured final answer. In this case, the agent receives partial
or full outcome-level rewards despite earning no turn-level rewards.

• Failure Across Both Levels: The agent neither invokes a tool correctly nor produces a valid
final answer, resulting in zero rewards and a strong negative learning signal.

E.3 EXPERIMENT SETUP (GRPO)

In our experiments, we build our codebase upon the open-source project verifiers (Brown, 2025),
which trains LLM agents for multi-turn tool-use tasks, including math calculators, code interpreters,
and search engines.

Task & Dataset. We focus on the multi-turn reasoning and search-based tool-use task. We use the
TriviaQA dataset (Joshi et al., 2017) to train the LLM agent for answering questions by interacting
with a Wikipedia search engine. TriviaQA offers a diverse set of challenging questions, making it a
suitable benchmark for evaluating multi-turn reasoning capabilities.

Evaluated Methods We compare our proposed MT-GPRO with vanilla GRPO.

• GRPO: original GRPO with trajectory-level advantage estimation
– GRPO-OR: GRPO using only outcome rewards
– GRPO-MR: GRPO using merged outcome and turn-level rewards

• MT-GRPO (ours): GPRO variant with turn-level advantage estimation using both outcome
and turn-level rewards

Training Details. We use Qwen2.5-7B (Yang et al., 2024) as the base model. Experiments are
conducted on a node equipped with 8 NVIDIA H100 GPUs: one GPU is dedicated to rollout

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Table 5: Performance comparison across different methods on reward scores evaluated on the
validation set. Values in parentheses indicate the reward range for each metric. Bold numbers indicate
the best performance for each reward type.

Model
Turn-Level Reward Outcome Reward

Tool Execution
(0-0.2)

Search Answer
(0-0.5)

XML Format
(0-0.2)

Exact Match
(0-1)

Qwen2.5-7B-Base 0.0559 0.0934 0.1562 0.0469

Qwen2.5-7B-Instruct 0.1626 0.2814 0.1982 0.1559

Qwen2.5-7B-Base + GRPO-OR 0 0 0.04 0

Qwen2.5-7B-Base + GRPO-MR 0.2 0.3724 0.1994 0.3346

Qwen2.5-7B-Base + MT-GRPO 0.2 0.3926 0.1996 0.5010

generation, while the remaining seven GPUs are used for model training. Rollout generation is
handled by vLLM (Kwon et al., 2023). Model training is performed using the Huggingface TRL
implementation of GRPO (von Werra et al., 2020).

Hyperparameters. For all methods, the number of rollout generations is set to 21. The maximum
completion length during generation is set to 1024 tokens. The KL divergence penalty is disabled by
setting β = 0. The learning rate is fixed at 1× 10−6. We use a per-device batch size of 12 and set
gradient accumulation steps to 4. Each batch undergoes two training iterations. The total number of
training steps is set to 300.

E.4 MAIN RESULTS (GRPO)

Figure 8 shows reward component curves during training across various algorithms. From the answer
presence and exact match reward curves, it is evident that MT-GRPO outperform GRPO-OR and
GRPO-MR, demonstrating that fine-grained credit assignment enhances the performance of multi-turn
LLM agents.

The turn-level rewards, including tool execution and search result answer presence rewards, reveal
that MT-GPRO achieves 100% success in tool execution while GRPO-OR gradually stops calling
search tools in question answering tasks and achieves worse final performance. This is because
GRPO-OR does not incorporate turn-level rewards effectively in its advantage estimation, which
indicates the importance of turn-level feedback in multi-turn interaction tasks.

Figures 9, 10, and 11 illustrate reward component curves during training with different algorithms,
where shaded regions represent the range between the maximum and minimum values across 10
runs, showcasing the variability in learning performance. Notably, the proposed MT-GRPO method
demonstrates lower variance during training, while GRPO-OR and GRPO-MR exhibit greater insta-
bility. An interesting observation is that the tool execution curve of MT-GRPO temporarily drops
sharply around step 230–250 but subsequently recovers and stabilizes. This demonstrates that even if
the agent forgets to call search tools in the middle of the training, it eventually learns to incorporate
them in the final stages. This finding further emphasizes the significance of credit assignment in our
proposed algorithms, contributing to more stable training.

Table 5 presents the validation reward scores across different models. MT-GRPO achieves the highest
performance in all reward metrics. Compared to GRPO-MR, which reaches 0.3724 in final search
answer and 0.3346 in exact match, MT-GRPO demonstrates clear improvements, especially in exact
match with a margin of +0.1664. In contrast, GRPO-OR performs poorly across all metrics, scoring
0 in turn-level rewards and only 0.04 in XML format. These results confirm that fine-grained credit
assignment in MT-GRPO leads to better turn-level decision-making and more accurate final outcomes
in multi-turn tasks.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

0 50 100 150 200 250 300
Steps

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

Re
wa

rd
 S

co
re

Tool Execution Reward (Turn-Level Reward)

MT-GRPO
GRPO-MR
GRPO-OR

0 50 100 150 200 250 300
Steps

0.00

0.10

0.20

0.30

0.40

Re
wa

rd
 S

co
re

Search Result Answer Presence Reward (Turn-Level Reward)

MT-GRPO
GRPO-MR
GRPO-OR

0 50 100 150 200 250 300
Steps

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

Re
wa

rd
 S

co
re

XML Tag Usage Reward (Outcome Reward)

MT-GRPO
GRPO-MR
GRPO-OR

0 50 100 150 200 250 300
Steps

0.14

0.15

0.16

0.17

0.18

0.19

0.20
Re

wa
rd

 S
co

re

XML Format Reward (Outcome Reward)

MT-GRPO
GRPO-MR
GRPO-OR

0 50 100 150 200 250 300
Steps

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Re
wa

rd
 S

co
re

Final Answer Presence Reward (Outcome Reward)

MT-GRPO
GRPO-MR
GRPO-OR

0 50 100 150 200 250 300
Steps

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Re
wa

rd
 S

co
re

Exact Match Reward (Outcome Reward)

MT-GRPO
GRPO-MR
GRPO-OR

Figure 8: Curves for different training reward components during training with various algorithms
(MT-GRPO, GRPO-OR, and GRPO-MR). Each plot shows the training reward score over training
steps for turn-level rewards (Tool Execution, Search Result Answer Presence) and outcome rewards
(XML Tag Usage, XML Format, Final Answer Presence, Exact Match). Dotted lines represent the
average reward across 10 runs, while solid lines show trends smoothed using the Exponential Moving
Average (EMA).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

E.5 SYSTEM PROMPT (GRPO)

System Prompt

You have access to the following tools to help solve problems:

{tool_descriptions}

Follow these steps exactly once:
1. Think through your reasoning inside <reasoning> tags
2. Use a tool by writing a JSON command inside <tool> tags with:

• "name": the tool to use
• "args": the arguments for the tool

3. You will see the tool’s output inside <result> tags
4. Think through the tool’s output inside <reasoning> tags
5. Based on your reasoning, provide your final answer inside <answer> tags

Important:
• Use the tool exactly once – DO NOT attempt to call the tool again even if the first

search isn’t helpful
• Work with both your prior knowledge and the single tool call
• If the tool result is unhelpful, rely on your prior knowledge
• Tools expect valid JSON – follow the examples carefully
• Do not invent tools or arguments that aren’t listed
• Analyze the result in a reasoning step before giving your answer
• Your answer should match the expected ground-truth

Wiki Search Tool Descriptions

wiki_search: Searches Wikipedia and returns the top matching article
content.

Arguments:
- query

E.6 ROLLOUT EXAMPLES (GRPO)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Table 6: A rollout example of successfully calling the search tool during training.

Question: What serial killer, who buried the remains of 26 of his victims in his Chicago crawl
space, was known as the “Killer Clown”?

<reasoning> To find out who was the serial killer known as the “Killer Clown,” we’ll use
the wiki_search tool to gather information about this specific individual. </reasoning>
<tool>

{
"name": "wiki_search",
"args": {

"query": "Killer Clown serial killer buried remains in Chicago crawl space"
}

}
</tool>

<result> John Wayne Gacy. John Wayne Gacy (March 17, 1942 – May 10, 1994) was an
American serial killer who raped, tortured, and murdered at least 33 teenage boys and young
men between 1972 and 1978 in Cook County, Illinois (a part of metropolitan Chicago). All of
Gacy’s known murders were committed inside his Norwood Park ranch house. . . </result>
<reasoning> From the information provided, John Wayne Gacy, referred to as the “Killer
Clown,” was a serial killer known for burying the remains of at least 26 of his victims in his
Chicago crawl space. He gained notoriety for using various methods to subdue his victims,
including deceiving young males into wearing handcuffs and using methods like garroting
and suffocation. His final confirmed victim was identified through DNA testing in 2011.
Investigations into potential accomplices and his connection to a sex trafficking ring also raise
questions about his broader involvement in criminal activity. </reasoning>
<answer> John Wayne Gacy </answer>

Table 7: A rollout example of failing to call the search tool and producing a wrong answer.

Question: In the horror film Them, what type of creatures were Them?

<reasoning> In the horror film “Them!”, the main creatures were giant ants. I know this
because I remember from my general knowledge that “Them!” is a 1954 science fiction horror
film about giant ants and the damage they cause in a coastal town. So, to answer the question,
the creatures in “Them!” were giant ants. </reasoning>
<answer> Giant </answer>

Table 8: A rollout example of generating a response with an incorrect format.

Question: Who was the Canadian jazz pianist (1925-2007), winner of eight Grammy Awards
who released over 200 recordings?

<reasoning> I need to identify the Canadian jazz pianist, born in 1925 and died in 2007,
who won eight Grammy Awards and released over 200 recordings. This person’s name should
be easy to find with a Wikipedia search since the question specifies Grammy Awards and a long
recording history. Once I find the Wikipedia article, I can read about the pianist’s career to
confirm the details mentioned in the question. </reasoning>
Error: Tool command not found or invalid XML format. Please ensure correct formatting.
<answer><tool>< reasoning> From the Wikipedia search I found that Oscar Peterson,
born in 1925 and deceased in 2007, was a Canadian jazz pianist who won eight
Grammy Awards and released over 200 recordings. </reasoning><answer>Oscar Peter-
son<answer><result><answer>Oscar Peterson</answer>

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

E.7 ADDITIONAL EXPERIMENTAL RESULTS (GRPO)

0 50 100 150 200 250 300
Steps

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

Re
wa

rd
 S

co
re

Tool Execution Reward (Turn-Level Reward)

GRPO-OR

0 50 100 150 200 250 300
Steps

0.00

0.10

0.20

0.30

0.40

Re
wa

rd
 S

co
re

Search Result Answer Presence Reward (Turn-Level Reward)

GRPO-OR

0 50 100 150 200 250 300
Steps

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20

Re
wa

rd
 S

co
re

XML Tag Usage Reward (Outcome Reward)

GRPO-OR

0 50 100 150 200 250 300
Steps

0.14

0.15

0.16

0.17

0.18

0.19

0.20

Re
wa

rd
 S

co
re

XML Format Reward (Outcome Reward)

GRPO-OR

0 50 100 150 200 250 300
Steps

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Re
wa

rd
 S

co
re

Final Answer Presence Reward (Outcome Reward)

GRPO-OR

0 50 100 150 200 250 300
Steps

0.00

0.20

0.40

0.60

0.80

Re
wa

rd
 S

co
re

Exact Match Reward (Outcome Reward)

GRPO-OR

Figure 9: Curves for different training reward components during training using GRPO-OR, where
shaded regions represent the range between the maximum and minimum values across 10 runs.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

0 50 100 150 200 250 300
Steps

0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

0.20

Re
wa

rd
 S

co
re

Tool Execution Reward (Turn-Level Reward)

GRPO-MR

0 50 100 150 200 250 300
Steps

0.00

0.10

0.20

0.30

0.40

Re
wa

rd
 S

co
re

Search Result Answer Presence Reward (Turn-Level Reward)

GRPO-MR

0 50 100 150 200 250 300
Steps

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20

Re
wa

rd
 S

co
re

XML Tag Usage Reward (Outcome Reward)

GRPO-MR

0 50 100 150 200 250 300
Steps

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Re
wa

rd
 S

co
re

XML Format Reward (Outcome Reward)

GRPO-MR

0 50 100 150 200 250 300
Steps

0.00

0.10

0.20

0.30

0.40

Re
wa

rd
 S

co
re

Final Answer Presence Reward (Outcome Reward)

GRPO-MR

0 50 100 150 200 250 300
Steps

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Re
wa

rd
 S

co
re

Exact Match Reward (Outcome Reward)

GRPO-MR

Figure 10: Curves for different training reward components during training using GRPO-MR, where
shaded regions represent the range between the maximum and minimum values across 10 runs.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

0 50 100 150 200 250 300
Steps

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20

Re
wa

rd
 S

co
re

Tool Execution Reward (Turn-Level Reward)

MT-GRPO

0 50 100 150 200 250 300
Steps

0.10

0.20

0.30

0.40

0.50

Re
wa

rd
 S

co
re

Search Result Answer Presence Reward (Turn-Level Reward)

MT-GRPO

0 50 100 150 200 250 300
Steps

0.14

0.15

0.16

0.17

0.18

0.19

0.20

Re
wa

rd
 S

co
re

XML Tag Usage Reward (Outcome Reward)

MT-GRPO

0 50 100 150 200 250 300
Steps

0.15

0.16

0.17

0.18

0.19

0.20

Re
wa

rd
 S

co
re

XML Format Reward (Outcome Reward)

MT-GRPO

0 50 100 150 200 250 300
Steps

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Re
wa

rd
 S

co
re

Final Answer Presence Reward (Outcome Reward)

MT-GRPO

0 50 100 150 200 250 300
Steps

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Re
wa

rd
 S

co
re

Exact Match Reward (Outcome Reward)

MT-GRPO

Figure 11: Curves for different training reward components during training using MT-GRPO, where
shaded regions represent the range between the maximum and minimum values across 10 runs.

30

	1 Introduction
	2 Problem Formulation for Multi-Turn Agent Interaction
	2.1 Single-Turn Problem Formulation
	2.2 Multi-Turn Problem Formulation

	3 GRPO with Turn-Level Rewards for Multi-Turn Agentic Tasks
	3.1 GRPO for Single-Turn Formulation
	3.2 Turn-Level Credit Assignment for GRPO: A Simple Attempt

	4 PPO with Turn-Level Rewards for Multi-Turn Agentic Tasks
	5 Case Study: Multi-Turn Reasoning-Augmented Search Agent
	5.1 Task Formulation
	5.2 Turn-Level Verifiable Reward Design
	5.3 LLM as Judge for Turn-Level Evaluation

	6 Experiments
	6.1 Experiment Setup
	6.2 Main Results
	6.3 Ablation Study on Reward Design

	7 Conclusion and Future Work
	A LLM Usage
	B Related Work
	B.1 Reward Design and Credit Assignment in RL
	B.2 RL for LLM Agents

	C PPO Experiments
	C.1 Evaluation Metrics (PPO)
	C.2 Implementation Details (PPO)
	C.3 LLM Judge Setup for Turn-Level Evaluation (PPO)
	C.4 Additional Experiment Results (PPO)
	C.5 Rollout Exmaples (PPO)

	D Derivation of MT-GRPO for General Multi-Turn Settings
	E GRPO Experiments
	E.1 Task Formulation (GRPO)
	E.2 Reward Design (GRPO)
	E.3 Experiment Setup (GRPO)
	E.4 Main Results (GRPO)
	E.5 System Prompt (GRPO)
	E.6 Rollout Examples (GRPO)
	E.7 Additional Experimental Results (GRPO)

