REINFORCING MULTI-TURN REASONING IN LLM AGENTS VIA TURN-LEVEL REWARD DESIGN

Anonymous authorsPaper under double-blind review

ABSTRACT

This paper investigates approaches to enhance the reasoning capabilities of Large Language Model (LLM) agents using Reinforcement Learning (RL). Specifically, we focus on long-horizon multi-turn agent scenarios, which can be naturally modeled as Markov Decision Processes. Although RL algorithms such as Group Relative Policy Optimization (GRPO) and Proximal Policy Optimization (PPO) have been widely applied to train multi-turn LLM agents, they typically rely only on a sparse final reward and lack dense intermediate signals across multiple decision steps, limiting their performance on complex reasoning tasks. To bridge this gap, we propose a turn-level reward design strategy to enhance RL algorithms in multiturn agent tasks. By integrating turn-level rewards, we extend GRPO and PPO to their respective multi-turn variants, enabling fine-grained credit assignment. We conduct case studies on multi-turn reasoning-augmented search agents, where we carefully design two types of turn-level rewards: verifiable and LLM-as-judge. Our experiments on multi-turn search tasks demonstrate that incorporating welldesigned turn-level rewards enables RL algorithms to significantly outperform baseline methods with outcome-level rewards. Both training and validation reward curves illustrate that our method achieves greater stability, faster convergence, and higher accuracy. Numerical results across diverse question-answering datasets further show that our approach consistently delivers highest answer correctness and 100% format correctness.

1 Introduction

Reinforcement Learning (RL) has recently emerged as a powerful approach for improving the reasoning capabilities of Large Language Models (LLMs), allowing them to explore and refine long Chains of Thought (CoT) (Wei et al., 2022) in complex decision-making tasks. Building on this paradigm, reasoning-based LLMs, such as OpenAI's o1 (Jaech et al., 2024) and DeepSeek's R1 (Guo et al., 2025a), demonstrate remarkable performance in textual reasoning tasks by learning analytical thinking and self-reflection. Despite these advancements, LLMs that rely solely on textual reasoning remain limited in tasks that require precise and complex numerical computation, information retrieval from web pages or local databases, or code execution. Equipping LLMs as autonomous agents with access to external tools, such as search engines, scientific calculators, or code interpreters, can significantly extend their capabilities beyond pure text-based reasoning (Gou et al., 2023).

Training LLMs to operate as autonomous agents in interactive environments faces unique challenges. Agent settings often require models to make sequential, multi-turn decisions in complex reasoning tasks. Many existing approaches (Chen et al., 2025b; Jin et al., 2025b; Feng et al., 2025a) formulate these multi-turn interactive tasks as single-turn problems, relying solely on a final outcome-level reward such as answer correctness. Popular RL algorithms, including Group Relative Policy Optimization (GRPO) (Shao et al., 2024) and Proximal Policy Optimization (PPO) (Schulman et al., 2017), are applied in this setting. However, such single-turn formulation is inadequate for long-horizon multi-turn reasoning as it treats the entire trajectory as a single decision step, ignoring the multi-turn structure of the interactive tasks. In particular, it ignores intermediate signals that evaluate each complete agent-environment interaction, such as a tool call and its result, providing feedback at the granularity of a single turn in multi-turn tasks (Lightman et al., 2023; Zhang et al., 2025b; Ma et al., 2023; Choudhury, 2025). Without access to dense turn-level feedback, agents struggle to refine their behavior, making it difficult to interact effectively with dynamic environments over multiple steps.

For example, in a search agent (Chen et al., 2025b; Jin et al., 2025a), selecting a good query early on is crucial for retrieving relevant information; without turn-level feedback, the agent may not learn which queries contribute to correct answers.

Recent studies (Li et al., 2025a; Qian et al., 2025; Wang et al., 2025a; Labs, 2025; Wang et al., 2025b; Singh et al., 2025; Zhang et al., 2025a; Jin et al., 2025a) model multi-turn agentic tasks as Markov Decision Processes (MDPs) and incorporate intermediate rewards like tool execution. However, these approaches suffer from the credit assignment problem: they merge final outcome and intermediate rewards into a sparse trajectory-level signal. This makes advantage estimation inaccurate and prevents RL algorithms from providing fine-grained supervision across intermediate rounds of interaction (Guo et al., 2025b; Feng et al., 2025b; Zhang et al., 2025c).

Motivated by this, we investigate turn-level reward design for both RL algorithms and agent applications. To the best of our knowledge, this is the first systematic study of turn-level rewards in the context of multi-turn RL for LLM agents. Our key contributions are as follows:

- To train multi-turn LLM agents effectively under the MDP framework, we propose a turn-level reward design strategy to enhance RL algorithms in multi-turn agent tasks. Specifically, we extend GRPO and PPO to their multi-turn variants by incorporating both final outcome rewards and intermediate turn-level rewards, enabling fine-grained credit assignment. While multi-turn GRPO requires exponential rollout samples to compute intermediate advantages, multi-turn PPO leverages a critic model, offering a more efficient and scalable solution.
- To highlight the importance of turn-level rewards, we conduct a case study using a reasoning-augmented search agent that performs multiple rounds of reasoning and search before producing the final answer. We carefully design turn-level verifiable rewards and turn-level LLM-as-judge rewards for training the search agent. While verifiable rewards are rigid, the LLM-as-judge enables a more flexible and nuanced evaluation.
- Building on this case study, our experiments on multi-turn reasoning-augmented search tasks show that integrating turn-level rewards enables RL algorithms to significantly outperform baseline methods with the only outcome reward. Both training and validation reward curves obtained with the Qwen2.5-7B model demonstrate that our algorithm with turn-level rewards achieves more stable training, faster convergence, and higher accuracy for both verifiable and LLM-as-judge rewards. Furthermore, benchmarks on both in-domain and out-of-domain tasks show that our approach consistently achieves the highest accuracy and reliably produces outputs with 100% correct format.

2 Problem Formulation for Multi-Turn Agent Interaction

Let x denote the input prompt sampled from the dataset \mathcal{D} , and $y = [l_1, f_1, \dots, l_K, f_K]$ denote the complete output response produced through interaction with the LLM agent, where l_k is the response generated from an LLM agent and f_k is the corresponding environment feedback at the k-th turn.

2.1 SINGLE-TURN PROBLEM FORMULATION

Many existing studies typically formulate the multi-turn agent task as the single-turn problem, relying only on a final outcome-level reward, such as answer correctness. The objective can be expressed as maximizing the expected final reward R(x,y):

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(\cdot|x)} [R(x, y)]$$
 (1)

which can be interpreted as a contextual bandit problem (Bouneffouf & Feraud, 2025; Baheri & Alm, 2023). Such single-turn formulation is inadequate as it treats the entire trajectory as a single decision step, ignoring the multi-turn structure of the task. More specifically, it ignores intermediate rewards that evaluate each complete agent-environment interaction.

2.2 Multi-Turn Problem Formulation

LLM agents operate in interactive environments where each turn yields stochastic feedback. To capture these dynamics, we formulate the multi-turn agent task as a *turn-level MDP*, which is formally

defined as $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, P, R\}$. Here, \mathcal{S} denotes the state space, and \mathcal{A} denotes the action space; A state $s \in \mathcal{S}$ typically corresponds to an interaction history, while an action $a \in \mathcal{A}$ often corresponds to a sequence of generated tokens; P represents the transition dynamics; R is the turn-level reward.

At the k-th turn, conditioned on the current state s_k , the agent makes an action a_k according to the policy π_θ , where $a_k = [l_k, f_k]$ if environment feedback exists, otherwise $a_k = l_k$. The agent then receives a turn-level reward $R_k = R(s_k, a_k)$, and transitions to the next state s_{k+1} . In the turn-level MDP framework, the objective can be written as maximizing the cumulative reward at the turn level:

$$\max_{\pi_{\theta}} \mathbb{E}_{s_k, a_k \sim \pi_{\theta}(\cdot | s_k)} \left[\sum_{k=1}^K R(s_k, a_k) \right]$$
 (2)

where the discount factor is set to be 1. If only an outcome reward is provided and intermediate rewards are zero, i.e., 1

$$R_k = R(s_k, a_k) = 0$$
, for $k = 1, 2, ..., K - 1$, $R_K = R(s_K, a_K) = R(x, y)$,

then the MDP formulation in Eq. (2) reduces to Problem (1).

Remark. The turn-level MDP with a final outcome in Eq. (1) can be viewed as an MDP with only a terminal reward (Arjona-Medina et al., 2019). This simplicity comes at a price: without intermediate rewards, the system must exhaustively simulate entire trajectories, lacking any mechanism to prune or attenuate trajectories that are clearly suboptimal at early stages (Wu et al., 2023; Singhal et al., 2025).

3 GRPO WITH TURN-LEVEL REWARDS FOR MULTI-TURN AGENTIC TASKS

3.1 GRPO FOR SINGLE-TURN FORMULATION

GRPO. Recently, the Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024) has been widely used to enhance the reasoning capabilities of LLMs, which estimates the advantage in a group-relative manner. Specifically, for each input question x, it samples a group of responses $\{y_1, y_2, \ldots, y_G\}$ from the reference policy π_{ref} . GRPO optimizes the policy by maximizing the following objective function:

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{x \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{\text{old}}(\cdot \mid x)} \\
\left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \min\left(w_{i,t}(\theta) A_{i,t}, \text{clip}\left(w_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon\right) A_{i,t}\right) - \beta \mathbb{D}_{\text{KL}}\left[\pi_{\theta} \parallel \pi_{\text{ref}}\right] \right], \quad (3)$$

where $w_{i,t}(\theta) = \frac{\pi_{\theta}(y_{i,t}|x,y_{i,< t})}{\pi_{\text{old}}(y_{i,t}|x,y_{i,< t})}$ is the token-level importance sampling ratio between the current policy π_{θ} and the previous policy π_{old} , ϵ is the clipping parameter, and β is the KL divergence coefficient. Given a group of final outcome rewards $\{R_i\}_{i=1}^G$, the advantage of the i-th response $A_{i,t}$ is calculated by

$$A_{i,t} = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}, \quad R_i = R(x, y_i). \tag{4}$$

It is straightforward to observe that GRPO is well-suited for the single-turn problem (1). The advantage is computed by normalizing the final outcome rewards within the sampled group.

Limitations of GRPO in Multi-Turn Settings. In multi-turn tasks, intermediate signals are often available to guide the LLM agent. However, GRPO does not naturally incorporate such intermediate rewards into advantage estimation, making it difficult to leverage them effectively. A naive solution to Problem (2) is to merge the intermediate rewards and the final outcome reward as a single sparse trajectory-level reward, that is,

$$A_{i,t} = \frac{R_i - \text{mean}(\{R_i\}_{i=1}^G)}{\text{std}(\{R_i\}_{i=1}^G)}, \quad R_i = \sum_{k=1}^K R_{i,k} = \sum_{k=1}^K R(s_{i,k}, a_{i,k})$$
 (5)

 $^{^{1}}$ In this paper, we denote R(x,y) as the final outcome reward and R(s,a) as the general turn-level reward in the multi-turn setting.

where $R_{i,k}$ denotes the intermediate reward given the state $s_{i,k}$ and action $a_{i,k}$ in the k-th turn. For the two advantage estimation strategies in Eq. (4) and Eq. (5) used by GPRO, the advantage function $A_{i,t}$ is computed at the *trajectory level*, i.e., $A_{i,1} = A_{i,2} = \cdots = A_{i,t} = \cdots = A_{i,|y_i|}$, due to reward sparsity. This means the same advantage is assigned uniformly across the entire trajectory, without distinguishing the contributions of individual turns or tokens. For long-horizon multi-turn tasks, such coarse-grained credit assignment often leads to unstable training and suboptimal performance (Guo et al., 2025b; Feng et al., 2025b; Zhang et al., 2025c).

3.2 Turn-Level Credit Assignment for GRPO: A Simple Attempt

MT-GPRO. To highlight the importance of turn-level rewards and fine-grained credit assignment in GRPO, we consider a simple two-turn agent setting. In this case, the agent receives a group of intermediate rewards $\{R_{i,1}\}_{i=1}^G$ in the first turn and final rewards $\{R_{i,2}\}_{i=1}^G$ in the second turn. Based on these signals, we propose our turn-level credit assignment strategy for GRPO. The resulting turn-level advantages in the first and second turns are given by:

$$\bar{A}_{i,1} = A_{i,1} + A_{i,2}, \quad \bar{A}_{i,2} = A_{i,2},$$
 (6)

where

$$A_{i,1} = \frac{R_{i,1} - \operatorname{mean}(\{R_{i,1}\}_{i=1}^G)}{\operatorname{std}(\{R_{i,1}\}_{i=1}^G)}, \quad A_{i,2} = \frac{R_{i,2} - \operatorname{mean}(\{R_{i,2}\}_{i=1}^G)}{\operatorname{std}(\{R_{i,2}\}_{i=1}^G)}$$

$$(7)$$

By leveraging intermediate rewards, all tokens within a single turn share a unified advantage signal. Moreover, the advantage of a turn depends not only on the rewards from that turn but also on the contributions of subsequent turns. We refer to this algorithm as *multi-turn GRPO (MT-GRPO)*. A detailed derivation of MT-GRPO for the general multi-turn setting is provided in Appendix D.

Case Study on a Two-Turn Agent Task. We conduct experiments to evaluate the proposed MT-GRPO method in a two-turn agent setting, where the agent first calls the search tool with reasoning in the initial turn and then produces the final answer in the subsequent turn (see Appendix E for details). Beyond the outcome-level exact-match reward, we design intermediate rewards based on tool-execution feedback, for MT-GRPO. Figure 1 presents training reward curves for GRPO and MT-GRPO, which show that MT-GRPO achieves more stable tool usage (left figure) and higher exact-match accuracy (right figure), highlighting the importance of fine-grained credit assignment in multi-turn agent tasks.

Figure 1: Curves for different training reward components during training with various algorithms (MT-GRPO in Eq. (6), GRPO-OR in Eq. (4), and GRPO-MR in Eq. (5)). Each plot shows the training reward score over training steps. Dotted lines represent the average reward across 10 runs, while solid lines show trends smoothed using the Exponential Moving Average (EMA).

Limitations of MT-GPRO. (1) In MT-GRPO, computing the intermediate advantages requires G rollout samples at each turn. Therefore, over a horizon of K turns, this results in G^{K-1} rollout trajectories in total. Such *exponential* growth in complexity makes the approach computationally prohibitive for long-horizon multi-turn tasks. (2) This strategy also assumes that all rollout samples in a group must contain *the same number of turns*, which requires enforcing this constraint in the system prompt and leads to a fixed-turn setting. Such a restriction limits the flexibility and applicability of GRPO in more diverse scenarios. For example, in a search task, one question may be resolved in a single tool call or require multiple calls to retrieve, filter, and refine results in a sampled group.

4 PPO WITH TURN-LEVEL REWARDS FOR MULTI-TURN AGENTIC TASKS

In the previous section, we illustrated the importance of turn-level rewards and fine-grained credit assignment in GPRO, which improves the performance of LLM agents in multi-turn interactions. However, the exponential computational cost, together with the fixed-turn constraint, limits the applicability of MT-GRPO to general agent tasks. In this section, we present the PPO alogrithm with turn-level rewards, aiming to provide a more flexible, scalable, and efficient solution.

PPO. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a popular actor-critic RL algorithm commonly used for LLM training (Ouyang et al., 2022). PPO updates the policy by maximizing the following surrogate objective:

$$\mathcal{J}_{PPO}(\theta) = \mathbb{E}_{x \sim \mathcal{D}, \ y \sim \pi_{old}(\cdot|x)} \left[\frac{1}{|y|} \sum_{t=1}^{|y|} \min\left(w_t(\theta) A_t, \operatorname{clip}\left(w_t(\theta), 1 - \epsilon, 1 + \epsilon\right) A_t\right) \right], \quad (8)$$

The advantage estimate A_t is computed using Generalized Advantage Estimation (GAE) (Schulman et al., 2015), based on rewards and a learned value function (critic model). Formally, for a trajectory of length T, the GAE A_t at time step t is computed as:

$$A_t = \sum_{l=0}^{T-t-1} (\gamma \lambda)^l \delta_{t+l}, \quad \delta_t = r_t + \gamma V_{t+1} - V_t$$
(9)

where γ is the discount factor, $\lambda \in [0,1]$ is the GAE parameter, δ_t is the temporal-difference error, r_t is the token-level reward and V_t is the token-level value at step t. Through the mechanism of GAE, the token-level value function enables token-level advantage estimation.

Turn-Level Rewards in PPO. With explicit intermediate rewards, GAE provides fine-grained training signals at each turn. Given both intermediate rewards R^I and the final reward R^F , the token-level reward r_t is assigned as

$$r_t = \begin{cases} R^F & \text{if } t \text{ is the last token of the entire trajectory} \\ R^I & \text{if } t \text{ is the last token of the current turn} \\ 0 & \text{otherwise} \end{cases}$$
 (10)

For clarity, we refer to PPO trained with both intermediate and final rewards as *multi-turn PPO (MT-PPO)*, while PPO trained with only a sparse trajectory-level reward is referred to as *PPO*. Compared to MT-GRPO, which requires exponential rollout samples to compute intermediate advantages, MT-PPO leverages a critic model with GAE, offering a more efficient and scalable solution.

Summary. Table 1 summarizes the granularity of reward assignment and advantage estimation across different RL algorithms. As shown, MT-PPO provides fine-grained turn-level rewards and token-level advantage estimation. This higher granularity enables more precise credit assignment, which is particularly beneficial for multi-turn LLM agents where successful outcomes often depend on a sequence of intermediate decisions. In contrast, trajectory-level methods provide coarser feedback, which often leads to weaker learning signals and unsta-

Table 1: Comparison of granularity of reward assignment and advantage estimation across different RL algorithms for multi-turn LLM agents.

RL Algo.	Granularity		
	Reward	Advantage	
GRPO MT-GRPO PPO MT-PPO	Trajectory-Level Turn-Level Trajectory-Level Turn-Level	Trajectory-Level Turn-Level Token-Level Token-Level	

ble training. These insights will be empirically validated in the following experiments.

5 Case Study: Multi-Turn Reasoning-Augmented Search Agent

5.1 TASK FORMULATION

We study an LLM agent that performs multi-turn reasoning with search engine interactions. The task can be naturally formulated under the turn-level MDP framework, as discussed in Section 2.2,

Figure 2: Overview of the multi-turn reasoning-augmented search agent pipeline. Given a system prompt and a question, each iteration of the LLM-based search agent proceeds as follows: (1) The agent begins with *reasoning*, analyzing the current context to identify missing information. (2) It then formulates a search query to *retrieve* relevant information from an external database, which is integrated into the evolving *context*. (3) This cycle continues until the agent judges that the context is sufficient, at which point it performs a final round of *reasoning* to generate the answer.

where each action a corresponds either to a reasoning-augmented search step or to producing the final answer. The goal is to improve the agent's performance through effective integration of external search. Specifically, the agent learns to leverage a Wikipedia search engine to retrieve relevant information and generate an accurate answer. Without search calling, the agent must rely solely on its internal knowledge to answer questions, which can limit accuracy, especially for fact-based queries requiring up-to-date or domain-specific information.

The overall interaction follows a multi-turn reasoning—search loop, as shown in Figure 2. These steps impose strict constraints, such as permitting only a single search step and requiring the use of specific XML-like tags to delineate each stage of the interaction. Following (Jin et al., 2025b), reasoning steps are enclosed within <think> </think>, search queries are wrapped in <search> </search>, retrieved information is inserted into <information> </information>, and the final answer is placed within <answer> </answer>.

5.2 TURN-LEVEL VERIFIABLE REWARD DESIGN

Unlike most approaches (Chen et al., 2025b; Jin et al., 2025b), which assign rewards based solely on final-answer correctness for the entire trajectory, we design turn-level verifiable rewards for both intermediate and final turns to better align with the environment of the LLM-based search agent.

Final Verifiable Rewards evaluate the model-generated responses in the last turn, focusing on both the correctness of the answer and the adherence to the required output format.

- Final Exact Match Reward $f_{\rm em}$ evaluates whether the extracted answer (from the <answer> tag) exactly matches any accepted ground-truth answer after normalization (e.g., lowercasing and whitespace removal):
- Final Format Reward f_{format} ensures format correctness by verifying that: (1) only <think> and <answer> tags appear (no extra tags), (2) each tag appears exactly once, and (3) <think> precedes <answer>.

The final reward is defined as

$$R^F = \begin{cases} 1 & f_{\text{em}} = \text{True}, \ f_{\text{format}} = \text{True}, \\ 0.2 & f_{\text{em}} = \text{False}, \ f_{\text{format}} = \text{True}, \\ -1 & f_{\text{format}} = \text{False}, \end{cases}$$

A smaller positive reward is given when the answer is incorrect but the output follows the required format, encouraging structural correctness during training. A negative reward (penalty) is applied when the format is incorrect, ensuring that the agent adheres to the required structure.

Intermediate Verifiable Rewards guide the agent's behavior in intermediate turns by evaluating the presence of ground-truth answers in retrieved content, enforcing proper format usage, and discouraging excessive search calls.

- Intermediate Retrieval Existence Reward evaluates whether any accepted answer appears in the one-round search result (from \leq information> tag), using case-insensitive matching. $R_{\text{retrieval}}^{I} = 0.3$ if retrieved information contains any ground-truth, otherwise 0.
- Intermediate Format Reward ensures format correctness by verifying that: (1) only <think>, <search>, and <information> tags appear (no extra tags), (2) each tag appears exactly once, and (3) <think> precedes <search> and <information>. $R_{\rm format}^I = 0.1$ if the format is correct, otherwise -0.2.
- Intermediate Search Count Reward penalizes excessive search usage.

$$R_{\rm search}^I = -\lambda_s \cdot \, n_{\rm search},$$

where λ_s is a predefined positive constant controlling the weight of the search count reward, $n_{\rm search}$ denotes the cumulative number of search invocations from the first turn up to the current turn.

The intermediate reward is defined as $R^I = R^I_{\text{retrieval}} + R^I_{\text{format}} + R^I_{\text{search}}$. Retrieval correctness is similarly assigned a smaller weight than answer correctness, again to reduce the risk of reward hacking. In addition, we introduce an intermediate search penalty to discourage excessive or unnecessary search calls, preventing the agent from either avoiding the avoiding the question answering or failing due to crashes.

5.3 LLM as Judge for Turn-Level Evaluation

Verifiable rewards, such as exact match, provide a strict and objective form of evaluation. However, they can be overly rigid: an agent may produce a correct answer that differs slightly in form from the ground truth but still receives negative feedback. To complement such verifiable signals, we adopt the *LLM-as-judge* paradigm, where a strong LLM evaluates agent outputs. The LLM-as-judge framework consists of two key components: step-by-step reasoning and rubric-based scoring.

Reasoning. We employ a generative reasoning model (GRM) (Li et al., 2025b) as the judge, prompting it to generate detailed justifications before assigning a score. The step-by-step reasoning process encourages the judge to evaluate output quality using rubric-based criteria rather than relying on shallow correlations.

Rubrics. Rubric-based scoring provides structured evaluation criteria that improve both consistency and reliability across assessments. Unlike outcome-level evaluation that only considers the final answer, our framework assesses each turn's output. This fine-grained assessment offers richer feedback and aligns naturally with multi-turn agent tasks, where intermediate steps critically influence overall success. The judge model evaluates format correctness, reasoning quality, and search effectiveness, while also applying a search penalty to discourage excessive or unnecessary tool calls. Additional implementation details are provided in Appendix C.3.

6 EXPERIMENTS

6.1 Experiment Setup

In our experiments, we build our codebase upon the open-source project Search-R1 (Jin et al., 2025b), which trains LLM agents for multi-turn reasoning-augmented search tasks.

Datasets. These datasets are categorized as follows: (1) General Question Answering: NQ (Karpukhin et al., 2020), TriviaQA (Joshi et al., 2017), and PopQA (Mallen et al., 2022). (2) Multi-Hop Question Answering: HotpotQA (Yang et al., 2018) 2WikiMultiHopQA (Ho et al., 2020), and Musique (Trivedi et al., 2022). These datasets cover a diverse range of search and reasoning challenges, providing a comprehensive basis for evaluation.

Figure 3: Training reward curves recorded during training for PPO and MT-PPO on the NQ and HotpotQA datasets. The rewards include answer correctness, format correctness, and retrieval correctness. Solid lines show mean reward values, while shaded regions indicate variability across five independent runs.

Evaluated Methods. We compare our proposed MT-PPO with vanilla PPO: (1) PPO (Jin et al., 2025b): original PPO with a binary final answer correctness reward, and (2) MT-PPO (ours): PPO variant with both intermediate and final rewards, as described in Section 5.2, where $\lambda_s = 0.1$.

Evaluation Metrics. We evaluate model performance using three types of rewards during both training and validation: (1) answer correctness reward, (2) format correctness reward, and (3) retrieval correctness reward. Each reward is assigned a value of 1.0 if the criterion is satisfied and 0 otherwise. The detailed reward rules are provided in Appendix C.1.

Training Details. We use Qwen2.5-7B (Yang et al., 2024) as the base model, E5 (Wang et al., 2022) as the retriever, and 2018 Wikipedia dump (Karpukhin et al., 2020) as the corpus. We set the number of retrieved passages to 3, and the maximum turns to 4. The system prompt follows that of Search-R1 (Jin et al., 2025b). For all methods, we enable policy loss masking on retrieved tokens. Since PPO baseline often crashes, we use either the final checkpoint or the last checkpoint prior to collapse. More details on experimental settings can be found in Appendix C.2.

6.2 Main Results

Figures 3 and 5 show training and validation reward curves for PPO and MT-PPO. MT-PPO achieves substantially more stable training, converging faster in the early phase (first 100 steps) thanks to intermediate rewards that provide stronger guidance. As training progresses, PPO exhibits high variance and even performance degradation, especially on HotpotQA, while MT-PPO maintains consistent improvement. MT-PPO attains higher average accuracy than PPO, demonstrating greater robustness. Format reward curves show that MT-PPO consistently follows the correct output format, while PPO struggles, especially on HotpotQA, where formatting mistakes prevent correct evaluation. This indicates that turn-level rewards in MT-PPO stabilize training and enforce structural correctness. Retrieval curves further show that MT-PPO achieves more consistent accuracy by leveraging intermediate signals to guide reasoning. We omit GRPO training curves since, as reported in (Jin et al., 2025b), GRPO consistently crashes.

Figure 6 presents training curves for MT-PPO and PPO with judge rewards, where MT-PPO again demonstrates stable optimization.

Table 2 reports results on six QA datasets, spanning both general and multi-hop reasoning tasks. MT-PPO consistently outperforms PPO and GRPO in answer correctness, with the largest gains on multi-hop tasks such as HotpotQA and 2Wiki. Moreover, MT-PPO nearly perfects format correctness, reaching close to 100% across datasets, underscoring the effectiveness of multi-turn credit assignment in producing both accurate and well-structured outputs.

Table 2: The performance results of different methods on six datasets. Bold numbers indicate the best performance for each dataset and metric.

Methods	General QA		Multi-Hop QA			Avg.	
	NQ	TriviaQA	PopQA	HotpotQA	2wiki	Musique	
Answer Correctness (Exact Match)							
Qwen2.5-7B-Base	0.177	0.319	0.181	0.160	0.167	0.040	0.174
Qwen2.5-7B-Instruct	0.320	0.563	0.349	0.292	0.277	0.118	0.320
GRPO	0.391	0.560	0.388	0.331	0.306	0.129	0.351
PPO	0.483	0.639	0.456	0.435	0.382	0.199	0.432
MT-PPO	0.490	0.647	0.459	0.453	0.424	0.209	0.447
Format Correctness							
Qwen2.5-7B-Base	0.118	0.118	0.105	0.098	0.084	0.082	0.101
Qwen2.5-7B-Instruct	0.183	0.267	0.067	0.109	0.037	0.071	0.122
GRPO	0.706	0.685	0.597	0.513	0.376	0.328	0.534
PPO	0.909	0.954	0.952	0.916	0.806	0.834	0.895
MT-PPO	0.999	0.997	0.999	0.998	0.999	0.999	0.999

Figure 4: Ablation study on the search count reward λ_s . We compare MT-PPO with $\lambda_s=0.1$ and $\lambda_s=0.0$ on the NQ dataset. The left panel reports answer correctness, while the right panel shows the average number of turns.

6.3 ABLATION STUDY ON REWARD DESIGN

We conduct an ablation study on reward design to examine the impact of the search count reward. As shown in Figure 4, incorporating $\lambda_s=0.1$ into MT-PPO improves training stability and final accuracy. During the initial training stage, excessive search calls lead to instability; the search count reward mitigates this by discouraging overuse of the tool. Consequently, the number of turns first decreases and later increases, reflecting a dynamic adjustment in the agent's search strategy. In contrast, removing this reward term ($\lambda_s=0.0$) results in unstable training and degenerate behaviors, such as uncontrolled search usage or failure to converge. With $\lambda_s=0.0$, the rollout sample in Table 4 shows that the model often fails to stop before exhausting the maximum number of search calls and produces no final answer, ultimately causing training to crash.

7 CONCLUSION AND FUTURE WORK

In this paper, we highlighted the importance of turn-level rewards for multi-turn agent tasks. By introducing carefully designed intermediate signals, we extended GRPO and PPO into multi-turn variants, allowing LLM agents to receive more informative feedback at each stage of interaction. Experiments on reasoning-augmented search agents show that incorporating turn-level rewards substantially improves both the stability and accuracy of training across different RL algorithms. To the best of our knowledge, this is the first systematic study of turn-level rewards in the context of multi-turn RL for LLM agents. We believe that turn-level rewards have broad applicability beyond search, offering a general mechanism for improving the effectiveness of multi-turn agents in diverse interactive environments.

REFERENCES

- Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brandstetter, and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. *Advances in Neural Information Processing Systems*, 32, 2019.
- Ali Baheri and Cecilia Alm. Llms-augmented contextual bandit. In *NeurIPS 2023 Foundation Models for Decision Making Workshop*. NeurIPS 2023, 2023.
- Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl: Training in-the-wild device-control agents with autonomous reinforcement learning. *Advances in Neural Information Processing Systems*, 37:12461–12495, 2024.
- Djallel Bouneffouf and Raphael Feraud. Multi-armed bandits meet large language models. *arXiv* preprint arXiv:2505.13355, 2025.
- William Brown. Verifiers: Reinforcement learning with llms in verifiable environments. https://github.com/willccbb/verifiers, 2025.
- Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer. Grounding large language models in interactive environments with online reinforcement learning. In *International Conference on Machine Learning*, pp. 3676–3713. PMLR, 2023.
- Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger, Vladlen Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive llm agents. arXiv preprint arXiv:2502.01600, 2025a.
- Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Fan Yang, Zenan Zhou, Weipeng Chen, Haofen Wang, Jeff Z Pan, et al. Learning to reason with search for llms via reinforcement learning. *arXiv preprint arXiv:2503.19470*, 2025b.
- Jie Cheng, Ruixi Qiao, Lijun Li, Chao Guo, Junle Wang, Gang Xiong, Yisheng Lv, and Fei-Yue Wang. Stop summation: Min-form credit assignment is all process reward model needs for reasoning. arXiv preprint arXiv:2504.15275, 2025.
- Sanjiban Choudhury. Process reward models for llm agents: Practical framework and directions. *arXiv* preprint arXiv:2502.10325, 2025.
- Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv* preprint *arXiv*:2502.01456, 2025.
- Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms. *arXiv preprint arXiv:2504.11536*, 2025a.
- Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm agent training. *arXiv preprint arXiv:2505.10978*, 2025b.
- Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. *arXiv* preprint arXiv:2309.17452, 2023.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.
- Yiran Guo, Lijie Xu, Jie Liu, Dan Ye, and Shuang Qiu. Segment policy optimization: Effective segment-level credit assignment in rl for large language models. *arXiv preprint arXiv:2505.23564*, 2025b.
 - Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse reward design. *Advances in neural information processing systems*, 30, 2017.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop qa dataset for comprehensive evaluation of reasoning steps. *arXiv preprint arXiv:2011.01060*, 2020.

- Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint arXiv:2412.16720*, 2024.
- Bowen Jin, Jinsung Yoon, Priyanka Kargupta, Sercan O Arik, and Jiawei Han. An empirical study on reinforcement learning for reasoning-search interleaved llm agents. *arXiv preprint arXiv:2505.15117*, 2025a.
- Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement learning. *arXiv preprint arXiv:2503.09516*, 2025b.
- Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1601–1611, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/P17-1147/.
- Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP* (1), pp. 6769–6781, 2020.
- Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems Principles*, pp. 611–626, 2023.
- Bespoke Labs. Improving multi-turn tool use with reinforcement learning. https://www.bespokelabs.ai/blog/improving-multi-turn-tool-use-with-reinforcement-learning, 2025. Accessed: 2025-04-17.
- Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. *arXiv preprint arXiv:2503.23383*, 2025a.
- Yi-Chen Li, Tian Xu, Yang Yu, Xuqin Zhang, Xiong-Hui Chen, Zhongxiang Ling, Ningjing Chao, Lei Yuan, and Zhi-Hua Zhou. Generalist reward models: Found inside large language models. *arXiv preprint arXiv:2506.23235*, 2025b.
- Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth International Conference on Learning Representations*, 2023.
- Runze Liu, Fengshuo Bai, Yali Du, and Yaodong Yang. Meta-reward-net: Implicitly differentiable reward learning for preference-based reinforcement learning. *Advances in Neural Information Processing Systems*, 35:22270–22284, 2022.
- Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang. Let's reward step by step: Step-level reward model as the navigators for reasoning. *arXiv preprint arXiv:2310.10080*, 2023.
- Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi. When not to trust language models: Investigating effectiveness of parametric and non-parametric memories. *arXiv preprint arXiv:2212.10511*, 2022.
- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.

Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado van Hasselt, Olivier Pietquin, and Laura Toni. A survey of temporal credit assignment in deep reinforcement learning. arXiv preprint arXiv:2312.01072, 2023.

- Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. *arXiv preprint arXiv:2504.13958*, 2025.
- Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi by planning with a learned model. *Nature*, 588(7839):604–609, 2020.
- John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous control using generalized advantage estimation. *arXiv preprint arXiv:1506.02438*, 2015.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- Bytedance Seed. Seed-thinking-v1. 5: Advancing superb reasoning models with reinforcement learning. Technical report, Technical report, ByteDance, 2025. URL https://github.com/ByteDance-Seed/Seed-Thinking-v1.5/blob/main/seed-thinking-v1.5.pdf.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- Joykirat Singh, Raghav Magazine, Yash Pandya, and Akshay Nambi. Agentic reasoning and tool integration for llms via reinforcement learning. *arXiv* preprint arXiv:2505.01441, 2025.
- Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion models. In *International Conference on Machine Learning (ICML)*, 2025.
- Shengjie Sun, Runze Liu, Jiafei Lyu, Jing-Wen Yang, Liangpeng Zhang, and Xiu Li. A large language model-driven reward design framework via dynamic feedback for reinforcement learning. *Knowledge-Based Systems*, 326:114065, 2025.
- Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop questions via single-hop question composition. *Transactions of the Association for Computational Linguistics*, 10:539–554, 2022.
- Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and outcome-based feedback. *arXiv preprint arXiv:2211.14275*, 2022.
- Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement learning. https://github.com/huggingface/trl, 2020.
- Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, Jiahao Qiu, Shijue Huang, Bowen Jin, Mengdi Wang, Kam-Fai Wong, and Heng Ji. Otc: Optimal tool calls via reinforcement learning. arXiv preprint arXiv:2504.14870, 2025a.
- Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv* preprint *arXiv*:2212.03533, 2022.
- Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Kefan Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, et al. Ragen: Understanding self-evolution in llm agents via multi-turn reinforcement learning. *arXiv preprint arXiv:2504.20073*, 2025b.

Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, and Yichao Wu. Stepsearch: Igniting llms search ability via step-wise proximal policy optimization. *arXiv preprint arXiv:2505.15107*, 2025c.

- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
- Luhuan Wu, Brian L. Trippe, Christian A. Naesseth, David M. Blei, and John P. Cunningham. Practical and asymptotically exact conditional sampling in diffusion models. In *Advances in Neural Information Processing Systems 36 (NeurIPS 2023)*, 2023.
- An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
- Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. *arXiv preprint arXiv:1809.09600*, 2018.
- Shunyu Yao, Rohan Rao, Matthew Hausknecht, and Karthik Narasimhan. Keep CALM and explore: Language models for action generation in text-based games. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 8736–8754, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.704. URL https://aclanthology.org/2020.emnlp-main.704/.
- Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-world web interaction with grounded language agents. *Advances in Neural Information Processing Systems*, 35:20744–20757, 2022.
- Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via reinforcement learning. *Advances in neural information processing systems*, 37:110935–110971, 2024.
- Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu, Zhiding Yu, and Guilin Liu. Nemotron-research-tool-n1: Tool-using language models with reinforced reasoning. *arXiv* preprint arXiv:2505.00024, 2025a.
- Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical reasoning. *arXiv* preprint arXiv:2501.07301, 2025b.
- Zijing Zhang, Ziyang Chen, Mingxiao Li, Zhaopeng Tu, and Xiaolong Li. Rlvmr: Reinforcement learning with verifiable meta-reasoning rewards for robust long-horizon agents. *arXiv preprint arXiv:2507.22844*, 2025c.

A LLM USAGE

In this work, LLMs were used exclusively for polishing the writing. No part of the technical content, experimental design, or analysis relied on LLMs. The authors retain full responsibility for the correctness and originality of the ideas, methods, and results.

B RELATED WORK

B.1 REWARD DESIGN AND CREDIT ASSIGNMENT IN RL

In classical RL domains such as games and robotic control (Schrittwieser et al., 2020; Liu et al., 2022; Sun et al., 2025), dense rewards provide feedback at nearly every decision step. This shaping shortens the credit assignment horizon and typically improves sample efficiency and training stability, though it also risks mis-specification and reward hacking when poorly designed (Hadfield-Menell et al., 2017). In the context of LLM reasoning (Lightman et al., 2023; Uesato et al., 2022), dense rewards often take the form of process-based signals that supervise intermediate steps rather than only final outcomes, and they have been shown to be highly effective, frequently outperforming outcome-only rewards. The credit assignment problem (Pignatelli et al., 2023) has recently attracted growing attention in LLM reasoning research (Shao et al., 2024; Cui et al., 2025; Cheng et al., 2025; Feng et al., 2025b; Guo et al., 2025b), particularly in textual reasoning tasks such as mathematical problem solving. In multi-turn agent interaction tasks, turn-level rewards assess each complete agent—environment interaction, such as a tool call and its result, providing feedback at the granularity of a single turn. This setting naturally highlights the benefits of process-level rewards and credit assignment However, the design of effective rewards for multi-turn agents, as well as RL algorithms with fine-grained credit assignment, remains underexplored.

B.2 RL FOR LLM AGENTS

RL has been applied to train long-horizon multi-turn LLM agents in diverse domains, including search (Chen et al., 2025b; Jin et al., 2025b;a), tool use (Feng et al., 2025a; Li et al., 2025a; Qian et al., 2025; Wang et al., 2025a; Labs, 2025; Zhang et al., 2025a; Singh et al., 2025), text-based games (Yao et al., 2020; Carta et al., 2023; Zhai et al., 2024; Wang et al., 2025b), web shopping (Yao et al., 2022), digital app interaction (Chen et al., 2025a), and mobile device control (Bai et al., 2024). A number of these studies (Jin et al., 2025a; Feng et al., 2025a; Li et al., 2025a; Qian et al., 2025; Wang et al., 2025a; Labs, 2025; Zhang et al., 2025a; Singh et al., 2025) apply RL algorithms such as GRPO and PPO to train tool-using LLM agents, including calculators, code interpreters, and search engines, thus enabling reasoning with external tools. However, these methods generally collapse outcome- and turn-level signals into a single trajectory-level reward, limiting fine-grained credit assignment. The most closely related work is StepSearch (Wang et al., 2025c), which incorporates PPO with turn-level rewards for multi-turn search. However, its approach primarily relies on data augmentation and requires prompt modifications during preprocessing. In contrast, our method avoids such preprocessing and prompt engineering, providing a cleaner and more general framework for turn-level reward design. Furthermore, our framework is orthogonal to existing search-agent methods (Wang et al., 2025c) and is broadly applicable to multi-turn LLM agents beyond search tasks.

C PPO EXPERIMENTS

C.1 EVALUATION METRICS (PPO)

For each trajectory, we evaluate the following metrics:

Answer correctness. The answer correctness reward evaluates whether the extracted answer (from the <answer> tag) exactly matches any accepted ground-truth answer after normalization (e.g., lowercasing and whitespace removal).

Format correctness. The format correctness reward ensures structural validity by verifying that the outputs in both the final turn and all intermediate turns comply with the specifications described in Section 5.2.

Retrieval correctness. The retrieval correctness reward evaluates whether any accepted answer appears in at least one search result (from the <information> tag), using case-insensitive string matching.

Each reward is assigned a value of 1.0 if the criterion is satisfied and 0 otherwise.

C.2 IMPLEMENTATION DETAILS (PPO)

 We follow most of the experimental settings in Search-R1 (Jin et al., 2025b).

PPO Training. All experiments are conducted on 8 NVIDIA H100 GPUs. We enable gradient checkpointing and adopt Fully Sharded Data Parallel (FSDP) with CPU offloading. The learning rates of the policy and critic models are set to $1\mathrm{e}-6$ and $1\mathrm{e}-5$, respectively. Training is performed for 500 steps over 4 epochs, with warm-up ratios of 0.285 and 0.015 for the policy and critic models, respectively. The total batch size is 512, with a mini-batch size of 256 and a micro-batch size of 64 for policy updates, and a micro-batch size of 8 for critic updates. We adopt GAE with $\lambda=1$ and $\gamma=1$. The maximum sequence length is set to 4,096 tokens, with a maximum response length of 500 tokens and a maximum retrieved content length of 500 tokens. The KL-divergence regularization coefficient β and clipping ratio ϵ are set to 0.001 and 0.2, respectively.

Rollout Generation. We use vLLM (Kwon et al., 2023) with a tensor parallel size of 4, a GPU memory utilization ratio of 0.6, a temperature of 1.0, and a top-p value of 1.0.

C.3 LLM JUDGE SETUP FOR TURN-LEVEL EVALUATION (PPO)

In our experiments, we use gpt-oss-120b² as the judge model. We provide both outcome-level and turn-level LLM-as-judge prompts, where the outcome-level and turn-level scores are used for PPO and MT-PPO training.

Outcome-Level LLM-as-Judge Prompt

You are an expert evaluator for multi-turn search-augmented reasoning systems. Given a user prompt, ground truth answer, and multi-turn generated response, determine whether the final answer matches the ground truth.

EVALUATION TASK

Evaluate whether the multi-turn response provides a correct final answer that matches the ground truth.

SCORING CRITERIA

Score 1.0 (Correct):

• The answer within <answer></answer> tags matches the ground truth.

Score 0.0 (Incorrect):

- No <answer></answer> tags found, or
- The answer within <answer></answer> tags does not match the ground truth, or
- The answer in <answer> tag exceeds 5 tokens.

OUTPUT FORMAT

Provide your evaluation using this format:

- <reasoning> Your step-by-step reasoning about whether the answer matches the ground truth </reasoning>
- <score> 1.0 or 0.0 </score>

REQUIREMENTS:

- First provide reasoning, then the score.
- Score must be exactly 1.0 or 0.0.

²https://huggingface.co/openai/gpt-oss-120b

810 ## EVALUATION DATA 811 {prompt_text} 812 {turns_text} 813 {ground_truth_text} 814 ## Your Evaluation 815 816 Turn-Level LLM-as-Judge Prompt 817 818 You are an expert evaluator for multi-turn search-augmented reasoning systems. Given a 819 user prompt, ground truth answer, and multi-turn generated response, evaluate each turn's 820 effectiveness and compliance. 821 ## EVALUATION TASK 822 Assess each turn's format compliance, content quality, and contribution toward the ground truth 823 answer. 824 ## SCORING CRITERIA 825 FINAL TURN (Last Turn) - Score Range: [-1.0 to 1.0] 826 **Format Compliance:** 827 Required: <think>...</think><answer>...</answer> (tags only, once 828 each, in order) Answer in <answer> tag must not exceed 5 tokens 830 831 **Answer Correctness:** 832 Correct and complete answer in <answer> tag that matches the ground truth 833 **Scoring Rules:** 834 • If format is incorrect: Final Turn Score = -1.0 835 836 • If format is correct, answer is incorrect: Final Turn Score = 0.2 837 • If format is correct, answer is correct: Final Turn Score = 1.0 838 839 **INTERMEDIATE TURNS - Score Range: [-1.0 to 1.0]** 840 **Format Compliance:** 841 • Required: <think>...</think><search>...</search> <information>...</information> (tags only, once each, in order) 843 • Correct format: +0.1 844 • Incorrect format: -0.2 845 **Information Quality:** 846 847 • Relevant information in <information> tag that helps toward the ground truth 848 answer (e.g., ground truth exists in the retrieved result within <information> tag): 849 +0.3850 • Irrelevant or unhelpful information in <information> tag: +0.0 851 **Search Efficiency Penalty:** 852 853 to and including the current turn 854 855 • Search penalty = Number of searches \times (-0.1) 856 Encourages finding answers with fewer searches 857 858

Number of searches = Total count of <search> tags across all turns from Turn 1 up

Intermediate Turn Score = Format Compliance + Information Quality + Search Penalty

OUTPUT FORMAT

859

860 861

862

Provide your evaluation using ONLY these XML tags:

```
<reasoning>
Systematically evaluate each turn: check format compliance,
assess content quality, calculate scores with clear explanations
```

```
864
         </reasoning>
865
866
         <score>
867
         Turn1: X.X
868
         Turn2: X.X
869
         Turn3: X.X
870
871
         </score>
872
         REQUIREMENTS:
873
               • Must provide exactly {len(turns)} scores (one per turn)
874
               • Use decimal format (e.g., 0.5, -0.3, 1.0)
875
876
               • Use only the specified XML tags, no additional text
877
         ## EVALUATION DATA
878
         {prompt_text}
879
         {turns_text}
880
         {ground_truth_text}
881
         TURNS TO EVALUATE: {len(turns)}
882
         ## Your Evaluation
883
884
```

C.4 ADDITIONAL EXPERIMENT RESULTS (PPO)

Figure 5: Validate reward curves recorded during training for PPO and MT-PPO on the NQ and HotpotQA datasets. The rewards include answer correctness, format correctness, and retrieval correctness. Solid lines show mean reward values, while shaded regions indicate variability across five independent runs.

Figure 6: Training reward curves recorded during training for PPO and MT-PPO on the NQ dataset. The rewards include outcome judge reward, answer correctness (exact match), format correctness, and retrieval correctness. Solid lines show mean reward values, while shaded regions indicate variability across five independent runs.

C.5 ROLLOUT EXMAPLES (PPO)

Table 3: A rollout example of generating a response with a correct format.

Question: who will take the throne after the queen dies?

<think> I need to find out who will take the throne after the queen dies. I'll search for it. </think><search> who will take the throne after the queen dies </search>

<information> Doc 1(Title: "Succession to the British throne") Catholics are eligible. Queen Elizabeth II is the sovereign, and her .. Doc 2(Title: "Monarchy of the United Kingdom") Monarchy of the United Kingdom The monarchy of the United Kingdom, commonly referred to as ... Doc 3(Title: "Demise of the Crown") the Crown. This erroneous meaning is undermined by the principle in constitutional law of the continuity ... </information>

<think> I found out that after the queen dies, her heir apparent will take the throne. I need to find out who the heir apparent is for Queen Elizabeth II.

<search> heir apparent for Queen Elizabeth II </search>

<information> Doc 1(Title: "Heir apparent") rank behind her brothers regardless of their ages or her age. Thus, normally, even an only ... Doc 2(Title: "Heir apparent") to the 16 thrones of Elizabeth II to absolute primogeniture, except for male heirs born ... Doc 3(Title: "Heir presumptive") or the senior member of a collateral line (if the monarch is childless); the birth ... </information>

<hi><think> I found out that the heir apparent for Queen Elizabeth II is her eldest son, Charles, Prince of Wales. Now I can provide the answer.

<answer> Charles, Prince of Wales </answer>

Table 4: A rollout example of generating a response with an incorrect format, where there is no answer in the last turn **Question:** in which sea pearl is found in india? <think> I need to find out in which sea pearl is found in India. I'll search for it. <search> in which sea pearl is found in India </search> <information> Doc 1(Title: Pearl) pearl: saltwater and freshwater pearls come in ... Doc 2(Title: Pearl) is a particularly large one weighing 14 lb (6.4 kg). The largest ... Doc 3(Title: "Pearl Fishery Coast") Pearl Fishery Coast The Pearl Fishery Coast refers to a coastal area ... </information> <think> I found out that pearls are found in the Indian Ocean. Now I need to find out in which sea pearls are found in India. </think> <search> in which sea are pearls found in India </search> <information> Doc 1(Title: Pearl) pearl: saltwater and freshwater pearls come in many different ... Doc 2(Title: "Geography of India") Great Nicobar Island); Rama's Bridge, and Point Calimere. The Arabian ... Doc 3(Title: "Bay of Bengal") the gems of Sri Lanka. Garnet and other precious gems are also found in abundance in the ... </information> <think> I found out that pearls are found in the Indian Ocean. Now I need to find out in which sea pearls are found in India. </think> <search> in which sea pearls are found in India </search> <information> Doc 1(Title: Pearl) pearl: saltwater and freshwater pearls come in many different colors. While white, and ... Doc 2(Title: Pearl) pearls". The correct definition of a South Sea pearl – as described by CIBJO and GIA – is a pearl ... Doc 3(Title: Pearl) is a particularly large one weighing 14 lb (6.4 kg). The largest known pearl (also from ... </information> <think> I found out that pearls are found in the Indian Ocean. Now I need to find out in which sea pearls are found in India. </think> <search> in which sea are pearls found in India </search>

D DERIVATION OF MT-GRPO FOR GENERAL MULTI-TURN SETTINGS

We first define the intermediate turn-level advantage $A_{i,(k)}$, computed by normalizing the intermediate rewards across the sampling group:

$$A_{i,(k)} = \frac{R_{i,(k)} - \operatorname{mean}(\{R_{i,(k)}\}_{i=1}^G)}{\operatorname{std}(\{R_{i,(k)}\}_{i=1}^G)}, \quad R_{i,(k)} = R(s_k, a_{i,k})$$
(11)

where $R_{i,(k)} = R(s_k, a_{i,k})$ denotes the reward of the i-th sampled action $a_{i,k}$ given the state s_k in the k-th turn. Notably, we require G rollout actions $\{a_{i,k}\}_{i=1}^G$ at the state s_k to compute the intermediate advantage $A_{i,(k)}$. Specifically, the *final* turn-level advantage in the last turn can be defined as

$$A_{i,(K)} = \frac{R_{i,K} - \operatorname{mean}(\{R_{i,K}\}_{i=1}^G)}{\operatorname{std}(\{R_{i,K}\}_{i=1}^G)}, \quad R_{i,K} = R(s_{i,K}, a_{i,K}) = R(x, y_i)$$
(12)

which is identical to the trajectory-level definition in Eq. (4).

We then define the cumulative turn-level advantage $\bar{A}_{i,(k)}$, which credits the current action by aggregating current and future advantages:

$$\bar{A}_{i,(k)} = A_{i,(k)} + \sum_{l=k+1}^{K} A_{i,(l)}$$
(13)

To solve Problem (2), in our MT-GPRO algorithm, the cumulative turn-level advantage is used in the GRPO loss function in Eq. (3) to guide policy optimization. This advantage is assigned uniformly to all tokens generated within the k-th turn, i.e.,

$$A_{i,1} = \dots = A_{i,t} = \bar{A}_{i,(k)}$$

where t indexes tokens within the k-th turn,

E GRPO EXPERIMENTS

E.1 TASK FORMULATION (GRPO)

To emphasize the importance of fine-grained credit assignment in multi-turn agent interactions, we formulate the task under the MDP framework, involving multiple steps of reasoning, tool use, and answer summarization for question answering. Specifically, our tool-use environment is modeled on a Wikipedia search setup, where the agent learns to leverage a Wikipedia search engine to retrieve relevant information and generate accurate answers. The goal is to improve the agent's performance through effective integration of external tool use. Without tool calling, the agent must rely solely on its internal knowledge to answer questions, which can limit accuracy, especially for fact-based queries requiring up-to-date or domain-specific information.

To clearly illustrate the impact of credit assignment, we design a simplified two-turn tool-use environment in which the LLM agent can interact with the search tool environment for a maximum of two turns. In this setup, the agent is allowed to call the Wikipedia search engine at most once before submitting an answer to the question. Figure 7 illustrates the pipeline of the multi-turn, tool-calling LLM agent system. Given a system prompt and a question, the LLM agent first performs a reasoning step and issues a tool call, specifying both the tool name and a query derived from its reasoning. The external tool environment processes the query and returns a search result. Based on the retrieved result, the agent performs a second round of reasoning to summarize the information and generate the final answer. The whole process can be summarized as

reasoning
$$\rightarrow$$
 search \rightarrow result \rightarrow reasoning \rightarrow answer

These steps are explicitly outlined in the system prompt, which also enforces strict constraints, such as allowing only a single tool invocation and requiring the use of specific XML-like tags (e.g., <reasoning>, <tool>, <result>, <answer>) to delineate each stage of the interaction. The full system prompt is provided in Appendix E.5. Table 6 presents an example rollout in which the agent successfully calls the search tool. If the tool name or argument format is incorrect, the tool

Figure 7: Overview of the multi-turn LLM agent pipeline and comparison of different advantage estimation methods. The agent interacts with the tool environment across multiple steps: reasoning, tool use, and answer generation, receiving both turn-level and outcome-level rewards. GRPO is used as a representative algorithm to illustrate the different advantage estimation strategies. GRPO-OR and GRPO-MR serve as baselines with trajectory-level advantage estimation, while MT-GRPO is our proposed variant with fine-grained turn-level advantage estimation.

environment returns an error message, indicated by the response beginning with "Error:". If the agent fails to include a tool-calling command in the first reasoning step, the tool environment will not be invoked. If the XML format or tag usage is incorrect—for example, if tags are missing, nested improperly, or misnamed—the environment may fail to parse the agent's response, resulting in an error or a skipped tool invocation. Additional rollout examples where the agent fails to call the tool correctly are provided in Appendix E.6.

Moreover, following the reformulation strategy proposed in Seed-Thinking-v1.5 (Seed, 2025), which converts multiple-choice questions into fill-in-the-blank or short-answer formats to reduce guessing and better evaluate reasoning ability, we adopt a similar method. Specifically, we convert our tasks into short-answer form and evaluate the model's responses based on exact match with the ground-truth answers.

E.2 REWARD DESIGN (GRPO)

Figure 7 illustrates the pipeline of the multi-turn, tool-calling LLM agent system. To align with the environment of the tool-calling LLM agent, we design two types of verifiable reward functions.

Turn-Level Verifiable Rewards: These depend solely on the first turn performed by the LLM agent. To compute turn-level rewards, we incorporate verifiers related to tool execution and search results. These verifiers ensure that the search engine is correctly invoked and that the ground-truth answer appears in the retrieved results.

- *Tool Execution Reward:* Awards 0.2 if the tool is correctly executed, determined by the presence of properly formatted tool calls (<tool>...</tool>) and successful responses (i.e., the environment's response does not begin with "Error:").
- Search Result Answer Presence: Awards 0.5 if any accepted answer appears in the search results returned by the tool (extracted from the <result>...</result> tag), using a case-insensitive comparison.

Outcome-Based Verifiable Rewards: These evaluate the final model-generated responses. Specifically, they assess both the correctness of the answer and its formatting, ensuring that the output aligns with the expected structure and content.

- *Final Answer Presence Reward:* Awards 0.5 if any accepted answer is present in the model's final response (extracted from the <answer>...</answer> tag).
- Exact Match Reward: Awards 1.0 if the model's answer (extracted from <answer>...</answer>) exactly matches any accepted answer after standard text preprocessing (i.e., lowercasing and stripping whitespace).
- XML Tag Usage Reward: Assesses the correct usage of XML tags for the defined fields. For each tag, the reward verifies that exactly one opening and one closing tag are present. The reward is the proportion of correctly used tags (normalized by the number of tags checked), scaled by 0.2.

It is easy to observe that turn-level rewards evaluate only the performance of the agent's first turn, whereas outcome-level rewards assess the quality of the entire trajectory. This distinction leads to several characteristic scenarios:

- *Tool Invocation with Poor Final Answer:* The agent correctly invokes a tool in the first turn, satisfying the turn-level criteria, but fails to produce a correct or well-formatted final answer, resulting in turn-level rewards but little or no outcome-level reward.
- Incorrect or Absent Tool Use with Valid Final Answer: The agent either skips tool usage or invokes a tool incorrectly (e.g., due to malformed syntax or an error response), yet still generates a correct and well-structured final answer. In this case, the agent receives partial or full outcome-level rewards despite earning no turn-level rewards.
- Failure Across Both Levels: The agent neither invokes a tool correctly nor produces a valid final answer, resulting in zero rewards and a strong negative learning signal.

E.3 EXPERIMENT SETUP (GRPO)

In our experiments, we build our codebase upon the open-source project verifiers (Brown, 2025), which trains LLM agents for multi-turn tool-use tasks, including math calculators, code interpreters, and search engines.

Task & Dataset. We focus on the multi-turn reasoning and search-based tool-use task. We use the TriviaQA dataset (Joshi et al., 2017) to train the LLM agent for answering questions by interacting with a Wikipedia search engine. TriviaQA offers a diverse set of challenging questions, making it a suitable benchmark for evaluating multi-turn reasoning capabilities.

Evaluated Methods We compare our proposed MT-GPRO with vanilla GRPO.

- GRPO: original GRPO with trajectory-level advantage estimation
 - **GRPO-OR**: GRPO using only outcome rewards
 - GRPO-MR: GRPO using merged outcome and turn-level rewards
- MT-GRPO (ours): GPRO variant with turn-level advantage estimation using both outcome and turn-level rewards

Training Details. We use Qwen2.5-7B (Yang et al., 2024) as the base model. Experiments are conducted on a node equipped with 8 NVIDIA H100 GPUs: one GPU is dedicated to rollout

Table 5: Performance comparison across different methods on reward scores evaluated on the validation set. Values in parentheses indicate the reward range for each metric. Bold numbers indicate the best performance for each reward type.

Model	Turn-Lev	el Reward	Outcome Reward		
	Tool Execution (0-0.2)	Search Answer (0-0.5)	XML Format (0-0.2)	Exact Match (0-1)	
Qwen2.5-7B-Base	0.0559	0.0934	0.1562	0.0469	
Qwen2.5-7B-Instruct	0.1626	0.2814	0.1982	0.1559	
Qwen2.5-7B-Base + GRPO-OR	0	0	0.04	0	
Qwen2.5-7B-Base + GRPO-MR	0.2	0.3724	0.1994	0.3346	
Qwen2.5-7B-Base + MT-GRPO	0.2	0.3926	0.1996	0.5010	

generation, while the remaining seven GPUs are used for model training. Rollout generation is handled by vLLM (Kwon et al., 2023). Model training is performed using the Huggingface TRL implementation of GRPO (von Werra et al., 2020).

Hyperparameters. For all methods, the number of rollout generations is set to 21. The maximum completion length during generation is set to 1024 tokens. The KL divergence penalty is disabled by setting $\beta=0$. The learning rate is fixed at 1×10^{-6} . We use a per-device batch size of 12 and set gradient accumulation steps to 4. Each batch undergoes two training iterations. The total number of training steps is set to 300.

E.4 MAIN RESULTS (GRPO)

 Figure 8 shows reward component curves during training across various algorithms. From the answer presence and exact match reward curves, it is evident that MT-GRPO outperform GRPO-OR and GRPO-MR, demonstrating that fine-grained credit assignment enhances the performance of multi-turn LLM agents.

The turn-level rewards, including tool execution and search result answer presence rewards, reveal that MT-GPRO achieves 100% success in tool execution while GRPO-OR gradually stops calling search tools in question answering tasks and achieves worse final performance. This is because GRPO-OR does not incorporate turn-level rewards effectively in its advantage estimation, which indicates the importance of turn-level feedback in multi-turn interaction tasks.

Figures 9, 10, and 11 illustrate reward component curves during training with different algorithms, where shaded regions represent the range between the maximum and minimum values across 10 runs, showcasing the variability in learning performance. Notably, the proposed MT-GRPO method demonstrates lower variance during training, while GRPO-OR and GRPO-MR exhibit greater instability. An interesting observation is that the tool execution curve of MT-GRPO temporarily drops sharply around step 230–250 but subsequently recovers and stabilizes. This demonstrates that even if the agent forgets to call search tools in the middle of the training, it eventually learns to incorporate them in the final stages. This finding further emphasizes the significance of credit assignment in our proposed algorithms, contributing to more stable training.

Table 5 presents the validation reward scores across different models. MT-GRPO achieves the highest performance in all reward metrics. Compared to GRPO-MR, which reaches 0.3724 in final search answer and 0.3346 in exact match, MT-GRPO demonstrates clear improvements, especially in exact match with a margin of +0.1664. In contrast, GRPO-OR performs poorly across all metrics, scoring 0 in turn-level rewards and only 0.04 in XML format. These results confirm that fine-grained credit assignment in MT-GRPO leads to better turn-level decision-making and more accurate final outcomes in multi-turn tasks.

Figure 8: Curves for different training reward components during training with various algorithms (MT-GRPO, GRPO-OR, and GRPO-MR). Each plot shows the training reward score over training steps for turn-level rewards (Tool Execution, Search Result Answer Presence) and outcome rewards (XML Tag Usage, XML Format, Final Answer Presence, Exact Match). Dotted lines represent the average reward across 10 runs, while solid lines show trends smoothed using the Exponential Moving Average (EMA).

E.5 SYSTEM PROMPT (GRPO)

System Prompt

You have access to the following tools to help solve problems:

{tool_descriptions}

Follow these steps exactly once:

- 1. Think through your reasoning inside <reasoning> tags
- 2. Use a tool by writing a JSON command inside <tool> tags with:
 - "name": the tool to use
 - "args": the arguments for the tool
- 3. You will see the tool's output inside <result> tags
- 4. Think through the tool's output inside <reasoning> tags
- 5. Based on your reasoning, provide your final answer inside <answer> tags

Important:

- Use the tool exactly once DO NOT attempt to call the tool again even if the first search isn't helpful
- Work with both your prior knowledge and the single tool call
- If the tool result is unhelpful, rely on your prior knowledge
- Tools expect valid JSON follow the examples carefully
- Do not invent tools or arguments that aren't listed
- Analyze the result in a reasoning step before giving your answer
- · Your answer should match the expected ground-truth

Wiki Search Tool Descriptions

wiki_search: Searches Wikipedia and returns the top matching article content.

Arguments:

- query

E.6 ROLLOUT EXAMPLES (GRPO)

Table 6: A rollout example of successfully calling the search tool during training.

Question: What serial killer, who buried the remains of 26 of his victims in his Chicago crawl space, was known as the "Killer Clown"?

```
<reasoning> To find out who was the serial killer known as the "Killer Clown," we'll use
the wiki_search tool to gather information about this specific individual. </reasoning>
<tool>
    "name": "wiki_search",
    "args": {
       'query": "Killer Clown serial killer buried remains in Chicago crawl space"
</tool>
<result> John Wayne Gacy. John Wayne Gacy (March 17, 1942 – May 10, 1994) was an
American serial killer who raped, tortured, and murdered at least 33 teenage boys and young
men between 1972 and 1978 in Cook County, Illinois (a part of metropolitan Chicago). All of
Gacy's known murders were committed inside his Norwood Park ranch house... </result>
<reasoning> From the information provided, John Wayne Gacy, referred to as the "Killer
Clown," was a serial killer known for burying the remains of at least 26 of his victims in his
Chicago crawl space. He gained notoriety for using various methods to subdue his victims,
including deceiving young males into wearing handcuffs and using methods like garroting
and suffocation. His final confirmed victim was identified through DNA testing in 2011.
Investigations into potential accomplices and his connection to a sex trafficking ring also raise
questions about his broader involvement in criminal activity. </reasoning>
<answer> John Wayne Gacy </answer>
```

Table 7: A rollout example of failing to call the search tool and producing a wrong answer.

Question: In the horror film Them, what type of creatures were Them?

<reasoning> In the horror film "Them!", the main creatures were giant ants. I know this
because I remember from my general knowledge that "Them!" is a 1954 science fiction horror
film about giant ants and the damage they cause in a coastal town. So, to answer the question,
the creatures in "Them!" were giant ants. </reasoning>

<answer> Giant </answer>

Table 8: A rollout example of generating a response with an incorrect format.

Question: Who was the Canadian jazz pianist (1925-2007), winner of eight Grammy Awards who released over 200 recordings?

<reasoning> I need to identify the Canadian jazz pianist, born in 1925 and died in 2007, who won eight Grammy Awards and released over 200 recordings. This person's name should be easy to find with a Wikipedia search since the question specifies Grammy Awards and a long recording history. Once I find the Wikipedia article, I can read about the pianist's career to confirm the details mentioned in the question. </reasoning>

Error: Tool command not found or invalid XML format. Please ensure correct formatting.

<answer><tool>< reasoning> From the Wikipedia search I found that Oscar Peterson, born in 1925 and deceased in 2007, was a Canadian jazz pianist who won eight Grammy Awards and released over 200 recordings. </reasoning><answer>Oscar Peterson</answer></result><answer>Oscar Peterson</answer>

E.7 ADDITIONAL EXPERIMENTAL RESULTS (GRPO)

Figure 9: Curves for different training reward components during training using GRPO-OR, where shaded regions represent the range between the maximum and minimum values across 10 runs.

Figure 10: Curves for different training reward components during training using GRPO-MR, where shaded regions represent the range between the maximum and minimum values across 10 runs.

Figure 11: Curves for different training reward components during training using MT-GRPO, where shaded regions represent the range between the maximum and minimum values across 10 runs.