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ABSTRACT

This paper investigates Reinforcement Learning (RL) approaches to enhance the
reasoning capabilities of Large Language Model (LLM) agents in long-horizon,
multi-turn scenarios. Such multi-turn agentic tasks can be naturally formalized as
turn-level Markov Decision Processes (MDPs). However, most existing methods
adopt MDP formulations with trajectory-level rewards, either terminal rewards that
provide only a final outcome signal, or delayed rewards that merge intermediate and
outcome signals into a single sparse feedback, leading to poor credit assignment.
To address this limitation, we reformulate these tasks as MDPs with explicit
turn-level rewards and provide theoretical analysis supporting the effectiveness
of this design. Building on this formulation, we extend popular RL algorithms,
GRPO and PPO, to their respective multi-turn variants, enabling fine-grained credit
assignment. We conduct case studies on multi-turn reasoning-augmented search
agents, where we carefully design two types of turn-level rewards: verifiable
and LLM-as-judge. Our experiments on multi-turn search tasks demonstrate that
our proposed formulation, incorporated well-designed turn-level rewards, enables
RL algorithms to significantly outperform baseline methods with trajectory-level
rewards. Both training and validation reward curves illustrate that our method
achieves greater stability, faster convergence, and higher accuracy. Numerical
results across diverse question-answering datasets further show that our approach
consistently delivers highest answer correctness and 100% format correctness.

1 INTRODUCTION

Reinforcement Learning (RL) has recently emerged as a powerful approach for improving the
reasoning capabilities of Large Language Models (LLMs), allowing them to explore and refine long
Chains of Thought (CoT) (Wei et al., 2022) in complex decision-making tasks. Building on this
paradigm, reasoning-based LLMs, such as OpenAlI’s ol (Jaech et al., 2024) and DeepSeek’s R1 (Guo
et al., 2025a), demonstrate remarkable performance in textual reasoning tasks by learning analytical
thinking and self-reflection. Despite these advancements, LLMs that rely solely on textual reasoning
remain limited in tasks that require precise and complex numerical computation, information retrieval
from web pages or local databases, or code execution. Equipping LLMs as autonomous agents
with access to external tools, such as search engines, scientific calculators, or code interpreters, can
significantly extend their capabilities beyond pure text-based reasoning (Gou et al., 2023).

Training LLMs to operate as autonomous agents in interactive environments faces unique challenges.
Agent settings often require models to make sequential, multi-turn decisions in complex reasoning
tasks. Many existing approaches (Chen et al., 2025b; Jin et al., 2025b; Feng et al., 2025a) formulate
these multi-turn interactive tasks as single-turn problems, relying solely on final outcome-level
rewards such as answer correctness. Popular RL algorithms, including Group Relative Policy
Optimization (GRPO) (Shao et al., 2024) and Proximal Policy Optimization (PPO) (Schulman et al.,
2017), are applied in this setting. However, such single-turn formulation is inadequate for long-
horizon multi-turn reasoning as it treats the entire trajectory as a single decision step, ignoring the
multi-turn structure of the interactive tasks. In particular, it ignores intermediate signals that evaluate
each complete agent-environment interaction, such as a tool call and its result, providing feedback at
the granularity of a single turn in multi-turn tasks (Lightman et al., 2023; Zhang et al., 2025b; Ma
et al., 2023; Choudhury, 2025). Without access to dense turn-level feedback, agents struggle to refine
their behavior, making it difficult to interact effectively with dynamic environments over multiple
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steps. For example, in a search agent (Chen et al., 2025b; Jin et al., 2025a), selecting a good query
early on is crucial for retrieving relevant information; without turn-level retrieval feedback, the agent
may not learn which queries contribute to correct answers.

Recent studies (Li et al., 2025a; Qian et al., 2025; Wang et al., 2025a; Labs, 2025; Wang et al., 2025b;
Singh et al., 2025; Zhang et al., 2025a; Jin et al., 2025a) model multi-turn agentic tasks as Markov
Decision Processes (MDPs) and incorporate intermediate rewards like tool execution. However, these
approaches suffer from a credit assignment problem: they merge outcome and intermediate rewards
into a sparse trajectory-level signal for RL training. This aggregation makes advantage estimation
inaccurate and prevents RL algorithms from providing fine-grained supervision across intermediate
rounds of interaction (Guo et al., 2025b; Feng et al., 2025b; Zhang et al., 2025¢).

Motivated by this, we investigate turn-level reward design for both multi-turn RL algorithms and
agent applications. Our key contributions are as follows:

* Most existing methods adopt MDP formulations with trajectory-level rewards, either terminal
rewards that provide only a final outcome signal, or delayed rewards that merge intermediate
and outcome signals into a single sparse feedback, leading to poor credit assignment. To
address this limitation, we reformulate these tasks as MDPs with explicit turn-level rewards
and provide theoretical analysis supporting the effectiveness of this design.

* To train multi-turn LLM agents effectively under our MDP formulation, we propose to
extend GRPO and PPO to their multi-turn variants by incorporating both outcome and
intermediate rewards, enabling fine-grained credit assignment. While multi-turn GRPO
requires exponential rollout samples to compute intermediate advantages, multi-turn PPO
leverages a critic model, offering a more efficient and scalable solution.

* To highlight the importance of turn-level rewards, we conduct a case study using a reasoning-
augmented search agent that performs multiple rounds of reasoning and search before
producing the final answer. We carefully design turn-level verifiable rewards and turn-level
LLM-as-judge rewards for training the search agent. While verifiable rewards are rigid, the
LLM-as-judge enables a more flexible and nuanced evaluation.

* Building on this case study, our experiments on multi-turn reasoning-augmented search
tasks show that our proposed MDP formulation integrated turn-level rewards enables RL
algorithms to significantly outperform baseline methods with trajectory-level rewards. Both
training and validation reward curves obtained with the Qwen2.5-7B model demonstrate that
our algorithm with turn-level rewards achieves more stable training, faster convergence, and
higher accuracy for both verifiable and LLM-as-judge rewards. Furthermore, benchmarks
on both in-domain and out-of-domain tasks show that our approach consistently achieves
the highest accuracy and reliably produces outputs with 100% correct format.

2  PROBLEM FORMULATION FOR MULTI-TURN AGENT INTERACTION

2.1 TURN-LEVEL MDP FORMULATION

Let « denote the input prompt sampled from the dataset D, and y = [l1, f1, ..., Ik, fK| denote the
complete output response, where [, is the response generated from an LLM policy 7y, and fj, is the
corresponding environment feedback at the k-th turn.

LLM agents operate in interactive environments where each turn yields stochastic feedback. To
capture these dynamics, we formulate the multi-turn agentic task as a turn-level MDP, which is
formally defined as M = {S, A, P, R,~v}. Here, S denotes the state space, and A denotes the
action space; A state s € S typically corresponds to an interaction history, while an action a € A
often corresponds to a sequence of generated tokens; P represents the transition dynamics; R is the
turn-level reward function; + is the discount factor. At the k-th turn, conditioned on the current state
sk, the agent makes an action a;, according to the policy 7y, where ay = [l, fx] if environment
feedback exists, otherwise ay = li. The agent then receives a turn-level reward Ry, = R(sk, ax), and
transitions to the next state s;11. A multi-turn rollout trajectory is

T = {(SlaalaRl)? (827a27R2)7 cety (SK,(IK,RK)}

Note that the outcome reward is denoted by R(x,y) = Ry for a prompt—response pair (z, y).
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2.2 REWARD ASSIGNMENT IN TURN-LEVEL MDP

Based on the granularity of reward assignment, we categorize multi-turn formulations into three types
of turn-level MDPs:

1. Turn-level MDP with a terminal reward M: provides only a final outcome (terminal)
reward with no intermediate rewards.

2. Turn-level MDP with a delayed reward Ms: provides an accumulated reward that merges
both intermediate and outcome rewards into a single delayed signal.

3. Turn-level MDP with explicit turn-level rewards M 3: provides explicit rewards at each turn.

Here, M contains only outcome rewards, whereas both My and M3 include intermediate rewards
but differ in how these rewards are distributed across the turns. Moreover, M; and M provide
trajectory-level rewards, whereas M3 provides explicit turn-level rewards. Notably, most existing
multi-turn agent studies adopt either M or M. In contrast, our paper focuses on M.

M is simple, and many existing studies adopt this formulation for multi-turn agentic tasks, relying
on a final outcome reward such as answer correctness:

n}rzgx Epnd, yroro(-|2) [R(z,y)] M

which can be interpreted as a contextual bandit problem (Bouneffouf & Feraud, 2025; Baheri & Alm,
2023). However, such a single-turn formulation is inadequate because it treats the entire trajectory as a
single decision step and ignores intermediate rewards that capture the structure of agent—environment
interactions. Without intermediate rewards, the system must simulate entire trajectories before
receiving any feedback, leaving it unable to prune or down-weight clearly suboptimal trajectories at
early stages (Wu et al., 2023; Singhal et al., 2025) and resulting in poor credit assignment.

M and M are return-equivalent, both maximizing the cumulative discounted return:

K
H}%X E.sk7ak,~7r9(<\sk) [Z WkR(Sk,(I},@)‘| (2)

k=1

in the sense that My and M 3 have the same optimal ()-values and therefore share the same optimal
policies. However, prior theoretical work (Ng et al., 1999; Arjona-Medina et al., 2019) indicates
that when rewards are heavily delayed, M suffers from severe credit assignment issues, leading to
high-variance gradients during policy optimization. See Appendix C for theoretical analysis.

3 GRPO wiTH TURN-LEVEL REWARDS FOR MULTI-TURN AGENTIC TASKS

3.1 VANILLA GRPO WITH TRAJECTORY-LEVEL REWARDS

GRPO. Recently, the Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024)
has been widely used to enhance the reasoning capabilities of LLMs, which estimates the advantage
in a group-relative manner. Specifically, for each input question x, it samples a group of responses
{y1,¥2,...,yc} from the reference policy ;. GRPO optimizes the policy by maximizing the
following objective function:

Joreo(0) = Euop, (412, ~mmaa(lo)

i

GZm me wi(0) Ai g, olip (wi(0), 1 — €1+ €) Aiy) — Do o || moet] |, 3)

where w; (0) = ZeWutlt:vi<t) i¢ he token-level importance sampling ratio between the current
’ Wold(yl,t|xvyz,<t)

policy 7 and the previous policy moyq, € is the clipping parameter, and S is the KL divergence

coefficient. Given a group of trajectory-level rewards {R"aj & |, the advantage of the i-th response
A; ¢ is calculated by

R;” mean({RtraJ ¢)

Az ;= AGRPO
Std({R;raJ}izl)

“
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GRPO is naturally suited for MDPs with trajectory-level rewards, namely M; and Mo, where
R = R(z,y;) for My, and R{¥ = Zle 7v*R; 1, for Mo, with R; i, = R(si x,a; ;) denoting the

1
intermediate reward given the state s; ;, and action a; j, at the k-th turn.

Limitations of GRPO in Multi-Turn Settings. For GPRO, the advantage function A; ; in Eq. (4)
is computed at the trajectory level, which means the same advantage is assigned uniformly across
the entire trajectory, without distinguishing the contributions of individual turns or tokens. For
long-horizon multi-turn tasks, such coarse-grained credit assignment often leads to unstable training
and suboptimal performance (Guo et al., 2025b; Feng et al., 2025b; Zhang et al., 2025¢).

3.2 MT-GPRO: TURN-LEVEL CREDIT ASSIGNMENT FOR GRPO

MT-GPRO. To highlight the importance of fine-grained credit assignment for GRPO, we consider a
simple two-turn agent setting (K = 2), where the agent receives a group of intermediate rewards
{RI}$ | in the first turn and outcome rewards { RY}$ , in the second turn. Based on these signals,
we present our turn-level credit assignment strategy for GRPO. The resulting turn-level advantages in
the first and second turns are given by:

AMIOPRO _ AT 4 0 4O AMFGPRO _ 40 5)
where Al and A9 denote the intermediate and outcome advantages:
Al — R} —mean({R]}{,) RY — mean({RP},)
' std({ R} }Z,) , std({R{}{1)

By leveraging intermediate rewards, all tokens within a single turn share a unified advantage signal.
Moreover, the advantage of a turn depends not only on the rewards from that turn but also on the
contributions of subsequent turns. We refer to this algorithm as multi-turn GRPO (MT-GRPO). A
detailed derivation of MT-GRPO for the K -turn setting is provided in Appendix F.

AP = 6)

Case Study for MT-GRPO on a Two-Turn Agentic Task. We conduct experiments to evaluate
the proposed MT-GRPO method in a two-turn agent setting, where the agent first calls the search
tool with reasoning in the initial turn and then produces the final answer in the subsequent turn (see
Appendix G for details). Beyond the outcome-level exact-match reward, we design intermediate
rewards based on tool-execution feedback for MT-GRPO. Figure | presents training reward curves
for GRPO and MT-GRPO, which show that MT-GRPO achieves more stable tool usage (left figure)
and higher exact-match accuracy (right figure), highlighting the importance of fine-grained credit
assignment in multi-turn agentic tasks.
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Figure 1: Curves for different training reward components during training with various algorithms.
GRPO-OR means GRPO with outcome rewards while GPRO-MR means GRPO with merged outcome
and intermediate rewards. GPRO-OR, GPRO-MR, and MT-GPRO correspond to the MDPs M,
Mo, and M3, respectively. Each plot shows the training reward score over training steps. Dotted
lines represent the average reward across 10 runs, while solid lines show trends smoothed using the
Exponential Moving Average (EMA).

Remark. MT-GPRO has two limitations: (1) In MT-GRPO, computing the intermediate advantages
requires G rollout samples at each turn. Therefore, over a horizon of K turns, this results in GE-1
rollout trajectories in total (see Appendix F for details). Such exponential growth in complexity makes
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the approach computationally prohibitive for long-horizon multi-turn tasks. (2) This strategy also
assumes that all rollout samples in a group must contain the same number of turns, which requires
enforcing this constraint in the system prompt and leads to a fixed-turn setting. Such a restriction
limits the flexibility and applicability of GRPO in more diverse scenarios. For example, in a search
task, one question may be resolved in a single tool call or require multiple calls to retrieve, filter, and
refine results in a sampled group.

4 PPO wWITH TURN-LEVEL REWARDS FOR MULTI-TURN AGENTIC TASKS

In the previous section, we illustrated the importance of fine-grained credit assignment for GPRO,
which improves the performance of LLM agents in multi-turn interactions. However, the exponential
computational cost, together with the fixed-turn constraint, limits the applicability of MT-GRPO to
general agentic tasks. In this section, we present the PPO alogrithm with turn-level rewards, aiming
to provide a more flexible, scalable, and efficient solution.

PPO. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a popular actor-critic RL
algorithm commonly used for LLM training (Ouyang et al., 2022). PPO updates the policy by
maximizing the following surrogate objective:

lyl
1 . .
jppo(e) = ]EacND, yNﬂ'old('|I) m E min (wt(ﬁ)At, Cllp (wt(ﬁ), 1-— €, 1 + 6) At) s (7)
t=1

The advantage estimate A; is computed using Generalized Advantage Estimation (GAE) (Schulman
et al., 2015), based on rewards and a learned value function (critic model). Formally, for a trajectory
of length T, the GAE A; at time step ¢ is computed as:
T—t—1
Ay = Z (7)\)l5t+l, o =1t + Vi1 — Vi 3
1=0

where + is the discount factor, A € [0, 1] is the GAE parameter, d; is the temporal-difference error, r;
is the token-level reward and V; is the token-level value at step ¢. Through the mechanism of GAE,
the token-level value function enables token-level advantage estimation.

Turn-Level Reward Assignment for PPO. With explicit intermediate rewards, GAE provides
fine-grained training signals at each turn. Given both intermediate rewards R! and the outcome
reward RO, the token-level reward r; is assigned as

RO if t is the last token of the entire trajectory
ry = < RT if ¢ is the last token of the intermediate turn ©)]
0 otherwise

For clarity, we refer to PPO trained with both intermediate and outcome rewards as multi-turn PPO
(MT-PPO), while PPO trained with only a sparse trajectory-level reward is referred to as PPO. To
achieve fine-grained credit assignment with the usage of turn-level rewards, compared to MT-GRPO,
which requires exponential rollout samples to compute intermediate advantages, MT-PPO leverages a
critic model with GAE, offering a more efficient and scalable solution.

Summary. Table | summarizes the granu-  Taple 1: Comparison of granularity of reward assign-

larity of reward assignment and advantage ent and advantage estimation across different RL
estimation across different RL algorithms. algorithms for multi-turn LLM agents.

As shown, MT-PPO provides fine-grained
turn-level rewards and token-level advan-
tage estimation. This higher granularity en-  RL Algo.
ables more precise credit assignment, which Reward Advantage
is particularly beneficial for multi-turn LLM

Granularity

GRPO Trajectory-Level Trajectory-Level
agents where successful outcomes often de-
. . . MT-GRPO Turn-Level Turn-Level
pend on a sequence of intermediate deci- .
sions. In contrast, trajectory-level meth- L Trajectory-Level  Token-Level
: > TAectory MT-PPO  Turn-Level Token-Level

ods provide coarser feedback, which often
leads to weaker learning signals and unsta-
ble training. These insights will be empirically validated in the following experiments.
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Figure 2: Overview of the multi-turn reasoning-augmented search agent pipeline. Given a system
prompt and a question, each iteration of the LLM-based search agent proceeds as follows: (1) The
agent begins with reasoning, analyzing the current context to identify missing information. (2) It
then formulates a search query to retrieve relevant information from an external database, which is
integrated into the evolving context. (3) This cycle continues until the agent judges that the context is
sufficient, at which point it performs a final round of reasoning to generate the answer.

5 CASE STUDY: MULTI-TURN REASONING-AUGMENTED SEARCH AGENT

5.1 TASK FORMULATION

We study an LLM agent that performs multi-turn reasoning with search engine interactions. The
task can be naturally formulated under the turn-level MDP framework, as discussed in Section 2,
where each action a corresponds either to a reasoning-augmented search step or to producing the
final answer. The goal is to improve the agent’s performance through effective integration of external
search. Specifically, the agent learns to leverage a Wikipedia search engine to retrieve relevant
information and generate an accurate answer. Without search calling, the agent must rely solely on its
internal knowledge to answer questions, which can limit accuracy, especially for fact-based queries
requiring up-to-date or domain-specific information. The overall interaction follows a multi-turn
reasoning—search loop, as shown in Figure 2.

5.2 TURN-LEVEL VERIFIABLE REWARD DESIGN

Unlike existing approaches (Chen et al., 2025b; Jin et al., 2025b), which assign binary rewards based
solely on final-answer correctness for the entire trajectory, we design turn-level verifiable rewards for
both intermediate and final turns to better align with the environment of the LLM-based search agent.

Outcome Verifiable Rewards evaluate the model-generated responses in the last turn, focusing on
both the correctness of the answer and the adherence to the required output format.

e Qutcome Exact Match Reward evaluates whether the extracted answer (from the <answer>
tag) exactly matches any accepted ground-truth answer after normalization (e.g., lowercasing
and whitespace removal):

* Outcome Format Reward ensures format correctness by verifying that: (1) only <think>
and <answer> tags appear (no extra tags), (2) each tag appears exactly once, and (3)
<think> precedes <answer>.



Under review as a conference paper at ICLR 2026

The outcome reward is defined as

1 fem = True, frormar = True,
RO =402 fem = Falsea fformat = True,
-1 fformal = False,

where f., and fromae denote the indicators of answer (exact-match) correctness and format correctness,
respectively. A smaller positive reward is given when the answer is incorrect but the output follows
the required format, encouraging structural correctness during training. A negative reward (penalty)
is applied when the format is incorrect, ensuring that the agent adheres to the required structure.

Intermediate Verifiable Rewards guide the agent’s behavior in intermediate turns by evaluating
the presence of ground-truth answers in retrieved content, enforcing proper format usage, and
discouraging excessive search calls.

* Intermediate Retrieval Existence Reward evaluates whether any accepted answer appears in
the one-round search result (from <information> tag), using case-insensitive matching.
RE ... = 0.3 if retrieved information contains any ground-truth, otherwise 0.

* Intermediate Format Reward ensures format correctness by verifying that: (1) only
<think>, <search>, and <information> tags appear (no extra tags), (2) each tag
appears exactly once, and (3) <think> precedes <search> and <information>.
RE . = 0.1if the format is correct, otherwise —0.2.

o Intermediate Search Count Reward penalizes excessive search usage.
I
Reeoren = —As * Msearchs

where \; is a predefined positive constant controlling the weight of the search count reward,
Nsearch denotes the cumulative number of search invocations from the first turn up to the
current turn.

The intermediate reward is defined as R = RL . .+ RL  + RI .. Retrieval correctness is
similarly assigned a smaller weight than answer correctness, again to reduce the risk of reward hacking.
In addition, we introduce an intermediate search penalty to discourage excessive or unnecessary
search calls, preventing the agent from either avoiding the avoiding the question answering or failing

due to crashes.

5.3 LLM AS JUDGE FOR TURN-LEVEL EVALUATION

Verifiable rewards, such as exact match, provide a strict and objective form of evaluation. However,
they can be overly rigid: an agent may produce a correct answer that differs slightly in form from
the ground truth but still receives negative feedback. To complement such verifiable signals, we
adopt the LLM-as-judge paradigm, where a strong LLM evaluates agent outputs. The LLM-as-judge
framework consists of two key components: step-by-step reasoning and rubric-based scoring.

Reasoning. We employ a generative reasoning model (GRM) (Li et al., 2025b) as the judge,
prompting it to generate detailed justifications before assigning a score. The step-by-step reasoning
process encourages the judge to evaluate output quality using rubric-based criteria rather than relying
on shallow correlations.

Rubrics. Rubric-based scoring provides structured evaluation criteria that improve both consistency
and reliability across assessments. Unlike outcome-level evaluation that only considers the final
answer, our framework assesses each turn’s output. This fine-grained assessment offers richer
feedback and aligns naturally with multi-turn agentic tasks, where intermediate steps critically
influence overall success. The judge model evaluates format correctness, reasoning quality, and
search effectiveness, while also applying a search penalty to discourage excessive or unnecessary
tool calls. Additional implementation details are provided in Appendix D.2.

6 EXPERIMENTS

In our experiments, we build our codebase upon the open-source project Search-R1 (Jin et al.,
2025b), which trains LLM agents for multi-turn reasoning-augmented search tasks. More details on
experimental settings can be found in Appendix D.1.
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6.1 EVALUATED METHODS

We compare both training reward dynamics and benchmark performance across different methods.
Training Dynamics. We evaluate our MT-PPO against several PPO-based baselines:

* PPO-OR (Jin et al., 2025b): vanilla PPO trained with only outcome rewards, where the
trajectory-level reward is a binary signal indicating final-answer correctness, corresponding
to the terminal-reward MDP M.

¢ PPO-MR (Jin et al., 2025a): vanilla PPO trained with merged intermediate and outcome
rewards, where the trajectory-level reward combines intermediate rewards (retrieval correct-
ness) and outcome rewards (answer correctness and format correctness), corresponding to
the delayed-reward MDP M. The detailed reward design is provided in Section 4.1 of (Jin
et al., 2025a).

e MT-PPO (ours): PPO variant trained with both intermediate and outcome rewards, where the
turn-level reward design is described in Section 5.2, with A; = 0.1 by default, corresponding
to the turn-level-reward MDP M.

We omit GRPO training curves since, as reported in (Jin et al., 2025b), GRPO consistently crashes
during training.

Benchmark Evaluation. In addition to the base model and the instruct model, we further compare
our method against Search-R1 trained with GRPO and PPO (Jin et al., 2025b;a),! OTC trained with
GRPO and PPO (Wang et al., 2025a), and StepSearch trained with PPO (Wang et al., 2025¢).

Since PPO baselines often crash, we evaluate them using either the final checkpoint or the last
checkpoint prior to collapse.

Evaluation Metrics. We evaluate model performance using three types of rewards: (1) answer
correctness (exact match) reward, (2) format correctness reward, and (3) retrieval correctness reward.
Each reward is assigned a value of 1.0 if the criterion is satisfied and 0 otherwise.

6.2 EXPERIMENT SETUP

Datasets. These datasets are categorized as follows: (1) General Question Answering: NQ
(Karpukhin et al., 2020), TriviaQA (Joshi et al., 2017), and PopQA (Mallen et al., 2022). (2)
Multi-Hop Question Answering: HotpotQA (Yang et al., 2018), 2WikiMultiHopQA (Ho et al., 2020),
and Musique (Trivedi et al., 2022). These datasets cover a diverse range of search and reasoning
challenges, providing a comprehensive basis for evaluation.

Training Details. We use Qwen2.5-7B (Yang et al., 2024) as the base model, E5 (Wang et al., 2022)
as the retriever, and 2018 Wikipedia dump (Karpukhin et al., 2020) as the corpus. We set the number
of retrieved passages to 3, and the maximum number of turns Ny, ,x to 4. The system prompt follows
that of Search-R1 (Jin et al., 2025b). We also enable policy loss masking on retrieved tokens.

6.3 MAIN RESULTS

Training Dynamics. Figures 3 and 5 show training and validation reward curves for PPO and
MT-PPO. MT-PPO achieves substantially more stable training, converging faster in the early phase
(first 100 steps) thanks to intermediate rewards that provide stronger guidance. As training progresses,
PPO exhibits high variance and even performance degradation, especially on HotpotQA, while
MT-PPO maintains consistent improvement. MT-PPO attains higher average accuracy than PPO,
demonstrating greater robustness. Format reward curves show that MT-PPO consistently follows
the correct output format, while PPO struggles, especially on HotpotQA, where formatting mistakes
prevent correct evaluation. This indicates that turn-level rewards in MT-PPO stabilize training and
enforce structural correctness. Retrieval curves further show that MT-PPO achieves more consistent
accuracy by leveraging intermediate signals to guide reasoning. Figure 6 presents training curves for
MT-PPO and PPO with judge rewards, where MT-PPO again demonstrates stable optimization.

"The GRPO baselines (GRPO-OR and GRPO-MR) correspond to the PPO baselines (PPO-OR and PPO-MR)
with the same reward design (Jin et al., 2025b;a).
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Figure 3: Training reward curves recorded during training for PPO baselines and MT-PPO on the NQ
and HotpotQA datasets. The rewards include answer correctness, format correctness, and retrieval
correctness. Solid lines show mean reward values, while shaded regions indicate variability across
five independent runs.

Table 2: The performance results of different methods on six datasets. Bold numbers indicate the best
performance for each dataset and metric. */* denote in-domain/out-of-domain datasets. * indicates
results copied from the original paper.

General QA Multi-Hop QA

Methods Avg.
NQ'  TriviaQA* PopQA* HotpotQA' 2wiki* Musique®
Answer Correctness (Exact Match)
Qwen2.5-7B-Base 0.177 0.319 0.181 0.160 0.167 0.040 0.174
Qwen2.5-7B-Instruct 0.320 0.563 0.349 0.292 0.277 0.118 0.320
GRPO-OR (Search-R1) 0.391 0.560 0.388 0.331 0.306 0.129 0.351
GRPO-MR (Search-R1)*  0.453 0.628 0.450 0.416 0.375 0.164 0.414
PPO-OR (Search-R1) 0.483 0.639 0.456 0.435 0.382 0.199 0.432
PPO-MR (Search-R1)* 0.472 0.629 0.452 0.436 0.402 0.180 0.429
GRPO (OTC)* 0.444 0.597 0.431 0.366 0.311 0.130 0.380
PPO (OTC)* 0.446 0.623 0.425 0.383 0.363 0.152 0.399
PPO (StepSearch) 0.355 0.570 0.385 0.351 0.396 0.179 0.373
MT-PPO (ours) 0.490 0.647 0.459 0.453 0.424 0.209 0.447
Format Correctness
Qwen2.5-7B-Base 0.118 0.118 0.105 0.098 0.084 0.082 0.101
Qwen?2.5-7B-Instruct 0.183 0.267 0.067 0.109 0.037 0.071 0.122
GRPO-OR (Search-R1) 0.706 0.685 0.597 0.513 0.376 0.328 0.534
PPO-OR (Search-R1) 0.909 0.954 0.952 0.916 0.806 0.834 0.895
PPO (StepSearch) 0.521 0.614 0.668 0.560 0.396 0.571 0.555
MT-PPO (ours) 0.999 0.997 0.999 0.998 0.999 0.999 0.999

Benchmark Performance. Table 2 reports results on six QA datasets, spanning both general and
multi-hop reasoning tasks. MT-PPO consistently outperforms PPO and GRPO in answer correctness,
with the largest gains on multi-hop tasks such as HotpotQA and 2Wiki. Moreover, MT-PPO nearly
perfects format correctness, reaching close to 100% across datasets, underscoring the effectiveness of
multi-turn credit assignment in producing both accurate and well-structured outputs.

6.4 ABLATION STUDY
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Figure 4: Ablation studies on (1) the search count reward )4 and (2) the maximum number of turns
Npax on the NQ dataset. The left panel reports answer correctness, the middle panel shows the
average number of turns, and the right panel illustrates accuracy under different Vy,, settings.

We conduct two ablation studies to analyze the effects of (1) the search-count reward and (2)
the maximum number of turns on training dynamics and final performance. As shown in Figure 4,
incorporating a moderate search-count reward (e.g., As = 0.1) significantly improves training stability
and answer correctness. The left panel shows that MT-PPO with A; = 0.1 achieves the highest and
most consistent accuracy, while overly strong penalties (e.g., A; = 0.3) degrade performance.

The middle panel illustrates how the search-count reward shapes the agent’s turn usage. With
As = 0.1, the agent learns to reduce unnecessary search calls early in training and eventually
stabilizes around an efficient number of turns. In contrast, removing this term (A\; = 0.0) leads to
unstable behavior, including excessive or erratic turn usage, which ultimately harms convergence.

Finally, the right panel shows the effect of varying the maximum number of allowed turns Ny,ax. The
results indicate that MT-PPO is robust across different turn limits: adjusting Ny,ax from 4 to 6 yields
nearly identical accuracy curves. This suggests that MT-PPO adapts its strategy effectively without
being overly sensitive to the chosen turn budget.

7 CONCLUSION AND FUTURE WORK

In this paper, we highlighted the importance of turn-level rewards for multi-turn agentic tasks. By
introducing carefully designed intermediate signals, we extended GRPO and PPO into multi-turn
variants, allowing LLM agents to receive more informative feedback at each stage of interaction.
Experiments on reasoning-augmented search agents show that incorporating turn-level rewards
substantially improves both the stability and accuracy of training across different RL algorithms. We
believe that turn-level rewards have broad applicability beyond search, offering a general mechanism
for improving the effectiveness of multi-turn agents in diverse interactive environments.
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A LLM USAGE

In this work, LLMs were used exclusively for polishing the writing. No part of the technical content,
experimental design, or analysis relied on LLMs. The authors retain full responsibility for the
correctness and originality of the ideas, methods, and results.

B RELATED WORK

B.1 PROCESS REWARD AND CREDIT ASSIGNMENT IN RL

Process rewards provide fine-grained credit assignment and enhance both training efficiency and
optimization stability in RL. Such dense rewards have proven effective in classical RL domains such
as games and robotic control (Schrittwieser et al., 2020; Liu et al., 2022; Sun et al., 2025). Process
reward models have also been extensively explored for inference-time scaling in LLMs (Lightman
et al., 2023; Uesato et al., 2022). Recent studies have further highlighted the importance of effective
credit assignment in RL (Pignatelli et al., 2023; Shao et al., 2024; Cui et al., 2025; Cheng et al., 2025;
Feng et al., 2025b; Guo et al., 2025b), particularly for textual reasoning tasks such as mathematical
problem solving. In multi-turn agent interaction settings, turn-level rewards evaluate each complete
agent—environment interaction, such as a tool invocation and its resulting output, providing feedback
at the granularity of a single turn. This setting naturally emphasizes the advantages of process-level
rewards and fine-grained credit assignment. However, the design of effective reward functions for
multi-turn agents, as well as RL algorithms capable of leveraging such fine-grained credit signals,
remains underexplored. A recent study (Chen et al., 2025¢) investigates step-level credit assignment
for multi-turn LLM agents by introducing a dual-discounting GAE formulation in PPO. While their
method relies on critic-derived step-level value estimates for credit assignment, our approach directly
incorporates explicit intermediate rewards into the PPO objective, enabling more precise and more
stable credit assignment.

B.2 RL FOR LLM AGENTS

RL has been applied to train long-horizon multi-turn LLLM agents in diverse domains, including
search (Chen et al., 2025b; Jin et al., 2025b;a), tool use (Feng et al., 2025a; Li et al., 2025a; Qian
et al., 2025; Wang et al., 2025a; Labs, 2025; Zhang et al., 2025a; Singh et al., 2025), text-based
games (Yao et al., 2020; Carta et al., 2023; Zhai et al., 2024; Wang et al., 2025b), web shopping (Yao
et al., 2022), digital app interaction (Chen et al., 2025a), and mobile device control (Bai et al., 2024).
A number of these studies (Jin et al., 2025a; Feng et al., 2025a; Li et al., 2025a; Qian et al., 2025;
Wang et al., 2025a; Labs, 2025; Zhang et al., 2025a; Singh et al., 2025) apply RL algorithms such as
GRPO and PPO to train tool-using LLM agents, including calculators, code interpreters, and search
engines, thus enabling reasoning with external tools. However, these methods generally collapse
outcome- and turn-level signals into a single trajectory-level reward, limiting fine-grained credit
assignment. One related work is StepSearch (Wang et al., 2025¢), which applies PPO with turn-level
rewards for multi-turn search. However, it relies heavily on data augmentation and requires prompt
modifications during preprocessing. In contrast, our method avoids such prompt engineering and
provides a cleaner, more general framework for turn-level reward design. Our approach is orthogonal
to existing search-agent methods (Chen et al., 2025b; Jin et al., 2025b;a; Wang et al., 2025¢) and
applies broadly to multi-turn LLM agents beyond search tasks.

C THEORETICAL ANALYSIS OF POLICY-GRADIENT VARIANCE

In this section, we analyze and compare the policy-gradient variance of the two return-equivalent
MDPs M and M3, since the comparison between M and M3 is trivial. Although M5 and M3
share the same optimal ()-values and thus the same optimal policies, they differ in how rewards are
assigned across turns. Our theoretical results show that the MDP with explicit turn-level rewards
M yields lower policy-gradient variance than the MDP that relies solely on a delayed accumulated
reward M. These findings help justify our formulation and highlight why turn-level rewards and
fine-credit credit assignment leads to more stable and efficient RL training for GRPO and PPO, as
demonstrated in Sections 3 and 4.
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In general, the policy gradient of the expected return objective J(6) can be written as

815 where G, denotes the return associated with timestep k. For the delayed-reward MDP M., the
816 timestep return is
817 K
818 Gr =Y 7' R(st,ar),
819 t=1
820 which is the discounted sum of all turn-level rewards over the trajectory. For the turn-level-reward
821 MDP M3, the timestep return is
oz ‘
_ t—k

824 Gr =Y _7"FR(st, ),

t=k
825
826 which corresponds to the discounted future return starting from timestep k.

827 Lemma 1. Consider a K-step episodic MDP with random rewards Ry, ..., Ry. Let

828
829 hk:VQIOgﬂ'g(ak |Sk), kil,...,K.

830 Suppose that the discount factor is v = 1, and define the returns
831

K K
832 .
833 Gy = ZR“ G = ZRt'
. t=1 t=k
835 The REINFORCE estimator is

K
836 .
837 §=>_ G,
838 =t
839 where G}, can be chosen as either Gﬁ/‘z or Gﬁ%. Assume:
840
841 (i) the rewards (Ry, ..., Rx) are independent of (hy, ..., hi);
842
843
844 (iii) Cov(h;G;, h;G;) = 0 for all i # j;
845
846

847 (v) each reward has finite mean and variance,

848 9
849 ]E[Rt] = ¢, Var(Rt) =0y.

::(1] Then the following holds:

852 Var(¢™2) > Var(g™),
853 and the variance gap admits the explicit lower bound

854
855
856
857
858
859
860 Var(hy,Gy) = E[h3GF] — (E[hGi])*.
861

(ii) each hy, has finite mean and variance, with E[hy| = my, and Var(hy) < oo,

(iv) the rewards are nonnegative and positively correlated;

Var(§™M?) — Var(g™M2) >

K
k=

k—1 k—1
[Var(he) (3 02 + (3 w)?) +mi Y- a?| = 0.
t=1 t=1

1

Proof. We begin by computing the variance of h;Gj:

862 Because hy, and G, are independent by Assumption (i),
863
E[h{G7] = E[h}] E[G}], E[hxGi] = Elhg] E[Gi] = my, E[Gy].
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Using E[h?] = Var(hy) + m3 gives
Var(hyGy) = E[hZ] E[G?] — m3 E[G]?
= (Var(hy) + m}) E[G}] — mi E[G]?
= Var(hy) E[G3] + mi E[GZ] — m} E[G))?
= Var(hy) E[G?] + m2 (E[G7] — E[G4]?)
= Var(hy) E[G7] + m} Var(Gy),

For My and M3, we have
K K
G2=S=) R, G"=5S=)Y R.
t=1 t=k

Thus
Var(hy Ga'2) = Var(hy) E[S?] + m? Var(S),

Var(hyG') = Var(hg) E[SZ] + m} Var(S},).

Subtracting yields

Var(hyG"?) — Var(h,G2') = Var(hy) (E[S?] — E[S7]) + mi (Var(S) — Var(Sy)).

Next we characterize the terms in (x). Define the prefix sum
k—1
Pe=Y Ry, S=Pc+58.
t=1

A direct expansion gives
E[S?] — E[S}] = E[P?] + 2E[P, Sk).

Since rewards are nonnegative and positively correlated by Assumption (iv),
E[PSk] > 0.

Furthermore, Assumption (v) implies

k-1 k-1 2
E[P}] = Var(Py) + (E[P))* > ) o} + (Z /~Lt> .

t=1 t=1
Similarly,
k—1
Var(S) — Var(Sy) = Var(Py) + 2Cov(Py, Si) > Var(Py) > Y o7.
t=1
Substituting these lower bounds into (%) yields
k-1 k=1 \ 2 k-1
Var(hyGy*?) — Var(h,G2') > Var(hy) Z ol + <Z ut> +miY ol
t=1 t=1 t=1

)

Because Cov(h;G;,hjG;) = 0 for i # j by Assumption (iii), the variance of each estimator

decomposes into the sum of its per-step variances:
K K
Var(f]Mz) = ZV&r(thﬁAz) , Var(gMB) = ZV&r(thﬁA3> .
k=1 k=1

Since we have shown that each term satisfies
Var (thQAQ) > Var (thﬁ/w) ,

with an explicit lower bound on the difference, summing over £ = 1, ..., K immediately yields both

the overall variance ordering and the stated lower bound. This concludes the proof.

17

O



Under review as a conference paper at ICLR 2026

The assumptions used in Lemma 1 are mild. Assumptions (ii) and (v) impose finite first and second
moments on hy, and Ry, which are required to ensure that all variance terms are well defined and to
derive the explicit variance gap. Assumption (i) reflects the natural fact that rewards are generated
by the environment and do not directly depend on the stochasticity of the policy gradient estimator.
Assumption (iii) holds when different time steps use independent sampling noise and allows the
variance of the full estimator to decompose into a sum of per-step variances. Finally, Assumption (iv)
states that rewards are nonnegative and positively correlated, a property satisfied in many episodic
tasks where progress or success accumulates over time.

D PPO EXPERIMENTS

D.1 DETAILS FOR EXPERIMENTAL SETUP (PPO)
D.1.1 EVALUATED METHODS

We list all evaluated methods.

* PPO-OR (Jin et al., 2025b): vanilla PPO trained with only outcome rewards, where the
trajectory-level reward is a binary signal indicating final-answer correctness, corresponding
to the terminal-reward MDP M.

* PPO-MR (Jin et al., 2025a): vanilla PPO trained with merged intermediate and outcome
rewards, where the trajectory-level reward combines intermediate rewards (retrieval correct-
ness) and outcome rewards (answer correctness and format correctness), corresponding to
the delayed-reward MDP M. The detailed reward design is provided in Section 4.1 of (Jin
et al., 2025a).

e MT-PPO (ours): PPO variant trained with both intermediate and outcome rewards, where the
turn-level reward design is described in Section 5.2, with A; = 0.1 by default, corresponding
to the turn-level-reward MDP M.

e MT-PPO (ours): PPO variant trained with both intermediate and outcome rewards, where
the turn-level reward design is described in Section 5.2, with A; = 0.1 by default.

* GRPO-OR (Jin et al., 2025b): vanilla GRPO trained with only outcome rewards, where the
trajectory-level reward is a binary signal indicating final-answer correctness, corresponding
to the terminal-reward MDP M.

* GRPO-MR (Jin et al., 2025a): vanilla GRPO trained with merged intermediate and outcome
rewards, where the trajectory-level reward combines intermediate rewards (retrieval correct-
ness) and outcome rewards (answer correctness and format correctness), corresponding to
the delayed-reward MDP M. The detailed reward design is provided in Section 4.1 of (Jin
et al., 2025a).

* OTC (Wang et al., 2025a): trains Search-R1 using GRPO and PPO with trajectory-level
rewards jointly consider correctness and tool efficiency.

» StepSearch (Wang et al., 2025¢): trains Search-R1 using PPO with turn-level rewards based
on information gain and redundancy penalty.

We evaluate Search-R1 with both GRPO-OR and PPO-OR, and StepSearch using their official public
checkpoints. Since Search-R1 with GRPO-MR and PPO-MR, as well as OTC, have not released their
checkpoints, we directly report the results from their respective papers in Table 2.

D.1.2 EVALUATION METRICS

For each trajectory, we evaluate the following metrics:

Answer correctness. The answer correctness reward evaluates whether the extracted answer (from
the <answer> tag) exactly matches any accepted ground-truth answer after normalization (e.g.,
lowercasing and whitespace removal).

Format correctness. The format correctness reward ensures structural validity by verifying that the
outputs in both the final turn and all intermediate turns comply with the specifications described in
Section 5.2.
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Retrieval correctness. The retrieval correctness reward evaluates whether any accepted answer
appears in at least one search result (from the <information> tag), using case-insensitive string
matching.

Each reward is assigned a value of 1.0 if the criterion is satisfied and O otherwise.

D.1.3 TRAINING DETAILS

We follow most of the experimental settings in Search-R1 (Jin et al., 2025b).

PPO Training. All experiments are conducted on 8 NVIDIA H100 GPUs. We enable gradient
checkpointing and adopt Fully Sharded Data Parallel with CPU offloading. The learning rates of the
policy and critic models are set to 1e—6 and 1e—5, respectively. Training is performed for 500 steps
over 4 epochs, with warm-up ratios of 0.285 and 0.015 for the policy and critic models, respectively.
The total batch size is 512, with a mini-batch size of 256 and a micro-batch size of 64 for policy
updates, and a micro-batch size of 8 for critic updates. We adopt GAE with A = 1 and v = 1. The
maximum sequence length is set to 4,096 tokens, with a maximum response length of 500 tokens and
a maximum retrieved content length of 500 tokens. The KL-divergence regularization coefficient 3
and clipping ratio € are set to 0.001 and 0.2, respectively.

Rollout Generation. We use vLLM (Kwon et al., 2023) with a tensor parallel size of 4, a GPU
memory utilization ratio of 0.6, a temperature of 1.0, and a top-p value of 1.0.

D.2 LLM JUDGE SETUP FOR TURN-LEVEL EVALUATION (PPO)

In our experiments, we use gpt-oss-120b> as the judge model. We provide both outcome-level
and turn-level LLM-as-judge prompts, where the outcome-level and turn-level scores are used for
PPO-OR and MT-PPO training.

Outcome-Level LLM-as-Judge Prompt

You are an expert evaluator for multi-turn search-augmented reasoning systems. Given a user
prompt, ground truth answer, and multi-turn generated response, determine whether the final
answer matches the ground truth.

## EVALUATION TASK
Evaluate whether the multi-turn response provides a correct final answer that matches the ground
truth.

## SCORING CRITERIA
Score 1.0 (Correct):

* The answer within <answer></answer> tags matches the ground truth.
Score 0.0 (Incorrect):
* No <answer></answer> tags found, or
e The answer within <answer></answer> tags does not match the ground truth, or
* The answer in <answer> tag exceeds 5 tokens.
## OUTPUT FORMAT
Provide your evaluation using this format:

e <reasoning> Your step-by-step reasoning about whether the answer matches the
ground truth </reasoning>

e <score>1.00r0.0 </score>
REQUIREMENTS:

* First provide reasoning, then the score.

* Score must be exactly 1.0 or 0. 0.

https://huggingface.co/openai/gpt-oss-120b
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-
## EVALUATION DATA
{prompt_text}
{turns_text}
{ground_truth_text}
## Your Evaluation

|

J

Turn-Level LLM-as-Judge Prompt

You are an expert evaluator for multi-turn search-augmented reasoning systems. Given a
user prompt, ground truth answer, and multi-turn generated response, evaluate each turn’s
effectiveness and compliance.

## EVALUATION TASK
Assess each turn’s format compliance, content quality, and contribution toward the ground truth
answer.

## SCORING CRITERIA
FINAL TURN (Last Turn) - Score Range: [-1.0 to 1.0]
Format Compliance:

e Required: <think>...</think><answer>...</answer> (tags only, once
each, in order)

* Answer in <answer> tag must not exceed 5 tokens
Answer Correctness:

» Correct and complete answer in <answer> tag that matches the ground truth
Scoring Rules:

e If format is incorrect: Final Turn Score =-1.0

¢ If format is correct, answer is incorrect: Final Turn Score = 0.2

¢ If format is correct, answer is correct: Final Turn Score = 1.0

INTERMEDIATE TURNS - Score Range: [-1.0 to 1.0]
Format Compliance:

e Required: <think>...</think><search>...</search>
<information>...</information> (tags only, once each, in order)

¢ Correct format: +0.1
¢ Incorrect format: -0.2
Information Quality:

* Relevant information in <information> tag that helps toward the ground truth
answer (e.g., ground truth exists in the retrieved result within <information> tag):
+0.3

e Irrelevant or unhelpful information in <information> tag: +0.0
Search Efficiency Penalty:

* Number of searches = Total count of <search> tags across all turns from Turn 1 up
to and including the current turn

* Search penalty = Number of searches x (-0.1)
* Encourages finding answers with fewer searches

Intermediate Turn Score = Format Compliance + Information Quality + Search Penalty

## OUTPUT FORMAT
Provide your evaluation using ONLY these XML tags:

<reasoning>
Systematically evaluate each turn: check format compliance,

assess content quality, calculate scores with clear explanations
| J
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</reasoning>

<score>

Turnl: X.X
Turn2: X.X
Turn3: X.X

</score>
REQUIREMENTS:
* Must provide exactly {len (turns) } scores (one per turn)

* Use decimal format (e.g., 0.5, -0.3, 1.0)
* Use only the specified XML tags, no additional text

## EVALUATION DATA
{prompt_text}

{turns_text}
{ground_truth_text}

TURNS TO EVALUATE: {len (turns) }

## Your Evaluation

D.3 ADDITIONAL EXPERIMENT RESULTS (PPO)
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Figure 5: Validate reward curves recorded during training for PPO baselines and MT-PPO on the NQ
and HotpotQA datasets. The rewards include answer correctness, format correctness, and retrieval
correctness. Solid lines show mean reward values, while shaded regions indicate variability across
five independent runs.

D.4 RoLLoUT EXMAPLES (PPO)
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Figure 6: Training reward curves recorded during training for PPO baselines and MT-PPO on the
NQ dataset. The rewards include outcome judge reward, answer correctness (exact match), format
correctness, and retrieval correctness. Solid lines show mean reward values, while shaded regions
indicate variability across five independent runs.

Table 3: A rollout example of generating a response with a correct format.

Question: who will take the throne after the queen dies?

<think> I need to find out who will take the throne after the queen dies. I'll search for it. </think>
<search> who will take the throne after the queen dies </search>

<information> Doc 1(Title: “Succession to the British throne”) Catholics are eligible. Queen
Elizabeth II is the sovereign, and her .. Doc 2(Title: “Monarchy of the United Kingdom”)
Monarchy of the United Kingdom The monarchy of the United Kingdom, commonly referred to
as ... Doc 3(Title: “Demise of the Crown”) the Crown. This erroneous meaning is undermined
by the principle in constitutional law of the continuity ... </information>

<think> I found out that after the queen dies, her heir apparent will take the throne. I need to
find out who the heir apparent is for Queen Elizabeth II. </think>

<search> heir apparent for Queen Elizabeth II </search>

<information> Doc 1(Title: “Heir apparent”) rank behind her brothers regardless of their ages
or her age. Thus, normally, even an only ... Doc 2(Title: “Heir apparent”) to the 16 thrones
of Elizabeth II to absolute primogeniture, except for male heirs born ... Doc 3(Title: “Heir
presumptive”) or the senior member of a collateral line (if the monarch is childless); the birth ...
</information>

<think> I found out that the heir apparent for Queen Elizabeth II is her eldest son, Charles,
Prince of Wales. Now I can provide the answer. </think>

<answer> Charles, Prince of Wales </answer>
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Table 4: A rollout example of generating a response with an incorrect format, where there is no
answer in the last turn

Question: in which sea pearl is found in india?

<think> I need to find out in which sea pearl is found in India. I’ll search for it. </think>
<search> in which sea pearl is found in India </search>

<information> Doc 1(Title: Pearl) pearl: saltwater and freshwater pearls come in ... Doc
2(Title: Pearl) is a particularly large one weighing 14 1b (6.4 kg). The largest ... Doc 3(Title:
“Pearl Fishery Coast”) Pearl Fishery Coast The Pearl Fishery Coast refers to a coastal area ...
</information>

<think> I found out that pearls are found in the Indian Ocean. Now I need to find out in which
sea pearls are found in India. </think>

<search> in which sea are pearls found in India </search>

<information> Doc 1(Title: Pearl) pearl: saltwater and freshwater pearls come in many different
... Doc 2(Title: “Geography of India”) Great Nicobar Island); Rama’s Bridge, and Point Calimere.
The Arabian ... Doc 3(Title: “Bay of Bengal”) the gems of Sri Lanka. Garnet and other precious
gems are also found in abundance in the ... </information>

<think> I found out that pearls are found in the Indian Ocean. Now I need to find out in which
sea pearls are found in India. </think>

<search> in which sea pearls are found in India </search>

<information> Doc 1(Title: Pearl) pearl: saltwater and freshwater pearls come in many different
colors. While white, and ... Doc 2(Title: Pearl) pearls”. The correct definition of a South Sea
pearl — as described by CIBJO and GIA - is a peatl ... Doc 3(Title: Pearl) is a particularly large
one weighing 14 Ib (6.4 kg). The largest known pearl (also from ... </information>

<think> I found out that pearls are found in the Indian Ocean. Now I need to find out in which
sea pearls are found in India. </think>

<search> in which sea are pearls found in India </search>
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E ADDITIONAL CASE STUDY: MULTI-TURN GAME AGENT
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Figure 7: Training curves on the Sokoban environment. Left: success rate over training steps. Right:
effective action rate, measuring the proportion of actions that contribute to valid box movement.

Metric GRPO-OR GRPO-MR PPO-OR PPO-MR MT-PPO
Success Rate 0.0781 0.2578 0.3828 0.5078 0.6563
Effective Action Rate 0.2604 0.6771 0.6953 0.8451 0.9870

Table 5: Performance comparison of different RL algorithms on the Sokoban environment at step
300.

In this section, we present an additional case study on multi-turn game agents, focusing on the
classic grid-based puzzle Sokoban (Schrader, 2018). In this puzzle, the agent must push all boxes
to designated target locations. The environment is represented as a 2D grid, and the action space is
discrete (up, down, left, right). The key challenge is that Sokoban is irreversible: boxes can be pushed
but not pulled, so a single wrong move may lead to an unrecoverable dead-end. As a result, solving
the puzzle requires the agent to reason several steps ahead rather than relying on simple navigation
heuristics.

In our experiments, we use Qwen2.5-VL-3B (Bai et al., 2023) as the base model. The Sokoban
environment is configured with a (6 x 6) grid and allows up to 100 steps per episode. Each puzzle
contains one box, and solving it requires at least five actions. During interaction, the agent may
take up to three actions per turn, and it can interact with the environment for a maximum of three
turns. For reward design, the agent receives a success reward of 10 when all boxes are placed on their
target locations in the final state. At each turn, it receives a box-placement reward of 1 for each box
pushed onto a target, along with a format reward of 0.5 to encourage proper visual-state reasoning and
structured output. A failure penalty of —0.1 is applied at each step when the task remains incomplete.
We compare our MT-PPO with GRPO-OR, GPRO-MR, PPO-OR, PPO-MR.

The experimental results in Figure 7 show the training dynamics of different methods on the Sokoban
environment. MT-PPO consistently achieves a higher success rate throughout training and maintains
a substantially higher effective action rate, demonstrating its ability to cope with the long-horizon
and irreversible structure of Sokoban. These curves highlight how MT-PPO learns more stable and
purposeful action sequences during optimization.

Table 5 reports the final test performance at step 300. MT-PPO achieves the highest scores on both
success rate and effective action rate, outperforming all PPO and GRPO baselines by a significant
margin. The results illustrate the advantages of explicit turn-level rewards and fine-grained credit
assignment, further validating the generality of our approach beyond language-based tasks.
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GRPO-OR GRPO-MR MT-GPRO MT-GPRO (K=2)

{1 o

Figure 8: Comparison of rollout structures in GRPO variants. GRPO-OR denotes GRPO with
outcome-level rewards, while GRPO-MR denotes GRPO with merged outcome and intermediate
rewards. The red and green nodes indicate the presence of turn-level rewards at those states.

F DERIVATION OF MT-GRPO FOR THE GENERAL MULTI-TURN SETTING

We now derive the MT-GPRO algorithm for the general K -turn setting. We begin by defining two
types of advantages: the outcome advantage and the intermediate advantage.

* The outcome advantage captures global task completion signals. Given a group of the
outcome reward { RY}% |, it is defined as

_ RY —mean({RP}{,)

AP = (10)
Oo\G )
' std({ R}’ }iZ1)
* The intermediate advantage captures local optimization signals by comparing returns across
trajectories at the same timestep. At the k-th turn (k = 1,..., K — 1), given a state sy,

the algorithm samples G actions {a; ( k)}iG:l, resulting in a group of intermediate rewards
Rf ) = R(sk, a; (r)). The intermediate advantage is defined as

R () — mean({R] ;) i)
Std({RiI,(k)}iGzl)

We combine these into a unified advantage that assigns credit at both global and local scales by
aggregating current and future advantages:

Al gy = (11)

K—-1
AMESPRO = N "ol kAl () 4+ o 7FAD (12)
=k

where a € [0, 1] is a discount coefficient controlling the relative weight of current and future terms.
This aggregated advantage is uniformly assigned to all tokens generated within the k-th turn, i.e.,

MT-GPRO
Aip === Aip = Ay
where t indexes tokens within the k-th turn,

In MT-GRPO, computing the intermediate advantages requires G rollout samples at each turn for
k=1,..., K — 1. Note that rollouts are not needed at the final turn; instead, the final advantage is
computed after collecting all per-state rollout samples. Therefore, over a horizon of K turns, this
results in G¥~1 rollout trajectories in total. When k& = 2, only G rollout trajectories are required,
which is the same as in the vanilla GRPO setting.

Figure 8 compares the rollout tree structures of GRPO and MT-GPRO. We observe that GRPO-OR
and GRPO-MR perform per-trajectory rollouts (chain-based structures), whereas MT-GPRO performs
per-state rollouts (tree-based structures). As a result, the computational complexity of GRPO scales
linearly with the number of turns, while that of MT-GPRO grows exponentially with respect to the
number of turns.

25



Under review as a conference paper at ICLR 2026

G GRPO EXPERIMENTS

G.1 TASK FORMULATION (GRPO)

User i LLM Agent & Tool Env &4 LLM Agent &
System Prompt, Question <reasoning> </reasoning> [ <tool> </tool> ] [ <result> </result> ] <reasoning> </reasoning>
Intermediate Reward (R{) Outcome Reward (R?)
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Figure 9: Overview of the multi-turn LLM agent pipeline and comparison of different advantage
estimation methods. The agent interacts with the tool environment across multiple steps: reasoning,
tool use, and answer generation, receiving both intermediate and final rewards. GRPO is used as a
representative algorithm to illustrate the different advantage estimation strategies. GRPO-OR and
GRPO-MR serve as baselines with trajectory-level advantage estimation, while MT-GRPO is our
proposed variant with fine-grained turn-level advantage estimation.

To emphasize the importance of fine-grained credit assignment in multi-turn agent interactions, we
formulate the task under the MDP framework, involving multiple steps of reasoning, tool use, and
answer summarization for question answering. Specifically, our tool-use environment is modeled on
a Wikipedia search setup, where the agent learns to leverage a Wikipedia search engine to retrieve
relevant information and generate accurate answers. The goal is to improve the agent’s performance
through effective integration of external tool use. Without tool calling, the agent must rely solely
on its internal knowledge to answer questions, which can limit accuracy, especially for fact-based
queries requiring up-to-date or domain-specific information.

To clearly illustrate the impact of credit assignment, we design a simplified two-turn tool-use
environment in which the LLM agent can interact with the search tool environment for a maximum of
two turns. In this setup, the agent is allowed to call the Wikipedia search engine at most once before
submitting an answer to the question. Figure 9 illustrates the pipeline of the multi-turn, tool-calling
LLM agent system. Given a system prompt and a question, the LLM agent first performs a reasoning
step and issues a tool call, specifying both the tool name and a query derived from its reasoning. The
external tool environment processes the query and returns a search result. Based on the retrieved
result, the agent performs a second round of reasoning to summarize the information and generate
the final answer. The whole process can be summarized as

reasoning — search — result — reasoning — answer

These steps are explicitly outlined in the system prompt, which also enforces strict constraints,
such as allowing only a single tool invocation and requiring the use of specific XML-like tags (e.g.,
<reasoning>, <tool>, <result>, <answer>) to delineate each stage of the interaction. The
full system prompt is provided in Appendix G.5. Table 7 presents an example rollout in which the
agent successfully calls the search tool. If the tool name or argument format is incorrect, the tool
environment returns an error message, indicated by the response beginning with “Error:”. If the
agent fails to include a tool-calling command in the first reasoning step, the tool environment will not
be invoked. If the XML format or tag usage is incorrect—for example, if tags are missing, nested
improperly, or misnamed—the environment may fail to parse the agent’s response, resulting in an
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error or a skipped tool invocation. Additional rollout examples where the agent fails to call the tool
correctly are provided in Appendix G.6.

Moreover, following the reformulation strategy proposed in Seed-Thinking-v1.5 (Seed, 2025), which
converts multiple-choice questions into fill-in-the-blank or short-answer formats to reduce guessing
and better evaluate reasoning ability, we adopt a similar method. Specifically, we convert our tasks
into short-answer form and evaluate the model’s responses based on exact match with the ground-truth
answers.

G.2 REWARD DESIGN (GRPO)

Figure 9 illustrates the pipeline of the multi-turn, tool-calling LLM agent system. To align with the
environment of the tool-calling LLM agent, we design two types of verifiable reward functions.

Intermediate Verifiable Rewards: These depend solely on the first turn performed by the LLM
agent. To compute intermediate rewards, we incorporate verifiers related to tool execution and search
results. These verifiers ensure that the search engine is correctly invoked and that the ground-truth
answer appears in the retrieved results.

* Tool Execution Reward: Awards 0.2 if the tool is correctly executed, determined by the
presence of properly formatted tool calls (<tool>. . .</tool>) and successful responses
(i.e., the environment’s response does not begin with “Error:”).

» Search Result Answer Presence: Awards 0.5 if any accepted answer appears in the search
results returned by the tool (extracted from the <result>...</result> tag), using a
case-insensitive comparison.

Outcome Verifiable Rewards: These evaluate the final model-generated responses. Specifically,
they assess both the correctness of the answer and its formatting, ensuring that the output aligns with
the expected structure and content.

* Final Answer Presence Reward: Awards 0.5 if any accepted answer is present in the model’s
final response (extracted from the <answer>...</answer> tag).

e Exact Match Reward: Awards 1.0 if the model’s answer (extracted from
<answer>...</answer>) exactly matches any accepted answer after standard text
preprocessing (i.e., lowercasing and stripping whitespace).

* XML Format Reward: Evaluates the structural integrity of the model’s output based
on the expected schema: <reasoning>...</reasoning> followed by either
<tool>...</tool>or <answer>...</answer>. See the agent’s pipeline in Fig-
ure 9. Checks include: (1) the presence of at least one expected field (<reasoning>,
<tool>, <answer>), (2) correct spacing (no leading or trailing whitespace within tags),
(3) message starting with <reasoning>, and (4) message ending with </tool> or
</answer>. Partial credit is awarded based on these criteria (weighted: 40% field pres-
ence, 20% spacing, 20% correct starting tag, 20% correct ending tag), and the final score is
scaled by 0.2.

* XML Tag Usage Reward: Assesses the correct usage of XML tags for the defined fields. For
each tag, the reward verifies that exactly one opening and one closing tag are present. The
reward is the proportion of correctly used tags (normalized by the number of tags checked),
scaled by 0.2.

Here, both final rewards and intermediate rewards are defined as the summation of their respective
component rewards. It is easy to observe that intermediate rewards evaluate only the performance
of the agent’s first turn, whereas outcome rewards assess the quality of the entire trajectory. This
distinction leads to several characteristic scenarios:

* Tool Invocation with Poor Final Answer: The agent correctly invokes a tool in the first
turn, but fails to produce a correct or well-formatted final answer, resulting in intermediate
rewards but little or no outcome reward.

* Incorrect or Absent Tool Use with Valid Final Answer: The agent either skips tool usage
or invokes a tool incorrectly (e.g., due to malformed syntax or an error response), yet still
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generates a correct and well-structured final answer. In this case, the agent receives partial
or full outcome rewards despite earning no intermediate rewards.

* Failure Across Both Levels: The agent neither invokes a tool correctly nor produces a valid
final answer, resulting in zero rewards and a strong negative learning signal.

G.3 EXPERIMENT SETUP (GRPO)

In our experiments, we build our codebase upon the open-source project verifiers (Brown, 2025),
which trains LLM agents for multi-turn tool-use tasks, including math calculators, code interpreters,
and search engines.

Task & Dataset. We focus on the multi-turn reasoning and search-based tool-use task. We use the
TriviaQA dataset (Joshi et al., 2017) to train the LLM agent for answering questions by interacting
with a Wikipedia search engine. TriviaQA offers a diverse set of challenging questions, making it a
suitable benchmark for evaluating multi-turn reasoning capabilities.

Evaluated Methods We compare our proposed MT-GPRO with vanilla GRPO.

* GRPO: vanilla GRPO with trajectory-level advantage estimation

— GRPO-OR: GRPO using only outcome rewards
— GRPO-MR: GRPO using merged outcome and intermediate rewards

* MT-GRPO (ours): GPRO variant with turn-level advantage estimation using both outcome
and intermediate rewards

Training Details. We use Qwen2.5-7B (Yang et al., 2024) as the base model. Experiments are
conducted on a node equipped with 8 NVIDIA H100 GPUs: one GPU is dedicated to rollout
generation, while the remaining seven GPUs are used for model training. Rollout generation is
handled by vLLM (Kwon et al., 2023). Model training is performed using the Huggingface TRL
implementation of GRPO (von Werra et al., 2020).

Hyperparameters. For all methods, the number of rollout generations is set to 21. The maximum
completion length during generation is set to 1024 tokens. The KL divergence penalty is disabled by
setting 3 = 0. The learning rate is fixed at 1 x 10~5. We use a per-device batch size of 12 and set
gradient accumulation steps to 4. Each batch undergoes two training iterations. The total number of
training steps is set to 300.

G.4 MAIN RESULTS (GRPO)

Figure 10 shows reward component curves during training across various algorithms. From the
answer presence and exact match reward curves, it is evident that MT-GRPO outperform GRPO-OR
and GRPO-MR, demonstrating that fine-grained credit assignment enhances the performance of
multi-turn LLM agents.

The intermediate rewards, including tool execution and search result answer presence rewards, reveal
that MT-GPRO achieves 100% success in tool execution while GRPO-OR gradually stops calling
search tools in question answering tasks and achieves worse final performance. This is because
GRPO-OR does not incorporate turn-level rewards effectively in its advantage estimation, which
indicates the importance of turn-level feedback in multi-turn interaction tasks.

Figures 11, 12, and 13 illustrate reward component curves during training with different algorithms,
where shaded regions represent the range between the maximum and minimum values across 10
runs, showcasing the variability in learning performance. Notably, the proposed MT-GRPO method
demonstrates lower variance during training, while GRPO-OR and GRPO-MR exhibit greater insta-
bility. An interesting observation is that the tool execution curve of MT-GRPO temporarily drops
sharply around step 230-250 but subsequently recovers and stabilizes. This demonstrates that even if
the agent forgets to call search tools in the middle of the training, it eventually learns to incorporate
them in the final stages. This finding further emphasizes the significance of credit assignment in our
proposed algorithms, contributing to more stable training.

Table 6 presents the validation reward scores across different models. MT-GRPO achieves the highest
performance in all reward metrics. Compared to GRPO-MR, which reaches 0.3724 in final search
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Table 6: Performance comparison across different methods on reward scores evaluated on the
validation set. Values in parentheses indicate the reward range for each metric. Bold numbers indicate
the best performance for each reward type.

Model Intermediate Reward Outcome Reward
Tool Execution Search Answer XML Format  Exact Match

(0-0.2) (0-0.5) (0-0.2) 0-1)
Qwen2.5-7B-Base 0.0559 0.0934 0.1562 0.0469
Qwen?2.5-7B-Instruct 0.1626 0.2814 0.1982 0.1559
Qwen2.5-7B-Base + GRPO-OR 0 0 0.04 0
Qwen2.5-7B-Base + GRPO-MR 0.2 0.3724 0.1994 0.3346
Qwen2.5-7B-Base + MT-GRPO 0.2 0.3926 0.1996 0.5010

answer and 0.3346 in exact match, MT-GRPO demonstrates clear improvements, especially in exact
match with a margin of +0.1664. In contrast, GRPO-OR performs poorly across all metrics, scoring
0 in intermediate rewards and only 0.04 in XML format. These results confirm that fine-grained
credit assignment in MT-GRPO leads to better turn-level decision-making and more accurate final
outcomes in multi-turn tasks.
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Figure 10: Curves for different training reward components during training with various algorithms
(MT-GRPO, GRPO-OR, and GRPO-MR). Each plot shows the training reward score over training
steps for intermediate rewards (Tool Execution, Search Result Answer Presence) and outcome rewards
(XML Tag Usage, XML Format, Final Answer Presence, Exact Match). Dotted lines represent the
average reward across 10 runs, while solid lines show trends smoothed using the Exponential Moving
Average (EMA).
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G.5 SYSTEM PROMPT (GRPO)

You have access to the following tools to help solve problems:
{tool_descriptions}
Follow these steps exactly once:

1. Think through your reasoning inside <reasoning> tags

2. Use a tool by writing a JSON command inside <t ool> tags with:

* "name": the tool to use
e "args": the arguments for the tool

3. You will see the tool’s output inside <result> tags

4. Think through the tool’s output inside <reasoning> tags

5. Based on your reasoning, provide your final answer inside <answer> tags
Important:

» Use the tool exactly once — DO NOT attempt to call the tool again even if the first
search isn’t helpful

* Work with both your prior knowledge and the single tool call

L]

If the tool result is unhelpful, rely on your prior knowledge

* Tools expect valid JSON — follow the examples carefully

* Do not invent tools or arguments that aren’t listed

* Analyze the result in a reasoning step before giving your answer

* Your answer should match the expected ground-truth

Wiki Search Tool Descriptions

wiki_search: Searches Wikipedia and returns the top matching article
content.

Arguments:

- query
. J

G.6 RoLLoUT EXAMPLES (GRPO)
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Table 7: A rollout example of successfully calling the search tool during training.

Question: What serial killer, who buried the remains of 26 of his victims in his Chicago crawl
space, was known as the “Killer Clown”?

<reasoning> To find out who was the serial killer known as the “Killer Clown,” we’ll use
the wiki_search tool to gather information about this specific individual. </reasoning>
<tool>
{
"name": "wiki_search",
"args": {
"query": "Killer Clown serial killer buried remains in Chicago crawl space"
}

}

</tool>

<result> John Wayne Gacy. John Wayne Gacy (March 17, 1942 — May 10, 1994) was an
American serial killer who raped, tortured, and murdered at least 33 teenage boys and young
men between 1972 and 1978 in Cook County, Illinois (a part of metropolitan Chicago). All of
Gacy’s known murders were committed inside his Norwood Park ranch house... </result>

<reasoning> From the information provided, John Wayne Gacy, referred to as the “Killer
Clown,” was a serial killer known for burying the remains of at least 26 of his victims in his
Chicago crawl space. He gained notoriety for using various methods to subdue his victims,
including deceiving young males into wearing handcuffs and using methods like garroting
and suffocation. His final confirmed victim was identified through DNA testing in 2011.
Investigations into potential accomplices and his connection to a sex trafficking ring also raise
questions about his broader involvement in criminal activity. </reasoning>

<answer> John Wayne Gacy </answer>

Table 8: A rollout example of failing to call the search tool and producing a wrong answer.

Question: In the horror film Them, what type of creatures were Them?

<reasoning> In the horror film “Them!”, the main creatures were giant ants. I know this
because I remember from my general knowledge that “Them!” is a 1954 science fiction horror
film about giant ants and the damage they cause in a coastal town. So, to answer the question,
the creatures in “Them!” were giant ants. </reasoning>

<answer> Giant </answer>

Table 9: A rollout example of generating a response with an incorrect format.

Question: Who was the Canadian jazz pianist (1925-2007), winner of eight Grammy Awards
who released over 200 recordings?

<reasoning> I need to identify the Canadian jazz pianist, born in 1925 and died in 2007,
who won eight Grammy Awards and released over 200 recordings. This person’s name should
be easy to find with a Wikipedia search since the question specifies Grammy Awards and a long
recording history. Once I find the Wikipedia article, I can read about the pianist’s career to
confirm the details mentioned in the question. </reasoning>

Error: Tool command not found or invalid XML format. Please ensure correct formatting.

<answer><tool>< reasoning> From the Wikipedia search I found that Oscar Peterson,
born in 1925 and deceased in 2007, was a Canadian jazz pianist who won eight
Grammy Awards and released over 200 recordings. </reasoning><answer>Oscar Peter-
son<answer><result><answer>Oscar Peterson</answer>
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G.7 ADDITIONAL EXPERIMENTAL RESULTS (GRPO)
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Figure 11: Curves for different training reward components during training using GRPO-OR, where
shaded regions represent the range between the maximum and minimum values across 10 runs.
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Figure 12: Curves for different training reward components during training using GRPO-MR, where
shaded regions represent the range between the maximum and minimum values across 10 runs.
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Figure 13: Curves for different training reward components during training using MT-GRPO, where
shaded regions represent the range between the maximum and minimum values across 10 runs.
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