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Abstract

Understanding black-box machine learning models is crucial for their widespread adoption.
Learning globally interpretable models is one approach, but achieving high performance
with them is challenging. An alternative approach is to explain individual predictions
using locally interpretable models. For locally interpretable modeling, various methods
have been proposed and indeed commonly used, but they suffer from low fidelity, i.e. their
explanations do not approximate the predictions well. In this paper, our goal is to push the
state-of-the-art in high-fidelity locally interpretable modeling. We propose a novel framework,
Locally Interpretable Modeling using Instance-wise Subsampling (LIMIS). LIMIS utilizes a
policy gradient to select a small number of instances and distills the black-box model into a
low-capacity locally interpretable model using those selected instances. Training is guided
with a reward obtained directly by measuring the fidelity of the locally interpretable models.
We show on multiple tabular datasets that LIMIS near-matches the prediction accuracy of
black-box models, significantly outperforming state-of-the-art locally interpretable models in
terms of fidelity and prediction accuracy.

1 Introduction

In many real-world applications, machine learning is required to be interpretable – doctors need to understand
why a particular treatment is recommended, banks need to understand why a loan is declined, and regulators
need to investigate systems against potential fallacies (Rudin, 2018). On the other hand, the machine learning
models that have made the most significant impact via predictive accuracy improvements, such as deep neural
networks (DNNs) and ensemble decision tree (DT) variants (Goodfellow et al., 2016; He et al., 2016; Chen
& Guestrin, 2016; Ke et al., 2017), are ‘black-box’ in nature – their decision making is based on complex
non-linear interactions between many parameters that are difficult to interpret. Many studies have suggested
a trade-off between performance and interpretability (Virág & Nyitrai, 2014; Johansson et al., 2011; Lipton,
2016). While globally interpretable models such as linear models or shallow Decision Trees (DTs) have
simple explanations for the entire model behaviors, they generally yield significantly worse performance than
black-box models.

One alternative approach is locally interpretable modeling – explaining a single prediction individually instead
of explaining the entire model (Ribeiro et al., 2016). A globally interpretable model fits a single interpretable
model to the entire data, while a locally interpretable model fits an interpretable model locally, i.e. for each
instance/sample individually, by distilling knowledge from a black-box model around the observed sample.
Locally interpretable models are useful for real-world AI deployments by providing succinct and human-like
explanations. They can be utilized to identify systematic failure cases (e.g. by seeking common trends in
input dependence for failure cases), detect biases (e.g. by quantifying the importance of a particular feature),
provide actionable feedback to improve a model (e.g. understand failure cases and what training data to
collect), and for counterfactual analyses (e.g. by investigating the local model behavior around the observed
data sample).

Various methods have been proposed for locally interpretable modeling: Local Interpretable Model-agnostic
Explanations (LIME) (Ribeiro et al., 2016), Supervised Local modeling methods (SILO) (Bloniarz et al.,
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Figure 1: LIMIS example for the income classification task. For each test sample, the most valuable training
samples are chosen to fit the locally-interpretable model (DT here), and it provides human-like explanations
to the decision. More use-cases for human-in-the-loop AI capabilities of LIMIS can be found in Sect. 6

2016), and Model Agnostic Supervised Local Explanations (MAPLE) (Plumb et al., 2018). LIME in particular
has gained significant popularity. Yet, the locally interpretable modeling problem is still far from as being
solved. To be useful in practice, a locally interpretable model should have high fidelity, i.e, they should
approximate the ‘black-box’ model well (Plumb et al., 2019; Lakkaraju et al., 2019). Recent studies have
shown that LIME indeed often yields low fidelity (Alvarez-Melis & Jaakkola, 2018; Zhang et al., 2019; Ribeiro
et al., 2018; Lakkaraju et al., 2017); indeed, as we show in Sec. 5, in some cases, LIME’s performance is
even worse than simple globally interpretable models. The performance of other methods such as SILO and
MAPLE are also far from the achievable limits. Overall, locally interpretable modeling while ensuring high
fidelity across a wide range of cases is an everlasting challenging problem, and we propose that it requires a
substantially-novel design for the fitting paradigm. A fundamental challenge to fit a locally interpretable
model is the representational capacity difference when applying distillation. Black-box models, such as DNNs
or ensemble DTs, have much larger capacity compared to interpretable models. This can result in underfitting
with conventional distillation techniques and consequently suboptimal performance (Hinton et al., 2015; Wang
et al., 2019).

To address the fundamental challenges aforementioned above, we propose a novel instance-wise subsampling
method to fit Locally Interpretable Models, named LIMIS, that is motivated by meta-learning (Ren et al.,
2018). Fig. 1 depicts LIMIS for the income classification task. LIMIS utilizes the instance-wise weight
estimator to identify the importance of the training samples to explain the test sample. Then, it trains a
locally-interpretable model with weighted optimization to return the accurate prediction and corresponding
local explanations. LIMIS efficiently tackles the distillation challenge by fitting the locally interpretable model
with a small number of instances/samples that are determined to be most valuable to maximize the fidelity.
Unlike alternative methods that apply ad-hoc approaches to determine valuable instances, LIMIS learns an
instance-wise weight estimator (modeled with a DNN) directly using the fidelity metric for selection. Accurate
determination of the most valuable instances allows the locally interpretable model to more effectively utilize
its small representational capacity. At various regression and classification tasks, we demonstrate that LIMIS
significantly outperforms alternatives. In most cases, the locally interpretable models obtained by LIMIS
near-match the performance of the complex black-box models that they are trained to interpret. In addition,
LIMIS offers the unique capability of instance-based explainability via ranking of the most valuable training
instances. We also show that the high-fidelity explanations can open new horizons for reliable counterfactual
analysis, by understanding what input modification would change the outcome, which can be important for
human-in-the-loop AI deployments (see Sec. 6.2).

2 Related Work

Locally interpretable models: There are various approaches to interpret black-box models (Gilpin et al.,
2018). One is to directly decompose the prediction into feature attributions, e.g. Shapley values (Štrumbelj &
Kononenko, 2014) and their computationally-efficient variants (Lundberg & Lee, 2017). Others are based on
activation differences, e.g. DeepLIFT (Shrikumar et al., 2017), or saliency maps using the gradient flows, e.g.
CAM (Zhou et al., 2016) and Grad-CAM (Selvaraju et al., 2017). In this paper, we focus on the direction of
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locally interpretable modeling – distilling a black-box model into an interpretable model for each instance in
tabular domains. LIME (Ribeiro et al., 2016) is the most commonly used method for locally interpretable
modeling in tabular domains. LIME is based on modifying the input feature values and learning from the
impact of the modifications on the output. A fundamental challenge for LIME is the meaningful distance
metric to determine neighborhoods, as simple metrics like Euclidean distance may yield poor fidelity, and the
estimation is highly sensitive to normalization (Alvarez-Melis & Jaakkola, 2018). SILO (Bloniarz et al., 2016))
aims to improve LIME by determining the neighborhoods for each instance using ad-hoc tree-based ensembles
– it utilizes ad-hoc DT ensembles to determine the weights of training instances for each test instance and
uses the weights to optimize a locally interpretable model. MAPLE (Plumb et al., 2018) further adds feature
selection on top of SILO. SILO and MAPLE optimize the DT-based ensemble methods independently and
this disjoint optimization results in suboptimal performance. To fit a proper locally interpretable model, a
key problem is the selection of the appropriate training instances for each test instance. LIME uses Euclidean
distances, whereas SILO and MAPLE use ad-hoc DT-based ensemble methods. Our proposed method,
LIMIS, takes a very different approach: to efficiently explore the large search space, we directly optimize the
instance-wise subsampler with the fidelity as the reward.

Data-weighted training: Optimal weighting of training instances is a paramount problem in machine
learning. By upweighting/downweighting the high/low value instances, better performance can be obtained in
certain scenarios, such as with noisy labels (Jiang et al., 2018). One approach for data weighting is utilizing
influence functions (Koh & Liang, 2017), that are based on oracle access to gradients and Hessian-vector
products. Jointly-trained student-teacher method constitutes another approach (Jiang et al., 2018; Bengio
et al., 2009) to learn a data-driven curriculum. Using the feedback from the teacher, instance-wise weights are
learned by the student model. Aligned with our motivations, meta learning is considered for data weighting
in Ren et al. (2018). Their proposed method utilizes gradient descent-based meta learning, guided by a small
validation set, to maximize the target performance. LIMIS utilizes data-weighted training for a novel goal:
interpretability. Unlike gradient descent-based meta learning, LIMIS uses policy gradient and integrates the
fidelity metric as the reward. Aforementioned works (Jiang et al., 2018; Koh & Liang, 2017; Bengio et al.,
2009; Ren et al., 2018) estimate the same ranking of training data for all instances. Instead, LIMIS yields an
instance-wise ranking of training data, enabling efficient distillation of a black-box model prediction into a
locally interpretable model. (Yeh et al., 2018) can also provide instance-wise ranking of training samples
but for sample-based explainability. Differently, LIMIS utilizes instance-wise ranking with the objective of
locally-interpretable modeling.

3 LIMIS Framework

Consider a training dataset D = {(xi, yi)}Ni=1 ∼ P for a black-box model f , where xi ∈ X are d-dimensional
feature vectors and yi ∈ Y are the corresponding labels. We also assume a probe dataset Dp = {(xpj , y

p
j )}Mj=1 ∼

P, to evaluate the model performance to guide meta-learning as in Ren et al. (2018). If there is no explicit
probe dataset, it can be randomly split from the training dataset (D).

3.1 Training and inference

LIMIS is composed of: (i) Black-box model f : X → Y – any machine learning model to be explained (e.g.
a DNN), (ii) Locally interpretable model gθ : X → Y – an inherently-interpretable model by design
(e.g. a shallow DT), (iii) Instance-wise weight estimation model hφ : X ×X ×Y → [0, 1] – a function
that outputs the instance-wise weights to fit the locally interpretable model, specifying for each instance how
valuable it is for training the locally interpretable model. It takes its input as the concatenation of a probe
instance’s feature, a training instance’s feature, and a corresponding black-box model prediction. It can be a
complex ML model – here a DNN.

Our goal is to construct an accurate locally interpretable model gθ such that the prediction made by it is
similar to the prediction of the trained black-box model f∗ – i.e. the locally interpretable model has high
fidelity. We use a loss function, L : Y × Y → R to quantify the fidelity of the locally interpretable model
which measures the prediction differences between black-box model and locally interpretable model (e.g. in
terms of mean absolute error).
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Figure 2: Block diagram of the proposed method. White blocks represent fixed (not learnable) models, and
grey blocks represent trainable (learnable) models. Stage 0: Black-box model training. Stage 1: Auxiliary
dataset construction. Stage 2: Instance-wise weight estimator training. Stage 3: Interpretable inference.

The locally interpretable model has a significantly lower representational capacity compared to the black-box
model. This is the bottleneck that LIMIS aims to address. Ideally, to avoid underfitting, such low-capacity
interpretable models should be learned with a minimal number of training instances that are most effective
in capturing the model behavior. We propose an instance-wise weight estimation model hφ to output the
likelihood of each training instance being used for fitting the locally interpretable model. Integrating this
with the goal of training an accurate locally interpretable model yields the following objective:

min
hφ

Exp∼PX
[
L(f∗(xp), g∗θ(xp)(xp))

]
+ λExp,x∼PX

[
hφ(xp,x, f∗(x))

]
s.t. g∗θ(xp) = arg mingθ Ex∼PX

[
hφ(xp,x, f∗(x))× Lg(f∗(x), gθ(x))

]
,

(1)

where λ ≥ 0 is a hyper-parameter to control the number of training instances used to fit the locally interpretable
model, and hφ(xp,x, f∗(x)) is the weight for each training pair (x, f∗(x)) and for the probe data xp. Lg is the
loss function to fit the locally interpretable model (here to minimize the mean squared error) between the pre-
dicted values for regression and logits for classification. φ and θ are the trainable parameters, whereas f∗ (the
pre-trained black-box model) is fixed. The first term in the objective function Exp∼PX

[
L(f∗(xp), g∗θ(xp)(xp))

]
is the fidelity metric, representing the prediction differences between the black-box model and locally in-
terpretable models. The second term in the objective function Exp,x∼PX

[
hφ(xp,x, f∗(x))

]
represents the

expected number of selected training points to fit the locally interpretable model. Lastly, the constraint
ensures that the locally interpretable model is derived from weighted optimization, where weights are the
outputs of hφ. Our formulation does not assume any constraint on gθ – it can be any inherently interpretable
model. In experiments, we use simple decision tree or regression model (with closed-form solution) so that
the complexity of the constraint optimization is negligible. Note that we utilize a deep model for weight
optimization (hφ) but a simple interpretable model for explanation (gθ). LIMIS encompasses 4 stages:

• Stage 0 – Black-box model training: Given the training set D, the black-box model f is trained to
minimize a loss function Lf (e.g. mean squared error for regression or cross-entropy for classification), i.e.,
f∗ = arg minf 1

N

∑N
i=1 Lf (f(xi), yi). If there exists a pre-trained black-box model, we can skip this stage

and retrieve the given pre-trained model as f∗.

• Stage 1 – Auxiliary dataset construction: Using the pre-trained black-box model f∗, we create
auxiliary training and probe datasets, as D̂ = {(xi, ŷi), i = 1, ..., N} (where ŷi = f∗(xi)) and D̂p =
{(xpj , ŷ

p
j ), j = 1, ...,M} (where ŷpj = f∗(xpj )), respectively. These auxiliary datasets (D̂, D̂p) are used for

training the instance-wise weight estimation model and locally interpretable model.
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• Stage 2 – Instance-wise weight estimator training: We train an instance-wise weight estimator
using the auxiliary datasets (D̂, D̂p). To encourage exploration, we consider probabilistic selection with a
sampler block that is based on the output of the instance-wise weight estimator – hφ(xpj ,xi, ŷi) represents
the probability that (xi, ŷi) is selected to train a locally interpretable model for the probe instance xpj . Let
the binary vector c(xpj ) ∈ {0, 1}N represent the selection vector, such that (xi, ŷi) is selected for xpj when
ci(xpj ) = 1. Correspondingly, ρφ(xp) is the probability mass function for c(xpj ) given hφ(·):

ρφ(xpj , c(xpj )) =
N∏
i=1

[
hφ(xpj ,xi, f

∗(xi))ci(xp
j

) × (1− hφ(xpj ,xi, f
∗(xi)))1−ci(xp

j
)
]
.

The optimization in Eq. (1) becomes intractable as the expectation operations do not have a closed form
solution. Thus, we employ the following approximations: (i) The sample mean is used as an approximation
of the first term: 1

M

∑M
j=1 L(f∗(xpj ), g∗θ(xp

j
)(x

p
j ))). (ii) The second term of the objective function, which

represents the average selection probability, is approximated as the average number of selected instances:
||c(xpj )||1 = 1

N

∑N
i=1 |ci(x

p
j )|. (iii) The objective of the constraint term is approximated using the sample

mean of the training loss as g∗
θ(xp

j
) = arg mingθ 1

N

∑N
i=1

[
ci(xpj ) · Lg(f∗(xi), gθ(xi))

]
. The sampler block yields

a non-differential objective as the optimization is over c(xpj ) ∈ {0, 1}N -weighted instances, and we cannot use
conventional gradient descent-based optimization. Motivated by its successful applications (Ranzato et al.,
2015; Zaremba & Sutskever, 2015; Zhang & Lapata, 2017), we adapt the policy-gradient based REINFORCE
algorithm (Williams, 1992) such that the selection action1 is rewarded by its impact on performance. We
consider the loss function l(φ) = Exp

j
∼PX ,c(xp

j
)∼ρφ(xp

j
,·)
[
L(f∗(xpj ), g∗θ(xp

j
)(x

p
j ))) + λ||c(xpj )||1

]
as the reward

given the state and action for the selection policy2. To apply the REINFORCE algorithm, we directly
compute its gradient with respect to φ:

∇φ l̂(φ) =Exp
j
∼PX ,c(xp

j
)∼ρφ(xp

j
,·)

[[
L(f∗(xpj ), g

∗
θ(xp

j
)(x

p
j ))) + λ||c(xpj )||1

]
∇φ log ρφ(xpj , c(xpj ))

]
.

Bringing all this together, we update the parameters of the instance-wise weight estimator φ with the following
steps repeated until convergence:

(i) Estimate instance-wise weights wi(xpj ) = hφ(xpj ,xi, ŷi) and instance selection vector ci(xpj ) ∼ Ber(wi(xpj ))
for each training and probe instance in a mini-batch (Nmb instances).
(ii) Optimize the locally interpretable model with the selection for each probe instance:

g∗θ(xp
j

) = arg min
gθ

Nmb∑
i=1

[
ci(xpj ) · Lg(f

∗(xi), gθ(xi))
]

(2)

(iii) Update the instance-wise weight estimation model (where α > 0 is a learning rate):

φ←φ− α

M

M∑
j=1

[
L(f∗(xpj ), g

∗
θ(xp

j
)(x

p
j )) + λ||c(xpj )||1

]
×∇φ log ρφ(xpj , c(xpj )) (3)

Pseudo-code of the LIMIS training is in Algorithm. 1.

• Stage 3 – Interpretable inference: Unlike training, we use a fixed instance-wise weight estimator without
the sampler. Given the test instance xt, we obtain the selection probabilities from the instance-wise weight
estimator, and using these as the weights, we fit the locally interpretable model via weighted optimization.
The outputs of the fitted model are the instance-wise predictions and the corresponding explanations (e.g.
coefficients for a linear model). Pseudo-code of the LIMIS inference is in Algorithm. 2.

1States are the features of input instances, actions are the selection vectors from hφ (policy) that selects the most valuable
samples, and reward is the fidelity of the locally interpretable model compared to the black box model which depends on the
input features (state) and the selection vector (action).

2Other desired properties, such as robustness of explanations against input perturbations, can be further added to the reward
– the flexibility constitutes one of the major advantages.
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Algorithm 1 LIMIS Training

Input: Training data (D), probe data (Dp), black-box model (f∗)
1: Initialize hφ.
2: Construct auxiliary data (D̂, D̂p): D̂ = {(xi, f∗(xi))}Ni=1, D̂p = {(xpj , f∗(x

p
j ))}Mj=1

3: while hφ is not converged do
4: Estimate wi(xpj ) = hφ(xpj ,xi, ŷi)
5: Sample ci(xpj ) ∼ Ber(wi(xpj ))
6: Optimize locally interpretable models with ci(xpj ) using Eq. (2)
7: Update hφ using Eq. (3)
8: end while
Output: Trained instance-wise weight estimator (h∗φ)

Algorithm 2 LIMIS Inference

Input: Training data (D), test sample (xt), trained instance-wise weight estimator (h∗φ)

1: Estimate wi(xt) = h∗φ(xt,xi, ŷi)
2: Optimize locally interpretable model using instance-wise weights wi(xt) via weighted optimization:
3: g∗θ(xt) = arg mingθ

∑N
i=1 wi(xt) · Lg(f∗(xi), gθ(xi))

Output: Predictions (g∗θ(xt)(xt)), explanations (g∗θ(xt)), and instance-wise weights {wi(xt)}Ni=1

3.2 Computational cost

As a representative and commonly used example, consider a linear ridge regression (RR) model as the locally
interpretable model, which has a computational complexity of O(d2N) +O(d3) to fit, where d is the number
of features and N is the number of training instances. When N � d (which is often the case in practice), the
training computational complexity is approximated as O(d2N) (Tan, 2018).

Training: Given a pre-trained black-box model, Stage 1 involves running inference N times and the
total complexity is determined by the black-box model. Unless the black-box model is very complex, the
computational cost of Stage 1 is much smaller than Stage 2. At Stage 2, we iteratively train the instance-
wise weight estimator and fit the locally interpretable model using weighted optimization. Therefore, the
computational complexity is O(d2NNI) where NI is the number of iterations (typically NI < 10, 000 until
convergence). Thus, the training complexity scales roughly linearly with the number of training instances.

Interpretable inference: To infer with the locally interpretable model, we need to fit the locally interpretable
model after obtaining the instance-wise weights from the trained instance-wise weight estimator. For each
testing instance, the computational complexity is O(d2N).

Experimental results on the computational cost for both training and inference can be found in Sect 5.3.

4 Synthetic Data Experiments

Evaluations of explanation quality are challenging on real-world datasets due to the absence of ground-truth
explanations. Therefore, we initially perform experiments on synthetic datasets with known ground-truth
explanations to directly evaluate how well the locally interpretable models can recover the underlying reasoning
behind outputs.

We construct three synthetic datasets that have different local behaviors in different input regimes. The
11-dimensional input features X are sampled from N (0, I) and Y are determined as follows:

• Syn1: Y = X1 + 2X2 if X10 < 0 & Y = X3 + 2X4 if X10 ≥ 0,
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• Syn2: Y = X1 + 2X2 if X10 + eX11 < 1 & Y = X3 + 2X4 if X10 + eX11 ≥ 1,

• Syn3: Y = X1 + 2X2 if X10 + (X11)3 < 0 & Y = X3 + 2X4 if X10 + (X11)3 ≥ 0.

We directly use the ground truth function as the black-box model3 and quantify how well locally interpretable
modeling can capture the underlying local function behavior using the Absolute Weight Difference (AWD)
metric: AWD = ||w − ŵ||, where w is the ground truth linear coefficients to generate Y and ŵ is the
estimated coefficient from the linear locally interpretable model (RR in our experiments). We report the
results over 10 independent runs with 2,000 samples per each synthetic dataset. Additional results can be
found in the Appendix. E, F, and G.

4.1 Recovering local function behavior

Figure 3: Mean AWD with 95% confidence intervals (of 10 independent runs) on three synthetic datasets
(y-axis) vs. the percentile distance from the boundary where the local function behavior change (x-axis), e.g.
X10 = 0 for Syn1. We exclude LIME due to its poor performance (its AWD is higher than 1.6 in all distance
regimes for all datasets).

We compare LIMIS to LIME (Ribeiro et al., 2016), SILO (Bloniarz et al., 2016), and MAPLE (Plumb et al.,
2018). Fig. 3 shows that LIMIS significantly outperforms other methods in discovering the local function
behavior on all three datasets, in different regimes. Even the decision boundaries are non-linear (Syn2 and
Syn3), LIMIS can efficiently learn them, beyond the capabilities of the linear RR model. LIME fails to recover
the local function behavior as it uses the Euclidean distance and cannot distinguish the special properties of
the features. SILO and MAPLE only use the relevant variables for the predictions; thus, it is difficult for
them to discover the decision boundary that depends on other variables, independent of the predictions.

4.2 The impact of the number of selected instances

Figure 4: Fidelity (in LMAE) and average selection probability of training samples (y-axis) vs. λ (x-axis).

Optimal distillation in LIMIS is enabled by using a small subset of training instances to fit the low-capacity
locally interpretable model. The number of selected instances is controlled by λ – if λ is high/low, LIMIS
penalizes more/less, thus less/more instances are selected to fit the locally interpretable model. We analyze

3We use the ground truth function instead of a fitted nonlinear black-box model to solely focus on LIMIS performance,
decoupling from the nonlinear black-box model fitting performance.
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the efficacy of λ in controlling the likelihood of selection and the fidelity. Fig. 4 (left and middle) demonstrates
the clear relationship between λ and the fidelity. If λ is too large, LIMIS selects insufficient number of
instances; thus, the fitted locally interpretable model is less accurate (due to underfitting). If λ is too small,
LIMIS selects too many instances and deteriorates fidelity (due to overfitting).4 Fig. 4 (right) shows the
average selection probability of the training instances for each λ. As λ increases, the average selection
probabilities decrease due to the higher penalty on the number of selected instances. Even using a small
portion of training instances, LIMIS can accurately distill the predictions into locally interpretable models,
which is crucial to understand the predictions using the most relevant instances.

4.3 Comparison to differentiable baselines

Table 1: AWD comparisons on three synthetic datasets with different number of train samples (N).

Number of train samples N = 500 N = 1000 N = 2000
Datasets Syn1 Syn2 Syn3 Avg. Syn1 Syn2 Syn3 Avg. Syn1 Syn2 Syn3 Avg.
LIMIS .5531 .5869 .6512 .5971 .2129 .4289 .5527 .3982 .1562 .3325 .3920 .2936

Gumbel-softmax .4177 .5017 .5953 .5049 .2712 .4511 .5405 .4209 .1698 .3655 .4217 .3190
STE .4281 .4941 .6001 .5074 .2688 .4407 .5372 .4156 .1717 .3601 .4307 .3208
L2R .6758 .6607 .6903 .6756 .6989 .6412 .6217 .6539 .7532 .7283 .7506 .7440

We compare LIMIS to three baselines that have differentiable objectives for data weighting in Table 1: (1)
Gumbel-softmax (Jang et al., 2016), (2) straight-through estimator (STE) (Bengio et al., 2013), (3) Learning
to Reweight (L2R) (Ren et al., 2018). As explained, the sampler block in LIMIS renders the optimization
problem non-differentiable, for which we utilize policy gradient. The main motivation of using the sampler
is to encourage systematic exploration of the extremely large search space. Using a differentiable objective
without the sampler, policy gradient would not be needed. Thus, we compare to Gumbel-softmax, STE
and L2R methods that are known to effectively handle such adaptive and differentiable weighted-training
scenario. We observe that Gumbel-softmax and STE converge faster but to a suboptimal solution, due to
under-exploration. L2R overfits to the fidelity metric and cannot guide weighting of the instances accurately,
yielding poor AWD. Because L2R learns the same weights across all instances, whereas LIMIS uses an
instance-wise weight estimator to learn instance-wise weights separately for each probe instance. In Table 1,
Gumbel-softmax and STE models outperform LIMIS in the regime of small training data, given their favorable
inductive bias with gradient-descent based optimization (that also causes fast convergence). However, for
larger datasets, they underperform LIMIS due to the under-exploration.

5 Real-world Data Experiments

We next study LIMIS on 3 real-world regression datasets: (1) Blog Feedback, (2) Facebook Comment, (3)
News Popularity; and 2 real-world classification datasets: (4) Adult Income, (5) Weather. We use raw data
after normalizing each feature to be in [0, 1], using standard Min-Max scaler and apply one-hot encoding to
categorical features. We focus on black-box models that are shown to yield strong performance on target tasks.
We implement the instance-wise weight estimator as an MLP with tanh activation. Its hyperparameters
are optimized using cross-validation (5-layer MLP with 100 hidden units performs reasonably-well across all
datasets). Model details on the data and hyperparameters can be found in the Appendix. D and A.

5.1 Performance comparisons

We evaluate the performance on disjoint testing sets Dt = {(xtk, ytk)}Lk=1 ∼ P and report the results over
10 independent runs. For fidelity, we compare the outputs (predicted values for regression and logits for
classification) of the locally interpretable models and the black-box model, using Nash-Sutcliffe Efficiency
(NSE) (Nash & Sutcliffe, 1970) For the prediction performance, we use Mean Absolute Error (MAE) for
regression and Average Precision Recall (APR) for classification. Details on the metrics can be found in
Appendix. B.

4To achieve the optimal λ, we conduct cross-validation and select λ with the best validation fidelity.
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Table 2: Fidelity (metric: NSE, higher is better) and prediction performance (metric: MAE, lower is better
/ APR, higher the better) on regression/classification datasets, using RR/DT as the locally interpretable
model while explaining the black box models: XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al.,
2017), Random Forests (RF) (Breiman, 2001) and Multi-layer Perceptron (MLP). ‘Original’ represents the
performance of the original black-box model that the locally-interpretable modeling is applied on. We also
show the performance of RR/ DT (in terms of MAE/APR) as a globally-interpretable model under the
data name. Red: performance worse than globally-interpretable RR/DT and the negative NSE. Bold: best
results.

Regression Datasets Models XGBoost LightGBM MLP RF
(Ridge Regression) Metrics MAE NSE MAE NSE MAE NSE MAE NSE

Original 5.131 1.0 4.965 1.0 4.893 1.0 5.203 1.0
LIMIS 5.289 .8679 4.971 .9069 4.994 .7177 4.993 .8573

Blog LIME 9.421 .3440 10.243 .3019 10.936 -.2723 19.222 -.2143
(8.420) SILO 6.261 .0005 6.040 .2839 5.413 .4274 6.610 .4500

MAPLE 5.307 .8248 4.981 .8972 5.012 .5624 5.058 .8471
Original 24.18 1.0 20.22 1.0 18.36 1.0 30.09 1.0
LIMIS 22.92 .7071 24.84 .4268 20.23 .5495 22.65 .4360

Facebook LIME 35.20 .2205 38.19 .2159 38.82 .2463 51.77 .1797
(24.64) SILO 31.41 -.4305 39.10 -1.994 22.35 .3307 42.05 -.7929

MAPLE 23.28 .6803 41.86 -3.233 24.77 -.1721 44.75 -1.078
Original 2995 1.0 3140 1.0 2255 1.0 3378 1.0
LIMIS 2958 .7534 2957 .5936 2260 .9761 2396 .6523

News LIME 5141 -.2467 6301 -2.008 2289 .5030 9435 -7.477
(.2989) SILO 3069 .4547 3006 .4025 2257 .9617 3251 .3816

MAPLE 2967 .7010 3005 .3963 2259 .9534 3060 .5901

Classification Datasets Models XGBoost LightGBM MLP RF
(Decision Tree) Metrics APR NSE APR NSE APR NSE APR NSE

Original .8096 1.0 .8254 1.0 .7678 1.0 .7621 1.0
LIMIS .8011 .9889 .8114 .9602 .7710 .9451 .7881 .8788

Adult LIME .6211 .5009 .6031 .3798 .4270 .2511 .6166 .3833
(.6388) SILO .8001 .9869 .8107 .9583 .7708 .9470 .7833 .8548

MAPLE .7928 .9794 .8034 .9405 .7719 .9410 .7861 .8622
Original .7133 1.0 .7299 1.0 .7205 1.0 .7274 1.0
LIMIS .7071 .9734 .7118 .9601 .7099 .9124 .7102 .9008

Weather LIME .6179 .7783 .6159 .6913 .5651 .3417 .6209 .3534
(.5838) SILO .6991 .9680 .7052 .9452 .6997 .8864 .7042 .8398

MAPLE .6973 .9675 .7056 .9446 .6983 .8856 .6983 .8856

Table 2 shows that for regression tasks, the performance of globally interpretable RR (trained on the entire
dataset from scratch) is much worse than complex black-box models, underlining the importance of non-linear
modeling. Locally interpretable modeling with LIME, SILO and MAPLE yield significant performance
degradation compared to the original black-box model. In some cases (e.g. on Facebook), the performance of
previous work is even worse than the globally interpretable RR, undermining the use of locally interpretable
modeling. In contrast, LIMIS achieves consistently high prediction performance and significantly outperforms
RR. Table 2 also compares the fidelity in terms of NSE. We observe that NSE is negative for some cases (e.g.
LIME on Facebook data), implying that output of the locally interpretable model is even worse than the
constant mean value estimator. On the other hand, LIMIS achieves high NSE consistently across all datasets
with all black-box models. Table 2 also shows the performance on classification tasks using shallow regression
DTs as the locally interpretable model (Regression DTs model outputs logits for classification.). Among
the locally interpretable models, LIMIS often achieves the best APR and NSE, underlining its strength in

9
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distilling the predictions of the black-box model accurately. In some cases, the benchmarks (especially LIME)
yield worse prediction performance than the globally interpretable model, DT. Additional results can be
found in the Appendix G.

5.2 Robustness of explanations

For locally interpretability modeling, robustness of explanations is very important, as one expect a similar
behavior around a meaningful vicinity of a sample. To quantify the robustness of explanations, we include
evaluations with neighborhood metrics (Plumb et al., 2019), which give insights on the explanation quality
at nearby points. We show the results on two regression datasets (Blog and Facebook) with two black-box
models (XGBoost and LightGBM) and evaluate them in terms of neighborhood MAE and pointwise MAE.
Here, the difference would be a measure of robustness, i.e. how reliable the explanations are against input
changes. Further details on the neighborhood metric can be found in Plumb et al. (2019).

Table 3: Prediction performance (metric: neighborhood MAE and pointwise MAE, lower is better) on
regression datasets, using RR as the locally interpretable model while explaining the black box models:
XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017). Bold: best results.

Datasets Models XGBoost LightGBM
(RR) Metrics Neighbor MAE Pointwise MAE Diff Neighbor MAE Pointwise MAE Diff

LIMIS 5.407 5.289 2.18% 5.093 4.971 2.40%
Blog LIME 9.343 9.421 0.83% 10.155 10.243 0.87%

SILO 6.388 6.261 1.99% 6.117 6.040 1.26%
MAPLE 5.442 5.307 2.48% 5.128 4.981 2.87%
LIMIS 24.02 22.92 4.57% 25.56 24.84 2.82%

Facebook LIME 36.08 35.20 2.44% 39.51 38.19 3.34%
SILO 33.08 31.41 5.05% 40.77 39.10 4.10%

MAPLE 24.51 23.28 5.02% 42.21 41.86 0.83%

As can be seen in Table 3, LIMIS’s superior performance is still apparent in neighborhood MAE. For instance,
LIMIS achieves 25.56 in neighborhood metric (with MAE) which is better than the results with MAPLE
(42.21) and LIME (39.51) using Facebook data and LightGBM model (over 10 independent runs). Note that
the differences between pointwise and neighborhood fidelity metrics with LIMIS are negligible across other
datasets and black-box models. This shows that the performance of LIMIS is locally robust and reliable,
which is the main objective of locally interpretable modeling.

5.3 Computational time

We quantify the computational time on the largest experimented dataset, Facebook Comments, that consists
∼ 600,000 samples. On a single NVIDIA V100 GPU (without any hardware optimizations), LIMIS yields a
training time of less than 5 hours (including Stage 1, 2 and 3) and an interpretable inference time of less than
10 seconds per testing instance. On the other hand, LIME results in much longer interpretable inference time,
around 30 seconds per a testing instance, due to acquiring a large number of black-box model predictions for
the input perturbations, while SILO and MAPLE show similar computational time with LIMIS.

6 LIMIS Explainability Use Cases

In this section, we highlight unique explainability capabilities of LIMIS for human-in-the-loop AI deployments.
LIMIS can distill complex black-box models into explainable surrogate models, such as shallow DTs or linear
regression. These surrogate models are explainable and are used in many applications where exact and concise
input-output mapping is desired to be visualized. As the fidelity of LIMIS is very high, the users can trust
the surrogate model for input-output relationship for each sample. LIMIS can also be useful for improving a
human’s reasoning accuracy, shortening their reasoning time, or increasing their bias detection capability.
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6.1 Sample-wise feature importance

Discovering the feature importance is one of the most commonly-used explanation tasks. Better understanding
of the feature importance via locally interpretable models (LIMIS) would enhance the humans’ trust on
black-box models, which is valuable in problems where transparency is the key, such as healthcare and finance.

To highlight LIMIS’s capability, we include a qualitative analysis in this subsection. First, on UCI Adult
Income dataset, we describe the discovered feature importance (denoted with the colors) by LIMIS in
predicting the annual income for 5 types of subgroups: (a) Age, (b) Gender, (c) Marital status, (d) Race, (e)
Education. Using XGBoost as the black-box model and RR as the locally interpretable model, Fig. 5 shows
the discovered feature importance by LIMIS for 5 subgroups in predicting the annual income.

Figure 5: Discovered feature importance (denoted with the colors) by LIMIS on UCI Adult Income, for 5
types of subgroups: (a) Age, (b) Gender, (c) Marital status, (d) Race, (e) Education.

For age subgroups, capital gain is much more important for older people (age > 25) than young people (age
≤ 25). For education subgroups, capital gain/loss, occupation, and native countries are more critical for
highly-educated people (Doctorate, Prof-school, and Masters graduates) than others. LIMIS does not discover
notable biases of the black-box model, via significant dependence on gender, marital status and race features.
These qualitative results demonstrate how the proposed method helps humans to interpret the decision of the
machine learning model.

6.2 Suggesting counterfactual inputs to alter decisions

We showcase a useful capability provided by high-fidelity locally interpretable modeling: suggesting coun-
terfactual inputs to alter decisions. For this demonstration, we focus on the UCI Adult Income dataset.
LIMIS is first trained on the entire training data, and then, for some test samples, LIMIS is used to provide
explanations on why the black-box model (XGBoost) predicts certain labels, and how the predictions can be
changed to obtain high income, >$50K, as the prediction.

All the explanations and suggestions in Table. 4 come from the locally interpretable models (a DT with a
depth of 3) provided by LIMIS. We show suggestions provided by the shortest path from current prediction
leaf (<$50K) to the high-income prediction leaf (>$50K) in the shallow decision tree. In most cases, we
observe the suggestions to be reasonable (i.e. consistent with common knowledge), such as changing the
investment outcomes, changing to a higher paying job or getting additional education.
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No Key characteristics Prediction Suggestion for >$50K income
1 Education: High-school, No capital gain <$50K Get Masters & increase capital gains to 6K
2 No capital gain, Hours per week: 40 >$50K -
3 Age: 33, Education year: 13, Married >$50K -
4 Age: 44, Job: Craft-repair <$50K Increase capital gain by 6K
5 Job: Local-gov, Education: HS, Hours per week: 40 <$50K Change job to Federal-gov
6 Capital loss: 23K, Job: Sales, Education: College <$50K Decrease the capital loss to 9K
7 Hours per week: 26, Job: Sales <$50K Change job to Tech support
8 Capital gain: 15K, Masters, Age: 51 >$50K Increase the capital gain to 10K
9 Capital loss: 17K, Hours per week: 40 <$50K Reduce the capital loss to 11K
10 Age: 38, Occupation: Exec managerial <$50K -

Table 4: For ten individuals explanations given by LIMIS using shallow DT on UCI Adult dataset are shown.
The individual characteristics are based on the DT and the suggestions are obtained with the goal of making
the locally interpretable model prediction as >$50K, by inspecting the fitted DT.

Such a capability can be particularly useful in providing insights on the closest counterfactual input that
would yield a different outcome. For an application like explaining what a user should do to change the
outcome of their loan decision, or what a patient should do to reduce the diagnosis outcome for a disease,
this capability can be efficacious.

7 Conclusions

We propose a novel method for locally interpretable modeling of pre-trained black-box models, called LIMIS.
LIMIS selects a small number of valuable instances and uses them to train a low-capacity locally interpretable
model. The selection mechanism is guided with a reward obtained from the similarity of predictions of the
locally interpretable model and the black-box model, defined as fidelity. LIMIS near-matches the performance
of black-box models, and significantly outperforms alternatives, consistently across various datasets and for
various black-box models. We demonstrate the high-fidelity explanations provided by LIMIS can be highly
useful to gain insights about the task and to understand what would modify the model’s outcome.
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A Hyper-parameters of the predictive models

In this paper, we use 8 different predictive models. For each predictive model, the corresponding hyper-
parameters used in the experiments are as follows:

• XGBoost (Chen & Guestrin, 2016): booster - gbtree, max depth - 6, learning rate - 0.3, number of
estimators - 1000, max depth - 6, reg alpha - 0

• LightGBM (Ke et al., 2017): booster - gbdt, max depth - None, learning rate - 0.1, number of
estimators - 1000, min data in leaf - 20

• Random Forests (RF) (Breiman, 2001): number of estimators - 1000, criterion - gini, max depth -
None, warm start - False

• Multi-layer Perceptron (MLP): Number of layers - 4, hidden units - [feature dimensions, feature
dimensions/2, feature dimensions/4, feature dimensions/8], activation function - ReLU, early stopping -
True with patience 10, batch size - 256, maximum number of epochs - 200, optimizer - Adam

• Ridge Regression: alpha - 1

• Regression DT: max depth - 3, criterion - gini

• Logistic Regression: solver - lbfgs, no regularization

• Classification DT: max depth - 3, criterion - gini

We follow the default settings for the other hyper-parameters that are not mentioned here.

B Performance metrics

• Mean Absolute Error (MAE):

MAE =E(xt,yt)∼P ||g∗θ(xt)(xt)− yt)||1 '
1
L

L∑
k=1
||g∗θ(xt

k
)(x

t
k)− ytk||1,

• Local MAE (LMAE):

LMAE =Ext∼PX ||g∗θ(xt)(xt)− f∗(xt)||1 '
1
L

L∑
k=1
||g∗θ(xt

k
)(x

t
k)− f∗(xtk))||1,

• NSE (Nash & Sutcliffe, 1970):

NSE =1−
Ext∼PX ||f∗(xt)− g∗θ(xt)(xt)||22

Ext∼PX ||f∗(xt)− Ex̂t∼PX [f∗(x̂t)]||22
' 1−

1
L

∑L
k=1 ||f∗(xtk)− g∗θ(xt

k
)(x

t
k)||22

1
L

∑L
k=1 ||f∗(xtk)− 1

L

∑L
k=1[f∗(xtk)]||22

.

If NSE = 1, the predictions of the locally interpretable model perfectly match the predictions of the black-box
model. On the other hand, if NSE = 0, the locally interpretable model performs as similar as the constant
mean value estimator. If NSE < 0, the locally interpretable model performs worse than the constant mean
value estimator.
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C Implementations of benchmark models

In this paper, we use 3 different benchmark models. Implementations of those models can be found in the
below links.

• LIME: https://github.com/marcotcr/lime (Ribeiro et al., 2016)

• SILO: https://github.com/GDPlumb/MAPLE (Bloniarz et al., 2016)

• MAPLE: https://github.com/GDPlumb/MAPLE (Plumb et al., 2018)

D Data statistics

Table 5: Data Statistics of 5 real-world datasets. Label distributions: Number of positive labels (positive
label ratio) for classification problem, and label mean (5%-50%-95% percentiles) for regression problem.

Problem Data name Number of samples Dimensions Label distribution

Regression
Blog Feedback 60,021 280 6.6 (0-0-22)

Facebook Comment 603,713 54 7.2 (0-0-30)
News Popularity 39,644 59 3395.4 (584-1400-10800)

Classification Adult Income 48,842 108 11,687 (23.9%)
Weather 112,925 61 25,019 (22.2%)

E Learning curves of LIMIS

Figure 6: Learning curves of LIMIS on three synthetic datasets. X-axis: The number of iterations on
instance-wise weight estimator training, Y-axis: Rewards (LMAE of baseline (globally interpretable model) -
LMAE of LIMIS), higher is better.

F Instance-wise weight distributions for synthetic datasets

Fig. 7 (a)-(c) show that the instance-wise weights have quite skewed distribution. Some samples (e.g. with
average instance-wise weights above 0.5) are much more critical to interpreting the probe sample than many
others (e.g. average instance-wise weights below 0.1).

Furthermore, we analyze the instance-wise weights of training samples, and Fig. 8 shows that the training
samples near the probe sample get higher weights – LIMIS learns the meaningful distance metrics to measure
the relevance while interpreting the probe samples.
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Figure 7: Instance-wise weight distributions for (a) Syn1, (b) Syn2, and (c) Syn3 datasets.

Figure 8: Average instance-wise weights vs. distance from the probe sample.

G Additional results

G.1 Sample complexity analyses with differentiable baselines

Figure 9: AWD performances in terms of the number of training samples used to train three models: LIMIS,
STE and Random.

G.2 Which training samples are selected by LIMIS, MAPLE and LIME?

LIMIS, MAPLE and LIME select a subset of training samples to construct locally-interpretable models. The
training samples selected by LIME are the ones closest to the point to explain. MAPLE utilizes random
forest model (trained to predict black-box model outputs) to select the subset of training samples. In this
subsection, we quantitatively analyze which samples are chosen by LIMIS, MAPLE and LIME.

Due to the lack of ground truth for ideal training sample selection in real-world datasets, we use synthetic
datasets to demonstrate this experiment. Note that for each synthetic data, ideal training sample selections are
explicitly determined by X10 and X11 (see the definitions of Syn1 to Syn3). Therefore, we can quantitatively
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evaluate the performances in terms of AUC comparing between selected training samples and ideal training
sample selection.

Table 6: Evaluation on correctly selected training samples by LIMIS, LIME, and MAPLE in terms of AUC.
Bold represents the best.

Models / Datasets Syn1 Syn2 Syn3
LIMIS 0.7837 0.6892 0.6935
LIME 0.5253 0.5017 0.5202

MAPLE 0.6723 0.5844 0.5452

As can be seen in Table 6, the average performance of correctly chosen samples on Syn1 to 3 are 0.7218,
0.5157, 0.6006 using LIMIS, LIME, and MAPLE, indicating the superiority of LIMIS.

G.3 Additional ablation study - Optimization

To better motivate our method, we perform ablation studies, demonstrating that the proposed complex
objective can be efficiently addressed with policy-gradient based RL where the gradient has a closed-form
expression. The inner optimization is used for fitting the surrogate explainable model. We explain that for
simple surrogate models such as ridge regression, the fitting has a closed form expression and the overall
computational complexity is negligible indeed, yielding similar training time compared to the alternative
methods. Note that policy-gradient is only utilized for the outer-optimization.

Table 7: Average Weight Difference (AWD) comparisons on three synthetic datasets with different number of
train samples (N). Training time is computed on a single K80 GPU.

Optimization Training samples N = 1000 N = 2000
Average performance Training time Average performance Training time

Bi-level LIMIS 0.3982 49 mins 0.2936 92 mins

Single-level Gumbel-softmax 0.4209 38 mins 0.3190 71 mins
STE 0.4156 39 mins 0.3208 73 mins

Two-stage single-level
LIME 1.6372 17 mins 1.5633 21 mins
SILO 0.6983 30 mins 0.6561 44 mins

MAPLE 0.6217 55 mins 0.5890 104 mins

Table 7 compares our proposed method LIMIS to other methods (Gumbel-softmax and STE) which utilize
single-level optimization (i.e. direct back-propagation). LIMIS with bi-level optimization achieves better
performance (lower AWD) with small increase in computational complexity. In addition, compared to other
baselines (LIME, SILO, and MAPLE) which utilize two-stage optimization (where each stage is single-level),
the proposed bi-level optimization in LIMIS shows significantly better performance with similar complexity.
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G.4 Regression with shallow regression DT as the locally interpretable model

Table 8: Overall prediction performance (metric: MAE, lower is better) and fidelity (metric: NSE, higher is
better) on real-world regression datasets, using shallow Regression DT as the locally interpretable model while
explaining the black box models: XGBoost, LightGBM, MLP and RF. ‘Original’ represents the performance
of the original black-box model, that the locally-interpretable modeling is applied on. We also show the
performance of shallow regression RDT as a globally-interpretable model (reported the performance (in terms
of MAE) under the data name). Red represents performance that is worse than globally-interpretable shallow
regression DT and the negative NSE. Bold represents the best results.

Datasets Models XGBoost LightGBM MLP RF
(RDT) Metrics MAE NSE MAE NSE MAE NSE MAE NSE

Original 5.131 1.0 4.965 1.0 4.939 1.0 5.203 1.0
LIMIS 5.121 .8242 4.778 .8939 4.587 .6375 4.652 .8990

Blog LIME 11.80 .2658 13.22 .1483 7.396 -.6201 19.61 -.4116
(5.955) SILO 5.149 .8035 4.818 .8816 4.649 .6177 4.715 .8774

MAPLE 5.329 .7991 5.024 .8660 4.609 .6339 5.016 .8201
Original 24.18 1.0 20.22 1.0 18.36 1.0 30.09 1.0
LIMIS 21.82 .9307 21.35 .9194 18.56 .8832 22.44 .7236

Facebook LIME 36.69 .3278 44.21 .1809 40.85 -.1513 51.70 .2301
(22.28) SILO 22.42 .8655 22.33 .7235 19.57 .8566 24.41 .6917

MAPLE 22.15 .8824 23.43 .8581 20.32 .8035 27.12 .3134
Original 2995 1.0 3140 1.0 2255 1.0 3378 1.0
LIMIS 2938 .9382 2504 .4104 2226 .9016 2431 .2768

News LIME 6272 -.6267 7737 -2.960 2390 .0013 9637 -7.075
(3093) SILO 2910 .1020 2854 .3461 2274 .8201 2874 .2278

MAPLE 2968 .9288 2846 .3631 2284 .8021 2888 .1872

Table 9: Fidelity results (metric: LMAE, lower is better) on regression problems with shallow regression DT
as the locally interpretable model. Bold represents the best results.

Datasets Models XGBoost LightGBM MLP RF

Blog

LIMIS .7530 1.358 1.273 1.413
LIME 9.160 11.16 5.006 17.461
SILO .8325 1.379 1.178 1.934

MAPLE 1.029 1.598 1.359 2.158

Facebook

LIMIS 7.240 6.867 5.596 15.77
LIME 31.52 37.75 30.58 45.58
SILO 8.459 9.149 6.997 18.63

MAPLE 7.985 8.644 7.290 23.17

News

LIMIS 389.0 1072 116.6 957.1
LIME 4455 6243 504.0 9969
SILO 496.7 1214 160.6 1175

MAPLE 440.7 1201 163.6 1196
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G.5 Regression with RR as the locally interpretable model - Fidelity analysis in Local MAE

Table 10: Fidelity results (metric: LMAE, lower is better) on regression problems with ridge regression as the
locally interpretable model. Bold represents the best results.

Datasets Models XGBoost LightGBM MLP RF

Blog

LIMIS .8679 1.135 1.432 1.651
LIME 6.534 8.037 8.207 17.01
SILO 2.220 3.046 2.393 3.909

MAPLE .9690 1.416 1.550 1.984

Facebook

LIMIS 6.394 21.29 8.217 33.64
LIME 32.57 33.70 27.38 48.03
SILO 19.51 30.07 11.52 40.14

MAPLE 7.664 31.25 13.31 44.38

News

LIMIS 436.9 1049 74.11 905.8
LIME 3317 4766 327.4 8828
SILO 657.2 1253 79.85 1345

MAPLE 500.5 1261 88.19 1157
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G.6 Classification with RR as the locally interpretable model

Table 11: Overall prediction performance (metric: APR, higher is better) and fidelity (metric: NSE, higher is
better) on real-world classification datasets, using RR as the locally interpretable model while explaining the
black box models: XGBoost, LightGBM, MLP and RF. ‘Original’ represents the performance of the original
black-box model, that the locally-interpretable modeling is applied on. We also show the performance of
Logistic Regression (LR) as a globally-interpretable model (reported the performance (in terms of APR)
under the data name). Red represents performance that is worse than globally-interpretable model logistic
regression and the negative NSE. Bold represents the best results.

Datasets Models XGBoost LightGBM MLP RF
Metrics APR NSE APR NSE APR NSE APR NSE
Original .8096 1.0 .8254 1.0 .7678 1.0 .7621 1.0
LIMIS .7977 .9871 .8039 .9439 .7670 .9791 .7977 .9217

Adult LIME .6803 .7195 .6805 .6259 .6957 .8310 .7057 .6759
(.7553) SILO .7912 .9750 .7884 .9301 .7655 .9778 .7664 .9140

MAPLE .7947 .9840 .8011 .9386 .7683 .9636 .7958 .8961
Original .7133 1.0 .7299 1.0 .7205 1.0 .7274 1.0
LIMIS .7140 .9879 .7290 .9801 .7212 .9755 .7331 .9450

Weather LIME .6376 .7898 .6392 .6873 .6395 .5321 .6387 .4513
(.7009) SILO .7134 .9888 .7281 .9773 .7220 .9797 .7277 .9024

MAPLE .7134 .9897 .7273 .9778 .7213 .9702 .7308 .9323

G.7 Qualitative analysis: LIMIS interpretation

Figure 10: Discovered feature importance (denoted with the colors) by LIMIS on Weather dataset for 6
types of subgroups: (1) Rain, (2) Rain fall, (3) Wind speed 3pm, (4) Humidity 3pm, (5) Pressure 3pm, (6)
Temperature 3 pm.
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Figure 11: Discovered feature importance on Weather data for: rain fall ≤ 1, wind speed (at 3pm) ≤ 5, and
temperature (at 3pm) > 30 (left), and ‘rain fall > 15, wind speed (at 3pm) > 25, and temperature (3pm) <
10 (right).

In this section, we qualitatively analyze the explanations provided by LIMIS. Although LIMIS can provide
local explanations for each instance separately, we consider the explanations in subgroup granularity for better
visualization and understanding. On Weather dataset, Fig. 10 shows the feature importance (discovered by
LIMIS) for six subgroups in predicting whether it will rain tomorrow, using XGBoost as the black-box model.
We use RR as the locally interpretable model and the absolute value of fitted coefficients are used as the
estimated feature importance. For rain fall subgroups, humidity and wind gust speed seem more important for
heavy rain (rain fall ≥ 5) than light rain (rain fall < 5). For temperature subgroups, rainfall, wind gust speed
and humidity are more important for cold days (temperature (at 3pm) < 10) than warm day (temperature
(at 3pm) ≥ 20). In general, for heavy rain, fast wind speed, low pressure, and low temperature subgroups,
humidity, wind gust speed and rain fall variables are more important for prediction. Fig. 11 shows the
feature importance (discovered by LIMIS) for two subgroups. We observe the clear difference of the impact
of afternoon humidity and wind gust speed, on instances that clearly reflect different climate characteristics.
This underlines how LIMIS can shed light on the samples with distinct characteristics. Additional use cases
for human-in-the-loop AI capabilities can be found in the Sect. 6.
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