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GIST: Improving Parameter Efficient Fine-Tuning via Knowledge
Interaction
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ABSTRACT
Recently, the Parameter Efficient Fine-Tuning (PEFT)method, which
adjusts or introduces fewer trainable parameters to calibrate pre-
trained models on downstream tasks, has been a hot research topic.
However, existing PEFT methods within the traditional fine-tuning
framework have two main shortcomings: 1) They overlook the
explicit association between trainable parameters and downstream
knowledge. 2) They neglect the interaction between the intrinsic
task-agnostic knowledge of pre-trainedmodels and the task-specific
knowledge of downstream tasks. These oversights lead to insuf-
ficient utilization of knowledge and suboptimal performance. To
address these issues, we propose a novel fine-tuning framework,
named GIST, that can be seamlessly integrated into the current
PEFT methods in a plug-and-play manner. Specifically, our frame-
work first introduces a trainable token, called the Gist token, when
applying PEFT methods on downstream tasks. This token serves as
an aggregator of the task-specific knowledge learned by the PEFT
methods and builds an explicit association with downstream tasks.
Furthermore, to facilitate explicit interaction between task-agnostic
and task-specific knowledge, we introduce the concept of knowl-
edge interaction via a Bidirectional Kullback-Leibler Divergence
objective. As a result, PEFT methods within our framework can
enable the pre-trained model to understand downstream tasks more
comprehensively by fully leveraging both types of knowledge. Ex-
tensive experiments on the 35 datasets demonstrate the universality
and scalability of our framework. Notably, the PEFT method within
our GIST framework achieves up to a 2.25% increase on the VTAB-
1K benchmark with an addition of just 0.8K parameters (0.009‰ of
ViT-B/16). Code is in the supplementary materials.

CCS CONCEPTS
• Computing methodologies → Computer vision; Natural
language processing.

KEYWORDS
Parameter efficient fine-tuning, knowledge interaction, vision and
language models, few-shot learning

1 INTRODUCTION
The advent of large-scale datasets and the pre-training fine-tuning
paradigm has empowered pre-trainedmodels to achieve remarkable
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Figure 1: Unlike the traditional fine-tuning framework,
our GIST framework establishes an explicit connection
between the learnable PEFT parameters and downstream
tasks, thereby comprehensively learning task-specific knowl-
edge (TSK). In addition, we introduce the concept of knowl-
edge interaction, establishing interactions between the task-
agnostic knowledge (TAK) represented by the frozen param-
eters and the task-specific knowledge (TSK) represented by
the learnable parameters, thus enabling the model to better
adapt to the downstream tasks.

performances [42]. By leveraging task-agnostic knowledge (TAK)
from the pre-training phase and learning task-specific knowledge
(TSK) during the fine-tuning process [31, 47, 50], pre-trained mod-
els, particularly Transformer-based models [9, 24], have exhibited
exemplary performance across fields such as computer vision (CV)
and natural language processing (NLP). However, the burgeoning
parameters in Transformer-based models have made the Full pa-
rameter fine-Tuning (FT) method less practical for downstream
tasks. The FT method necessitates training and retaining separate
full parameters for every task. Furthermore, this technique is sus-
ceptible to overfitting, especially given the frequently limited data
volume in downstream tasks.

With a focus on increasing fine-tuning efficiency, the research
community has demonstrated escalating interest in Parameter Effi-
cient Fine-Tuning (PEFT) methods [7]. Briefly, PEFT methods freeze
the bulk of pre-trained model parameters, adjusting or introducing
a small set of trainable parameters to integrate TSK. However, as
shown in Figure 1, PEFT methods within traditional fine-tuning
framework do not explicitly establish a connection between the
learnable parameters and TSK, and also overlook the interaction
with TAK. These deficiencies prevent the model from effectively
leveraging these two types of knowledge, thereby leading to sub-
optimal fine-tuning performance.

To address the above issues, we initiate our investigation from
the perspective of TSK acquisition, based on a classic PEFT method
(e.g., VPT [15]). Specifically, VPT achieves commendable fine-tuning

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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performance by freezing the model’s backbone parameters and
introducing learnable prompt tokens. However, in VPT, prompt to-
kens are not explicitly used for the final loss calculation, which may
impede the full utilization of downstream knowledge. Consequently,
we naturally utilize prompt tokens as an additional dependency
for computing the loss, obtaining a 0.5% gain. Subsequently, to
demonstrate the scalability of this discovery, we attempt to employ
this loss as a plug-and-play design. We apply another PEFT method
(e.g., Adapter) with VPT, and find that using prompt tokens as an
extra criterion also achieves a 0.73% improvement. This discovery
implies that naturally using learnable parameters as the basis for
computing loss can lead to more effective TSK learning.

Inspired by the above observations, we propose GIST, a plug-
and-play and efficient framework for existing PEFTmethods. Specif-
ically, we first introduce a learnable Gist token ([GIST]). During
the fine-tuning phase, [GIST] is co-trained with the learnable PEFT
parameters to aggregate the TSK. Akin to the Class token ([CLS])
used to generate Class logits (𝑆𝑐𝑙𝑠 )1, [GIST] is also processed via
the linear classification head, yielding the Gist logits (𝑆𝑔𝑖𝑠𝑡 ), which
subsequently contribute to the loss computation with the true la-
bels. It is imperative to underscore that [CLS] is trained during
the pre-training phase to assimilate the TAK, [GIST] undergoes
training during the fine-tuning phase, serving as an aggregator
for the TSK on downstream tasks.2 In addition, to engender the
interaction between task-agnostic and task-specific knowledge,
we employ a Bidirectional Kullback-Leibler Divergence (BKLD)
objective, bridging the gap between the two types of knowledge.
This bidirectional objective amalgamates both forward and reverse
Kullback-Leibler divergence [11] objectives, facilitating a refined
computation of the distributional disparity between 𝑆𝑐𝑙𝑠 and 𝑆𝑔𝑖𝑠𝑡 .
In short, via our GIST framework, existing methods could foster bet-
ter interaction between these two types of knowledge, ensuring the
optimal calibration of pre-trained models for enhanced adaptability
to downstream tasks.

To sum up, the contributions are as follows: 1) For the first time,
this study analyzes the significance of establishing an explicit con-
nection among learnable parameters, downstream knowledge, and
the inherent general knowledge of pre-trained models. This explo-
ration proves to be crucial for understanding the roles of different
parameters during the model fine-tuning process. 2) We introduce
the GIST framework, comprising a gist token and a Bidirectional
Kullback-Leibler Divergence objective. The former aims to build an
association between learnable parameters and downstream tasks,
while the latter facilitates deep knowledge interaction. Based on this
framework, the model is capable of fully leveraging both general
and downstream knowledge to better adapt to downstream tasks.
3) Extensive experiments are conducted on 35 datasets. The results
indicate that the GIST framework can improve fine-tuning perfor-
mance with minimal increase in the count of trainable parameters.

1Some vision Transformers, such as Swin Transformer [25], do not introduce an
additional [CLS]. Instead, they use the output sequence after global pooling operation
for the prediction. In this paper, we uniformly utilize [CLS] for the sake of convenience
in expression.
2This concept of an aggregator is derived from the pre-training stage of ViT [8], where
a [CLS] is introduced to aggregate global information for the final loss calculation.
Besides, it is note that [GIST] is introduced during downstream fine-tuning, is trainable,
and aggregates TSK, while [CLS] is frozen during fine-tuning and can be considered
to retain TAK.

To be specific, when compared to the traditional framework, the
PEFT methods implemented within our GIST framework achieve
improvements of 1.05%, 1.12%, 1.45%, and 1.1% in image classifica-
tion, fine-grained few-shot learning, language understanding, and
vision&language tasks, respectively.

2 RELATEDWORKS
2.1 Parameter Efficient Fine-tuning
Parameter Efficient Fine-tuning (PEFT) methods enhance the per-
formance of pre-trained models on downstream tasks in a power-
saving and efficient manner. Essentially, PEFT techniques modify
a select subset or introduce new trainable parameters during fine-
tuning to assimilate TSK, thereby calibrating the model’s predic-
tions on downstream tasks. Initial explorations into PEFT were
predominantly within NLP tasks, with notable methodologies in-
cluding Adapter [13], Prompt [21], Prefix [22], and LoRA [14], etc.
Subsequently, VPT [15] migrates the Prompt technique from NLP
to CV, demonstrating the potential of PEFT in visual tasks. For
instance, VPT achieves impressive results by fine-tuning with only
0.1% of the total model parameters. AdaptFormer [4] introduces
Adapter in parallel into the ViT’s FFN layer, achieving performance
comparable to the FT method in image recognition and video un-
derstanding tasks. SSF [23] adjusts the model’s features by scaling
and shifting, achieving superior results in image recognition. This
success catalyzes further research into PEFT for the CV tasks, with
methodologies such as Convpass [16], FacT [17], and ReAdapter
[26] advancing the state-of-the-art. However, under the traditional
fine-tuning framework, existing PEFT methods do not fully real-
ize their potential because they overlook the explicit connection
with TSK and the knowledge interaction with TAK. Therefore,
with hardly any increase in parameters, we propose the GIST fine-
tuning framework to establish explicit connections and interactions,
thereby maximizing the capabilities of existing PEFT methods.

2.2 Self-Knowledge Distillation
A concept resonating with our framework is self-knowledge distilla-
tion. Knowledge distillation paradigms [12] focus on enhancing the
performance of student models by assimilating knowledge from a
larger teacher model. In contrast, self-knowledge distillation posits
the student model as its own teacher. This is achieved by deriving
soft labels through specially crafted branches or distinct distribu-
tions, subsequently computing the distillation loss against its own
predictions. For instance, in the BYOT approach [48], the deepest
classifier is regarded as the teacher, and it imparts its knowledge to
shallower networks. CS-KD [45] uses two different samples from
the same category to normalize the consistency between two dif-
ferent views of the predicted distribution. USKD [43] utilizes the
student model’s logits as soft target labels and employs the ranking
of intermediate features along with Zipf’s law to generate soft non-
target labels. Subsequently, USKD performs knowledge distillation
using both soft labels from target and non-target classes, making it
an advanced approach. In our work, we extrapolate the concept of
knowledge distillation. By introducing a learnable token to derive
soft labels and employing the BKLD loss as the metric between
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Figure 2: The different fine-tuning structures in Table 1. (a)
original VPT in [15]. (b) on the top of (a), additionally using
VPT prompt tokens as the basis for calculating loss. (c) com-
bining two classic PEFT methods (VPT and Adapter) for fine-
tuning. (d) on the top of (c), additionally using VPT prompt
tokens as the basis for calculating loss.

Table 1: Top-1 average accuracy on VTAB-1K.We are progres-
sively experimenting with various structural combinations
to enhance performance on downstream tasks. The hidden
dimension of the Adapter is 4, and the prompt tokens’ length
introduced by VPT is 20. It is better viewed in conjunction
with Figure 2.

Tag Method Loss Params. (M) Mean
(a) VPT L𝑐𝑒 0.05 62.41
(b) VPT L𝑐𝑒 + L𝑣𝑝𝑡 0.05 62.91
- Adapter L𝑐𝑒 0.13 71.46
(c) Adapter + VPT L𝑐𝑒 0.15 71.70
(d) Adapter + VPT L𝑐𝑒 + L𝑣𝑝𝑡 0.15 72.19

these soft labels and the model’s predictions, our fine-tuning frame-
work aims to augment the efficacy of extant PEFT techniques with
negligible parameter overhead.

3 METHODS
This section outlines our GIST framework. Initially, in Section
3.1, we reassess the PEFT methods from the perspective of ac-
quiring downstream knowledge, emphasizing the importance of
establishing a direct connection between learnable parameters and
downstream tasks. Subsequently, Section 3.2 delves into our GIST
framework, elucidating how the Gist token is integrated within
the Transformer architecture, and how the Bidirectional Kullback-
Leibler Divergence (BKLD) loss is employed to facilitate knowledge
interaction.

3.1 Rethinking PEFT via knowledge acquisition
In this section, we first explore existing PEFT methods from the
perspective of knowledge acquisition. Experiments are conducted
on the VTAB-1K benchmark, with settings identical to those in
Section 4.2. Initially, as shown in Figure 2(a), we start our explo-
ration with a classic PEFT method, VPT-shallow [15]. We fix the
length of the learnable prompt tokens introduced by VPT at 20,
achieving an accuracy of 62.41% in fine-tuning performance (Table
1(a)). However, in the original VPT, only the Class token is utilized
to calculate cross-entropy loss with true labels, and the learnable
prompt tokens are not directly involved in the loss computation.
We believe this form is suboptimal for fine-tuning phase. Therefore,
as shown in Figure 2(b) and Equation 1, we naturally attempt to
incorporate the prompt tokens for calculating the cross-entropy
loss with the true labels. This simple modification results in a 0.5%
increase in fine-tuning performance (Table 1(b)). A possible reason
is that explicitly including learnable parameters in the loss calcu-
lation can lead to more comprehensive task-specific knowledge
(TSK) acquisition.

L = L𝑐𝑒 (𝑆𝑐𝑙𝑠 , 𝑦) + L𝑣𝑝𝑡

L𝑣𝑝𝑡 = L𝑐𝑒 (𝑆𝑣𝑝𝑡 , 𝑦)
(1)

where L𝑐𝑒 denotes the cross-entropy loss, and 𝑦 represents true
labels. 𝑆𝑐𝑙𝑠 and 𝑆𝑣𝑝𝑡 represent the logits obtained from the Class
token and VPT prompt tokens after passing through the linear
classification head, respectively.

Subsequently, we investigate the feasibility of integrating the loss
calculation approach derived from VPT with other PEFT methods.
As shown in Figures 2(c, d), VPT is implemented alongside the
Adapter for the fine-tuning process. Performance is evaluated and
compared before and after the incorporation of the additional loss
L𝑣𝑝𝑡 . The results indicate that this supplementary loss, detailed in
Tables 1(c, d), further enhances the Adapter’s fine-tuning efficacy.

Therefore, we pose a question: Can this method serve as a free
lunch-style framework to enhance the fine-tuning performance of ex-
isting PEFT methods? The answer is affirmative. In the next section ,
we introduce our GIST fine-tuning framework, which can improve
the performance of PEFT methods in a plug-and-play manner with-
out adding extra burden.

3.2 GIST Framework
As discussed in Section 3.1, incorporating VPT’s prompt tokens for
additional loss calculation can enhance fine-tuning performance.
However, this approach also introduces an increased parameter
burden. Additionally, relying solely on L𝑣𝑝𝑡 as an extra loss com-
ponent does not fully utilize the task-agnostic knowledge (TAK)
from the pre-training phase. Therefore, as shown in Figure 3, our
GIST framework introduces a learnable token called the Gist token,
which is only 1 in length and designed to be an aggregator for TSK.
Furthermore, we introduce the BKLD loss for knowledge interac-
tion, thereby maximizing the potential of PEFT methods for more
effective fine-tuning.
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Figure 3: Overview of our GIST fine-tuning framework. Unlike the traditional fine-tuning framework, we introduce a learnable
“Gist” token, which collaboratively learns task-specific knowledge with the PEFT method on downstream tasks. Subsequently,
we introduce a Bidirectional Kullback-Leibler Divergence loss to facilitate knowledge interaction.

3.2.1 Gist token ([GIST]). For a Transformer model3, the input
data undergoes an embedding transformation, yielding a sequence
𝑥 ∈ R𝐿×𝐷 . Afterwards, the Class token 𝑥𝑐𝑙𝑠0 ∈ R1×𝐷 is concate-
nated with this sequence, augmented by a positional embedding
𝑃 ∈ R(𝐿+1)×𝐷 , resulting in the input sequence 𝑋0 ∈ R(𝐿+1)×𝐷 , as
formulated in Equation 2.

𝑋0 = [𝑥𝑐𝑙𝑠0 ;𝑥] + 𝑃 (2)
where [·; ·] represents the concatenation operation. Subsequent
processing of 𝑋0 ensues through a series of Transformer layers, as
depicted in Equation 3.

𝑋 ′
𝑙
= MHSA(LN(𝑋𝑙−1)) + 𝑋𝑙−1

𝑋𝑙 = FFN(LN(𝑋 ′
𝑙
)) + 𝑋 ′

𝑙
, 𝑙 = 1, 2, ..., 𝑁

(3)

where MHSA stands for multi-head self-attention block, FFN rep-
resents the feed-forward network, and LN stands for LayerNorm
[2]. After applying all Transformer layers, we can derive 𝑥𝑐𝑙𝑠

𝑁
from

𝑋𝑁 . The logits 𝑆𝑐𝑙𝑠 can then be obtained using the trainable linear
classification head (HEAD), as shown in Equation 4.

𝑆𝑐𝑙𝑠 = HEAD(𝑥𝑐𝑙𝑠𝑁 ) (4)
Ultimately, the cross entropy loss function computes the loss

between 𝑆𝑐𝑙𝑠 and the true labels. Notably, during the fine-tuning
phase, 𝑥𝑐𝑙𝑠0 is frozen, preserving the model’s TAK from the pre-
training phase. Different from the traditional fine-tuning framework
as shown in Figure 3, our framework introduces an additional

3Our GIST framework does not alter the implementation of the existing PEFT methods.
Therefore, for the sake of simplicity in expression, we omit the processing procedures
of the PEFT methods in this section.

learnable token ([GIST]), denoted as 𝑥𝑔𝑖𝑠𝑡0 ∈ R1×𝐷 , to aggregate
the TSK learned by the PEFT method during fine-tuning. Thus, on
the basis of Equation 2, we concatenate [GIST] to obtain our input
sequence 𝑋0 ∈ R(𝐿+2)×𝐷 , as Equation 5.

𝑋0 = [[𝑥𝑐𝑙𝑠0 ;𝑥] + 𝑃 ;𝑥𝑔𝑖𝑠𝑡0 ] (5)
After processing the input sequence through all Transformer

layers, 𝑥𝑐𝑙𝑠
𝑁

and 𝑥𝑔𝑖𝑠𝑡
𝑁

are derived from 𝑋𝑁 . We subsequently send
both 𝑥𝑐𝑙𝑠

𝑁
and 𝑥𝑔𝑖𝑠𝑡

𝑁
through the trainable linear classification head,

resulting in 𝑆𝑐𝑙𝑠 and 𝑆𝑔𝑖𝑠𝑡 , respectively. The loss L𝑐𝑙𝑠 is computed
by contrasting 𝑆𝑐𝑙𝑠 with the truth labels. Similarly, the loss L𝑔𝑖𝑠𝑡 is
determined by comparing 𝑆𝑔𝑖𝑠𝑡 with the true labels. These two loss
terms can be expressed as follows:

L𝑐𝑙𝑠 = L𝑐𝑒 (𝑆𝑐𝑙𝑠 , 𝑦)
L𝑔𝑖𝑠𝑡 = L𝑐𝑒 (𝑆𝑔𝑖𝑠𝑡 , 𝑦)

(6)

where L𝑐𝑒 is the cross entropy loss, 𝑦 is the true labels.

3.2.2 Bidirectional Kullback-Leibler Divergence (BKLD) Loss. Only
utilizing L𝑐𝑙𝑠 and L𝑔𝑖𝑠𝑡 does not facilitate explicit interaction be-
tween the TAK represented by 𝑆𝑐𝑙𝑠 and the TSK represented by
𝑆𝑔𝑖𝑠𝑡 . Therefore, we introduce the BKLD loss function, as shown in
Equation 7.

L𝑏𝑘𝑙 = L𝑓 𝑘𝑙 + L𝑟𝑘𝑙

= KL(𝑆𝑐𝑙𝑠 | |𝑆𝑔𝑖𝑠𝑡 ;𝑇 ) + KL(𝑆𝑔𝑖𝑠𝑡 | |𝑆𝑐𝑙𝑠 ;𝑇 )
(7)

where L𝑏𝑘𝑙 represents our BKLD loss. L𝑓 𝑘𝑙 is the forward KLD
loss. L𝑟𝑘𝑙 is the reverse KLD loss. KL(·| |·;𝑇 ) means computing
the KL divergence between two distributions with a temperature
𝑇 . The parameter 𝑇 , is introduced to soften the outputs before
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they are processed through softmax, adjusting the sharpness of the
distribution. Higher values of 𝑇 produce softer probabilities [10].

For most knowledge distillation methods, the forward KLD is
generally utilized as the loss function. It can be represented as
L𝑓 𝑘𝑙 = KL(𝑝 | |𝑞;𝑇 ), where 𝑝 and 𝑞 represent two different distri-
butions. With 𝑝 taken as the reference, L𝑓 𝑘𝑙 quantifies how much
the distribution 𝑞 diverges from 𝑝 . Conversely, the reverse KLD, de-
noted as L𝑟𝑘𝑙 = KL(𝑞 | |𝑝;𝑇 ), uses 𝑞 as the reference and measures
the divergence of distribution 𝑝 from 𝑞. In this paper, we leverage
both forward and reverse KLD as loss functions to facilitate explicit
interaction between TAK and TSK. On one hand, we employ the
forward KLD loss to enhance the learning of TSK, guided by TAK.
On the other hand, by utilizing the reverse KLD loss, we ensure that
the pre-trained model is more effectively tailored to downstream
tasks, following the directives of TSK.

3.2.3 Overall Loss. The overall loss function is derived by amal-
gamating L𝑐𝑙𝑠 , L𝑔𝑖𝑠𝑡 , and L𝑏𝑘𝑙 , as depicted in Equation 8. This
loss function guides the model during the fine-tuning phase, allow-
ing [GIST] to co-learn with the PEFT parameters and aggregate
TSK, while fully leveraging TAK to ensure an explicit interaction
between the two types of knowledge.

L𝑎𝑙𝑙 = L𝑐𝑙𝑠 + 𝜇L𝑔𝑖𝑠𝑡 + 𝜆L𝑏𝑘𝑙 (8)

where 𝜇 and 𝜆 is the hyperparameter that controls the trade-off
among the three loss terms. It is noteworthy that the aforemen-
tioned use of 𝑆𝑔𝑖𝑠𝑡 is limited only to the training process. For the
inference process, we still solely rely on 𝑆𝑐𝑙𝑠 as the exclusive basis
for prediction.

4 EXPERIMENTS
4.1 Datasets and metrics
4.1.1 Image classification tasks. We utilize the VTAB-1K bench-
mark [46] to validate our GIST framework for image classification
tasks. Specifically, VTAB-1K includes 19 different datasets, which
can be categorized into three groups: Natural, Specialized, and Struc-
tured. Each dataset consists of 1,000 samples for training, with an
average of 20,000 samples for testing, making it a highly challeng-
ing benchmark. Following previous works [23], for each dataset, we
report the Top-1 accuracy on the test set. For the entire benchmark,
we present the arithmetic mean of the Top-1 accuracy.

4.1.2 Fine-grained few-shot tasks. In a few-shot setting, we val-
idate the performance of our framework in the low-data regime
using Food-101 [3], OxfordPets [32], Stanford Cars [20], Oxford-
Flowers102 [29], and FGVC-Aircraft [27] datasets. Similar to previ-
ous work [17, 49], we conduct validation under {1, 2, 4, 8, 16}-shot
settings and report the Top-1 accuracy on the test set.

4.1.3 Language understanding tasks. To validate the universality of
our framework, we also conduct verification for the PEFT method
in NLP. GLUE benchmark [38] is utilized to verify the effectiveness
of GIST framework. Specifically, we train and test on a total of
8 tasks: MNLI, QQP, QNLI, SST-2, STS-B, MRPC, RTE, and CoLA.
Following previous works [1], we use Pearson Correlation for STS-B
and accuracy for other tasks as metrics.

4.1.4 Vision&Language tasks. : To further illustrate the universal-
ity of our fine-tuning framework, we validate the PEFT method
in the multi-modal and few-shot scenarios. We conduct few-shot
training on the Flowers102 [30], DTD [5], and UCF101 [36] datasets,
which involve image classification tasks accompanied by corre-
sponding text. Following previous research [19], we employ three
different random seeds and report the mean Top-1 accuracy. In addi-
tion, for a more detailed introduction, please refer to the Appendix
in the supplementary materials.

4.2 Implementation details
For the VTAB-1K benchmark and FGVC datasets, we employ the
ViT-B/16 [8] model, pre-trained on the ImageNet-21K dataset [6],
as the backbone. In terms of training configurations, we follow
the work of predecessors [17, 18, 23, 26], to ensure fairness and
reproducibility. Turning to the GLUE benchmark, we harness the
T5-base [35] model as the backbone. Similar to the setting of the
previous work [1] by configuring a batch size of 32, imposing a
maximum token length of 256, setting the learning rate to 3e-4,
and conducting training for 20 epochs on each task. In the case of
Vision&Language tasks (Flowers102, DTD, and UCF101 datasets),
we utilize a 16-shot setup training regimen, subsequently evaluating
performance on the full test sets. Consistent with the prior research
[19], we maintain the same training settings.

Regarding our GIST framework, to avoid redundancy brought
about by further hyperparameter adjustment, we fix temperature𝑇
at 3, 𝜇 to 0.5, and only allow 𝜆 to be searched from {0.25, 0.5, 0.75}.
Pytorch [33] and Transformers [40] packages are utilized to imple-
ment experiments on NVIDIA RTX 3090 GPUs and NVIDIA A100
GPUs, and more detailed settings are in the Appendix.

4.3 Main results
4.3.1 Comparative Results on VTAB-1K. We have thoroughly val-
idated GIST framework on the benchmark for visual tasks, and
the experimental results are shown in Table 2. For the three types
of PEFT methods summarized by [44], namely Adapter Tuning
(Adapter, ReAdapter [26] and Bi-Adapter [18]), Prompt Tuning (VPT
[15]), and Parameter Tuning (LoRA [14], SSF [23] and FacT [17]),
we apply these methods within our framework for fine-tuning on
downstream tasks. This further improves the performance of the
existing PEFT methods with an average increase of 1.05%, without
significantly increasing the number of parameters. In the best case,
our GIST can improve Adapter’s performance by 2.25%, and in the
worst case, it can still enhance FacT’s performance by 0.32%. The
results indicate that our framework facilitates a more comprehen-
sive knowledge interaction and enhances the performance of PEFT
methods by fully leveraging the two types of knowledge.

4.3.2 Comparative Results on FGVC. We conduct thorough valida-
tion in a few-shot scenario for fine-grained recognition. The PEFT
methods used are Adapter, VPT, and SSF, which are fine-tuned un-
der both the traditional framework and our GIST framework, with
results shown in Figure 4. Overall, even in the low-regime few-shot
scenario, fine-tuning different types of PEFT methods under the
GIST framework can improve performance without significantly
increasing the number of trainable parameters.
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Table 2: The comparative results on the VTAB-1K benchmark. The symbol ∗ indicates employing the PEFT method within our
GIST framework. FT represents the full parameter fine-tuning method, and LP stands for the Linear Probing method. Params.
stands for trainable parameters.
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Figure 4: Top-1 accuracy of few-shot learning on FGVC datasets. The trainable parameters (M) is shown in parentheses.

4.3.3 Comparative Results on GLUE. We conduct validation on
the GLUE benchmark for NLP tasks, and the results are shown in
Table 3. When applying the FT method, 220M parameters are used
to achieve a performance of 84.95%. When applying Adapter [13]
within the traditional fine-tuning framework, 1.9M parameters are
needed, but the performance is still 0.5% lower than that of the FT
method. Notably, when utilizing Adapter within our fine-tuning
framework, the performance improves by 1.45%, even exceeding
the FT method by 0.95%.

4.3.4 Comparative Results on Vision&Language tasks. We further
conduct experiments for PEFT method in the multi-modal field,
training with a 16-shot setup, and compare the results with zero-
shot CLIP [34] and MaPLe [19], as shown in Table 4. When applied

to few-shot scenarios in a multi-modal context, GIST also demon-
strates promising performance. Incorporating MaPLe into our fine-
tuning framework yields a 1.10% enhancement compared to the
original MaPLe, with almost no additional parameters introduced.
Besides, this performance significantly surpasses that of CLIP.

4.4 Ablation studies
We conduct extensive ablation experiments on the VTAB-1K bench-
mark. Unless otherwise specified, we employ the ViT-B/16 model,
pre-trained on the ImageNet-21K dataset, as the backbone, and use
Adapter as the PEFT method. Furthermore, the symbol ∗ indicates
employing the PEFT method within our GIST framework, and we
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Table 3: The comparative results on the GLUE benckmark.
We use Pearson Correlation for STS-B, and accuracy for other
tasks as metrics. The symbol ∗ indicates employing the PEFT
method within our GIST framework.
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FT 86.8 91.6 93.0 94.6 89.7 90.2 71.9 61.8 84.95 220
Adapter 86.5 90.2 93.2 93.8 90.7 85.3 71.9 64.0 84.45 1.9
Adapter∗ 86.9 90.6 93.2 94.0 90.8 88.7 77.7 65.3 85.90 1.9

Table 4: The comparative results on the Vision&Language
tasks under the 16-shot setting.

Method Flowers102 DTD UCF101 Mean Params. (M)
CLIP 71.30 44.56 66.72 60.86 -
MaPLe 94.03 67.79 81.18 81.00 3.56
MaPLe∗ 95.04 69.23 82.02 82.10 3.56

Table 5: Ablation studies for
different 𝜆.

𝜆 Mean
- 71.46

0.25 73.31
0.5 73.18
0.75 73.44

Table 6: Ablation studies for
different Gist token length.

token len. Mean Params. (M)
1 73.71 0.13
10 73.42 0.14
50 71.96 0.16
100 71.21 0.21

Table 7: Ablation results on
our loss function.

L𝑐𝑙𝑠 L𝑔𝑖𝑠𝑡 L𝑏𝑘𝑙 Mean
✓ 71.46
✓ ✓ 72.71
✓ ✓ 73.29
✓ ✓ ✓ 73.71

Table 8: Results on different
loss functions for knowledge
interaction.

Loss function Mean
L𝑐𝑙𝑠 71.46
L𝑐𝑙𝑠+L𝑔𝑖𝑠𝑡+L𝑚𝑠𝑒 73.03
L𝑐𝑙𝑠+L𝑔𝑖𝑠𝑡+L𝑐𝑜𝑠 72.88
L𝑐𝑙𝑠+L𝑔𝑖𝑠𝑡+L𝑏𝑘𝑙 73.71

display the arithmetic mean of the Top-1 accuracy. More detailed
results can be found in the Appendix.

4.4.1 The impact of 𝜆. In our GIST framework, we only search for
𝜆 from the set {0.25, 0.5, 0.75} to control the interaction strength
between task-agnostic and task-specific knowledge. Therefore, we
first conduct ablation experiments for different interaction strengths,
and the results are shown in Table 5. The results indicate that re-
gardless of the interaction strength, our fine-tuning framework
can further enhance the performance. Even in the worst case with
𝜆 = 0.5, there’s still an improvement of nearly 2%.

4.4.2 The impact of token length. As illustrated in Table 6, we evalu-
ate the performance of the GIST framework with varying lengths of
the Gist token. The results indicate a clear trend: as the token length
increases, the effectiveness of our fine-tuning framework decreases.

Table 9: Results on ViT-S/16
(S) and ViT-L/16 (L).

Method Params Mean
S+Adapter 0.07 71.39
S+Adapter∗ 0.07 72.47
L+Adapter 0.30 71.81
L+Adapter∗ 0.30 73.89

Table 10: Ablation results
on Swin-B.

Method Params Mean
FT 86.7 72.46

Linear probing 0.1 58.19
Adapter 0.21 73.19
Adapter∗ 0.21 74.15

This is analogous to the role of the Class token during pre-training,
which accumulates task-agnostic knowledge from diverse training
data. Similarly, the Gist token is designed to aggregate task-specific
knowledge during the fine-tuning phase. It is important to note
that the Class token’s length is fixed at one, whereas increasing
the Gist token’s length may lead to disproportionate knowledge
interaction and a subsequent decline in performance.

4.4.3 The impact of loss function. In this study, we employ loss
functions that extend beyond traditional classification loss, encom-
passing two components:L𝑔𝑖𝑠𝑡 andL𝑏𝑘𝑙 . To evaluate the individual
contributions of these components, we execute ablation studies,
the results are presented in Table 7. Evidently, the efficacy of the
GIST framework diminishes with a reduction in the number of loss
terms. We first demonstrate the importance of establishing a direct
connection between learnable parameters and task-specific knowl-
edge during the fine-tuning process. When we introduce L𝑔𝑖𝑠𝑡 into
the basic loss function L𝑐𝑙𝑠 , the accuracy improved by 1.25%. Al-
ternatively, by adding L𝑏𝑘𝑙 to L𝑐𝑙𝑠 , it achieves a performance gain
of 1.83%, underscoring the effectiveness of knowledge interaction
during downstream fine-tuning. Finally, when we introduce both
types of losses simultaneously, the overall performance improves
by 2.25%. This not only proves the compatibility of these two loss
functions but also indicates that more comprehensive downstream
knowledge acquisition can enhance the effects of knowledge inter-
action.

Furthermore, we assess the performance of our framework by
substituting the BKLD loss with the Mean Squared Error loss L𝑚𝑠𝑒

and the Cosine Similarity loss L𝑐𝑜𝑠 . The comparative results are
depicted in Table 8. Intriguingly, within the confines of our GIST
framework, replacing our BKLD loss by common loss functions
for knowledge interaction still yields a performance enhancement
ranging from 1% to 2%. This attests to the scalability of our fine-
tuning framework. Namely, when more advanced loss functions are
proposed in subsequent research, our GIST framework can also be
utilized directly to enhance the performance of the PEFT methods.

4.4.4 The impact of different networks. First, to illustrate the ver-
satility of our GIST across models of varying sizes, we substitute
ViT-B/16 with ViT-S/16 and ViT-L/16, as detailed in Table 9. Next, to
highlight our framework’s adaptability to different network struc-
tures, we conduct experiments using Swin-B [25] as the backbone,
as presented in Table 10. As evident from Tables 9 and 10, regardless
of whether we modify the model size or transition to an alternate
backbone, our GIST consistently bolsters performance without a
significant increase in parameters.
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Table 11: The comparative results with different self-
knowledge distillation methods.

Method Mean Natural Specialized Structured
Adapter 71.46 79.96 86.02 56.73

Adapter+BYOT 69.70 77.86 86.24 54.29
Adapter+CS-KD 71.24 82.63 86.22 53.78
Adapter+USKD 71.40 80.14 86.78 56.06

Adapter∗ 73.71 82.26 87.50 59.24
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Figure 5: Left: The attention map visualization on Sun397
dataset. Right: The t-SNE visualization on SVHN dataset.

4.4.5 Comparisons with self-knowledge distillation methods. In this
study, we compare our approach with two classical methods (BYOT
[48] and CS-KD [45]) as well as a state-of-the-art method (USKD
[43]). The results are presented in Table 11, which reveal that even
the most advanced self-knowledge distillation (SKD) methods can
lead to a performance degradation of PEFT methods. A potential
reason is that the existing SKD methods do not specifically acquire
soft labels tailored for fine-tuning phase. In contrast to them, the
Gist token we introduced serves as an aggregator, effectively cap-
turing task-specific knowledge, thereby providing superior soft
labels for knowledge interaction.

4.5 Visualization
We conduct attention map and t-SNE [37] visualization analysis,
as depicted in Figure 5. For this, we extract the [CLS] following
the final Transformer layer and preceding the linear classification
head. This analysis is performed on the Sun397 [41] and SVHN
[28] dataset. Notably, upon integrating GIST, the attention is more
focused on the target object, and the classification clusters appear
more condensed. This suggests that our framework enhances the
ability of existing PEFT methods to assimilate more thorough task-
specific knowledge via knowledge interaction. More results of vi-
sualization are in the Appendix.

4.6 Analysis
In this section, we explore the underlying factors contributing to
the performance enhancements offered by the GIST framework. As
illustrated in Figure 6, using the Retinopathy dataset, we depict the
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Figure 6: The weight distribution visualization on Retinopa-
thy dataset.

distribution of the weights from the linear classification head after
fine-tuning. In general, a narrower distribution of weights is com-
monly associated with enhanced robustness. Minor adjustments
to weights suggest that the model is less prone to overly relying
on noise or irrelevant features from the inputs, thus diminishing
the risk of overfitting [39]. The GIST framework results in an even
more compact weight distribution, potentially serving as a form
of regularization. Furthermore, the efficacy of combining PEFT
methods with regularization effects warrants further exploration
in future research.

4.7 Discussion
Our GIST framework possesses the following two preeminent char-
acteristics: 1) Universality: In the experimental section, we con-
duct experiments for PEFTmethods on the image classification, fine-
grained few-shot, language understanding and vision&language
tasks. The results demonstrate that our framework is versatile and
can be applied to PEFT methods across various scenarios, not just
confined to computer vision fields. 2) Scalability: At the core of
GIST framework lies the principle of knowledge interaction, which
can be realized in multiple ways, not merely limited to the approach
presented in this paper. A simple illustration, as shown in Table
8, reveals that by substituting the BKLD loss with other common
losses for knowledge interaction, performance can still be aug-
mented. This means that advanced loss functions in future research
can be seamlessly integrated into our GIST framework.

5 CONCLUSIONS
In this paper, we propose GIST, an efficient and straightforward
fine-tuning framework, tailored specifically for PEFT methods. This
framework incorporates a learnable Gist token to explicitly estab-
lish a connection between trainable parameters and downstream
tasks, thereby aiming to acquire a more comprehensive task-specific
knowledge. In addition, it employs a Bidirectional Kullback-Leibler
Divergence loss to enhance the interaction between task-specific
and intrinsic task-agnostic knowledge of pre-trained models. Ex-
tensive experiments demonstrate that integrating existing PEFT
methods with our GIST framework leads to improved performance
without significantly increasing the parameter count. Notably, the
framework’s universality and scalability make it exceptionally suit-
able for a broad range of scenarios.
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