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Abstract

A burgeoning area within reinforcement learning (RL) is the design of sequential
decision-making agents centered around large language models (LLMs). While
autonomous decision-making agents powered by modern LLMs could facilitate
numerous real-world applications, such successes demand agents that are capable
of data-efficient RL. One key obstacle to achieving data efficiency in RL is ex-
ploration, a challenge that we demonstrate many recent proposals for LLM agent
designs struggle to contend with. Meanwhile, classic algorithms from the RL
literature known to gracefully address exploration require technical machinery that
can be challenging to operationalize in purely natural language settings. In this
work, rather than relying on finetuning or in-context learning to coax LLMs into im-
plicitly imitating a RL algorithm, we illustrate how LLMs can be used to explicitly
implement an existing RL algorithm (Posterior Sampling for Reinforcement Learn-
ing) whose capacity for statistically-efficient exploration is already well-studied.
We offer empirical results demonstrating how our LLM-based implementation of a
known, data-efficient RL algorithm can be considerably more effective in natural
language tasks that demand prudent exploration.

1 Introduction

Large language models (LLMs) have rapidly permeated many areas of machine learning, demon-
strating proficiency across a broad range of tasks [12} 2 [98] 196, 36| [38]]. This has inspired recent
work studying how LLMs can best be used to solve sequential decision-making problems. These
efforts have led to the introduction of new designs for LLM agents that aim to learn optimal behavior
through trial-and-error interaction within natural language environments [[104, 89, 66, 47]. While
details vary by approach, broadly speaking these new agent designs involve one or more LLMs that
interact to ultimately select actions within the environment. However, such agents still reside in the
classic RL setting [94] and, consequently, must still grapple with the fundamental obstacles to data
efficiency (generalization, exploration, & credit assignment) that the RL literature has studied for
decades.

While composing LLMs to arrive at new agent designs is the current norm, we propose that an
alternative strategy is to re-examine existing RL algorithms and consider how LLMs might implement
them in otherwise inaccessible environments. An RL algorithm consists of specifying inputs and
detailing a sequence of steps for determining behavior at each time period. Why should the emergence
and proliferation of LLMs change the fundamental principles of agent design? Instead, as visualized
in Figure|l| perhaps LLMs can be used to create new, potentially-inexact incarnations of existing RL
algorithms via the subroutines needed to implement them.
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Figure 1: Abstractly, an RL algorithm is an ordered sequence of steps. Existing approaches for LLM
agent design (left) orchestrate some number of LLMs to implicitly induce a RL algorithm. In contrast,
this paper advocates for a novel agent design principle (right) whereby an existing RL algorithm is
explicitly implemented by outsourcing individual steps to distinct LLMs.

In this work, we focus on data-efficient RL with LLMs and isolate the key challenge of exploration.
We demonstrate how modern LLMs afford a contemporary implementation of an existing RL algo-
rithm, Posterior Sampling for Reinforcement Learning (PSRL) [93][75]], that is both well-studied and
whose capacity for good exploration is already known to yield provably-efficient RL in a number of
problem classes. We empirically find that our LLM-based implementation of PSRL retains the strong
exploration properties that, up to this point, have not only been primarily restricted to tabular domains
but also been absent in recent designs for LLM agents. We further observe that the choice of LLM
underlying the PSRL implementation matters and, in an environment with stochastic transition dy-
namics, show that upgrading to a more capable model (GPT-4o0 to ol-mini) is the difference between
incurring linear regret and obtaining cumulative regret on par with classic PSRL. Altogether, our
work underscores the importance of addressing exploration in the design of LLM agents, illustrates
the considerable value that decades of RL research have to offer data-efficient decision-making with
LLMs, and establishes a key distinction between LLMs that implement a RL algorithm versus a RL
algorithm that is implemented with LLMs.

2 Problem Formulation

For any arbitrary set X', we use A(X") to denote the set of all probability distributions with support
on X. Forany N € N, we denote the index set as [N] = {1,2,...,N}.

We formulate a sequential decision-making problem as a finite-horizon, episodic Markov Decision
Process (MDP) [9, [83]] defined by M = (S, A, R,T,5,H). S is a set of states, A is a set of
actions, R : § x A — [0, 1] is a reward function providing evaluative feedback in the unit interval,
T :8 x A— A(S) is a transition function prescribing distributions over next states, § € A(S) is
an initial state distribution, and H € N is the maximum episode length or horizon. Within each of
K € N total episodes, the agent acts for H steps beginning with an initial state s; ~ §(-) and, at
each timestep h € [H], observes the current state s, € S, selects an action aj, € A, enjoys a reward
rn, = R(sn,an), and transitions to a next state sp11 ~ T (- | sp,ap).

An agent is characterized by its non-stationary, stochastic policy m : S x [H|] — A(A), which
encodes a pattern of behavior by mapping individual states and the current timestep to a probability
distribution over actions. We assess the performance of a policy 7 in MDP M at timestep h € [H|
when starting at state s € S and taking action a € A by its associated action-value function

H
Qin(s,a) = E [ /Z R(sw,an) | sn = s,an = a|. Taking the value function as Viin(s) =

Egnmn(ls {Q (s a)} , we define the optimal policy 7* as achieving supremal value Vi, ; (s) =

sup Vi h( ) forall s € S, h € [H] where II denotes the class of all non-stationary, stochastic
well ’

policies. For any episode k € [K], we let 7, = (s; (k) , a4 (k) rgk), cee sg), agq , gf), 5;2-1) denote
the random trajectory experienced by the agent executmg its policy in the environment. Meanwhile,
Hy, = {11, 72,...,Tk—1} € H is the entire random history of interaction at the kth episode.

Abstractly, a RL algorithm is a sequence {w(k) }ke[x] Where the policy deployed at each episode (k)
is a function of the current history Hj,. We may evaluate the performance of a RL algorithm on MDP

K
M via its cumulative regret: REGRET({W(k)}kE[K],M) =E [Z (Vj,l)l(sl) - fof(sﬁ)} )
k=1



which measures the total performance shortfall between an agent’s chosen policy and the optimal
policy in all episodes. Naturally, an agent designer seeks out a RL algorithm with minimal cumulative
regret.

3 A LLM-Based Implementation of Posterior Sampling for Reinforcement
Learning

One of the major obstacles to data-efficient RL is exploration, where a learner must determine what
data to collect from the environment to maximize long-term performance. While much of the early
work on addressing exploration in RL (see Section[A) adhered to “optimism in the face of uncertainty,”
an alternative is to proceed in a Bayesian fashion.

The Bayesian RL setting [10, 126, 32] recognizes that the underlying MDP is entirely unknown to
the agent and, therefore, a random variable. The agent is thus endowed with a prior distribution
P(M € -) to reflect initial uncertainty in the true MDP. While the standard RL objective [94] calls
for an agent to minimize regret, another performance criterion is the Bayesian regret, which simply
integrates out the randomness in M with respect to an agent’s prior: BAYESREGRET({r(*) Yee[x]) =

E [REGRET({ﬂ'(k)} ke[K]» ./\/l)] . We make a standard assumption that the prior is well-specified and
the true MDP resides in its support.

Unfortunately, the canonical Bayes-Adaptive MDP (BAMDP) [10, 26]] that encapsulates the full
Bayesian RL problem is often computationally-intractable even in the simplest classes of environ-
ments. This is a direct consequence of the intractably-large BAMDP hyperstate space [26, 4], in
which traditional MDP states are folded in alongside epistemic states [62] that contain an agent’s
beliefs and epistemic uncertainty [23]] about the world. The MDP transition and reward functions are
unknown to a RL agent and, with each step taken in the true environment, the resulting reward and
next-state transition provide ground-truth observations with which the agent may obtain posterior
beliefs about the underlying MDP M. Even for a simple finite MDP, the epistemic state space is
exponentially-large in the problem horizon H. One might hope that the epistemic state could be lazily
updated while still enabling strategic exploration by reducing epistemic uncertainty; this insight is
the basis of posterior-sampling methods in RL.

3.1 The Classic Approach

The promise of Bayesian RL methods is to facilitate statistically-efficient exploration by reducing an
agent’s epistemic uncertainty about the world. One strategy for reaping the benefits of uncertainty-
based exploration in a computationally-tractable manner is through Posterior Sampling for RL
(PSRL) [93]], presented as Algorithm[I] Rather than updating the epistemic state at each timestep,
PSRL holds it fixed during each episode and only updates the posterior at the end using the full
trajectory 7. To govern action selection within each episode based on current knowledge of the true
underlying MDP P(M € - | Hy), PSRL employs Thompson sampling (TS) [97. 84} [83] [87], whereby
the agent draws one posterior sample as a statistically-plausible hypothesis about the true MDP (Line
3) and proceeds to act optimally with respect to it by executing the sampled MDP optimal policy
(Lines 4-5). It has been shown theoretically that, by iteratively employing TS in this manner, PSRL is
able to achieve strong exploration and satisfy Bayesian regret upper bounds for statistically-efficient
RL in tabular MDPs and beyond (75} (72} [1} 73} 131 182} [741 161} 15, [102]]. A key contribution of this work
is expanding empirical support for PSRL, an algorithm that has largely been a method of theoretical
study up to this point.

While PSRL enjoys nice theoretical guarantees, practical implementations extending beyond tab-
ular MDPs [75] face significant computational hurdles. Representing and maintaining epistemic
uncertainty about the underlying MDP transition and reward functions is an open challenge in
high-dimensional environments. While some work has studied using neural networks to address the
broader problem of uncertainty estimation for guiding exploration in RL [76} 60, [78 168, 27} 80, 188]],
the overwhelming majority of these efforts have concentrated on a model-free analogue of PSRL
that maintains a Bayesian posterior over the optimal action-value function Q* [77,(79] in lieu of the
underlying MDP M. Meanwhile, the minority of such methods that actually strive to implement
PSRL have either been met with mixed results across hard-exploration problems or have been limited
to evaluations in smaller-scale domains. Among them is a line of work that leans heavily into the



Algorithm 1 Posterior Sampling for Reinforcement Learning
(PSRL) (Strens, 2000)
1: Input: Prior P(M € -) A
2: forke[Kldo .
3:  (Sample My ~P(M € - [ Hp ).
[Obtain optimal policy 7¥) = 73, "}

4
5 Execute 7(F) and get trajectory:7y: ... .
6:  Update history Hy1 = Hp U T,
7
8:

(Induce posterior P(M € - | Hy11)
end for

Figure 2: The PSRL algorithm with LLM sub-  Figure 3: Examples of a posterior (top) and pos-
routines of posterior sampling, optimal behavior ~ terior sample (bottom) generated by our LLM-
with respect to a sample, and posterior updating ~ based PSRL in Wordle

shown. Dotted arrows show data flow.

use of Langevin dynamics for recovering the strategic exploration of PSRL [63] 41]); in the
context of this work, such technical machinery is incredibly challenging and nontrivial to combine or
even emulate with LLM agents.

In parallel, beyond the difficulties of maintaining a PSRL agent’s posterior distribution over the true
MDP, computing the optimal policy for the posterior sample drawn in each episode constitutes an
additional challenge that requires solving a planning problem. While there has been progress and even
notable successes in this space for deep model-based RL agents [42]], it is unclear if those methods are
readily applicable to the natural language tasks faced by LLM agents. In our experiments, while we
report positive results for our LLM-based PSRL implementation in MDPs with both deterministic and
stochastic transition functions, performance in the latter type of environment eventually deteriorates
as the size of the state-action space increases and exacerbates poor LLM planning capabilities under
stochastic dynamics (please see Appendix [C).

3.2 A LLM Implementation

The key contribution of this paper is recognizing that LLMs can be operationalized to provide basic,
atomic functions from which PSRL may be implemented. As discussed in Section[A] this stands in
stark contrast to existing strides towards efficient decision-making with LLM agents [67,
which either leave a LLM to its own devices for strategizing exploration or expect in-context learning
ICL) to emulate the exploration of an existing RL or bandit algorithm. While future LLMs may
become sufficiently capable to accommodate the former, our experiments today suggest this is not
the case for two simple, natural-language tasks where efficient exploration is paramount to success;
by the same token, we anticipate that our proposed LLM-based implementation of PSRL will also
benefit and gracefully extend to more complex natural language tasks as the constituent LLM models
become more capable at performing their requested functions. Indeed, we find this to be the case
empirically when applying our approach to MDPs with stochastic transition functions. LLM agents
emulating the outputs of classic RL methods are also bound to the same traditional problem classes
whereas LLM-based implementations of RL algorithms may broaden the footprint of those classic
algorithms to include natural-language domains that would otherwise be entirely infeasible.

As shown in Algorithm [T} our proposed implementation of PSRL relies on LLMs to play three
distinct roles: (1) an approximate posterior updater, (2) a posterior sampler, and (3) an optimal
policy with respect to a posterior sample. PSRL requires a prior distribution over MDPs as input and,
more generally in any episode, needs a current posterior that accurately reflects the agent’s current
knowledge and uncertainty about the world. For our purposes, such an approximate “posterior”
is a textual description that summarizes both the known and uncertain aspects of the true MDP
transition and reward function. More importantly, it also explicitly communicates (in some way) the
amount of uncertainty an agent has about these aspects of the world. For ease of exposition, we will
refer to this object as a posterior throughout the remainder of the paper, but acknowledge the
distinction between it and the true, statistical object that is the Bayesian posterior distribution.
As this textual summary amounts to the PSRL agent’s epistemic state representation [62], an agent
designer may exert strong influence over this representation through the presentation and expression
of prior knowledge; as a concrete example, specifying the next-state transition distribution of a
tabular MDP in our experiments as a Dirichlet distribution (in language) naturally encourages the



LLM-based implementation of PSRL to maintain visitation counts. Of course, an advantage is
that agent designers may now leverage the full expressivity and fluidity of natural language for
communicating prior knowledge without restriction to the few statistical distributions that afford the
computational conveniences of conjugate priors.

Given a current posterior reflecting the agent’s knowledge and uncertainty about the world, PSRL
must be able to draw one posterior sample from these beliefs. We implement this as a first LLM that,
given the agent’s current textual posterior (initially set to be the agent designer’s input prior) is tasked
with generating a plausible hypothesis for how transitions and rewards unfold. In some domains,
such as tabular MDPs, it may be natural for this to be an exhaustive list of rewards and next-state
transitions for each state-action pair. For more practical scenarios of interest, however, it may be
beneficial to prompt this posterior sampling LLM so that it can leverage an environment proxy or
lossy surrogate MDP [62, 5]] that retains only the salient details needed to determine (near-)optimal
behavior. As a concrete example, one of our natural language tasks is the game of Wordle (shown
in Figure@ that, as a MDP, has a transition function and reward function defined entirely around
an unknown, five-letter target word. Here, the target word serves as an environment proxy that our
LLM-based PSRL agent may directly monitor uncertainty over without meticulously maintaining
statistics for rewards and transitions of individual state-action pairs.

With a single posterior sample in hand, a PSRL agent must be able to select actions that would
be considered optimal if the sampled MDP truly reflected reality. We implement this as a second
LLM tasked with executing actions given the current state that maximize value in a way that is
consistent with the natural language hypothesis generated by the posterior sampling LLM. In the
simplest case, this optimal sample policy LLM need only be given the posterior sample and input
observation and asked directly to generate an action. In more challenging settings, an agent designer
may architect the LLM more carefully via chain-of-thought prompting [[100, 48] to increase the
chance of selecting optimal actions consistent with provided hypothesis. Even when this policy is
only approximately-optimal, classic PSRL still admits a Bayesian regret bound (see Section 5.4 of
Osband [70]) and one might hope to see an LLM-based implementation of PSRL exhibit similar
robustness in practice.

Upon the completion of an episode with the optimal sample policy LLM acting with respect to
the hypothesis of the posterior sampling LLM, we task a third and final LLM with updating the
PSRL agent’s knowledge and residual uncertainty about the world, akin to an (approximate) posterior
update. Given a complete trajectory consisting of reward signals and next-state transitions for exactly
H state-action pairs, this posterior LLM must reconcile the agent’s prior knowledge at the start
of the episode against observed interactions from within the environment. With this last piece of
functionality in place, all three LLMs can then be orchestrated to run the PSRL algorithm.

4 Experiments

The goal of our experiments is assessing the extent to which our proposed LLM-based PSRL
implementation not only retains the desirable exploration properties that PSRL exhibits empirically
within simpler problem domains but also expands the range of problems where these benefits can
be realized. To this end, we focus our evaluation on tasks which demand prudent exploration to
achieve success and where an agent is minimally encumbered by the challenges of generalization and
credit assignment. For each task, we present cumulative regret curves (lower, flatter plots indicate
better performance) where any shading denotes one standard error. All agents use GPT-40 [36]
for their constituent LLMs unless otherwise indicated. We let Ksampling, K7+, and Kposterior denote
the temperatures of the posterior sampling, optimal sample policy, and posterior update LLMs,
respectively. Due to space constraints, we defer further details of our experiments and all prompts
used in each task to the Appendix. We especially encourage readers to consult Appendix [C] for a
discussion of our empirical results and limitations of our approach.

An LLM-based implementation of PSRL should help realize the benefits of efficient exploration in
domains currently untouchable by vanilla PSRL. To illustrate this, we present two natural language
tasks where the initial prior uncertainty and time sensitivity due to limited episodes present a
formidable exploration challenge. We then move on from these deterministic tasks to one where a
highly-stochastic transition function drives the difficulty of exploration.
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We compare our LLM-based implementation of PSRL against three baseline LLM agents. In-
Context Policy Iteration (ICPI) [14] takes classic policy iteration [35] and offers an implementa-
tion via three LLMs, using ICL to elicit a rollout policy; transition function; and reward function
respectively. Together, these models allow for policy improvement via greedy action selection

7(F) (s5,) = arg max Qﬂcfl) (sn,a), with ties broken randomly/'| In-Context RL (ICRL) [66]] aims to
acA

explore via the stochasticity in LLM responses from sensitivity to the input ICL data. Which episodes
are included from a replay buffer for ICL with a LLM policy at each timestep is determined by
sampling independent Bernoulli(p) random variables; we study three distinct values of the keep prob-
ability p € {1,0.5,0.1}. Finally, Reflexion [89]] passes each full trajectory through a self-reflection
LLM that generates verbal guidance; the total history of verbal guidance is given at each timestep to
the LLM policy, along with the current state, for improving the quality of decision-making.

4.1 Deterministic Transition Dynamics

The first task is a combination lock environment where an agent must enter [/ = 3 distinct digits in
order to open a lock and receive a reward of 4-1. All other rewards are zero and the agent is provided
with (verbal) state information indicating whether the most recently guessed digit is either in the
correct position for the unlocking code, present in the unlocking code but in some other position, or
simply not present in the unlocking code at all. An agent has a total of K = 8 episodes to identify
the correct combination and, with each one of 20 independent trials having an unlock code sampled
uniformly at random from all 720 possible codes, exploration via uniform random code selection has
just under a 0.14% chance of success.

The second task is the challenging web game known as [Wordle| [59], where an agent has exactly
K = 6 episodes to enter [ = 5 distinct letterﬁ that form a correct target word and receive a reward
of +1. Across 40 trials, the target word is chosen uniformly at random from a filtered |corpus| of
English dictionary words. The agent is provided verbal feedback in each state indicating whether the
most recently guessed letter is in the correct position for the target word, in the target word but at
some other position, or not present in the target word at all.

Our LLM-based PSRL agent (Ksampling = Kx* = Kposterior = 1) i given an uninformative prior
which describes all non-repeating codes/English words with the appropriate length as being equiprob-
able; the unlock code/target word is an environment proxy [[62] such that knowledge of the proxy
is a sufficient statistic for recovering the full MDP. For the combination lock, we also compute the
Bayes-optimal policy with respect to the same uninformative prior and plot its cumulative regret for
comparison.

"Due to its significantly higher financial cost and lengthy run times, ICPI is limited to 10 trials in Wordle.
2We do not require the letters to form a dictionary word.


https://en.wikipedia.org/wiki/Wordle
https://gist.github.com/slushman/34e60d6bc479ac8fc698df8c226e4264

4.2 Stochastic Transition Dynamics

While the domains presented in the previous section confirm that an LLM-based implementation of
PSRL retains efficient exploration in deterministic environments, we further demonstrate its efficacy
in stochastic environments. As a simple illustration of this, we turn our focus to a truncated variant
of the RiverSwim environment [91]. RiverSwim is a tabular MDP given as a six-state chain where
the agent begins in the leftmost state. The stochastic transition function mimics a water current
that allows an agent to deterministically swim to the left (downstream with the current) but only
stochastically swim to the right (upstream against the current) with a 35% chance of success and a
small 5% chance of being pushed back one state downstream [75]. Swimming downstream in the
initial state results in a small reward of 0.005. Successfully swimming all the way upstream allows
the agent to reach the rightmost state where it can collect a reward of 1. As all other rewards are
zero, a RiverSwim agent must explore the full length of the river to learn optimal behavior. To keep
financial costs down, we truncate the environment to a river of length 3 (one initial state, intermediate
state, and terminal state) with H = 6.

We compare our LLM-based implementation
of PSRL with a vanilla PSRL agent for a
tabular MDP [[/5]. The latter models epis- RiverSwim (Length 3)
temic uncertainty over the transition function PSRL

as a collection of |S||.A| Dirichlet distributions. * PERL+ LLMe i)
This epistemic state representation allows for e :ff:m‘::
the computational conveniences of Dirichlet- ICRL. p= 1.0 (GPT-4o)
multinomial conjugacy. We further model un- B =10 (i
known rewards with a discrete uniform prior

over {0,0.005,1}. Cumulative regret curves

shown in Figure [6] compare our LLM-based

Cumulative Regret

PSRL with aDirichlet(0.1,0.1,0.1) prior 5 /
against vanilla PSRL (with the standard uniform , A
Dirichlet prior initialization of cg = ﬁ). We o s w1 w2 m m

— — — Episode
US€ Kg* = Kposterior — Rsampling = 1 and all

agents are run for 40 independent trials, except - Fjgyre 6: Cumulative regret curves for the River-
the vanilla PSRL agent run for 1,000. Addi- Swim environment with 3 states. Labels show the

tional comparisons are made against our best- hoice of constituent LLM model (GPT-40 or o1-
performing baselines in the combination lock mini) in each LLM agent.

environment: Reflexion and ICRL with p = 1.

5 Discussion

In the bandit setting (Appendix [B]), we observe our LLM-based PSRL obtains better regret curves than
classic TS. For the combination lock and Wordle, our results show that the LLM-based PSRL is able
to most effectively explore the space of possible unlock codes/target words relative to the baseline
methods. Crucially, none of the three constituent LLMs used by PSRL are prompted to explicitly
encourage exploration. Rather, these results illustrate how prompting these LLMs to perform atomic
functions of PSRL and allowing the algorithm to prescribe how those outputs should be orchestrated
in the agent design can yield an effective exploration strategy. We invite readers to consult Appendix
[D]for results using an open reasoning model [34] instead of GPT-40. While our initial results with
RiverSwim were negative (see Section [E), upgrading from GPT-4o to 01-mini makes our LLM-based
PSRL capable of achieving sub-linear regret on par with vanilla PSRL. Nevertheless, we find that
LLM planning issues re-emerge upon moving to a larger RiverSwim instance (see Appendix [C.2.T).

6 Conclusion

While much of the burgeoning literature surrounding LLLM agents has felt compelled to design new
algorithms for solving RL problems, we here have demonstrated that an existing algorithm, PSRL,
can be implemented with LLMs. The main advantage of our proposed LLM-based implementation
of PSRL is allowing agent designers to leverage the strong generalization and reasoning capabilities
of LLMs in natural-language environments while simultaneously capitalizing on the well-studied



exploration properties of TS. Our preliminary results on recovering information-directed exploration
with LLMs (see Appendix [C.2.2) likely represents a very fruitful direction and further reinforces the
potential benefits of implementing, rather than replacing, existing RL algorithms with LLMs.
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A Related Work

While our primary focus in this paper is on efficient exploration for LLM agents, the broader challenge
of efficient exploration for RL agents is a long-studied topic. One route to achieving statistically-
efficient exploration relies on the use of “optimism in the face of uncertainty,” where approaches
either implicitly or explicitly maintain over-inflated value function estimates for all state-action
pairs [46, 13 43 [7], 192} 39, 21} [8l 22| 140} [106] 24]. These optimistic biases are calibrated by an
agent designer to incentivize agent visitation of each state-action pair sufficiently many times and
eventually result in accurate value estimates that give rise to optimal behavior. Nie et al. [67]] attempt
to realize such an optimistic exploration strategy with LLMs (specifically, combining UCB [6] with
Gemini [96]) for multi-armed bandit problems and demonstrate the difficulty in coupling statistical
machinery like confidence intervals with LLMs outright. While our proposed implementation relies
on an equally (if not more) complex statistical object, the Bayesian posterior, our experiments suggest
that LLMs in certain cases may maintain an approximation sufficient for guiding exploration. We
defer a brief review of prior work on this alternative class of uncertainty-based exploration methods
to Section 3l

Existing designs for LLM agents either do not explicitly engage with the challenge of exploration or
do so with complete reliance on in-context learning (ICL) [15]]. One of the most popular LLM agent
designs is Reflexion [89] where the policy LLM charged with selecting actions is informed at each
episode by a “self-reflection” generated from another LLM given the previous episode trajectory.
While suitable for some tasks, we observe in our experiments that the self-reflection LLM often
“passes the buck” and encourages exploration generically in language without providing a clear
strategy for the downstream policy LLM to do so. By relying on LLMs to provide the requisite
functions for implementing a prudent choice of existing RL algorithm, we encounter strategic
exploration without needing to explicitly instruct any of the involved LLMs to explore.

LLM agents that rely on ICL to enable exploration follow suit with a line of work that examines
Transformer-based RL agents in non-natural-language tasks [152} 158,155, 120} [103]]. These methods
often rely on casting ICL as either implicit, approximate Bayesian inference [[101, [107]] or within
the “control as inference” framework [56]]; one key challenge with the former is that such implicit
posterior knowledge cannot be flexibly and explicitly leveraged to guide exploration, whereas the
latter suffers from not capturing epistemic uncertainty at all [69}95]]. Very close to the spirit of our
work is the in-context policy iteration (ICPI) method of Brooks et al. [14], who take the classic RL
algorithm of policy iteration (PI) [35] and implement it with LLMs and ICL. Unfortunately, the
original PI algorithm is oriented towards tabular MDPs that allow for iterating over all state-action
pairs simultaneously. While the ICPI algorithm forgoes this in favor of online data collection and
resampling via experience replay [57], the authors find it necessary to sample with a dataset balancing
scheme to ensure the accuracy of ICL; this presumes that the “right” data is already present or easily
acquired from the environment. In larger environments where data must be judiciously acquired,
we find that ICPI is never able to collect the data needed for ICL to exhibit any kind of performant
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behavior. Monea et al. [66] study a selective “dropout” strategy for the ICL demonstrations used by a
policy LLM. However, such a strategy mirrors e-greedy exploration [99] without making a concerted
effort to strategically guide decision-making, much like how classic dropout in deep RL [31] is a poor
proxy for uncertainty-based exploration [[71]. In contrast to ICL, the core idea studied in this work
is conceptually similar to meta-prompting [33]], where an agent incrementally accumulates salient
environmental knowledge within its system prompt to refine behavior in each episode; while prior
work has suggested that meta-prompting is an implicit approximation of posterior sampling [29], we
here are exclusively concerned with the explicit implementation of PSRL.

A related line of approaches examines using classic (deep) RL methods in tandem with LLM reward
functions [47, 150} [108]]. These approaches, while interesting, largely focus on non-linguistic domains
whereas our goal is to bring ideas on data-efficient RL to bear on the natural language domains where
LLMs stand to have the most impact. The posterior-sampling-based exploration strategy we consider
in this work connects more broadly to initial investigations surrounding the information gathering
capabilities of LLMs [435]].

Lastly, we note that the Reinforcement Learning from Human Feedback (RLHF) pipeline [90, [81]
used to explicitly optimize LLMs also faces an underlying sequential decision-making problem (in
the original formulation, a contextual dueling bandit [105} 25]]) and, as such, may greatly benefit from
mechanisms to facilitate efficient exploration [28]. Concretely, at any point in the fine-tuning process
either by RLHF or Reinforcement Learning from Al Feedback (RLAIF) [54], there will be preference
data that offer very little utility or change in LLM responses and those that stand to dramatically
improve response quality. By actively exploring for the latter kind of prompts and responses, one
stands to arrive at a more proficient LLM with fewer iterations of RLHF or RLAIF. While such
work is nascent, our results may offer a promising new pathway for LLMs to achieve the strategic
exploration that could reduce these significant data burdens.

B Multi-Armed Bandit Results

Following prior work studying the exploratory capabilities of LLMs [17, [11} 18} 149} 67]], we begin
the empirical assessment of our LLM-based PSRL with a multi-armed bandit problem [51} 16, 53]
Readers unfamiliar with multi-armed bandits may simply observe them as a special case of a MDP
with horizon H = 1, singleton state space |S| = 1, and a stochastic (rather than deterministic)
reward function. Our evaluation follows that of Krishnamurthy et al. [49] who chose the simple
yet challenging case of a five-armed Bernoulli bandit with independent arms and an action gap of
O.QEI The version we evaluate has one randomly-selected optimal arm with rewards drawn from a
Bernoulli(0.6) distribution while all other arms use a Bernoulli(0.4).

Observe that PSRL specialized to a multi-armed bandit problem mirrors classic TS where, at each
timestep, the agent samples one plausible hypothesis for the reward distribution of each arm and
then proceeds to select the optimal action believed to achieve highest mean reward under this
hypothesis. We compare PSRL implemented with LLMs to classic TS for a Bernoulli bandit with
each arm initialized with a Beta(1, 1) prior. Meanwhile, our LLM-based PSRL agent begins with
a prior for each arm specified as a Beta(1,1) in natural language. While we fix temperatures
Kxx = Kposterior = 1, we find that the posterior sampling temperature has profound impact on the
performance of our LLM-based PSRL agent. Figure|/|compares TS (run for 1,000 independent trials)
against PSRL with four distinct settings of Ksampling (run for 20 independent trials).

As noted by Krishnamurthy et al. [49], the financial and temporal costs of running LLM agents can
be quite significant. With only 20 trials, it would be presumptuous to make any sweeping claims
about superior performance of one method relative to others. Fortunately, the goal of our multi-armed
bandit experiment is aimed at at a relativistic comparison in the quality of exploration with our
LLM-based PSRL relative to classic TS. To this end, we borrow the surrogate statistics employed
by Krishnamurthy et al. [49]] to provide deeper insight into the long-term exploratory behavior of
LLM-based PSRL. Figure 8| reports the suffix failure frequency, where a suffix failure at time period ¢
is a binary statistic defined as 1 if the optimal action A* is never chosen in time periods [¢,7"] and 0
otherwise. Clearly, an agent experiencing a large number of suffix failures early on in learning would

3The action gap is defined as the difference in expected reward between the best and second best action.
Larger action gaps make it easier to identify the optimal arm with few samples whereas smaller action gaps
demand greater exploration.
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Figure 7: Cumulative regret curves for a 5-armed Bernoulli bandit.

be unlikely to identify A* when run for a larger number of time periods. Figure [Q]reports the (scaled)

minimum action frequency, which reports at time period ¢ the frequency of the least-chosen action

in the first ¢ time periods: 1 - min [{Ay | t' € [t], Ay = a}|. The statistic is scaled by |.A| to reside
ac

in [0, 1]. As an agent’s knowledge of the world accumulates, one would naturally expect an agent
to gradually cease selection of some (ideally, sub-optimal) actions and incur lower minimum action
frequencies. Together, these two surrogate statistics paint a picture of whether or not the exploration
of a LLM bandit agent gravitates toward A* over time.

Notably, we find that increasing the temperature Ksampling Of the posterior sampling LLM has
profound impact on how well our LLM-based PSRL explores according to these metrics. In particular,
we find that increasing Ksampling leads to exploratory behavior more closely aligned with that of
classic TS compared to lower temperatures values.
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Figure 8: Suffix failure frequency for a 5-armed  Figure 9: Scaled minimum action frequency for
Bernoulli bandit with A = 0.2. A suffix failure a 5-armed Bernoulli bandit with A = 0.2. At
occurs at time ¢ if A* is never chosen in time time period t, this is the average frequency of the
periods [t, T. least-chosen action in time periods [1, ¢].

C Discussion

In this section, we provide a detailed overview of our results as well as insight into the limitations of
our proposed LLM-based implementation of PSRL.
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Figure 10: A scatter plot of suffix failure frequency vs. minimum action frequency for Thompson
sampling and our LLM-based PSRL with varying Ksampling-

C.1 Retaining Efficient Exploration

In the bandit setting (Appendix [B]), we observe our LLM-based PSRL obtains better cumulative
regret curves than classic TS, for the limited time horizon of 7' = 100. We find that supplying PSRL
with an initial prior of Beta(1,1) in language automatically encourages the posterior update LLM
to update binary reward observation counts for the chosen arm in each time period. Moreover, we
find that the optimal sample policy LLM has little difficulty in examining the sequence of expected
reward values for each arm generated by the posterior sampling LLLM and adhering to select the
perceived best action. Manipulating Ksampling Shows that even values as large as 1 lead to greedy-like
exploration in many trials where the resulting posterior sample favors the action observed to yield the
most successes thus far. For a limited number of trials, this error proves to be not so catastrophic for
temperatures of at least 1. We find that increasing Ksampling > 1 yields exploratory behavior more
aligned with TS where optimal actions more likely to be taken in the later time periods and a slowing
of probability mass pulled away from other actions.

The combination lock and Wordle environments represent separate instances of the same exploration
problem at differing scales within a deterministic environment. Our results show that the LLM-based
PSRL is able to most effectively explore the space of possible unlock codes/target words relative to
the baseline methods. Crucially, none of the three constituent LLMs used by PSRL are prompted
to explicitly encourage exploration. Rather, these results illustrate how prompting these LLMs to
perform atomic functions of PSRL and allowing the algorithm to prescribe how those outputs should
be orchestrated in the agent design can yield an effective exploration strategy.

The ICPI paper includes a dataset balancing scheme for ICL, presuming the requisite data has
already been collected. While reasonable for some environments, exploration is fundamentally about
governing data collection to synthesize optimal behavior and, in these domains, ICPI never observes
non-zero reward and collapses to a random policy For ICRL, using all available data with p = 1 is
equivalent to the “LLM policy” evaluated by Klissarov et al. [47], who also find poor performance
in Wordle. While results in the combination lock domain are better, we find that decreasing the
keep probability p is detrimental to the “exploratory” ICRL of Monea et al. [66]. Reflexion is
the strongest baseline, however we observe that self-reflections during the early stages of learning
explicitly encourage exploration of untested digits/letters /iterally, assuming the agent knows how to
explore upon simply being instructed to do so. Only once uncertainty has largely been resolved do
reflections become more specific suggestions about how to explore with particular digits/letters and
their ordering.
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Figure 11: Cumulative regret curves for the RiverSwim environments with 3 (solid lines) and 4
(dashed lines) states, respectively. ol-mini is used exclusively with our LLM-based PSRL.

Our initial results with RiverSwim were negative as GPT-40 struggled to cope with maintaining
and updating the verbose epistemic state representation describing reward information and next-
state transitions across all 12 state-action pairs. Curiously, however, this negative result provided
an opportunity to assess a claim of Section [3.2] that more-capable LLMs would allow our PSRL
implementation to scale gracefully to more complex tasks. Indeed, by upgrading from GPT-4o to
ol-mini, we observe that our LLM-based PSRL is capable of achieving sub-linear regret on par with
vanilla PSRL. Reflexion is unable to persevere past failed attempts to swim upstream before settling
for the smaller downstream reward of 0.005. ICRL has just over 25% of trials where it stumbles
into the optimal policy and sticks with it while, for 60% of trials, it too falls back to pursuing the
downstream reward. Moreover, the same LLM upgrade has little impact on the performance of
Reflexion and actually manages to worsen the performance of ICRL; for the latter, we suspect the
performance degradation stems from a combination of the stochastic transition dynamics coupled
with the large quantity of ICL demonstrations that perhaps mesh poorly with the reasoning steps of
ol-mini.

C.2 Limitations
C.2.1 Scaling Up Stochastic Environments

While the success of our LLM-based PSRL in RiverSwim after upgrading to ol-mini from GPT-40
is encouraging, we find that the scalability of such a substitution is short-lived. Recall that our
version of RiverSwim used in the preceding section is a truncated variant down to a length-3 river.
Unfortunately, as seen in Figure [T1] just increasing the river by one additional intermediate state
to obtain a length-4 RiverSwim environment (H = 20) causes the performance of our LLM-based
PSRL to degrade into linear regret.

This negative result underscores a crucial distinction in the choice of epistemic state between agents;
that is, the statistical object Dirichlet(0.1,0.1, 0.1, 0.1) used by classic PSRL and the natural language
string Dirichlet(0.1,0.1,0.1,0.1) used in LLM-based PSRL. For deterministic transitions in
RiverSwim, classic PSRL is able to see eventual concentration to a Dirac delta distribution. Meanwhile
the LLM-based PSRL agent, while successful at maintaining visitation counts, is slow to achieve
the same convergence and, across many posterior samples, leaves non-negligible probability mass
on non-existent transitions with fictitious rewards. One plausible explanation would be that such
concentration errors stem from a lack of familiarity by the LLMs, given that Dirichlet distributions
with fractional parameters are encountered with less frequency [65]; however, our preliminary
experiments with a Dirichlet(1,1,1,1) prior showed no significant improvement.
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Issues with posterior concentration notwithstanding, we also find that far too many episodes fail as
the optimal sample policy LLM struggles to select optimal actions, even when supplied with posterior
samples that have high fidelity to the true environment. Even with chain-of-thought prompting, we
find a clear lack of understanding for long-term, value-based planning; the preliminary success with
length-3 RiverSwim suggests that this failure is connected to the increased verbosity of the epistemic
state that, in turn, compromises the optimal sample policy LLM’s ability to account for the value of
traversing the full river over collecting the small downstream reward repeatedly. Altogether, while
the overall result is negative, we anticipate that these issues may resolve organically in a manner
similar to our early challenges with GPT-4o in length-3 RiverSwim; that is, by leveraging a more
advanced alternative LLM. Even if recent open-source reasoning models [38, 134] prove ineffective at
fulfilling this purpose, one might still naturally anticipate that such deficiencies will disappear with
time assuming future LLM capabilities continue to expand.

C.2.2 Beyond Thompson Sampling

11-Armed Informative Action Bandit 11-Armed Informative Action Bandit
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Figure 12: Cumulative regret curves for the 11- Figure 13: Episodic regret curves for the 11-
armed informative action bandit (Example 2) of armed informative action bandit (Example 2) of
Russo and Van Roy [86]]. Russo and Van Roy [86]].

While PSRL, through the use of TS, is known to yield a strong exploration strategy, it is by no means
perfect. In the bandit literature, shortcomings of TS are well-known and naturally become more
salient in the full RL problem [86} 62]. In short, by only executing actions with some probability of
being optimal, TS will never take deliberately sub-optimal actions that yield tremendous information
gain. Figure [3|already illustrates how a PSRL agent’s uncompromising execution of only potentially-
optimal policies cripples exploration and solely allows for the testing of two unknown letters at a
time.

One remedy is to seek out instantiations of information-directed sampling (IDS) [86]. IDS is an
algorithmic design principle that advocates for using a policy which balances between performance
shortfall and information gain. While supported by a rigorous corroborating theory in both bandits
and RL [62], concrete and practical instantiations of IDS are difficult to come by on account of
the challenges surrounding information gain estimation [64]]. Moreover, the temporally-delayed
consequences absent from bandits but present in RL problems pose an additional challenge as a
proper IDS agent must forecast future opportunities for knowledge acquisition several steps into the
future when evaluating current actions.

We present an initial design for a IDS agent with LLMs. Our proposed LLM-IDS agent is myopic
in that it only takes immediate information gain about optimal behavior at the next timestep into
account. Nevertheless, the feedback structure of the combination lock environment allows such an
agent to be unconcerned with temporally-delayed information. For a current state s, € S, we define

two |.A|-dimensional vectors, p and Z, where p(a) = E [Vj(,l_’h(sh) — Q.1 (5hs a)} is the expected

regret of taking action a € A in s, under the agent’s current posterior and Z(a) = I(7*; Ry, Sh+1 |
Ay = a, Sy, = sp,) is the information gained (formally, the conditional mutual information [19])
about the optimal policy by taking action a from state s;. IDS calls for sampling an action from

2
the distribution that minimizes the information ratio: min “exxle(a)l”

L E T Normally, computation of
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Figure 14: Cumulative regret curves for the combination lock environment including LLM-IDS.

the p and Z vectors would be done directly with the current posterior. Instead, we recycle the same
posterior update LLM from our LLM-based PSRL but incorporate two new LLMs for the provision
of p and Z; each of these LLMs is prompted on a per-action basis to assess the expected regret or
information gain, respectively, from each action in the current state. With these 2|.4| LLM-generated
numerical values, the convex optimization problem of minimizing the information ratio is solved to
compute the policy for action selection.

We offer two empirical evaluations to highlight the limitations of LLM-based PSRL exploration
inherited from TS while also underscoring the future potential of our LLM-IDS. The first is a contrived
but transparent multi-armed bandit problem given as Example 2 of Russo and Van Roy [86]. In this
(K + 1)-armed informative action bandit problem, there is a unique optimal action A* € [K] that
yields a deterministic reward of 1 while all other arms yield a reward of 0; additionally, there is an
action 0 that deterministically provides a reward equal to (2 - A*)~!. Naturally, an agent willing
to deliberately select sub-optimal actions to gain information would take action 0 immediately and
then produce optimal behavior thereafter with the identity of A* in hand. Figures[12]and [T3]show
across 10 trials that LLM-IDS succeeds in recovering this optimal exploration strategy exactly for
the K = 10 instance whereas LLM-based PSRL is incapable of doing so while exploring via TS.
This result also highlights one simple instance of the flexibility that specifying natural-language
priors to LLM-based PSRL affords as encoding prior knowledge about the informative action might
prove difficult when limited to classic statistical distributions. Extending past this contrived yet
transparent bandit example, Figure[T4]shows that LLM-IDS is able to outperform LLM-based PSRL
by more quickly testing for unknown digits while remaining unencumbered by known digits already
discovered.

D Preliminary Results with Open Reasoning Models

While our experiments with RiverSwim (Figure [6]confirm the benefits of reasoning models that invest
additional computational effort to produce so-called “reasoning” tokens prior to emitting response
tokens, models such as ol-mini can be prohibitively expensive. To reduce these financial burdens and
assess the efficacy of our proposed LLM-based PSRL with an alternative choice of constituent LLM,
we here offer preliminary results for the combination lock (Figure[I5]— 20 trials) and Wordle (Figure
@]— 40 trials) environments with DeepSeek-R1 [34].

Our results aggregated across both domains yield two key observations. At the highest level, we
observe that R1 provides a performance improvement to all LLM agents (both ours and baselines).
Curiously, we find that this performance improvement varies by model and domain; across both
environments, we see very small improvements in Reflexion. Meanwhile, performance improvements
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Figure 15: Cumulative regret curves for the combination lock environment. Labels show the choice
of constituent LLM model (GPT-40 or DeepSeek-R1) in each LLM agent.

for ICRL in the combination lock task and our LLM-based PSRL in Wordle are significant. More
importantly, we find that the enhanced reasoning capabilities of DeepSeek-R1 applied to our best
baseline LLM agents is not sufficient to yield a statistically-significant improvement over our proposed
LLM-based PSRL, even when run with a “weaker” or less-capable GPT-40 as the constituent LLM.
Such a result is somewhat reminiscent of classic boosting [30], wherein an ensemble of weak learners
are composed together into a strong (supervised) learner. Furthermore, these empirical results might
(loosely) suggest that the strategic exploration strategy (specifically, Thompson Sampling) forged
into the design and structure of the PSRL algorithm offers something beyond what a current strong
reasoning model is capable of today, especially when given the freedom in action selections afforded
by a LLM agent design like ICRL.

E Early Failures with GPT-40 in RiverSwim

As RiverSwim is a stochastic environment, even a limited number of states may still demand a
significant episode horizon in order to provide even a chance of learning progress. To keep the
financial costs of our RiverSwim experiments down with horizons as small as 6 and as large as 50, we
employ a policy caching scheme that capitalizes on the underlying tabular MDP that is RiverSwim.
In particular, the policy LLM of all LLM agents (ours and baselines) used in each episode only makes
one API call per novel state visited and the resulting selected action is cached for that state; if a state
is ever revisited within the same episode, then this cached action is automatically reused without
making an additional policy LLM call. After an episode is completed, this cache is then cleared and
reset for the next episode. Notably, as the optimal policy for RiverSwim is non-stationary (since,
if the agent is unsuccessful in swimming upstream towards the end of the episode, it is optimal to
turn around and collect the smaller downstream reward), this means that the cumulative regret curves
across all agents are potentially worse than what they would have been if the agents were allowed to
act in a non-stationary fashion. Nevertheless, as there are only two actions in the MDP, we anticipate
that the impact of this cost-saving measure on our results is minimal and equitable across all evaluated
agents.

In Section[d.2] we reported positive results in a truncated (length-3) variant of the classic RiverSwim
environment [91]] upon switching from GPT-40 to ol-mini as the underlying LLM for our PSRL
implementation. For clarity, we use this section to detail the initial failures we encountered with
GPT-40 in RiverSwim. Figure[T7]shows the associated cumulative regret curves adhering to the
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Figure 16: Cumulative regret curves for the Wordle environment. Labels show the choice of
constituent LLM model (GPT-40 or DeepSeek-R1) in each LLM agent.
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Figure 17: Cumulative regret curve for the RiverSwim environment with 3 states. Algorithms with
knowledge of all deterministic transitions supplied a priori are labeled.

same setup as outlined in Section@ €XCEPt WE USE Krx = Kposterior = 0 and Kgampling = 0.5.
Despite achieving the best regret curve out of all presented LLM agents in RiverSwim, both of our
LLM-based PSRL variants with GPT-40 incur near-linear regret while most instances of classic PSRL
are able to achieve optimal behavior.

We also report both vanilla and LLM-based PSRL run with prior distributions where all deterministic
RiverSwim transitions (only those where the agent swims downstream) are given as prior knowledge.
We posited that supplying all deterministic transitions as prior knowledge would fare better against
classic PSRL. While this does allow LLM-based PSRL to exhibit optimal behavior in many trials,
far too many still fail as the optimal policy LLM struggles to select optimal actions, even when
supplied with posterior samples that have high fidelity to the true environment. Reasons for this
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include misread transition probabilities (such as swapping numerical values of the input posterior
sample) as well as a lack of understanding for long-term planning. Additionally, we observe a rare
occurrence where posterior updates can be prone to catastrophically forgetting a single transition,
thereby halting learning progress entirely should the omitted transition be essential to reaching the
upstream reward.

F Experiment Prompts

In this section, we outline all LLM prompts used in our experiments. We will present all

in orange and all user prompts in red. It is important to note that prompts are to LLM
agents what typical hyperparameters (entropy regularization coefficient, PPO clip factor, batch size,
etc.) are to deep RL agents. In that sense, prompt optimization/hyperparameter tuning of baselines
is an important facet of evaluation. As is often the case when dealing with vast hyperparameter
spaces, however, an exhaustive search for the best hyperparameter settings of each method evaluated
would be far too onerous. Thus, while we include our prompts for all agents in our evaluation to
foster reproducibility and encourage extensions of our work, we note that future work may find
performance improvements with any of these LLM agents through simple refinements of these
prompts for particular models and/or downstream applications.

F.1 LLM-Based PSRL

In our experiments, depending on the particular environment, we consider two different forms of
posterior LLM prompting. For sufficiently short horizons, the posterior LLM is given the entire
trajectory in a single prompt and is expected to produce the updated posterior. For longer horizons or
whenever concerns about context buffer length come into play, the posterior LLM is prompted with
one full (s, a,r,s") experience tuple at a time and each successive posterior becomes the prior for the
subsequent update. Empirically, we find that whole trajectory updates may be more likely to result
in erroneous updates where certain pieces of information may be mistakenly updated or forgotten
entirely. While this becomes far less likely with per-step experience updates, the associated financial
costs and time spent running the PSRL agent scale unfavorably with the horizon of the problem.
We use whole trajectory observations for all LLM-based PSRL posterior updates in the RiverSwim,
Combination Lock, and Wordle environments. For LLM-based PSRL multi-armed bandit results and
LLM-IDS, we use per-step posterior updates.

For whole trajectory posterior updates, the approximate posterior LLM uses the following system
prompt and user prompt:
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For per-step posterior updates, the approximate posterior LLM uses the following system prompt and
user prompt:




The optimal sample policy LLM simply takes the current observation as the user prompt while using
the following system prompt:

As generating a posterior sample requires specifying a full MDP, we find that the posterior sampling
LLM in PSRL benefits from having distinct prompts that cater to salient aspects of generating an
instance of each environment. We organize the associated environment descriptions as well as
posterior sampling system prompts and user prompts by task in the following sub-sections. We also
include a sub-section for all prompts used by LLM-IDS.

F.2 Multi-Armed Bandits

The environment description for the multi-armed bandit task was given as:

The posterior sampling LLM system prompts and user prompts were:
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The environment description for the informative action multi-armed bandit was given as:

The posterior sampling LLM system prompts and user prompts were:

F.3 RiverSwim

The environment description for RiverSwim was given as:

The posterior sampling LLLM system prompts and user prompts were:
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F.4 Combination Lock

The environment description for CombinationLock was given as:

The posterior sampling LLLM system prompts and user prompts were:
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The environment description for Wordle was given as:

The posterior sampling LLM system prompts and user prompts were:
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F.6 LLM-IDS
F.6.1 Bandit Version
As the bandit setting does not require handling of temporally delayed consequences or the provision

of a current state, it is appropriate to have a separate prompting scheme for LLM-IDS.

The expected regret LLM used the following system prompt and user prompt:

The information gain LLM used the following system prompt and user prompt:




F.6.2 MDP Version

As previously mentioned, LLM-IDS retains the approximation posterior LLM for performing posterior
updates given agent interactions with the environment. Instead of having two posterior sampling
and optimal sample policy LLMs, LLM-IDS employs two LLMs for computing the expected regret
and the information gain about optimal behavior, respectively, of each action in a given state. The
current posterior is supplied to both LLMs as input along with the current state and the candidate
action being evaluation, thereby requiring a total of 2|.4| API calls to obtain the two | A|-dimensional
vectors needed to solve the information-ratio optimization problem.

Using the fact that finding the distribution over actions which minimizes the information ratio is a
convex optimization problem that places probability mass on at most two actions [86) [62]], we solve
the optimization problem near-optimally by discretizing the unit interval and searching over all pairs
of actions.

For the combination lock environment, we know that the value of the optimal policy is exactly 1.
Consequently, we charged the expected regret LLM with simply computing the expected return
E [@Q*(st, a)] and used one minus this output value as the expected regret. The expected regret LLM
used the following system prompt and user prompt:




The information gain LLM used the following system prompt and user prompt:

F.7 Baseline Prompts

F.7.1 In-Context Reinforcement Learning

The ICRL policy LLM uses the following system prompt and user prompt:
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F.7.2 Reflexion

The Reflexion policy LLM uses the following system prompt and user prompt:

The Reflexion self-reflection LLM uses the following system prompt and user prompt:

F.7.3 In-Context Policy Iteration

The ICPI transition function LLM uses the following system prompt and user prompt:
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The ICPI reward function LLM uses the following system prompt and user prompt:

The ICPI rollout policy LLM uses the following system prompt and user prompt:

G Experiment Costs

In this section, we give rough estimates of the total API calls, dollar cost (according to current GPT-40
pricing), and average as well as maximum tokens used in our main evaluation domains.

Starting with API calls, we recall that we consider a finite-horizon MDP with K episodes, each with
a horizon of H. At the start of each episode, our LLM-based PSRL makes one API call to draw
a “posterior” sample. At each timestep of the episode, there are exactly H API calls made by the
optimal sample policy LLM. Finally, at the end of the episode, there is exactly one API call made to
perform the posterior update. All together, this yields a total of K (H + 2) API calls.

Under current GPT-40 pricing, the total cost of a single trial in each of our evaluation domains is as
follows:
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Domain Number of Episodes (/') | Single-Trial Dollar Cost
5-Armed Bernoulli Bandit 100 $1
Combination Lock 8 $0.11
Wordle 5 $0.11
RiverSwim 35 $0.90

For o1-mini in RiverSwim, the single trial cost increases to $7.50.

The average and maximum token counts per-LLM are as follows:

Posterior Sampling LLM
Domain Average Tokens | Maximum Tokens
5-Armed Bernoulli Bandit 1000 1500
Combination Lock 700 800
Wordle 800 1000
RiverSwim 1500 1700
Optimal Sample Policy LLM
Domain Average Tokens | Maximum Tokens
5-Armed Bernoulli Bandit 400 500
Combination Lock 400 600
Wordle 450 650
RiverSwim 1000 1400
Posterior Update LLM
Domain Average Tokens | Maximum Tokens
5-Armed Bernoulli Bandit 900 1100
Combination Lock 1200 1400
Wordle 1500 1700
RiverSwim 1700 1900
Per-Episode Tokens
Domain Input Tokens | Output Tokens | Total Tokens
5-Armed Bernoulli Bandit 1500 800 2300
Combination Lock 4000 1100 5100
Wordle 3700 850 4550
RiverSwim 4700 1500 6200
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