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ABSTRACT

Operator learning, which learns the mapping between infinite-dimensional func-
tion spaces, is an attractive alternative to traditional numerical methods for solving
partial differential equations (PDEs). In practice, the functions of the physical sys-
tems are often observed by sparse or even irregularly distributed measurements;
thus, the functions are discretized and usually represented by finite structured ar-
rays, which are given as data of input-output pairs. Through training with the
arrays, the solution of the trained models should be independent of the discretiza-
tion of the input function and can be queried at any point continuously. Therefore,
the architectures for operator learning should be flexibly compatible with arbitrary
sizes and locations of the measurements, otherwise, scalability can be restricted
when the observations have discrepancies between measurement formats. In this
study, we propose the proper treatment of discretized functions as set-valued data
and construct an attention-based model, called mesh-independent operator learner
(MIOL), to provide proper treatments of input functions and query coordinates
for the solution functions by detaching the dependence of the input and output
meshes. Our models pre-trained with benchmark datasets of operator learning are
evaluated by downstream tasks to demonstrate the generalization abilities to vary-
ing discretization formats of the system, which are natural characteristics of the
continuous solution of the PDEs.

1 INTRODUCTION

Partial Differential equations (PDEs) are among the most successful mathematical tools for repre-
senting the physical systems with governing equations over infinitesimal segments of the domain of
interest, given some problem-specific boundary conditions or forcing functions (Mizohata, 1973).
The governing PDEs, which are globally shared in the entire domain, are interpreted as interactions
between infinitesimal segments with respect to their geometrical structures and values. Because
of the universality of the entire domain, the system can be analyzed in a continuous manner with
respect to the system inputs and outputs. In general, identifying appropriate governing equations
for unknown systems is very challenging without domain expertise, however, numerous unknown
processes remain for many complex systems. Even if knowing the governing equation of the system
is known, it requires unnecessary time and memory costs to be solved using conventional numerical
methods, and sometimes it is intractable to compute in a complex and large-scale system.

Motivation. In recent years, operator learning, an alternative to conventional numerical methods,
has been gaining attention, pursuing mapping between infinite-dimensional input/output function
spaces in a data-driven manner without any problem-specific knowledge of the system (Nelsen &
Stuart, 2021; Li et al., 2020a;b; 2021b; Lu et al., 2019; 2021; Cao, 2021; Kovachki et al., 2021).
Intuitively, for the underlying PDE, Lau = f defined on the continuous bounded domains Ω with
system parameters a ∈ A, forcing function f ∈ F , and the solution of the system u ∈ U , the goal of
the operator learning is to approximate the inverse operator G = L−1

a f : A → U or G : F → U with
parametric model Gθ. Without loss of generality, when the input function is a, the output function
can be computed as u = Gθ(a). Because the operator Gθ should be able to capture interactions
between elements of system inputs a to discover the governing PDEs, Gθ is approximated by a series
of integral operators with parameterized kernels that iteratively update the system input to the output
(Nelsen & Stuart, 2021; Li et al., 2020a;b; 2021b; Cao, 2021; Kovachki et al., 2021). In practice,
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Table 1: Comparison with other studies.
Operator networks Neural operators MIOL

(Lu et al., 2019; 2021) (Li et al., 2020a;b; 2021b) (ours)
Decoupling input/output mesh Yes No Yes
Mesh-independence to input No, require fixed input mesh Yes Yes

Mesh-independence to output Yes No, depend on input mesh Yes

because continuous measurements of the input/output functions are infeasible, the observed data are
provided as a set of input-output pairs, which are point-wise finite discretization of the functions.

The output values at coordinate y can be expressed as u(y) = [Gθ(a)](y) which can be viewed
as the operating G : A × Y → U with two input placeholders, a ∈ A and y ∈ Y . Then, the
following two considerations can be considered for the model with respect to the input function
a, and query coordinate y: (1) the output of the model should not depend on any discretization
format of a, and (2) the model should be able to output a solution at any query coordinate y. The
measurements of the system are often sparsely and irregularly distributed owing to the geometry of
the domain, environmental conditions, or inoperative equipment (Belbute-Peres et al., 2020; Lienen
& Günnemann, 2022). In addition, in popular numerical methods for solving the PDEs, such as
finite element methods, unstructured meshes are often utilized for the discretization of the domain,
and adaptive remeshing schemes are commonly deployed where the regions of the domain require
different resolutions depending on the accuracy of the prediction (Brenner et al., 2008; Huang &
Russell, 2010). Thus, the model should aggregate global information over the measurements to
process [Gθ(a)] which can be reused for any discretization of a, and the solution [Gθ(a)](y) should
be queried at any coordinate y, such as implicit neural representations (Sitzmann et al., 2020).

Existing architectures. There are two representative frameworks for operator learning: operator
networks, and neural operators. Based on the framework of operator networks (Chen & Chen,
1995), (Lu et al., 2019) extended the architectures with modern deep networks, called deep oper-
ator networks (DeepONets), which is a successful architectures for operator learning. To process
the input functions and query coordinates, DeepONets consist of two sub-networks, called branch
network and trunk network, respectively. DeepONets can be queried at any coordinate y from the
trunk network, however, they used the fixed discretization of the system inputs a from the branch
network (Lu et al., 2019; 2021). Another promising framework is neural operators, which consists
of several integral operators with parameterized kernels to map between infinite-dimensional func-
tions. Neural operators can be adapted to different resolutions of system inputs a in a mesh-invariant
manner (Li et al., 2020a;b). However, the implemented architectures of the neural operators are typ-
ically assumed to have the same sampling points for input and output functions (Li et al., 2020a;b;
2021b; Kovachki et al., 2021; Lu et al., 2022), that is, they have not been formulated as a method
for decoupling the discretization of the system input and solution, leading to the solution of the neu-
ral operators not being flexibly queried at any coordinate y. In addition, widely used as successful
model for operator learning due to their efficacy and accuracy (Li et al., 2021b; Pathak et al., 2022),
Fourier neural operators (FNO) are limited to uniform grid discretization owing to the usage of FFT.
The limitations and schematics of the existing studies are presented in Table 1 and Figure 6.

Contributions. There has been limited discussion on the generalization abilities of discretizations
with extended variations, such as different sampling points for inputs and outputs functions with
arbitrary numbers and irregular distributions. For these considerations, we treated the observational
data as a set without intrinsic assumptions about the data and constructed what we call a mesh-
independent operator learner (MIOL), as shown in Figure 1. MIOL is a fully attentional architecture
consisting of an encoder-processor-decoder, where the encoder and decoder are made in a way
related to set encoder-decoder frameworks (Zaheer et al., 2017; Lee et al., 2019) to detach the de-
pendence of input and output meshes from the processor that processes the smaller fixed number of
vectors in latent space. Attention mechanisms have been discussed as not only efficient in express-
ing pair-wise interactions (Cao, 2021; Kovachki et al., 2021; Guibas et al., 2021; Pathak et al., 2022)
but also flexible in processing data in a modality-agnostic way (Vaswani et al., 2017; Jaegle et al.,
2021; 2022). Finally, we conducted several experiments on the benchmark PDE datasets for oper-
ator learning (Li et al., 2021b). The results show that our model is not only competitive in original
benchmark tasks but also robustly applicable when discretizations of input and output functions are
allowed to be different, unstructured, and irregularly distributed, which are natural consequences of
continuous solutions for physical systems but are not flexibly compatible with existing ones.
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2 PROBLEM DEFINITION

Let the observed data be provided as N instances of input-output pairs, {(ai, ui)}Ni=1. ai = ai|X
and ui = ui|Y are finite discretizations of the input function ai ∈ A(Ωx;Rda) and output function
ui ∈ U(Ωy;Rdu), where A and U are separable Banach spaces. X = {x1, ..., xnx

} and Y =
{y1, ..., yny

} are the finite sets of discretized points for the continuous bounded domains Ωx and Ωy

with the number of discretized points nx and ny , respectively. The training procedure of the original
operator learning involves optimizing the following objective to learn a model Gθ : A → U ,

Ea∼µ [L (Gθ(a), u)] =

∫
A
∥u− Gθ(a)∥2dµ(a) ≈

1

N

N∑
i=1

∥ui − Gθ(ai)∥2, (1)

where a ∼ µ is i.i.d on A, and the discretizations of the input and output space are usually assumed
to be the same (Li et al., 2020a;b; 2021b; Kovachki et al., 2021; Lu et al., 2022), that is, X = Y .
In this study, we consider the extended situations where the discretized points X and Y are allowed
to be different, that is, X ̸= Y , and arbitrarily on the domain, while varying the number of nx and
ny for each i. In practice, we aimed to build a model that is applicable to an irregularly distributed
and varying number of discretization points during testing. Therefore, the goal is to learn the model
Gθ : A×Y → U that is expected to make the following test errors as small as possible when training
with the above objective 1,

Ea∼µEX,Y [L ([Gθ(a)] (y), u(y))] = Ea∼µ

∫
Ωx

∫
Ωy

∥u(y)− [Gθ (a|X)] (y)∥2dydν(X), (2)

where X and Y can be arbitrary discretizations of the input and output domains. Described in sec-
tion 5.2, to evaluate generalization ability respect to varying the size of inputs, instead of calculating
the test error 2, we calculate respective empirical test errors correspond to ratio p,

1

N

N∑
i=1

∥ui(Y )− [Gθ(a
(p)
i )](Y )∥2. (3)

where X(p) is a randomly masked discretization with a masking ratio p of the given input domain
X , a(p)i = ai|X(p) is ai evaluated on X(p), and the model is evaluated at all given discretized points
of Y (using all of Y is not necessary). The empirical test error can be bounded by the sum of the
approximation error and discretization errors from the discrepancy of the discretizations of the input
function,

∥ui(Y )− Gθ(a
(p)
i )](Y )∥ ≤ ∥ui − Gθ(ai)∥+ ∥[Gθ(ai)](Y )− [Gθ(a

(p)
i )](Y )∥. (4)

The approximation error is expected to be sufficiently small by the training procedure 1, and if we
consider the input functions as set representation, that is, a(p)i ⊂ ai, there exists an appropriate
masking ratio p, where the discretization errors can be expected to be sufficiently small by pro-
cessing them with an efficient permutation-invariant set encoder whose outputs are independent of
cardinalities and locations of input discretizations (Zaheer et al., 2017; Wagstaff et al., 2019; 2021).

3 PRELIMINARIES

3.1 NEURAL OPERATORS

The architectures of neural operator (Li et al., 2020a), usually consist of lifting-iterative updates-
projection, which are corresponding to encoder-processor-decoder, respectively. The lifting v1(x) =
P(a(x)) and projection u(x) = Q(vL(x)) are local transformations usually implemented by point-
wise feed-forward neural networks for mapping input features to target dimensional features. The
iterative updates Gl : vl 7→ vl+1, l ∈ [1, L− 1] are global transformations implemented by sequence
of following transformations to capture the interactions between the elements,

vl+1(x) = [Gl(vl)] (x) = σ

(
Wlvl(x) + [Kl(vl)] (x)

)
, x ∈ Ω, (5)
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where σ are nonlinear functions, Wl are point-wise linear transformations, Kl are kernel integral op-
erations on vl(x). While the spatial domains of input and output are usually the same, the discretiza-
tions of input and output functions can be different with varying numbers and locations, X ̸= Y .
However, the existing implementations of the neural operators typically use the same discretizations
for the input and output (Li et al., 2020a;b; 2021b; Kovachki et al., 2021; Lu et al., 2022), which
leads to the predicted outputs only queried at the input meshes. Although the compatibility and
performance of neural operators are mesh-invariant to inputs (stably low test errors are observed
at different resolutions from training (Li et al., 2020a;b; 2021b)), the outputs cannot be flexibly
queried to any points of coordinate y. For these reasons, separative treatments for input functions a
and query coordinates y are required for decoupling the discretizations of inputs and outputs.

3.2 KERNEL INTEGRAL OPERATION AND ATTENTION

The kernel integral operations are generally implemented by integration of input values weighted
by kernel values κ representing the pair-wise interactions between the elements on input domain
x ∈ Ωx and output domain y ∈ Ωy ,

[K(v)] (y) =

∫
Ωx

κϕ(y, x)v(x)dx, (x, y) ∈ Ωx × Ωy, (6)

where the parameterized kernels κϕ are defined on Ωy × Ωx. The transform K can be interpreted
as mapping a function v(x) defined on domain x ∈ Ωx to the function [K(v)](y) defined on do-
main y ∈ Ωy . Recently, it has been proved that the kernel integral operation can be successfully
approximated by the attention mechanism of Transformers both theoretically and empirically (Cao,
2021; Kovachki et al., 2021; Guibas et al., 2021; Pathak et al., 2022). Intuitively, let input vectors
X ∈ Rnx×dx and query vectors Y ∈ Rny×dy , then the attention can be expressed as

Attn(Y,X,X) = σ(QKT )V ≈
∫
Ωx

(q(Y ) · k(x))v(x)dx, (7)

where Q = YW q ∈ Rny×dq , K = XW k ∈ Rnx×dq , V = XW v ∈ Rnx×dv , and σ are the query,
key, value matries, and softmax function, respectively. Details of the derivation can be found in Ap-
pendix A.3. The attention mechanism, the weighted sum of V with the attention matrix σ(QKT ),
can be interpreted as the kernel integral operation in which the parameterized kernel is approximated
by the attention matrix (Cao, 2021; Tsai et al., 2019; Xiong et al., 2021; Choromanski et al., 2021).
This attention is also known as cross-attention, where the input vectors are projected to query em-
bedding space by the attention, Attn(Y,X,X). Note that when X = Y , the mechanism denotes
the self-attention, Attn(X,X,X).

The attention blocks Attention(Y,X,X) used in this paper are described in the Appendix A.4.
The term Attention(Y,X,X) used in the following paper stands for the attention blocks. The
nonlinear functions σ, point-wise linear transformations Wl, and kernel integral operations Kl in
the iterative update (Equation 5) are approximated by feed-forward neural networks, residual con-
nections, and the attention modules, which are conventional modules from Transformer-like ar-
chitectures (Vaswani et al., 2017). When we consider the attention block as mapping operation
Attention(Y,X,X) : Rnx 7→ Rny , it can be used to not only approximate the kernel integral
operation but also decouple the cardinality and sampled locations of input vector X and output
Attention(Y,X,X).

4 APPROACH

4.1 PREPROCESSING

Set representations for the discretizations. Before starting to construct a model, we reconsider the
representations of a = a|X ∈ Rnx×da , u = u|Y ∈ Rny×du and query coordinates Yu ∈ Rny×d. To
compensate the positional information, we follow the common way of existing neural operators lit-
erature (Li et al., 2021b; Kovachki et al., 2021), which usually concatenate the position coordinates
and the corresponding values as the input representation, a = {(x1, a(x1)), ..., (xnx

, a(xnx
))} ∈

Rnx×(d+da). Then, we treat a, u, and Yu as the set representations represented by flattened arrays,
without using structured bias (e.g., 2D, 3D-structured arrays, or local neighbor connected graphs) to
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Figure 1: Mesh-independent operator learner.

avoid our model bias toward specific data structure and flexibly process any of the discretization for-
mats of input and output. By the concatenated position coordinates for each value, the output should
be permutation-invariant to the representation of the input function a, when the set is represented as
feature vectors, i.e.,

[Gθ(πa)](Y ) = [Gθ(a)](Y ). (8)

Meanwhile, since the u is output of the model at the query coordinates Y = {y1, ..., yny
} ∈ Rny×d,

only the values are used, u = {u(y1), ..., u(yny
)} ∈ Rny×du . Since the output u(y) is a function of

query coordinates, the permutation operation and the function operations are commutative. There-
fore, the output should be permutation-equivariant to the representation of the query coordinates Y ,
when the set is represented as vectors, i.e.,

[Gθ(a)](πY ) = π[Gθ(a)](Y ). (9)

Detailed explanations of the permutation-symmetry can be found in Appendix A.3.

Positional embeddings. Instead of using raw position coordinates for both inputs and outputs
xi, yj ∈ Rd, we concatenate the Fourier embeddings for the position coordinates, which is a com-
mon strategy to enrich the positional information (Vaswani et al., 2017; Mildenhall et al., 2020;
Tancik et al., 2020; Sitzmann et al., 2020). The positional embeddings exploit sine and cosine
functions with frequencies spanning from minimum to maximum frequencies sufficiently covering
the Nyquist rates for corresponding dimensions This simple technique provides the model with the
capability of representing fine-grained functions or wide-spectral components.

4.2 ARCHITECTURE

Following (Lee et al., 2019; Jaegle et al., 2021; 2022; Tang & Ha, 2021), we build our model with
a attention-based architecture consisting of encoder-processor-decoder with modality-agnostic en-
coder and decoder, called mesh-independent operator learner (MIOL) as presented in Figure 1. The
significant modifications from the existing neural operators are mostly in the lifting (encoder) and
projection (decoder) for detaching the dependence of input and output meshes. The encoder en-
codes the input function a to fixed smaller number of latent feature vectors (discretization number:
nx 7→ nz), satisfying permutation-invariance, the processor processes the pair-wise and higher-order
interactions between elements of the latent features vectors (discretization number: nz 7→ nz), and
the decoder decodes the latent features to output solutions at a set of query coordinates Yu (dis-
cretization number: nz 7→ ny) satisfying permutation-equivariance. The permutation-symmetric
property of attention blocks are described in Appendix A.3.

Encoder. We use a cross-attention block as the encoder to encode inputs a ∈ Rnx×(d+da) to a
smaller fixed number nz of learnable queries Z0 ∈ Rnz×dz (typically nz < nx), then the result of
the block is

Z1 = Genc(a) = Attention(Z0, a, a) ∈ Rnz×dh , (10)

which is permutation-invariant to the elements of a and independent of the size of the input nx.
These properties, which make the model mesh-independent to a, are a significant difference from
the lifting component in the existing neural operators, which is not permutation-invariant and outputs
the same size as the inputs nx with point-wise transformation. The encoder is also interpreted as
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a projection inputs domain discretized by nx elements to a latent domain consisting of the smaller
number of nz elements, which is called “inducing points” in (Lee et al., 2019) and reduces the
computational complexity of the following attentional blocks (Jaegle et al., 2021; 2022).

Processor. We use a series of self-attention blocks as the processor each of which takes zl ∈ Rnz×dh

as the input of the query, key, and value components. Then the output of each self-attention block
with l ∈ [1, L− 1] is

Zl+1 = Gl(Zl) = Attention(Zl, Zl, Zl) ∈ Rnz×dh , (11)

which is permutation-equivariant to the elements of Zl, therefore the permutation-invariant property
to the elements of a is preserved through successive modules. Also, the results Zl+1 have fixed
discretization format with fixed ordering and number of elements nz which is decoupled from dis-
cretization format of the input function nx and output functions ny . Due to the decoupling property,
the whole architecture can not only capture the global interactions by the processor but is also appli-
cable to mesh-independent operator learning independent of discretization formats of the input and
output functions.

Decoder. We use a cross-attention block as the decoder to decode the latent vectors from the proces-
sor ZL ∈ Rnz×dh at query coordinates Y ∈ Rny×d. Then the final output of the entire architecture
is

[Gθ(a)](Y ) = Gdec(ZL) = Attention(Y,ZL, ZL) ∈ Rny×du , (12)

which is permutation-equivariant to the elements of Yu, therefore every solution uj corresponds
to query coordinates yj . This property makes the model applicable to any arbitrary discretization
format of Y . Since the result from the processor is independent of the discretization format of input
function a, the model is also applicable to any arbitrary discretization format of a.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. Our experiments are conducted on several PDE benchmarks datasets following (Li et al.,
2021b), such as Burgers equations, Darcy flow, and Navier-Stokes equations, and 3D spherical
shallow water dataset following (Yin et al., 2022), to investigate the flexibility and generalization
abilities of MIOL through various downstream tasks. Details of the equations and the problems are
described in Appendix A.5.

Baselines. We took several representative architectures as baselines for PDE benchmarks problems,
such as the original graph neural operator (GNO) (Li et al., 2020a), the multipole graph neural
operator (MGNO) (Li et al., 2020b), a neural operator based on low-rank decomposition (LNO)
(Li et al., 2021b), the deep operator network (DeepONet) (Lu et al., 2019), and the Fourier neural
operator (FNO) (Li et al., 2021b), and baselines for a 3D spherical shallow water problem, such
as message passing PDE solver (MP-PDE) (Brandstetter et al., 2022), and dynamic-aware implicit
neural representation (DINO) (Yin et al., 2022).

While we follow the original training procedures of (Li et al., 2021b), we take extended tasks with
test sets varying discretization points for input a and solution u (or query coordinates y) to eval-
uate the generalization abilities of architectures for input and output formats. Results for experi-
ments already discussed on these baselines were obtained from the related literature, and results for
the extended tasks that have not been discussed before have been reproduced from their original
codes. Note that the ‘n/a’ result will occur when the baselines cannot be applicable for some down-
stream tasks. The implementation details and additional experimental results can be found in the
Appendix A.6, A.7, respectively.

5.2 RESULTS

Original benchmark tasks. Original benchmarks tasks on Burgers’ equation and Darcy flow for
different resolutions are presented in Figure 2, and the corresponding qualitative results are presented
in Table 6, and Table 7 (Appendix A.7), where all of the results except ours are brought from
(Li et al., 2021b). The results show that our MIOL outperforms almost all neural operators at
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Figure 2: Benchmarks on (a) Burgers’ equation, and (b) Darcy Flow for different resolutions.

every resolution in a mesh-invariant way, except FNO in case of Darcy flow. This is because FNO
explicitly exploits structural bias of the 2D structured array with equally spaced grids, while MIOL
does not use the structural bias. For example, in the case of 2D Darcy flow, when the input values
a(x1, x2) are given at 85 × 85 grid points (where the dimension of position coordinates d = 2 and
the corresponding function values da = 1), MIOL flattens to treat the batch-wise inputs as flatten
arrays like a ∈ Rb×7225×3, while FNO treats them as 2D structured-arrays like a ∈ Rb×85×85×3.

Tasks for evaluating mesh-independence. To distinguish the specific generalization abilities of the
existing architectures and to show that our proposed MIOL has all the generalization abilities and
is robustly applicable even for tasks that the existing architectures are unable to solve, we compare
MIOL with two main baselines, DeepONet (Lu et al., 2019) and FNO (Li et al., 2021b), by the
following selective tasks presented in Table 6.

- Task 1: Supervised learning. This is the original setting of the existing operator learning
models which evaluate the performance under the supervised learning settings. The results are
included in the original benchmark tasks, which shows that the MIOL is competitive with others
and slightly worse than FNO in case of Darcy flow.

- Task 2: Mesh-independence to input, but requiring the same grids for a = u. This task,
discussed in previous works of neural operators (Li et al., 2021b), evaluates the performance under
zero-shot learning settings where the solutions are provided in unseen discretization during training.
However, requiring the same grids for input and output functions, the solutions u of neural operators
are only able to be queried at the same grids of a. DeepONets are not commonly applicable due to
requirements of fixed input mesh, while FNO and MIOL are robustly applicable and performances
are almost mesh-invariant.

- Task 3: Mesh-independence to output, but requiring the same grids for train a = test a.
This task, discussed in previous works on operator networks (Lu et al., 2019), evaluates the perfor-
mance under zero-shot learning settings where the solutions are provided in unseen discretization
during training. However, operator networks are only applicable when the discretization formats
(same numbers and locations) of the input function remain the same during training and testing.
FNO are not commonly applicable due to the requirements of the same grids for a = u, whereas
DeepONet and MIOL are robustly applicable, and their performances are almost mesh-invariant.

- Task 4: Randomly masked input, and queried at all points. This task, which has not been
discussed before, evaluates the performance under a zero-shot learning setting, wherein the dis-
cretizations of input and output functions are allowed to have different numbers and be in random
locations. The settings of the random mask for every input function and queried at all given points
are sufficient to evaluate whether the solution of the model is independent of the discretization of
the input function and can be queried at any point. DeepONet and FNO are not applicable because
of their restrictions, whereas MIOL is robustly applicable.

Predictions at any query point from the varying number and irregular distributed inputs.
Additionally, Figure 3 visualizes the predictions of MIOL at all given query coordinates from the
varying number and irregularly distributed inputs in Burgers’ equation (left), and Darcy Flow (right).
This visualization is reminiscent of few-shot regression problems (Finn et al., 2017; Kim et al., 2019)
for u(y) at query locations y, where the support set is given by relatively few samples of discretized
inputs a that should be mapped to the output space u through a series of integral transforms. As
presented, the more shots are given, the closer the predictions are to the ground truth.
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Table 2: Relative L2 errors on Burgers’ equation and Darcy flow under different settings.

Task Train grids Test grids Models
a, u a u DeepONet FNO MIOL (ours)

Burgers’ equation
(1)

1024

1024 1024 0.1582 0.0160 0.0104
(2) 8192 8192 n/a 0.0139 0.0090
(3) 1024 8192 0.1584 n/a 0.0106
(4) 512 (50% mask) 1024 n/a n/a 0.0479

Darcy flow
(1)

85×85

85×85 85×85 0.0765 0.0108 0.0172
(2) 421×421 421×421 n/a 0.0098 0.0170
(3) 85×85 421×421 0.0766 n/a 0.0173
(4) 3612 (50% mask) 85×85 n/a n/a 0.0272

Figure 3: Predictions of MIOL at all query coordinates from the varying number and irregular
distributed inputs on Burgers’ equation (left), and Darcy Flow (right).

Applications to time-stepping systems. For the time-dependent PDEs, we assumed that the sys-
tems follow a Markov process in which the state at time t + dt is described as wt+dt = Gdt · wt,
where the operator Gdt during dt is not dependent on time (Li et al., 2021a). When we set the dt = 1,
the state of the system at time t is denoted as wt = Gdec · [Gt−1 · · · · · G1] · Genc(w0) where Genc

and Gdec are the encoder and decoder implemented by the cross-attention blocks, respectively, and
Gdt = G1 = · · · = Gt−1 are identical processors implemented by the same self-attention blocks.
The goal is to learn the mapping from the initial state up to time T , G : w0|X 7→ w|X×(0,T ]. The

models were trained by minimizing the object Ew0∼µ

[
1
T

∑T−1
t=0 L(Gdec · Gdt · Genc(wt), wt+1)

]
.

Figure 4 visualizes that a initial states were encoded and processed iteratively with the same proces-
sors in latent space. The latent features were decoded to output the predictions of the state fields at
the corresponding time. The quantitative results for Navier-Stokes equation and spherical shallow
water are presented in Table 8, and Table 9, respectively.

Performances according to input masking ratios. Relative L2 errors according to input masking
ratios (%) on the extended tasks are presented in Figure 5 and Table 3. The discretized inputs are
randomly masked with corresponding ratios. The errors are consistently low when the masking
ratio is lower than approximately 50%, where the performances according to input masking ratios
are found in Figure 5 and Table 3. The efficient set encoder can aggregate sufficient information
from the subsampled input a(p)i to make sufficiently small discretization errors from Equation 4.
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Figure 4: Initial states were encoded, processed, and decoded to output the predictions of states for
the Navier-Stokes equation (left) and 3D spherical shallow water (right) at the corresponding time.
Since MIOL can process arbitrary discretization formats of input and output, it can be applicable
even when the initial input states are randomly masked with masking ratio p = 50% (left) or can be
queried even at finer grids on the 3D spherical surface (right).

Figure 5: Relative L2 errors according to input masking ratios (%) on (a) Burgers’ equation, (b)
Darcy Flow, and (c) Navier-Stokes equations.

Table 3: Relative L2 errors according to input masking ratios (%).
Masking ratio 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Burgers 0.0104 0.0154 0.0214 0.0399 0.0340 0.0479 0.0809 0.1081 0.1516 0.1649
Darcy flow 0.0172 0.0185 0.0198 0.0221 0.0243 0.0272 0.0324 0.0424 0.0569 0.1019

Navier-Stokes 0.0349 0.0437 0.0538 0.0514 0.0538 0.0644 0.1030 0.1378 0.1504 0.1776

6 CONCLUSIONS AND LIMITATIONS

Conclusions. In this study, we raise potential issues with existing operator learning models for PDEs
from the perspective of discretization for the continuous input/output functions of the systems when
the observations are irregular and have discrepancies between training and testing measurement
formats. To solve these issues, we constructed a fully-attentional architecture called MIOL, which
treats discretized functions as set-valued data without prior data structures and structurally separates
dependencies on input and output meshes. MIOL is evaluated on the original tasks and extended
downstream tasks and compared with other existing representative models. The results show that
our model is not only competitive in original operator learning tasks but also robustly applicable in
extended tasks which are natural consequences of continuous solutions for physical systems but are
not compatible with existing representative models.

Limitations. First, although our main contribution is to construct an operator learning model to
be flexible in measurement formats, the higher the dimension in which the measurement points
can be placed, the performances of our model tested on some original benchmarks are slightly
worse than the problem-specific model (details in Appendix A.7), and the computational costs to
obtain flexibility grow exponentially (in Table 5). It could be an important direction for future
work to address the efficiency and scaling issues of discretization numbers of the input and output
functions. Second, the experimental setting was far from a real-world problem. Applications to
realistic scenarios are an interesting direction for future research. For example, we might consider
using a model trained on the Navier-Stokes dataset to analyze the real fluid flow along complex
geometries regarded as the same phenomena with different measurement formats.
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A APPENDIX

A.1 ARCHITECTURE SCHEMATICS

Figure 6: Schematics of operator learning architectures, such as operator networks (left), neural
operators (middle), and our proposed MIOL (right). For each respective formulation, the gray circles
are given and the red circles are the corresponding outputs.

A.2 RELATED WORKS

Neural networks for PDEs. There has been increasing interest in utilizing neural networks for
PDEs that can be divided into several lines. In (Raissi et al., 2019; Sirignano & Spiliopoulos, 2018;
Karniadakis et al., 2021), neural networks were used as approximations of the solution when given
the boundary conditions and collocations points constrained to known governing equations of the
system, called physics-informed neural networks. It can be an alternative to traditional PDE solvers,
yielding mesh-independent and relatively high-fidelity solutions. However, these methods require
full knowledge of the PDEs, and the trained model is usually not reusable for new systems, otherwise
requires expensive re-training for every new boundary condition. Meanwhile, several studies have
been conducted to learn reusable governing operators for generalization to new systems. A universal
operator approximation theorem (Chen & Chen, 1995) was originally implemented by single-layer
neural networks, and (Lu et al., 2019; 2021) develop the theorem by extending the architectures
with current deep networks, called DeepONets, leading them to be more expressive. Neural opera-
tors have been originally implemented by message passing on graphs (Li et al., 2020a;b). However,
the graph-based neural operator was limited due to its stability issues and the quadratically growing
costs for computing the integral operator (You et al., 2022; Li et al., 2021b). Fourier neural opera-
tors (FNO), which utilize fast Fourier transform (FFT) to efficiently compute the integral operators
in Fourier space, have been widely used as successful models for operator learning in a range of
science and engineering for their efficacy and accuracy (Li et al., 2021b; Yang et al., 2021; Pathak
et al., 2022). Furthermore, (Gupta et al., 2021) uses multi-wavelet transform to approximate the
kernel of the operators. Close to our works, (Cao, 2021) use Transformer-style architectures to
approximate the integral operation, but they use problem-specific feature extractors and decoding
regressors which make the model biased toward specific equations.

Set representation learning. In recent years, it has been witnessed that neural networks on sets
gained attention starting from learning simple operations on unordered sets (e.g., sum or max) and
processing the point clouds (Zaheer et al., 2017; Ravanbakhsh et al., 2016; Qi et al., 2017a;b). The
elements of the set are transformed into new representations through point-wise feed-forward neural
networks which are permutation-equivariance. Then, the representation of the set is obtained by
aggregation across the entire elements of the set by permutation-invariant functions, such as sum-
pooling (Zaheer et al., 2017) or max-pooling (Qi et al., 2017a;b). However, a theoretical study has
been investigated to claim the limitations of the representation power of the methods (Wagstaff et al.,
2019; Jurewicz & Derczynski, 2021). Additionally, the methods make it difficult for the model
to learn pair-wise and higher-order interactions between the elements of the sets, which are lost
during those pooling operations. More recently, several groups have suggested more sophisticated
models for treating set-valued inputs through modifying Transformers (Vaswani et al., 2017). Set
Transformer uses a cross-attention module considered as learnable parameterized pooling operations
to project set-valued input into smaller latent vectors, which ensure handling arbitrary cardinality
and permutation of the inputs (Lee et al., 2019). Perceiver uses a similar strategy by emphasizing
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the efficiency of computational cost and the property of modality-agnostic which can be applied to
a wide range of large-scale input modalities, such as images, point clouds, audio, and video (Jaegle
et al., 2021). Furthermore, beyond simple outputs like classification, Perceiver IO uses another
cross-attention module to decode complex outputs modalities which can be applied to the domains
of language, optical flow, audio-visual sequence, and game environments (Jaegle et al., 2022). A
similar strategy is also applied to reinforcement learning (Tang & Ha, 2021).

A.3 PERMUTATION-SYMMETRY AND ATTENTION

Detail explanation of equation 7. Here is a brief explanation of the approximation with the in-
tegral for the cross-attention mechanism, where the softmax for the attention matrix is ignored for
simplicity.

Attn(Y,X,X) =

 Attn(y1, X,X)
...

Attn(yny , X,X)

 =

 q(y1)
...

q(yny )


 k1(x1) . . . k1(xnx

)
...

. . .
...

kdq (x1) . . . kdq (xnx)


 v(x1)

...
v(xnx

)



=

 q(y1) · k(x1) . . . q(y1) · k(xnx)
...

. . .
...

q(yny
) · k(x1) . . . q(yny

) · k(xnx
)


 v(x1)

...
v(xnx)

 =


∑nx

i=1(q(y1) · k(xi))v(xi)
...∑nx

i=1(q(yny ) · k(xi))v(xi)



≈


∫
Ωx

(q(y1) · k(x))v(x)dx
...∫

Ωx
(q(yny ) · k(x))v(x)dx

 =

∫
Ωx

(q(Y ) · k(x))v(x)dx.

(13)
Here, the discretization of input is {x1, ..., xnx

} (as key and value vectors), and it can be changed
to the discretization of output {y1, ..., yny} (as query vectors) with cardinality changed from nx to
ny . Using this mechanism, we can detach the dependences of discretization formats of input and
output from the processor, by encoding arbitrary discretization {x1, ..., xnx} to a fixed size (nz)
of learnable latent set vectors, and decoding the latent set vectors to output arbitrary discretization
{y1, ..., yny

}. The discretization number is varied as nx (arbitrary) → nz (fixed) → ny (arbitrary).

Permutation invariance and equivariance. For a function whose input can be represented by a set,
there can be two interesting symmetries with respect to any permutations; permutation-invariance,
and permutation-equivariance. Let F is the function with set-valued inputs X = {x1, x2, ..., xn},
xi ∈ Rd. Since deep learning models can not directly treat the set-valued input, the input data is
provided as ordered vectors representing one of n! permutations of X . In practice, with arbitrary
permutation action π to the first dimension of the matrix-represented X ∈ Rn×d, the permutation-
invariance and equivariance are defined as,

F (πX) = F (X), (permutation-invariance) ,
F (πX) = πF (X), (permutation-equivariance) ,

(14)

where the output of the permutation-invariant function does not depend on ordering and the cardinal-
ity of the input set, while the ordering and the cardinality of the output of the permutation-equivariant
function remain consistent with those of the input set. A full mathematical definition and details of
the properties can be found in (Zaheer et al., 2017; Murphy et al., 2019; Wagstaff et al., 2021; Maron
et al., 2020).

Permutation-symmetric property of attention. Here, we attempt to explain that the attention
module Attn(Y,X,X) in Equation 7 is permutation-invariant to X and permutation-equivariant
to Y . Let the permutation matrix to the element (first) dimension, P ∈ Rn×n. First, when the
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permutation matrix P is multiplied to the X , the output of the attention is

Attn(Y, PX,PX) = σ(QKT )V

= σ
(
YW q

(
PXW k

)T)
PXW v

= σ
(
YW q

(
XW k

)T
PT
)
PXW v

= σ
(
YW q

(
XW k

)T) (
PTP

)
XW v

= σ
(
YW q

(
XW k

)T)
XW v

= Attn(Y,X,X),

(15)

which states that the Attn(Y,X,X) is permutation-invariant to X . Also, when the permutation
matrix P is multiplied to the Y , the output of the attention is

Attn(PY,X,X) = σ(QKT )V

= σ
(
PYW q

(
XW k

)T)
XW v

= Pσ
(
YW q

(
XW k

)T)
XW v

= PAttn(Y,X,X),

(16)

which states that the Attn(Y,X,X) is permutation-equivariant to Y . Thus, it is easily proved that
self-attention Attn(X,X,X) is permutation-equivariant to X ,

Attn(PX,PX,PX) = PAttn(X,PX,PX) = PAttn(X,X,X). (17)

A.4 ATTENTION BLOCKS

Following (Lee et al., 2019; Jaegle et al., 2021; 2022), mesh-independent operator learner (MIOL)
consists of two types of attention blocks, cross- and self-attention blocks, which implement the
respective attention mechanisms. The attention blocks have the following shared structure, which
takes two input arrays, a query input Y ∈ Rny×dy and a key-value input X ∈ Rnx×dx ,

O = Y +Attn(LayerNorm(Y ), LayerNorm(X), LayerNorm(X)),

Attention(Y,X,X) = O + FF (LayerNorm(O)),
(18)

where LayerNorm is layer normalization (Ba et al., 2016), FF consists of two point-wise feed-
forward neural networks with a GELU nonlinearity (Hendrycks & Gimpel, 2016), and the exact
calculation of attention Attn is

Attn(Xq, Xk, Xv) = softmax

(
QKT√

dq

)
V, (19)

where Q = XqW q ∈ Rny×dq , K = XkW k ∈ Rnx×dq , and V = XvW v ∈ Rnx×dv for a single
headed attention. In the case of multi-headed attention, several outputs from different learnable
parameters are concatenated and projected with the linear transformation. Here, the output of cross-
attention block Attention(Y,X,X) is also permutation-invariant to X and permutation-equivariant
to Y , and the output of self-attention block Attention(X,X,X) is also permutation-equivariant
to X , because the other modules operate in a point-wise way, the properties of symmetry for the
attention modules are preserved for the corresponding attention blocks.

A.5 BENCHMARKS

Burgers’ equation. First, we consider a benchmark problem of 1D Burgers’ equation which is
a non-linear parabolic PDE combining the terms of convection and diffusion. The equation with
periodic boundary conditions is

∂tu(x, t) + ∂x(u
2(x, t)/2) = ν∂xxu(x, t), x ∈ (0, 1), t ∈ (0, 1]

u(x, 0) = u0(x), x ∈ (0, 1)
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where u0 ∼ µ is the initial state generated from µ = N (0, 625(−∆+ 25I)−2) and ν = 0.1 is the
viscosity coefficient. The goal of operator learning is to learn mapping the initial state to the solution
at time one, G : u0 7→ u(·, 1).
Darcy flow. Second, we consider another benchmark problem of 2D steady-state Darcy flow which
is a second-order elliptic PDE describing the flow of fluid through a porous medium. The equation
of Darcy flow on the unit box is

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2

u(x) = 0, x ∈ ∂(0, 1)2

where u is density of the fluid, a ∼ µ is the diffusion field generated from µ = N (0, (−∆+9I)−2)
with fixed forcing function f = 1. The goal of operator learning is to learn mapping the diffusion
field to the solution of the density, G : a 7→ u.

Navier-Stokes equation. Third, we consider another benchmark problem of 2D Navier-Stokes
equation describing the dynamics of a viscous, incompressible fluid. The equation in vorticity form
on the unit torus is

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, l)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, l)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, l)2

where u is the velocity field, w = ∇×u is the vorticity field, w0 ∼ µ is the initial vorticity field gen-
erated from µ = N (0, 73/2(−∆+ 49I)−2.5) with periodic boundary conditions, ν is the viscosity
coefficient and forcing function is kept f(x) = 0.1 (sin (2π (x1 + x2)) + cos (2π (x1 + x2))).

A.6 IMPLEMENTATION DETAILS

Table 4: Implementation details for training.
System Burgers’ equation Darcy flow Navier-Stokes equation

Encoder

Input function values, a|Xa ∈ Rnx×da 1024×1 7225×1 4096×1
Positional embedding 1024×129 7225×130 4096×50

Frequency bins, K 64 32 12
Number of heads 4 1 1

Inputs, a ∈ R(d+da) 1024×130 7225×131 4096×51
Processor

Learnable queries, Z0 ∈ Rnz×dz 256×64 256×64 128×64
Latent channels, dh 64 64 64
Number of heads 8 8 8

Number of blocks, L 1 4 2
Decoder

Query coordinates, Yu ∈ Rny×d 1024×1 7225×2 4096×2
Positional embedding 1024×129 7225×130 4096×50
Outputs, u ∈ Rny×du 1024×1 7225×1 4096×1

Burgers’ equation. The positional embeddings at position coordinate x ∈ [0, 1] from both in-
put/output domain consists of [x, sin (fkπx), cos (fkπx)], where fk are from equally spaced 64
frequencies from min 1 to max resolution 64 are used, resulting to have 129 = 1 + 2 × 64 dimen-
sions. For the encoder, a 4-headed cross-attention module is used, and the number of the elements
(first) and channel (second) dimension of latent space are 256 and 64, respectively. For the proces-
sor, a 8-headed self-attention module with the same channel dimension of latent’s is used. For the
decoder, a 4-headed cross-attention module with the channel dimension of 64 is used.

Darcy flow. The positional embeddings at position coordinate (x1, x2) ∈ [0, 1]2 of diffusion
field a(x1, x2) consists of [x1, x2, sin (fkπx1), sin (fkπx2), cos (fkπx1), cos (fkπx2)], where fk
are from equally spaced 32 frequencies from min 1 to max resolution 32 are used, resulting to have
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130 = 2 × (1 + 2 × 32) dimensions. For the encoder, a single-headed cross-attention module is
used, and the number of the elements (first) and channel (second) dimension of latent space are 256
and 64, respectively. For the processor, four 8-headed self-attention modules with the same channel
dimension of latent’s are used. For the decoder, a single-headed cross-attention module with the
channel dimension of 64 is used.

Navier-Stokes equation. The positional embeddings at position coordinate (x1, x2) ∈ [0, 1]2 of the
vorticity field w(x1, x2) consists of [x1, x2, sin (fkπx1), sin (fkπx2), cos (fkπx1), cos (fkπx2)],
where fk are from equally spaced 32 frequencies from min 1 to max resolution 32 are used, re-
sulting to have 50 = 2× (1 + 2× 12) dimensions. For the encoder, a single-headed cross-attention
module is used, and the number of the elements (first) and channel (second) dimension of latent
space are 128 and 64, respectively. For the processor, two 8-headed self-attention modules with
the same channel dimension of latent’s are used. For the decoder, a single-headed cross-attention
module with the channel dimension of 64 is used.

Spherical shallow water. The position coordinate (x1, x2, x3) are transformed from spherical coor-
dinates of latitude and longitude ϕ, θ ∈ [−π/2, π/2]×[−π, π]. Therefore, the positional embeddings
can be [x1, x2, x3, sin (fkπx1), sin (fkπx2), sin (fkπx3), cos (fkπx1), cos (fkπx2), cos (fkπx3)],
where fk are from equally spaced 24 frequencies from min 1 to max resolution 32 are used, re-
sulting to have 147 = 3× (1+2× 24) dimensions. For the encoder, a single-headed cross-attention
module is used, and the number of the elements (first) and channel (second) dimension of latent
space are 256 and 128, respectively. For the processor, two 8-headed self-attention modules with
the same channel dimension of latent’s are used. For the decoder, a single-headed cross-attention
module with the channel dimension of 128 is used.

Optimization. For all systems, the experiments are conducted on a GTX TITAN X GPU and we
use Adam optimizer (Kingma & Ba, 2014) to train MIOL for 500 epochs with initial learning rate
of 0.001 which is halved every 100 epochs. Batch sizes for Burgers’ equation and Navier-Stokes
equations are set to 20, and for Darcy flow is set to 10.

Computational complexity comparisons. In Table 5, we compare MIOL with the baselines in
perspective of the training time, memory usage, and number of parameters on the benchmarks. The
training time is measured during one epoch of each benchmarks training set, the memory usage in-
dicates the GPU memory usage for the active Python process recorded from nvidia-smi command.
The time and memory cost of MIOL is on par with both baselines in the case of Burgers’ equation
but increases drastically compared with both baselines in the case of Darcy flow. By flattening the
discretized inputs into a 1D sequence (identical point set) before processing the inputs and query
coordinates, which removes any intrinsic locality of data, MIOL is the modality-agnostic architec-
ture that does not exploit the structural bias of data (such as a 2D structured array). Therefore, for
instance, MIOL regards the inputs of Darcy flow as 7,225 sizes of 1D sequence instead of 85×85
sizes of 2D structured data, which leads to exponential growth computational cost compared to en-
coding 1D data such as inputs of Burgers’ equations. Exponentially more resources are required
for MIOL to have the capability to handle the more highly structured data in a modality-agnostic
way for flexible input formats and query coordinates. Meanwhile, while attention-based architecture
consists of QKV modules where the parameters are shared across the input elements, kernel-based
architecture needs a large number of parameters when the dimension of data increases due to the
dimension of the kernel increasing along the dimension of data. Therefore, although the number of
parameters of FNO is smaller than MIOL in the case of Burgers’ equations, it becomes much larger
than those of MIOL. In summary, MIOL has fewer parameters but becomes more expressive when
paying a large amount of computational cost for gaining the flexibility to data formats, while FNO
has a huge number of parameters, which already include some prior data structure, requiring less
training cost but could be overfitted to the data structure.

A.7 ADDITIONAL RESULTS

Quantitative results for 1D Burgers’ equation, 2D Darcy flow, Navier-Stokes equation, and 3D
spherical shallow water.

Comparisons with other set-encoder. The comparison model consists of encoder-processor-
decoder like MIOL, where encoder is replaced by Deepsets (Zaheer et al., 2017) variant with
average-pooling operations, while processor and decoder are the same as MIOL, called Deepsets-
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Table 5: Computational complexity comparisons with baselines.
Model Training time per epoch Memory usage Number of parameters

Burgers’ equation
DeepONet 0.645 s 1.34 GB 107,405

FNO 0.871 s 1.45 GB 57,825
MIOL 0.715 s 1.63 GB 125,204

Darcy flow
DeepONet 0.732 s 1.40 GB 417,550

FNO 1.881 s 1.96 GB 1,188,353
MIOL 8.843 s 5.68 GB 401,514

Table 6: Benchmarks on 1D Burgers’ equation
Models s = 256 s = 512 s = 1024 s = 2048 s = 4096 s = 8192

FCN 0.0958 0.1407 0.1877 0.2313 0.2855 0.3238
PCANN 0.0398 0.0395 0.0391 0.0383 0.0392 0.0393

GNO 0.0555 0.0594 0.0651 0.0663 0.0666 0.0699
LNO 0.0212 0.0221 0.0217 0.0219 0.0200 0.0189

MGNO 0.0243 0.0355 0.0374 0.0360 0.0364 0.0364
FNO 0.0149 0.0158 0.0160 0.0146 0.0142 0.0139

MIOL (ours) 0.0105 0.0109 0.0104 0.0092 0.0090 0.0099

Table 7: Benchmarks on 2D Darcy Flow
Models s = 85 s = 141 s = 211 s = 421

FCN 0.0253 0.0493 0.0727 0.1097
PCANN 0.0299 0.0298 0.0298 0.0299

GNO 0.0346 0.0332 0.0342 0.0369
LNO 0.0520 0.0461 0.0445 -

MGNO 0.0416 0.0428 0.0428 0.0420
FNO 0.0108 0.0109 0.0109 0.0098

MIOL (ours) 0.0172 0.0173 0.0177 0.0182

Table 8: Relative L2 errors on Navier-Stokes equation under different settings.
Train grids Test grids Models

a, u a u FNO MIOL (ours)

64×64 64×64 same with a 0.0110 0.0349
2048 (50% mask) 64×64 n/a 0.0644

Table 9: L2 super-resolution test errors on spherical shallow water
Model 0 < T ≤ 10 10 < T ≤ 20

I-MP-PDE (Brandstetter et al., 2022) 1.908e-3 7.240e-3
DINO (Yin et al., 2022) 1.063e-4 6.466e-4

MIOL (ours) 4.524e-4 1.122e-3
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variant. The performance of Deepsets-variants on Burgers equation is presented in Table 10, which
shows not competitive compared to MIOL. The outputs of the attention layer can be calculated by
the weighted sum of attention and inputs, where the attention values have more expressive repre-
sentation with extra learnable parameters Z0 and inputs a, while the outputs of the existing pooling
operation are calculated by fixed coefficient weighted sum (or operation) of inputs a (in the case of
avg-pooling, the weights are 1

nx
). Therefore, from the perspective of the modeling operator, much

of the information of interactions between pair-wise input elements is lost during those pooling
operations.

Table 10: Comparisons with other set-encoder.
Train grids Test grids Models

a, u a u Deepsets-variants MIOL (ours)
(1)

1024

1024 a 0.0179 0.0104
(2) 8192 8192 a 0.0183 0.0090
(3) 1024 8192 0.0189 0.0106
(4) 512 (50% mask), 1024 0.0748 0.0479
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