
Published as a conference paper at ICLR 2023

CYCLE TO CLIQUE (CY2C) GRAPH NEURAL NET-
WORK: A SIGHT TO SEE BEYOND NEIGHBORHOOD
AGGREGATION

Yun Young Choi ∗, Sun Woo Park ∗& Youngho Woo †

Division of Industrial Mathematics
National Institute for Mathematical Sciences
Daejeon, South Korea

U Jin Choi
Department of Mathematical Sciences
KAIST
Daejeon, South Korea

ABSTRACT

Graph neural networks have been successfully adapted for learning vector repre-
sentations of graphs through various neighborhood aggregation schemes. Previous
researches suggest, however, that they possess limitations in incorporating key non-
Euclidean topological properties of graphs. This paper mathematically identifies
the caliber of graph neural networks in classifying isomorphism classes of graphs
with continuous node attributes up to their local topological properties. In light
of these observations, we construct the Cycle to Clique graph neural network, a
novel yet simple algorithm which topologically enriches the input data of conven-
tional graph neural networks while preserving their architectural components. This
method theoretically outperforms conventional graph neural networks in classify-
ing isomorphism classes of graphs while ensuring comparable time complexity
in representing random graphs. Empirical results further support that the novel
algorithm produces comparable or enhanced results in classifying benchmark graph
data sets compared to contemporary variants of graph neural networks.

1 INTRODUCTION

Graph neural networks (GNN) are prominent deep learning methods for learning vector representation
of graphs. Research in GNNs explores their empirical capabilities and effectiveness in classifying
node labels, classifying graphs, and predicting links by modifying the message passing layers or
pooling methods. These experiments support that GNNs can achieve state-of-the-art performances
in executing these tasks and ensure equivalent performance to that of the Weisfeiler-Lehman (WL)
isomorphism test in representing graphs with discrete node labels Xu et al. (2018). However, they
have limited capabilities in incorporating global topological properties of graphs, thereby exhibiting
restricted discriminative power in distinguishing isomorphism classes of graphs Bouritsas et al.
(2022); Rieck et al. (2019).

To overcome these limitations, this paper presents a mathematical framework that examines which
topological properties of graphs with continuous node attribute that conventional GNNs can encap-
sulate. Inspired by the works of Krebs and Verbitsky Krebs & Verbitsky (2015) and Xu et al Xu
et al. (2018), we use the theory of covering spaces to prove that under some constraints, a pair of
graphs with continuous node attributes is distinguishable by GNNs if and only if there exist isomor-
phisms among the collection of their finite depth unfolding trees that induce equality of induced node
attributes. This gives a universal formulation which pinpoints the discriminative power of a wide
range of variants of GNNs and the topological enrichments these models endow over the graph data
set. Such approaches include enriching node attributes, using persistent homological techniques,
gluing high dimensional complexes, and keeping track of recurring subgraph structures. Among
these candidates, we focus on the procedure of transforming the cycle bases of graphs to complete
subgraphs or cliques. This operation can be easily implemented by adding suitable edges to transform
a cyclic subgraph into a clique and masking any other edges not included in the subgraph. The

∗Equal Contribution
†Correspondence to: youngw@nims.re.kr

1

Published as a conference paper at ICLR 2023

adjacency matrices obtained from the induced cliques, denoted as clique adjacency matrices, allow
GNNs to effectively process the bases of cycles, which are topological properties equivalent to the
first homological invariants of graphs Paton (1969). In particular, the operation can be thought as a
straightforward pre-processing procedure independent from training dynamical filtration functions or
attaching higher dimensional cells Horn et al. (2021); Bouritsas et al. (2022); Bodnar et al. (2021b;a),
which are previously carefully studied methods for encapsulating the cyclic structures of graphs.

We thus propose the Cycle-to-Clique Graph Neural Network (Cy2C-GNN), a graph neural network
whose message passing layers compute two types of hidden node attributes, each obtained from the
adjacency matrix and the induced clique adjacency matrix of a graph. We confirm that Cy2C-GNN
effectively processes cycle bases of graphs, thus surpassing the strengths of conventional GNNs.
Experimental results support that Cy2C-GNN ensures comparable performance to GNNs that utilize
persistent homological techniques with both fixed and arbitrary filtration functions. Furthermore, the
simplicity of the architecture guarantees equivalent computational complexity to conventional GNNs
in representing random graphs and the effective utilization of trainable parameters.

Our main contributions can therefore be summarized as follows:

1. Theoretical Foundation: We use the theory of covering spaces to prove that conventional
GNNs fail to effectively represent cyclic structures of graphs with continuous node attributes.
(Theorem 3.3, Section 3)

2. A Simple yet Novel Network: We propose a novel algorithm called “Cy2C-GNN” which
overcomes the theoretical limitations by enriching the topological properties of the input
data admitted by GNNs with clique adjacency matrices, which does not require training
filtration functions or attaching high-dimensional complexes. (Theorem 4.3, Section 4)

3. Efficient Enhancements: The proposed algorithm effectively incorporates cyclic structures
of graph data sets while ensuring equivalent computational complexity to conventional
GNNs for representing random graphs and adaptability to variants of GNNs. (Section 5)

2 RELATED WORKS

Graph Neural Networks (GNNs) We recall the construction of GNNs as suggested in Xu et
al Xu et al. (2018). Denote by GNNl the conventional GNN (GNN) comprised of composition of
l neighborhood aggregating layers. Each m-th layer H(m) of the network constructs hidden node
attributes of dimension km, denoted as h(m)

v , using the following composition of functions:{
h
(m)
v := COMBINE(m)

(
h
(m−1)
v ,AGGREGATE(m)

v

({{
h
(m−1)
u | u ∈ N(v)

}}))
h
(0)
v := Xv

(1)

Here, Xv is the initial node attribute at v, N(v) is the set of nodes adjacent to v ∈ V (G),
AGGREGATE(m)

v is a function which aggregates features of nodes adjacency to v, and COMBINE(m)

is a function which combines features of the node v with those of nodes adjacent to v.

Denote by H(l) the final layer of the network. The K-dimensional vector representation of G, denoted
as hG, is given by

hG := READOUT(l)
(
{{h(l)

v | v ∈ V (G)}}
)

(2)

where READOUT(l) is the graph readout function of node features updated from l hidden layers. We
refer readers to Appendix A.2 for a rigorous definition of graph neural networks.

A wide range of GNNs and graph representation techniques can be formulated in terms of the
construction outlined above. For example, the WL test is a classical technique which consists of com-
bining adjacent discrete node labels, substituting newly obtained labels, and constructing a complete
histogram of updated labels. The test is equivalent to conventional GNNs whose aggregation and
combination functions correspond to sums of multisets, and the graph readout function corresponds
to a hashing function of discrete node labels. Other well-known networks whose architecture can be
formulated using conventional GNNs from Section 2 include graph convolutional networks (GCN),
graph attention networks (GAT), and graph isomorphism networks (GIN) Kipf & Welling (2016);
Veličković et al. (2017); Xu et al. (2018).

2

Published as a conference paper at ICLR 2023

Covering spaces A number of studies carefully analyzed the strength of graph neural networks
in distinguishing isomorphism classes of graphs with discrete node labels. The work by Krebs and
Verbitsky Krebs & Verbitsky (2015) shows that Weisfeiler-Lehman test can distinguish a pair of
graphs with constant node labels up to isomorphism of their universal covers, i.e. isomorphism of
collections of finite depth unfolding trees. We refer to Appendix A.1. for a rigorous treatment of the
definition of covering spaces of graphs Hatcher (2002); Krebs & Verbitsky (2015).
Definition 2.1. Let G := (V,E) be a directed graph. For each node v ∈ V (G), the depth-1 unfolding
tree rooted at v, denoted as T 1

v , is a subtree of G whose set of nodes consists of the distinguished
node v itself and the nodes w such that there exists a directed edge from v to w. The set of edges of
T 1
v are comprised of directed edges from v. (See Definition A.11 for a rigorous definition.)

For any positive number k, the depth-k unfolding tree rooted at v, denoted as T k
v , is a subtree of G

whose set of nodes consists of the distinguished node v itself and the nodes w such that there exists at
most k consecutive directed edges from v to w. The set of edges of T k

v are comprised of unions of all
k consecutive directed edges from v. (For any undirected graph, the finite depth unfolding tree rooted
at v is defined in an analogous manner, though the set of edges consists of undirected edges instead
of directed edges). The collections of all unfolding trees of G of arbitrary depth can be represented as
a single graph, called the universal cover of G.
Definition 2.2. Let G := (V,E) be a connected graph. The universal cover of G is a connected tree
G̃ (possibly infinite) with the projection map πG : G̃ → G that maps any depth-1 unfolding trees in
G̃ isomorphically to some depth-1 unfolding tree in G. (See Definitions A.12 for more details.)

For graphs with several connected components, their universal covers are disjoint unions of connected
trees, each component of which satisfies the local isomorphism condition from Definition 2.2. We
recall that Xu et al. proved that GNNs with injective aggregation, combination, and graph readout
functions share equivalent strengths with Weisfeiler-Lehman test in distinguishing non-isomorphism
classes of graphs with discrete node labels Xu et al. (2018). Combined with Krebs and Verbitsky’s
result, we obtain that such GNNs can distinguish pairs of graphs with constant node labels up to
isomorphism classes of their universal covers, or finite depth unfolding trees.

Improvements Recent studies focused on excavating novel techniques which may outperform
or optimize GNNs in analyzing graph data sets, such as classifying node attributes, classifying
graph datasets, and predicting links among the set of nodes. Graph kernels measure similarities
among graphs by utilizing inner products between their representations, a form of an embedding to
a reproducing kernel Hilbert space. Borgwardt et al. (2020); Kashima et al. (2003); Shervashidze
et al. (2011); Vishwanathan et al. (2010) Persistent homological techniques and topological data
analytic tools have garnered attention as key sources of encapsulating global topological invariants
of graphs, such as counting the number of connected components or cycles present in given graph
datasets. Several studies focused on incorporating these topological tools with graph kernels by
using pre-defined filtration functions Rieck et al. (2019), or with GNNs by constructing task-specific
filtration functions Hofer et al. (2020); Horn et al. (2021). Keeping track of topological substructures
of graphs is also shown to be effective in enriching the quality of vector representations obtained
from GNNs Rieck et al. (2017); Sizemore et al. (2017). Other approaches focus on proposing novel
message passing schemes as measures to address the limited performance of conventional GNNs
Bodnar et al. (2021b); Bouritsas et al. (2022).

3 GNNS AND UNIVERSAL COVERS

In this section, we utilize the theory of covering spaces to assess the quality of representations
conventional GNNs construct from collections of graphs with continuous node attributes.
Definition 3.1. Let G := (V,E) be a graph. Denote by G′ := (V,E′) the graph where every node
has a self-loop. Denote by G′′ := (V,E′′) the directed graph with a projection map p : G′′ → G′

such that each undirected edge of G′ from v1 to v2 is constructed as follows: If v1 ̸= v2, the
undirected edge corresponds to two directed edges, one edge from v1 to v2, and the other from v2 to
v1: Otherwise, the edge corresponds to a single directed self-loop from v1 to itself.

Figure 1 illustrates the construction of G′ and G′′. Recall that the graph G is endowed with continuous
attributes fG : V (G) → Rk. Respecting the configuration of these attributes, we can endow new

3

Published as a conference paper at ICLR 2023

node attributes to G′′ and the universal cover G̃′′. We call these new assignments of node attributes
to the universal cover G̃′′ the pullback of node attributes.

Definition 3.2. Let fG : V (G) → Rk be the function of node attributes over the graph G. The
pullback of the node attributes to the associated universal cover G̃′′ is the composition of functions
fG′′ ◦ πG′′ : V (G̃′′) → Rk, where fG′′ : V (G′′) → Rk is the node attributes on G′′ obtained from
using the identical node attributes on G. (See Definitions A.10 for a rigorous formulation.)

Inspired from the effectiveness of Weisfeiler-Lehman isomorphism tests Krebs & Verbitsky (2015)
and GNNs Xu et al. (2018), we prove that GNNs with injective message passing layers represent
a pair of graphs with continuous node attributes as distinct vectors if and only if there exists an
isomorphism between their associated universal covers whose node attributes endowed in a manner
that respects the node attributes of the original graphs are identical, i.e. there exist isomorphisms
among the collection of their finite depth unfolding trees that induce equality of the pullback of node
attributes. We refer the proof of the theorem to Appendices A.3. and A.4.

Theorem 3.3. Let G be a collection of finite undirected connected graphs with continuous node
attributes. Let G,H ∈ G be any two connected graphs with the same number of nodes. Denote by
fG : V (G) → Rk and fH : V (H) → Rk an arbitrary choice of continuous node attributes. Let
dG, dH be the diameters of graphs G and H , i.e. the maximum of the shortest length of paths between
any two nodes (see Appendix A.4 for the rigorous definition.)

Suppose a graph neural network GNN l with l layers satisfies the following three constraints:
(1) For every m such that 1 ≤ m ≤ l and for each v ∈ V (G), the functions AGGREGATE(m)

v

and COMBINE(m) are injective: (2) The graph read-out function READOUT is injective: And
(3) l ≥ 2max(dG, dH). Then GNN l maps the pair of graphs G,H ∈ G to identical vector
representations if and only if there exists an isomorphism of universal covers φ : G̃′′ → H̃ ′′ whose
node attributes respecting the node attributes over G and H are identical, i.e.

hG = hH ⇐⇒ ∃ isomorphism φ : G̃′′ → H̃ ′′s.t. fG′′ ◦ πG′′ = fH′′ ◦ πH′′ ◦ φ (3)

Remark 3.4. The above theorem outlines the maximal extent of GNNs in detecting non-isomorphism
classes of graphs, a generalization of results proved in Krebs & Verbitsky (2015), Xu et al. (2018),
and a contemporary result from Bamberger (2022). It also pinpoints that conventional GNNs whose
number of layers are at least twice the maximum diameter of a graph data set are sufficient to fully
distinguish isomorphism classes of graphs up to their universal covers, which to the best of our
knowledge enhances the results from previous researches that focused on analyzing the performance
of GNNs with sufficiently large numbers of layers. Meanwhile, universal covers of graphs are
infinite trees that do not contain any cycles, see Chapter 1.3 of Hatcher (2002) for example. Thus,
conventional GNNs, regardless of the injectivities of the three functions, have limited capability in
incorporating homological invariants of graphs, such as cyclic subgraph structures of a finite graph.

4 CYCLE-TO-CLIQUE GRAPH NEURAL NETWORKS (CY2C-GNN)

Motivation As shown in Theorem 3.3, GNNs can distinguish a collection of finite graphs up to
isomorphism classes of their universal covers and equivalences of pullbacks of node attributes, but
may fail to distinguish a collection of graphs with isomorphic universal covers whose subgraphs are
comprised of cyclic graphs with different number of nodes, see Figure 1 for instance. We note that
Theorem 3.3 proves a rigorous mathematical equivalence relation between the conditions conventional
GNNs satisfy and the nature of isomorphism classes of graphs conventional GNNs can distinguish.
Thus, any novel GNN model which twists one of the conditions from Theorem 3.3 can be considered
as a candidate model for outperforming conventional GNNs.

Using Theorem 3.3, we deduce four possible approaches which may enrich the input data structure
of graphs the GNN may process to distinguish non-isomorphic classes of graphs. (1) Assignment
of unique node attributes: One can assign new attributes to each node. Practical implementations
include assigning node degrees as labels, imposing positional encoding, implementing labeling tricks,
inductive identity coloring, and random assignment of node features. Dwivedi et al. (2022); Geerts
et al. (2021); You et al. (2019); Zhang et al. (2021); You et al. (2021); Abboud et al. (2021). (2)
Persistent homological methods: We may incorporate homological invariants of graphs to GNNs

4

Published as a conference paper at ICLR 2023

Figure 1: (Upper Left) An exemplary graph G with the induced graphs G′ and G′′. (Lower Left)
An illustration of pullback of node attributes (Definition 3.2) defined over the base graph G′′ to its
universal cover G̃′′. The corresponding node attributes and edges over the two graphs are marked in
identical colors. (Right) An illustration of Theorem 3.3 and Theorem 4.3. The two graphs G and H
have identical associated universal covers G̃′′ and H̃ ′′ and equality of pullback of node attributes.

by utilizing or constructing height functions over nodes and edges and constructing the associated
persistence diagrams Carrière et al. (2020); Hofer et al. (2020); Horn et al. (2021); Rieck et al.
(2019). These diagrams allow one to keep track of variations in the number of components and
cycles throughout the filtration of graph dataset induced from the choice of the height functions.
(3) Topological Enrichments: One can also enrich topological structures of graphs by attaching
simplicial and cellular complexes, or incorporating subgraph structures Bodnar et al. (2021b;a);
Bouritsas et al. (2022). This allows GNNs to capture topological substructures of graphs, such as
cliques or cyclic subgraphs. (4) Non-isomorphic universal covers: We may construct a collection
of new graphs with non-isomorphic universal covers induced from cyclic subgraphs. We can thus
allow conventional GNNs to represent a collection of cyclic subgraphs as distinct vectors without
significantly altering their architectural designs.

The last approach hints a natural procedure orthogonal to the first three previously studied approaches:
Substitute cyclic graphs with complete graphs of the same number of nodes. This can be rigorously
formulated as in the following lemma, whose proof is in Lemma A.30.
Lemma 4.1. Denote by Cn the cyclic undirected graph without self-loops consisting of n nodes,
and Kn the undirected complete graph with n nodes without self-loops. Then for any m1 ̸= m2, the
universal covers of cyclic graphs ˜Cm1

′′
and ˜Cm2

′′
are isomorphic, whereas the universal covers of

complete graphs ˜Km1

′′
and ˜Km2

′′
are not.

We thus devise a GNN which admits both the adjacency matrix of a graph G and the adjacency matrix
of unions of cliques induced from substituting cyclic subgraphs with complete subgraphs.
Definition 4.2 (Clique Adjacency Matrix). Let G := (V,E) be an undirected graph. Fix the cycle
basis BG of G, the set of cyclic subgraphs of G which forms the basis of the cycle space (or the first
homology group) of G. The clique adjacency matrix of G, denoted as AC , is the adjacency matrix of
the union of #BG complete subgraphs, each obtained from adding all possible edges among the set
of nodes of each basis element B ∈ BG. Note that such a B is a cyclic subgraph of G. Explicitly, the
matrix AC := {aCu,v}u,v∈V (G) is given by

aCu,v :=

{
1 if ∃ B ∈ BG cyclic s.t. u, v ∈ V (B)

0 otherwise
(4)

Given 3 ≤ c1 ≤ c2 < ∞, one may also define the bounded clique adjacency matrix AC |[c1,c2] :=
{aCu,v|[c1,c2]}u,v∈V (G) which only substitutes cycles of size between c1 and c2 to cliques:

aCu,v|[c1,c2] :=
{
1 if ∃ B ∈ BG cyclic s.t. u, v ∈ V (B), c1 ≤ |V (B)| ≤ c2
0 otherwise

(5)

5

Published as a conference paper at ICLR 2023

For each node v ∈ V (G), we denote by C(v) the set of nodes w ∈ V (G) such that there exists a
cyclic subgraph C ∈ BG such that both v and w lie in C:

C(v) := {w ∈ V (G) | ∃ B ∈ BG s.t. v, w ∈ V (B)} (6)

Required for computing the set C(v) for each node v ∈ V (G), is the basis of cycles of the graph
G. Here, the cycle basis, denoted as BG, refers to the minimal set of cyclic subgraphs of G whose
combinations generate all possible cyclic subgraphs. To construct the basis, we use the algorithm
proposed by Paton, whose time complexity for computing the basis for a graph with n nodes and
m edges is of order O(nγ) for 2 ≤ γ ≤ 3, and that for a random graph with n nodes is of order
O(n2) Paton (1969). Given a predetermined ordering on E(G), we can use persistent homological
techniques to further reduce the time complexity required for obtaining BG to O(mα(m)), where
α(m) is the inverse Ackermann function which can be regarded as a constant for any practical values
of m Horn et al. (2021). In other words, the best time complexity required for preprocessing the
given graph data set is of order practically equivalent to O(m) where m is the number of edges of G.

Cycle-to-Clique Graph Neural Network Using the clique adjacency matrices, we now propose
the Cycle-to-Clique Graph Neural Network (Cy2C-GNN), a novel and simple modification of GNNs
ensuring low computational complexity and efficient usage of trainable weights. The topological
features of a graph G := (V,E) with continuous node attributes fG : V (G) → Rk can be represented
by three types of matrices: The adjacency matrix A ∈ Rn×n: The node feature matrix X ∈ Rn×k

obtained from the function fG: And the clique adjacency matrix AC ∈ Rn×n (possibly bounded)
from Definition 4.2. The Cy2C-GNN admits the three types of matrices (A,AC , X) as inputs,
whereas conventional GNNs only utilize two types of matrices (A,X).

The Cy2C-GNN consists of two sets of neighborhood aggregating layers: A single layer utilizing the
clique adjacency matrix AC : And l neighborhood aggregating layers identical to conventional GNN
layers, as defined in Section 2, which utilize the usual adjacency matrix A. The model thus preserves
various executive merits of GNNs, such as incorporation of edge attributes and efficient applicability
to large graph datasets. The trainable weights are not shared among the hidden layers.

The first layer of Cy2C-GNN is a single neighborhood aggregating layer utilizing the clique adjacency
matrix AC ∈ Rn×n. The output of the first hidden layer is the hidden attribute c(1)v obtained from the
usual aggregation and combination functions used to obtain hidden vectors of conventional GNNs:

c(1)v = COMBINE(1)(Xv,AGGREGATE(1)
v ({{Xu : u ∈ C(v)}})) (7)

Recall that C(v) is a set of nodes which are adjacent to v in the clique adjacency matrix. Here, the
functions AGGREGATE(1)

v (·) and COMBINE(1)(·) are functions as defined in Section 2.

To entwine the local topological properties with cyclic structures of a graph, we implement a
conventional GNN comprised of l neighborhood aggregating layers, disjoint from the single layer
utilizing clique adjacency matrices. Each m-th layer outputs the hidden attribute h

(m)
v which is

inductively defined as follows.{
h
(m)
v := COMBINE(m)

(
h
(m−1)
v ,AGGREGATE(m)

v

({{
h
(m−1)
u | u ∈ N(v)

}}))
h
(0)
v := Xv for 1 ≤ m ≤ l

(8)

The hidden node attributes obtained from pairs of layers c(1)v and h
(l)
v are concatenated, followed by

multi-layer perceptronos (MLPs) to obtain the final hidden node attribute Hv:

Hv = MLP(CONCAT(c(1)v , h(l)
v)). (9)

As for obtaining the vector representation of a graph G, the Cy2C-GNN separately aggregates the
hidden attributes c(1)v and h

(l)
v for each node v, followed by a composition with MLPs.

HhG,cG = MLP(CONCAT(HhG
, HcG))

HhG
= READOUT(l)({{h(l)

v | v ∈ V (G)}})
HcG = READOUT(1)({{c(1)v | v ∈ V (G)}})

(10)

6

Published as a conference paper at ICLR 2023

Discriminative Power of Cy2C-GNN Cy2C-GNN can distinguish a collection of unions of cyclic
graphs, each comprised of possibly different number of nodes, the non-isomorphic classes of graphs
of which GNNs may not distinguish. We refer to Theorem 4.3 and Figure 1 for some pairs of graphs
with node attributes that Cy2C-GNN can distinguish, whereas conventional GNNs cannot.

Theorem 4.3. Let G and H be graphs which have isomorphic universal covers, endowed with node
features fG : V (G) → Rk and fH : V (G) → Rk. Fix a cycle basis BG of G. Suppose that there
exists a chordless cyclic subgraph C ∈ BG such that any cycle basis BH does not have any chordless
cyclic subgraph of size equal to |V (C)|. Then Cy2C-GNN which utilizes bounded clique adjacency
matrices can distinguish G and H , whereas conventional GNNs cannot.

Here, a subgraph H ⊂ G is chordless if no other cyclic subgraphs C ∈ G satisfy V (C) ⊊ V (H).
Hence, Cy2C-GNN can distinguish classes of graphs that 1,2, and 3-dimensional WL tests cannot
distinguish, in particular certain classes of strongly regular graphs. (See for example Remark A.37
for further details). Theorem 3.3 and Lemma 4.1 further suggest that the first layer of Cy2C-GNN
utilizing clique adjacency matrix is enough to distinguish such pairs of graphs, a marked improvement
from other contemporary GNNs which assume to have sufficiently large numbers of hidden layers.
We leave the proof of Theorem 4.3 to Theorem A.35 as well as comparison in discriminative power
of Cy2C-GNN to other contemporary state-of-the-art GNNs to Example A.36 and Remark A.37.

Computational Complexity Because the Cy2C-GNN algorithm preserves the conventional
neighborhood aggregating layers of GNNs, the time complexity of representing a connected graph G
with n nodes and m edges using the Cy2C-GNN algorithm with l+1 layers is equal to O(mC + lm),
where mC is the number of edges of the graph associated to the clique adjacency matrix AC of G. By
the Euler characteristic formula, the number of elements in the cycle bases BG of a connected graph
G is equal to m− n+ 1. Hence, for connected graphs with bounded number of nodes constituting
the subgraphs of their cycle bases, Cy2C-GNN is comparable to time complexity of conventional
GNNs, and more efficient than spectral decomposition of adjacency matrices of finite graphs and
constructing persistence diagrams using trainable or dynamic filtration functions Milosavljevic̀ et al.
(2011); Rieck et al. (2019). In addition, the time complexity for preprocessing the graph G to
obtain clique adjacency matrices is practically equivalent to O(m), without requiring any training
of filtration functions for each graph G. We refer to Appendix A.6 for a detailed discussion on the
computational complexity of these algorithms.

5 EXPERIMENTS

Dataset To analyze the effectiveness of Cy2C-GNN in distinguishing graphs with varying cyclic
subgraphs, we perform an ablation study by utilizing the “CYCLES” and “NECKLACES” synthetic
datasets constructed from Horn et al. (2021). These datasets are comprised of graphs containing
cyclic subgraphs, which are designed to assess whether the given GNN can identify differences
among such cyclic substructures. As for evaluating the effectiveness of the proposed models in
classifying graph datasets, we use the 3 bioinformatics(DD, PROTEINS(FULL), ENZYMES), 3
social network datasets (COLLAB, IMDB-B, REDDIT-B), and 3 small molecular datasets (MUTAG,
NCI1, NCI109). To further verify the extendability of Cy2C-GNN models to graph datasets with
additional attributes, we utilized 3 datasets with edge features (BZR-MD, COX2-MD, PTC-MR)
as well. Lastly, we tested Cy2C-GNN models on 4 large datasets (REDDIT-M-5K, MOLHIV,
MOLTOX21, MOLTOXCAST) from TU datasets Morris et al. (2020) and Open Graph Benchmark
datasets Hu et al. (2021) to test their efficiency in processing large graph data sets in comparison to
GNNs based on persistent homological techniques. The details of all the aforementioned datasets,
obtained from the pytorch-geometric library, are summarized in Appendix B.

Models To assess whether improvements in the discriminative power of Cy2C-GNN lead to
enhancements in classifying benchmark graph datasets, we additionally implemented three baseline
models comprised of Graph Convolutional Network(GCN), Graph Attention Networks(GAT), and
Graph Isomorphism Network(GIN). All baseline models share the same structure with Cy2C-GNNs
except for additional structures required for implementing clique adjacency matrices. We also
compare the best classification results obtained from Cy2C-GNN with baseline GNNs, those of the
kernel methods(WL (Borgwardt et al., 2020, Table 4.5), WL-OA (Borgwardt et al., 2020, Table
4.5), RetGK (Ye et al., 2020, Table 3), HGK (Togninalli et al., 2019, Table 2), GH (Togninalli
et al., 2019, Table 2)), kernel method with persistent homology(PWL) (Rieck et al., 2019, Table

7

Published as a conference paper at ICLR 2023

Figure 2: Comparisons of classification results obtained from baseline models and Cy2C-GNN from
synthetic CYCLE (left) and NECKLACE (right) datasets Horn et al. (2021). All other four baseline
models are obtained from (Horn et al., 2021, Figure 1).

1), GNN models(Gated-GCN (Dwivedi et al., 2020, Table16,seed1), GMT (Baek et al., 2021,
Table 1), DGCNN (Wijesinghe & Wang, 2022, Table 14), PNA (Corso et al., 2020, Figure 6),
ID-GNN (You et al., 2021, Table 3), GraphSNN (Wijesinghe & Wang, 2022, Table 3,4,14)) and
GNN models with persistent homology(PersLay (Carrière et al., 2020, Table 2), TOGL (Horn et al.,
2021, Table 2,3)), which aligned to the experimental protocols tested for Cy2C-GNNs. For OGB
datasets(MOLHIV, MOLTOX21, MOLTOXCAST), we also consider GNNs with virtual node(VN)
methods Hu et al. (2021). We omitted classification results obtained from other contemporary GNNs
whose experimental procedures are different from those suggested in this paper to avoid biased
comparisons of proposed GNNs, as carefully suggested in Errica et al. (2020). Further elaborations
on the aforementioned models are outlined in Appendix B.1.

Cy2C-GNN Setup In accordance with the experimental setup proposed by Dwivedi et al. Dwivedi
et al. (2020) and Horn et al. Horn et al. (2021), we imposed that the architectural components of the
baseline GCN, GAT, and GIN models, such as the number of layers, hidden attribute dimensions,
and the classes of aggregation and combination functions, be identical to those of Cy2C-GNN.
Differences in the number of trainable parameters among these models mostly occur at the final layer,
where Cy2C-GNN harbors additional MLPs utilized for representing graphs as real vectors. For
additional test on dataset with edge features and large dataset, we only consider Cy2C-GCN. We
performed additional hyperparameter optimizations for implementing Cy2C-GNNs. Further details
on the differences among the implemented networks are explicated in Appendix B.1.

Ablation Studies Figure 2 illustrates the classification results obtained from baseline models and
Cy2C-GCN from synthetic CYCLE (a) and NECKLACE (b) datasets Horn et al. (2021). We denote
by “GCN” graph convolutional networks, “TOGL” topological graph neural networks which model
dynamic persistent homological techniques, “PH” static persistent homological techniques, and “WL”
the 1-dimensional WL test, all results of which were obtained from (Horn et al., 2021, Figure 1).
The Cy2C-GCN model detects cyclic structures of graphs as effectively as persistent homological
techniques, which utilize dynamic choices of graph features. We note that Cy2C-GCN can effectively
distinguish cyclic graphs with number of nodes at least 4, because Lemma 4.1 implies that cyclic
graphs and complete graphs of sizes 3 are isomorphic. Placing a single neighborhood aggregating
layer utilizing clique adjacency matrices ahead of other conventional layers proves to be effective in
detecting desired cyclic structures, as implied from Lemma 4.1.

Results Comparisons among the proposed Cy2C-GNN and contemporary graph representation
techniques on benchmark dataset are listed in Table 1. The Cy2C-GNN produces outperforming
classification results than baseline GNNs on all of the benchmark datasets. With the exception of
NCI dataset, we confirm that the Cy2C-GNNs exhibit better or similar performance to variants of WL
tests and conventional GNNs among bioinformatics, social network, and small molecules datasets.
Furthermore, we compare Cy2C-GNN model on dataset with edge features and large dataset to verify
the robustness of Cy2C-GNN models in representing graph data sets with additional features. Cy2C-
GNN shows equivalent or outperforming performance to other GNNs and persistent homological
techniques in classifying most graph datasets except PTC-MR and MOLHIV datasets. These results
demonstrate that Cy2C-GNN has the potential to efficiently incorporate cyclic structures of large
graph datasets to message passing layers, even for datasets with edge features. We also verify that

8

Published as a conference paper at ICLR 2023

Table 1: Classification results obtained from bioinformatics, social network and small molecules
dataset. Note that N/A indicate graph classification methods which do not report classification results
on the given graph data set. Classification methods with grey color text are cited from available
results obtained from pre-existing publications.

Bioinformatics Social network Small molecules
D&D PROTEINS(FULL) ENZYMES COLLAB IMDB-B REDDIT-B MUTAG NCI1 NCI109

WL 77.7±2.0 73.1±0.5 54.3±0.9 68.3±1.5 71.2±0.5 78.0±0.6 85.75±1.96 85.60±0.36 85.76±0.22
WL-OA 77.8±1.2 73.5±0.9 58.9±0.9 80.18±0.25 74.0±0.7 87.6±0.3 86.10±1.95 85.95±0.23 86.17±0.19

PWL 78.50±0.41 75.86±0.38 N/A N/A N/A N/A 85.17±0.29 85.62±0.27 85.11±0.30
Gated-GCN-4 72.92±2.09 76.36±2.90 65.67±4.90 N/A N/A N/A N/A N/A N/A

GMT 78.72±0.59 75.09±0.59 N/A 80.74±0.54 73.48±0.76 N/A 83.44±1.33 N/A N/A
DGCNN 76.6±4.3 72.9±3.5 38.9±5.7 71.2±1.9 69.2±3.0 49.2±1.2 N/A 76.4±1.7 N/A

GraphSNN 77.1±3.3 74.5±3.5 61.7±34 77.0±3.1 72.3±3.6 57.1±3.1 N/A 81.6±2.8 N/A
PersLay N/A 74.8 N/A 76.4 71.2 N/A 89.8 73.5 69.5
TOGL 75.2±4.2 76.0±3.9 53.0±9.2 N/A N/A 90.4±1.4 N/A 75.8±1.8 N/A

Baseline GCN 78.10±3.33 74.84±2.92 64.17±6.07 82.18±1.73 73.90±4.61 93.60±1.61 83.01±9.01 79.59±2.87 78.48±2.00
(GCN-1) (GCN-3) (GCN-3) (GCN-5) (GCN-4) (GCN-4) (GCN-5) (GCN-5) (GCN-4)

Baseline GAT 78.10±3.49 74.84±3.68 68.33±3.73 80.78±1.85 73.50±4.99 92.50±1.69 75.53±9.77 78.71±2.38 77.03±2.42
(GAT-1) (GAT-3) (GAT-3) (GAT-4) (GAT-2) (GAT-4) (GAT-3) (GAT-4) (GAT-5)

Baseline GIN 68.59±3.58 69.53±3.33 58.17±6.97 81.57±1.90 72.80±5.27 83.60±2.72 87.16±7.69 79.22±2.78 79.52±2.25
(GIN-4) (GIN-3) (GIN-5) (GIN-1) (GIN-5) (GIN-2) (GIN-4) (GIN-5) (GIN-4)

Cy2C-GNN 78.86±2.22 76.19±4.21 72.83±4.60 83.18±1.53 76.40±4.41 94.05±1.90 88.89±7.57 80.85±2.01 80.78±2.03
(Cy2C-GCN-3) (Cy2C-GCN-4) (Cy2C-GAT-2) (Cy2C-GCN-4) (Cy2C-GCN-4) (Cy2C-GCN-5) (Cy2C-GIN-2) (Cy2C-GIN-3) (Cy2C-GIN-4)

Table 2: Classification results obtained from datasets with edge features and large datasets. Note
that N/A indicate graph classification methods which do not report classification results on the given
graph data set. Classification methods with grey color text are cited from available results obtained
from pre-existing publications.

datasets with edge features Large datasets
BZR-MD COX2-MD PTC-MR REDDIT-M-5K MOLHIV MOLTOX21 MOLTOXCAST

WWL 69.76±0.94 76.33±1.02 66.31±1.21 GIN 56.1±1.7 75.58±1.4 74.91±0.51 63.41±0.74
RETGK-12 62.77±1.69 59.47±1.66 62.5±1.6 GIN+VN N/A 75.2±1.3 76.21±0.82 66.18±0.68
HGK-WL 68.94±0.65 74.61±1.74 N/A PNA N/A 79.05±1.3 N/A N/A
HGK-SP 66.17±1.05 71.83±1.61 N/A ID-GNN N/A 78.30±2.0 N/A N/A

GH 69.14±2.08 66.2±1.05 N/A DGCNN 49.2±1.2 N/A N/A N/A
GraphSNN N/A N/A 61.63±2.8 GraphSNN 57.1±3.1 79.72±1.83 76.78±1.27 67.68±0.92
Cy2C-GCN 72.60±7.77 77.22±7.09 64.28±9.83 Cy2C-GCN 57.03±1.9 78.02±0.6 77.34±0.68 67.61±0.21

(Best) (Cy2C-GCN-5) (Cy2C-GCN-3) (Cy2C-GCN-5) (Best) (Cy2C-GCN-5) (Cy2C-GCN-5) (Cy2C-GCN-7) (Cy2C-GCN-3)

Cy2C-GNNs are sufficient enough to incorporate topological structures while managing to reduce
computational costs compared to dynamic persistent homological techniques, which require users to
find suitable filtration functions for each given graph dataset.

6 CONCLUSION

In this paper, we utilized the theory of covering spaces to formulate a mathematical framework
entailing the strengths of conventional GNNs in detecting isomorphism classes of graphs with
continuous node attributes. These mathematical observations lead us to propose Cy2C-GNN, which
enriches the topological characteristic of input data by utilizing clique adjacency matrices. We
demonstrated both theoretically and experimentally that the proposed network can efficiently and
reliably represent cyclic (or homological) structures of graph data sets without undergoing major
alterations in the architectural structure of conventional message passing layers, such as training
dynamic filtration functions or gluing high-dimensional cells or complexes.

Nevertheless, Cy2C-GNN is not a panacea for resolving the problem of distinguishing all non-
isomorphic classes of graphs. For instance, Cy2C-GNN does not guarantee to distinguish collections
of graphs whose number of nodes of all cyclic subgraphs are equal to each other. Precautionary
measures are also required in stacking a large number of neighborhood aggregating layers utilizing
clique adjacency matrices, as it may increase the risk of oversmoothing the node features from
significantly decreasing the graph diameters. These risks must be taken into account when applying
Cy2C-GNN layers for classifying node labels or performing graph regression tasks. We hence advise
to use a single layer of Cy2C-GNN preceding conventional GNNs, which is enough to discern graphs
with markedly different cyclic subgraph structures. Future research may focus on identifying the
extent of how much homological structures Cy2C-GNN can incorporate, identifying It would be
of great interest to analyze the inherent relations among Cy2C-GNN and other variants of GNNs,
and experiment whether combining Cy2C-GNNs with other state-of-the-art techniques may further
enhance their performances.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

This research was supported by the National Institute for Mathematical Sciences (NIMS) grant funded
by the Korean Government (MSIT)(No.B23910000)

REFERENCES

R. Abboud, I. I. Ceylan, M. Grohe, and T. Lukasiewicz. The surprising power of graph neural networks
with random node initialization. Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, pp. 2112–2118, 2021.

Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplica-
tion. In 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pp. 522–539,
2021.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=JHcqXGaqiGn.

Jacob Bamberger. A topological characterization of weisfeiler-leman equivalence classes.
2022. URL https://drive.google.com/file/d/19YIq1avQnyYEkHfjJuYij1T_
FV8lIwlB/view.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F Mont-
ufar, and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 2625–2640. Curran Asso-
ciates, Inc., 2021a. URL https://proceedings.neurips.cc/paper/2021/file/
157792e4abb490f99dbd738483e0d2d4-Paper.pdf.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.
In International Conference on Machine Learning, pp. 1026–1037. PMLR, 2021b.

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, and Bastian Rieck.
Graph Kernels: State-of-the-Art and Future Challenges. Now Foundations and Trends, 2020.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei Umeda.
Perslay: A neural network layer for persistence diagrams and new graph topological signatures. In
International Conference on Artificial Intelligence and Statistics, pp. 2786–2796. PMLR, 2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
13260–13271. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/99cad265a1768cc2dd013f0e740300ae-Paper.pdf.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph
neural networks with learnable structural and positional representations. In 10th International
Conference on Learning Representations, ICLR 2022, 2022. URL https://openreview.
net/forum?id=wTTjnvGphYj.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=HygDF6NFPB.

10

https://openreview.net/forum?id=JHcqXGaqiGn
https://drive.google.com/file/d/19YIq1avQnyYEkHfjJuYij1T_FV8lIwlB/view
https://drive.google.com/file/d/19YIq1avQnyYEkHfjJuYij1T_FV8lIwlB/view
https://proceedings.neurips.cc/paper/2021/file/157792e4abb490f99dbd738483e0d2d4-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/157792e4abb490f99dbd738483e0d2d4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/99cad265a1768cc2dd013f0e740300ae-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/99cad265a1768cc2dd013f0e740300ae-Paper.pdf
https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=HygDF6NFPB

Published as a conference paper at ICLR 2023

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Floris Geerts, Filip Mazowiecki, and Guillermo Perez. Let’s agree to degree: Comparing graph
convolutional networks in the message-passing framework. In Proceedings of the 38th International
Conference on Machine Learning, volume 139, pp. 3640–3649. PMLR, 2021. URL https:
//proceedings.mlr.press/v139/geerts21a.html.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2008.

Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph filtration
learning. In International Conference on Machine Learning, pp. 4314–4323. PMLR, 2020.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borgwardt.
Topological graph neural networks. arXiv preprint arXiv:2102.07835, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. OGB-
LSC: A large-scale challenge for machine learning on graphs. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021. URL
https://openreview.net/forum?id=qkcLxoC52kL.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between labeled graphs.
In Proceedings of the Twentieth International Conference on International Conference on Machine
Learning, ICML’03, pp. 321–328. AAAI Press, 2003.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Andreas Krebs and Oleg Verbitsky. Universal covers, color refinement, and two-variable counting
logic: Lower bounds for the depth. In 2015 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, number 15345831, 2015.

Nikola Milosavljevic̀, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology in matrix
multiplication time. In SoCG ’11: Proceedings of the twenty-seventh annual symposium on
Computational geometry, pp. 216–225. SoCG, 2011.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for
graph representations. In International Conference on Machine Learning, pp. 4663–4673. PMLR,
2019.

11

https://proceedings.mlr.press/v139/geerts21a.html
https://proceedings.mlr.press/v139/geerts21a.html
https://openreview.net/forum?id=qkcLxoC52kL

Published as a conference paper at ICLR 2023

Keith Paton. An algorithm for finding a fundamental set of cycles of a graph. Communications of the
ACM, 12(9):514–518, 1969.

Bastian Rieck, Ulderico Fugacci, Jonas Lukasczyk, and Heike Leitte. Clique community persistence:
A topological visual analysis approach for complex networks. IEEE transactions on visualization
and computer graphics, 24(1):822–831, 2017.

Bastian Rieck, Christian Bock, and Karsten Borgwardt. A persistent weisfeiler-lehman procedure for
graph classification. In International Conference on Machine Learning, pp. 5448–5458. PMLR,
2019.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12:2539–
2561, 2011.

Ann Sizemore, Chad Giusti, and Danielle S Bassett. Classification of weighted networks through
mesoscale homological features. Journal of Complex Networks, 5(2):245–273, 2017.

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein weisfeiler-lehman graph kernels. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/73fed7fd472e502d8908794430511f4d-Paper.pdf.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

S. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt. Graph kernels. Journal of
Machine Learning Research, 11:1201–1242, 2010.

Asiri Wijesinghe and Qing Wang. A new perspective on ”how graph neural networks go beyond
weisfeiler-lehman?”. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=uxgg9o7bI_3.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Wei Ye, Omid Askarisichani, Alex Jones, and Ambuj Singh. Learning deep graph representations via
convolutional neural networks. IEEE Transactions on Knowledge and Data Engineering, pp. 1–1,
2020. doi: 10.1109/TKDE.2020.3014089.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on
Machine Learning, volume 97, pp. 7134–7143. PMLR, 2019. URL https://proceedings.
mlr.press/v97/you19b.html.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural
networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(12):10737–10745,
2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/17283.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A the-
ory of using graph neural networks for multi-node representation learning. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 9061–9073. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
4be49c79f233b4f4070794825c323733-Paper.pdf.

12

https://proceedings.neurips.cc/paper/2019/file/73fed7fd472e502d8908794430511f4d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/73fed7fd472e502d8908794430511f4d-Paper.pdf
https://openreview.net/forum?id=uxgg9o7bI_3
https://proceedings.mlr.press/v97/you19b.html
https://proceedings.mlr.press/v97/you19b.html
https://ojs.aaai.org/index.php/AAAI/article/view/17283
https://proceedings.neurips.cc/paper/2021/file/4be49c79f233b4f4070794825c323733-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4be49c79f233b4f4070794825c323733-Paper.pdf

Published as a conference paper at ICLR 2023

A PROOFS

A.1 CELL COMPLEXES AND COVERING SPACES

In this section, we utilize the theory of covering spaces to provide a rigorous formulation that
Weisfeiler-Lehman test encapsulates local topological properties of graphs by representing finite
depth unfolding trees using node attributes. Readers who are interested in a rigorous treatment of
the theory of covering spaces may refer to Hatcher (2002) or Krebs & Verbitsky (2015). Krebs
and Verbitsky Krebs & Verbitsky (2015) proved that the Weisfeiler-Lehman test represents a pair
of graphs with fixed constant node labels as identical vectors if and only if their universal covers
are isomorphic. Combined with the results on the equivalence between graph neural networks and
Weisfeiler-Lehman tests Xu et al. (2018), we prove that graph neural networks represents a pair of
graphs with arbitrary node labels as identical vectors if and only if there exists a graph isomorphism
between their universal covers that induces an equality of node labels on the universal covers.

Throughout this paper, we consider a graph G := (V,E) as a cell complex, which is constructed as
follows.
Definition A.1 (Graph as a cell complex). A graph G := (V,E) may be constructed in the following
procedure.

1. The set of nodes V := V (G) corresponds to a discrete set of points {v}v∈V (G) (0-cells).

2. The set of edges E := E(G) corresponds to a discrete set of intervals {[0, 1]}e∈E(G)

(1-cells).

3. The graph G is inductively constructed by attaching the endpoints of the edges to their
corresponding nodes. That is, given an interval [0, 1] corresponding to an edge e := (v1, v2),
one glues the endpoint {0} to the node v1, and the endpoint {1} to the node v2.

4. One may iterate the inductive process finitely or indefinitely many times, depending on the
cardinality of the set of edges.

We call the spaces constructed in this manner as a 1-dimensional cell complex.

Cell complexes allow one to endow graphs with topological structures induced from that over the set
of discrete points and the unit interval [0, 1]. Let us recall that the subset of points characterizes the
topological structure defined over the discrete set of points, whereas the open intervals (a, b) with
0 ≤ a ≤ b ≤ 1 characterizes the topological structure defined over [0, 1]. In an analogous manner,
the open subsets characterizing the topological structure over graphs are the subset of nodes, the open
intervals defined over an edge, and the open subset centered at a node v, obtained from gluing a set
of open sub-intervals with common endpoints v. Taking countable unions and finite intersections of
these three types of open subsets, one shall construct any subsets which represent local topological
properties of G.
Definition A.2 (Covering Space). Let G be a graph. Let x ∈ G be a point, which could be a node
v ∈ V (G) or any point on an edge e ∈ E(G). A covering space of G is a graph Ĝ with a projection
map pG : Ĝ → G such that for any point x ∈ G, there exists an open subset U ⊂ G whose pre-image
p−1
G (U) is a disjoint union of open subsets {Ui}, each of which are homeomorphic to U .

In other words, a covering space Ĝ of G is a graph whose local topological properties are equivalent to
those of G. In this paper, we will consider the universal cover of G, which is a canonical graph whose
subgraphs correspond to paths in G starting at a node v ∈ V (G) up to homotopy, an equivalence
relation which rigorously defines continuous transformation from one path to another path with same
end points.
Definition A.3 (Homotopy). Let f and g be two paths in the graph G which starts from a node v0
and ends at a node v1. Note that these paths can be considered as functions from the unit interval
[0, 1] to G, i.e. f, g : [0, 1] → G are paths such that f(0) = g(0) = v0 and f(1) = g(1) = v1. We
say that two paths f and g are homotopic if there exists a continuous function H : [0, 1]× [0, 1] → G
such that

1. H(t, 0) = f(t)

13

Published as a conference paper at ICLR 2023

2. H(t, 1) = g(t)

3. H(0, x) = v0 and H(1, x) = v1 for every x ∈ [0, 1].

The homotopic relation on paths with the same end points in any space is an equivalence relation,
see Chapter 1.1 of Hatcher (2002) for the proof of this nontrivial fact. Given a path f : [0, 1] → G
over a graph G, we denote by [f] the equivalence class of f under the homotopy equivalence relation.
Using this equivalence relation, we now construct the universal cover of a graph G.

Definition A.4 (Universal Covering Space). Let G be a graph. Fix a point v ∈ V (G). The universal
cover of G, denoted as G̃, is the space of homotopic classes of paths in G starting at v:

G̃ := {[f] | f : [0, 1] → G such that f(0) = v} (11)

We end this subsection with the theorem that universal covers of connected graphs G is a graph
without any cycles, whose proof can be found in Chapter 1.3 of Hatcher (2002).

Theorem A.5. Let G be a connected graph. Then its universal cover G̃ is simply connected. In
particular, it is a connected graph without any cycles.

A.2 GRAPH NEURAL NETWORKS

Given a graph G := (V,E) with n nodes, denote by A ∈ Rn×n the adjacency matrix of G,
D ∈ Rn×n the diagonal matrix of node degrees of G, and X ∈ Rn×k the matrix of concatenated
k-dimensional node attributes of G. Denote by Ã ∈ Rn×n the normalized adjacency matrix of G.
(One may take, for instance, Ã := D− 1

2AD− 1
2 .)

Definition A.6. Throughout the appendix, we use the notation {{·}} to denote a multiset of real
vectors, i.e. we allow multiple instances of its elements.

Remark A.7. Let Mk
m be the collection of all multisets of k-dimensional vectors with m elements,

counting multiplicities. Suppose F : Rk×m → Rl is a function which is invariant under the
permutation action of the symmetric group with m elements Sm. (The action corresponds to the
permutation of rows of the k ×m real matrix). Then the function F induces the function over Mk

m
defined as

F̃ : Mk
m → Rl

{{v1, v2, · · · , vm}} 7→ F (v1, v2, · · · , vm)
(12)

We recall the definition of graph neural networks proposed from Xu et al. (2018).

Definition A.8. We denote by GNN l the graph neural network comprised of composition of l
neighborhood aggregating layers.

1. Each m-th layer H(m) of the network constructs hidden node attributes of dimension km,
denoted as h(m)

v , using the following composition of functions:{
h
(m)
v := COMBINE(m)

(
h
(m−1)
v ,AGGREGATE(m)

v

({{
h
(m−1)
u | u∈V (G),u̸=v

(u,v)∈E(G)

}}))
h
(0)
v := Xv

(13)
In the equation above, Xv is the initial node attribute at v, M (m)

v is the collection of all
multisets of km−1-dimensional real vectors with deg v elements counting multiplicities, the
aggregation function

AGGREGATE(m)
v : M (m)

v → Rk′
m (14)

is a set theoretic function of k′m-dimensional real vectors defined over Mv, and the combi-
nation function

COMBINE(m) : Rkm−1+k′
m → Rkm (15)

is a set theoretic function combining the attribute hm−1
v and the image of AGGREGATE(m)

v .

14

Published as a conference paper at ICLR 2023

2. Denote by H(l) the final layer of the network. Let M (l) be the collection of all multisets of
kl-dimensional vectors with #V (G) elements. Let

READOUT : M (l) → RK (16)

be the graph readout function of K-dimensional real vectors defined over the multiset M (l).
Then the K-dimensional vector representation of G, denoted as hG, is given by

hG := READOUT
(
{{h(l)

v | v ∈ V (G)}}
)

(17)

Observant readers may notice that graph neural network is a generalization of the color refinement
algorithm, which is designed for distinguishing non-isomorphic pairs of graphs with identical discrete
node labels Krebs & Verbitsky (2015).

A.3 HIDDEN NODE ATTRIBUTES AND UNIVERSAL COVERS

We now provide a rigorous formulation that graph neural networks compute vector representations of
finite depth unfolding trees of a graph.
Definition A.9. Let G := (V,E) be a graph. Denote by G′ := (V,E′) the graph where every node
has a self-loop. Denote by G′′ := (V,E′′) the directed graph with a projection map p : G′′ → G′

such that each undirected edge of G′ from v1 to v2 corresponds to the following edges:

1. If v1 ̸= v2, the undirected edge corresponds to two directed edges, one edge from v1 to v2,
and the other from v2 to v1.

2. If v1 = v2, the edge corresponds to a single directed self-loop from v1 to itself.

By construction, k-dimensional continuous node attributes over G, denoted as the function fG :
V (G) → Rk, clearly extends to continuous node attributes over G′′, denoted as fG′′ : V (G′′) → Rk.
One can also induce attributes over the set of nodes of the universal cover of G. We achieve this by
pre-composing the function fG with the covering map πG : G̃ → G.
Definition A.10. Let fG : V (G) → Rk be the function of k-dimensional node labels over the graph
G. Let πG : G̃ → G be the universal covering map. Note that the covering map restricts to a function
between set of nodes πG : V (G̃) → V (G). The pullback of the node labels to the universal cover
G̃ is the composition of functions fG ◦ πG : V (G̃) → Rk. (See Figure 6 for an illustration of how
pullback of node features are defined over the universal cover).
Definition A.11. Let G := (V,E) be a directed graph. For each node v ∈ V (G) and any positive
number k, the depth-k neighborhood rooted at v, denoted as Uk

v , is a subgraph of G whose set of
nodes consists of the distinguished node v itself and the nodes w such that there exists at most k
consecutive directed edges from v to w. The set of edges of Uk

v are comprised of unions of all k
consecutive directed edges from v.

(For any undirected graph, the finite depth neighborhoods rooted at v is defined in an analogous
manner, where the set of edges is comprised of undirected edges among a pair of nodes of G, instead
of directed edges).

Given a graph G, there exists an injective lift of set of nodes from G to G̃′′, defined as

iG : V (G) →= V (G′) →= V (G′′) → V (G̃′′) (18)

Likewise, there also exists an injective lift of set of nodes from G to its universal cover G̃:

iunG : V (G) → V (G̃). (19)

Using a predetermined injective lift of nodes of G to G̃ and G̃′′, we may define finite depth unfolding
trees at a node v ∈ V (G) as follows.

Definition A.12. Let G := (V,E) be a graph. Fix an injective lift iG : V (G) → V (G̃′′). The
directed depth k unfolding tree at a node v ∈ V (G), denoted as T k

v , is the depth-k neighborhood
rooted at iG(v) as a subtree of the associated universal cover G̃′′ of G. The undirected depth k
unfolding tree at a node v ∈ V (G), denoted as T k,un

v is the depth-k neighborhood rooted at iunG (v)

as a subtree of the universal cover G̃ of G.

15

Published as a conference paper at ICLR 2023

Throughout this manuscript, we will abbreviate the choice of injective lift from the base space G to
its covering space G̃′′. This is thankfully because if G̃′′ is an infinite graph, then the construction
of universal covers imply that the directed depth k unfolding trees rooted at a fixed node v ∈ V (G)

obtained from any given injective lift iG : V (G) → V (G̃′′) are all isomorphic to each other. With
abuse of notation, we will not specify the choice of injective lifts when defining depth k unfolding
trees.

We note that the initial node attributes Xv used for graph neural networks (Definition A.8) is given by

Xv = fG(v) = (fG′′ ◦ πG′′)(iG(v)) (20)

Example A.13. Let G be an undirected graph without self-loops given as in Figure 3. The associated
graphs G′ and G′′ are given as in Figure 3. Let fG : V (G) → R3 be a function of 3-dimensional node
attributes over G. In the exemplary figure, the given node attributes are coordinate-wise real vectors,
each represented as discrete node labels, i.e. (1, 0, 0) 7→ A, (0, 1, 0) 7→ B, and (0, 0, 1) 7→ C.
Figures 1 and 5 demonstrates the directed depth 3 unfolding tree at a node, considered as a subspace
of the universal cover G̃′′ of G′′.
Remark A.14. Given a node v ∈ V (G) of an undirected graph G := (V,E), the following three
relations hold among directed depth m unfolding subtrees of Tm+1

v .

1. For any two nodes w1, w2 adjacent to v ∈ V (G) excluding v itself, there exists a pair of
disjoint subtrees T1, T2 of Tm+1

v ⊂ G̃′′ which are isomorphic to directed depth m unfolding
trees rooted at w1 and w2, i.e.

Tm
w1

∩ Tm
w2

= ∅ (21)

2. The tree Tm+1
v contains disjoint unions of directed depth m unfolding trees rooted at all

nodes adjacent to v (including itself), i.e.

Tm+1
v ⊃

⊔
w∈V (G)

(w,v)∈E(G)

Tm
w (22)

3. The set of nodes of the tree Tm+1
v is the disjoint union of the singleton set {v} and the set

of nodes of depth m unfolding trees at all nodes adjacent to v (including itself), i.e.

V (Tm+1
v) = {v} ⊔

⊔
w∈V (G)

(w,v)∈E(G)

V (Tm
w) (23)

Figure 5 illustrates how directed depth 2 unfolding subtrees of T 3
v constructed from Figure 1 satisfy

the three aforementioned relations. Note the depth 2 unfolding subtrees rooted at each node are
marked in different colors.

The goal of this section is to identify hidden node attributes obtained from graph neural networks
as a function from a multiset to real vector spaces. To do so, we define what is called the multiset
of nested multisets associated to finite depth unfolding trees. Before doing so, we introduce some
notational abbreviations.
Definition A.15. Given a multiset S and number d, we use the abbreviation {{S}}d to denote the
multiset whose elements are multisets of d elements in S. Given a function of multisets f : A → B,
we denote by {{f}} : A → {{B}} the function obtained from representing each image of f as a
singleton multiset, i.e.

{{f}}(a) := {{f(a)}} for any a ∈ A (24)
Given two multisets A,B, the sum of two multisets, denoted as A+B, is a concatenation of A and
B, i.e. it is a multiset whose elements are in either A or B, and whose element-wise multiplicity is
the sum of multiplicities of elements of A and B. One may use the usual summation notation

∑
to

denote a sum of several multisets.

For example, an element of {{Rk}}3 is a multiset of 3 real vectors of dimension k. Given a real
valued function f(x) = 2x, the function {{f}} sends x to the singleton multiset {{2x}}. The sum
of two multisets {{2, 3, 5}} and {{3, 6, 7}} is equal to {{2, 3, 3, 5, 6, 7}}.

16

Published as a conference paper at ICLR 2023

Figure 3: An exemplary graph G with the induced graphs G′ and G′′.

Figure 4: An illustration of Theorem A.19. Each respective node labels obtained from summing the
attributes of the node v itself and those of nodes adjacent to v correspond to the sum of attributes of
nodes of G̃′′ in the respective colored regions.

Figure 5: An illustration of three relations among depth 2 unfolding subtrees of T 3
v from Remark

A.14. Each respective node labels obtained from summing the attributes of the node v itself and those
of nodes adjacent to v correspond to the sum of node labels of Tm

v in the respective colored regions.

17

Published as a conference paper at ICLR 2023

Figure 6: A visual demonstration of pullback of node labels from a given graph G′′ to its universal
cover G̃′′, as defined from 3 and 4. The corresponding node attributes and edges are marked in
identical colors.

Definition A.16. Let G := (V,E) be a finite undirected graph without self-loops, fG : V (G) → Rk

the function of k-dimensional node attributes over G, and T l
v the depth l unfolding tree at v ∈ V (G).

We inductively define the multiset of nested multisets T l
v associated to the depth l unfolding tree T l

v
as follows.

T l
v :=

{
Rk if l = 0∑

u∈V (T 1
v)\V (T 0

v)
{{T l−1

u }}1 otherwise
(25)

where
∑

is the multiset summation operator.
Remark A.17. We note that the multiset of nested multisets T l

v is not identical to the multiset of of
k-dimensional real vectors with # (V (T l

v) \ V (T l−1
v)) elements. Nevertheless, recall from Remark

A.14 that
V (T l

v) \ V (T l−1
v) =

⊔
u∈V (T 1

v)\V (T 0
v)

V (T l−1
u). (26)

The above relation, along with the inductive construction of T l
v , induces an inductive construction of

a morphism

pT l
v
: Rk×#(V (T l

v)\V (T l−1
v)) =

∏
u∈V (T 1

v)\V (T 0
v)

Rk×#V (T l−1
u) → T l

v (27)

which sends a tuple of node attributes ((fG′′ ◦ πG′′)(u))u∈V (T l
v)\V (T l−1

v) supported over the set of
nodes V (T l

v) \ V (T l−1
v) to the corresponding multiset respecting the subgraph structure specified by

depth l− 1 unfolding subtrees. Here, for each u ∈ V (T 1
v) \ V (T 0

v), the vectors Ll−1
u are elements of

Rk×T l−1
u , i.e. the concatenation of all k-dimensional node attributes supported over the depth l − 1

unfolding tree rooted at u.

pT l
v

(
(Ll−1

u)u∈V (T 1
v)\V (T 0

v)

)
=

{
fG(v) if l = 0∑

u∈V (T 1
v)\V (T 0

v)

(
{{pT l−1

u
}}(Ll−1

u)
)

otherwise
(28)

Note that pT 0
v

is the identity function from Rk to itself. As will be demonstrated in the upcoming
example, the functions pT l

v
are generalizations of the Weisfeiler-Lehman iteration scheme for updating

node attributes.

18

Published as a conference paper at ICLR 2023

Example A.18. Let G be an undirected graph without self-loops given as in Figure 3. Let fG :
V (G) → R3 be a function of 3-dimensional node attributes over G. Recall that the given node
attributes are coordinate-wise real vectors, each represented as discrete node labels, i.e. (1, 0, 0) 7→ A,
(0, 1, 0) 7→ B, and (0, 0, 1) 7→ C.

Let v ∈ V (G) be a node whose attribute is represented as A. Denote by u1 ∈ V (G) the node whose
attribute is represented as B, u2 ∈ V (G) the degree 3 node whose attribute is represented at C, and
u3 the remaining node. Figure 4 illustrates the directed depth 3 unfolding tree T 3

v rooted at the node
v. We explain how the maps pT 0

v
, pT 1

v
, and pT 2

v
are defined. The map pT 0

v
: R3 → R3, by definition,

is an identity function.
pT 0

v
(A) = A (29)

The map pT 1
v
: R3×#(V (T 1

v)\V (T 0
v)) → T 1

v sends a tuple of 3-dimensional real vectors of length
deg v + 1 = 4 to the following multiset:

pT 1
v
: R3×#(V (T 1

v)\V (T 0
v)) → T 1

v =
∑

u∈V (T 1
v)\V (T 0

v)

{{R3}}1 = {{R3}}4

pT 1
v
((A,B,C,C)) = {{pT 0

v
(A)}}+ {{pT 0

u1
(B)}}+ {{pT 0

u2
(C)}}+ {{pT 0

u3
(C)}}

= {{A}}+ {{B}}+ {{C}}+ {{C}} = {{A,B,C,C}}

(30)

The map pT 2
v
: Rk×#(V (T 2

v)\V (T 1
v)) → T 2

v sends a tuple of 3-dimensional real vectors of length #
(V (T 2

v) \ V (T 1
v)) = 12 to the following multiset of multisets:

pT 2
v
: R3×#(V (T 2

v)\V (T 1
v)) → T 2

v =
∑

u∈V (T 1
v)\V (T 0

v)

{{T 1
u }}

pT 2
v
((A,B,C,C,A,B,C,A,B,C,A,C))

={{pT 1
v
}}(A,B,C,C) + {{pT 1

u1
}}(A,B,C) + {{pT 1

u2
}}(A,B,C) + {{pT 1

u3
}}(A,C)

={{{{A,B,C,C}}}}+ {{{{A,B,C}}}}+ {{{{A,B,C}}}}+ {{{{A,C}}}}
={{{{A,B,C,C}}, {{A,B,C}}, {{A,B,C}}, {{A,C}}}}

(31)

Using these definitions, we are now able to rigorously formulate that graph neural networks capture
local topological properties of G by representing subtrees of the associated universal cover G̃′′ as
real vectors.
Theorem A.19. Let G := (V,E) be a graph. Denote by fG : V (G) → Rk the function of k-
dimensional node labels over G. The node labels over G can be extended to those over the graph
G′′, denoted as fG′′ . Denote by πG′′ : G̃′′ → G′′ the universal covering map of G′′. Let T k

v be the
directed depth k unfolding tree of the graph G′′ at the node v ∈ V (G′′).

Let GNN l be a graph neural network comprised of l layers. For each node v ∈ V (G), let T l
v be the

multiset of nested multisets associated to the depth l unfolding tree T l
v, as constructed in Definition

A.16. Let pT l
v
: Rk×#(V (T l

v)\V (T l−1
v)) → T l

v be the morphism defined as in Remark A.17. Then there
exists a set theoretic function F l

v : T l
v → Rkl such that the node label at v obtained from graph

neural networks with l layers given by

h(l)
v = F l

v

(
pT l

v

(
((fG′′ ◦ πG′′)(u))u∈V (T l

v)\V (T l−1
v)

))
(32)

In other words, the updated node attributes are obtained from a set theoretic function supported over
the set of nodes in V (T l

v) \ V (T l−1
v).

Proof. We prove the theorem by induction. For any graph G := (V,E) with a predetermined
normalized adjacency matrix Ã, denote by ãu,v the entry of the normalized adjacency matrix Ã at a
pair of nodes (u, v).

Suppose l = 1. The node label at v ∈ V (G) updated from a graph neural network with a single
layer is obtained from taking a weighted sum of labels of nodes adjacent to v and the node v itself,
followed by evaluating the newly obtained attributes using the activation function σ1. By construction,
the depth 0 unfolding tree of the graph G′′ at v is the node v itself. The parent node of the depth 1

19

Published as a conference paper at ICLR 2023

Figure 7: A visual representation of the set of nodes Am
u and Bm

v,u from the exemplary graph G from
Figure 3. Observe that the lift of nodes v1 ∈ V (G) are notated as vi,j , and the corresponding set of
nodes Am

u and Bm
v,u for m = 2 are shaded in distinct colors.

unfolding tree T 1
v is the node v. The child nodes of T 1

v are the nodes of G adjacent to v, including v
itself. Hence there exists a bijection

φ1
v : ({v} ∪ {u ∈ V (G) | u ̸= v, (u, v) ∈ E(G)}) →

(
V (T 1

v) \ V (T 0
v)
)

(33)

which induces an equality of respective restrictions of node attributes fG and fG′′ ◦πG′′ . By definition
and the existence of the bijection φ1, there exists a function F 1

v : T 1
v → Rk1 such that

h(1)
v = F 1

v

({{
(fG′′ ◦ πG′′)(u) | u ∈ V (T 1

v) \ V (T 0
v)
}})

= F 1
v

(
pT 1

v

(
((fG′′ ◦ πG′′)(u))u∈V (T 1

v)\V (T 0
v)

)) (34)

Suppose the theorem holds for l = m. For any node u adjacent to v (i.e. u ∈
(
V (T 1

v) \ {v}
)
), the

three relations from Remark A.14 among directed finite depth unfolding trees establish a bijection of
set of nodes φm

u : Am
u → Bm

v,u, where the sets Am
u and Bm

v,u are given as

Am
u = V (Tm

u) \ V (Tm−1
u)

Bm
v,u = V (Tm+1

v) \

V (Tm
v)

⋃ ⊔
w∈(A1

u\{u})

Am
w

 (35)

The bijection φm
u induces an equality between respective restrictions of pullback of node attributes

fG′′ ◦ πG′′ . The collection of bijections {φm
u }u∈A1

v
extends to bijections

φm+1 :
⊔

u∈A1
v

Bm
v,u → Am+1

v

φ̃m+1 :
⊔

u∈A1
v\{v}

Bm
v,u → Am+1

v \Am
v

(36)

both of which induce equalities between respective restrictions of fG′′ ◦ πG′′ . We refer to Figure
7 for an illustration of the set of nodes Am

u and Bm
v,u obtained from the exemplary graph drawn in

Figure 3.

Denote by T̃ m+1
v the following multiset of nested multisets:

T̃ m+1
v :=

∑
u∈V (T 1

v)
πG′′ (u)̸=v

{{T m
u }}1 (37)

20

Published as a conference paper at ICLR 2023

In other words, T̃ m+1
v is a multiset summation of nested multisets associated to depth m unfolding

trees Tm
u rooted at all nodes u which do not map to the given node v under the universal covering

map πG′′ : G̃′′ → G′′. Denote by p̃Tm+1
v

: Rk×#(Am+1
v \Am

v) → ˜T m+1
v the function given by:

p̃Tm+1
v

(
(Lm

u)u∈Am+1
v \Am

v

)
:=

∑
u∈Am+1

v \Am
v

(
{{pTm

u
}}(Lm

u)
)
. (38)

Here, for each node u, the vectors Lm
u are elements of Rk×Tm

u , i.e. the concatenation of all k-
dimensional node attributes supported over the depth m unfolding tree rooted at u. Note that as a
multi-set function,

pTm+1
v

(
(Lm

u)u∈V (T 1
v)\V (T 0

v)

)
= pTm

v
(Lm

v) + p̃Tm+1
v

(
(Lm

u)u∈Am+1
v \Am

v

)
(39)

For some positive number k′m+1 there exists a function F̃m+1
v : T̃ m+1

v → Rk′
m+1 such that

AGGREGATE(m+1)
v

({{
h(m)
u | u∈V (G),u ̸=v

(u,v)∈E(G)

}})
= F̃m+1

v

(
p̃Tm+1

v

(
((fG′′ ◦ πG′′)(u))u∈Am+1

v \Am
v

))
.

(40)

To see this, we observe that

AGGREGATE(m+1)
v

({{
h(m)
u | u∈V (G),u̸=v

(u,v)∈E(G)

}})
= AGGREGATE(m+1)

v

({{
Fm
u

(
pTm

v

(
((fG′′ ◦ πG′′)(w))w∈Bm

v,u

))
| u∈V (G),u̸=v

(u,v)∈E(G)

}})
= AGGREGATE(m+1)

v

({{
Fm
u

(
pTm

v

(
((fG′′ ◦ πG′′)(w))w∈Bm

v,u

))
| u ∈ A1

v \ {v}
}})

= F̃m+1
v

(
p̃Tm+1

v

(
((fG′′ ◦ πG′′)(u))u∈Am+1

v \Am
v

))
(41)

The last equation follows from the following observation. The domain of the aggregation function
is supported over the set of nodes

⊔
u∈A1

v\{v}
Bm

v,u. Applying the bijection φ̃m+1 implies that the
aggregation function is defined over the real vector space supported over the set of nodes Am+1

v \Am
v .

By (39), we hence obtain that there exists a function Fm+1
v : T m+1

v → Rkm+1 such that

h(m+1)
v = COMBINE(m+1)

(
h(m)
v , AGGREGATE(m)

v

({{
h(m)
u | u∈V (G), u ̸=v

(u,v)∈E(G)

}}))
= COMBINE(m+1)

(
h(m)
v , F̃m+1

v

(
p̃Tm+1

v

(
((fG′′ ◦ πG′′)(u))u∈Am+1

v \Am
v

)))
= COMBINE(m+1)

(
Fm
v

(
pTm

v

(
((fG′′ ◦ πG′′)(u))u∈Am

v

))
, F̃m+1

v

(
p̃Tm+1

v

(
((fG′′ ◦ πG′′)(u))u∈Am+1

v \Am
v

)))
= Fm+1

v

(
pTm+1

v

(
((fG′′ ◦ πG′′)(u))u∈Am+1

v

))
.

(42)

Example A.20. We revisit the graph G as shown in Figure 3. Consider a graph neural network with m
layers such that for all layers the aggregation function AGGREGATEv and the combination function
COMBINE correspond to summation of respective node attributes. One may consider the resulting
GNN as a simplified generalization of the Weisfeiler-Lehman isomorphism test for continuous node
attributes. Concatenations of adjacent discrete node labels correspond to summations of adjacent
node attributes, whereas substitutions of newly obtained node labels are skipped. Then there exists a
correspondence between the node attributes updated from the graph neural network with m layers and
the attributes over the set of nodes in V (Tm

v) \ V (Tm−1
v). For example, as indicated in Figure 4 and

5, the updated node attributes can be obtained by counting the number of occurrences of attributes in
the respective colored region.

21

Published as a conference paper at ICLR 2023

A.4 PROOF OF THEOREM 3.3

Xu et al. shows that graph neural networks with injective node feature aggregating functions and
injective graph-level readout functions are as powerful as Weisfeiler-Lehman isomorphism tests
in distinguishing non-isomorphic classes of graphs Xu et al. (2018). Using the theory of covering
spaces, we prove a refinement of the isomorphism-invariant properties of Weisfeiler-Lehman tests
over graphs with identical node labels Krebs & Verbitsky (2015) for graph neural networks.

Under certain conditions, the vector representations of graphs obtained from graph neural network
can distinguish isomorphism classes of universal covers of graphs as well as non-equivalent pullback
of node labels.
Theorem A.21 (Theorem 3.3). Let G be a collection of finite connected graphs such that the least
upper bound of their diameters is equal to d. Suppose a graph neural network GNN l with l layers
satisfies the following three constraints:

• For every m such that 1 ≤ m ≤ l and for each v ∈ V (G), the functions AGGREGATE(m)
v

and COMBINE(m) are injective.

• The graph read-out function READOUT is injective.

• l ≥ 2d.

Then GNN l maps any two connected graphs G,H ∈ G with the same number of nodes to identical
vector representations if and only if there exists an isomorphism of universal covers φ : G̃′′ → H̃ ′′

that induces an equality of the pullback of node labels, i.e.

hG = hH ⇐⇒ ∃ isomorphism φ : G̃′′ → H̃ ′′s.t. fG′′ ◦ πG′′ = fH′′ ◦ πH′′ ◦ φ (43)

The theorem generalizes the result of Krebs and Verbitsky Krebs & Verbitsky (2015) for pairs of
graphs with fixed constant node labels. Before we prove Theorem 3.3, we recall the definition of
graph diameters and note the following lemma .
Definition A.22 (Graph Diameter). Let G := (V,E) be a finite undirected graph. Given a pair of
nodes v, w ∈ V (G), let Pv,w be the set of sequences of edges p = (ei)

p
i=1 such that one can move

from node v to node w by traveling along the sequence of edges (ei)
p
i=1. The length of the path

p is the size of the sequence, i.e. l(p) = l((ei)
p
i=1) = p. Then the graph diameter dG of G is the

maximum of the shortest length of paths required to move between any two nodes. In other words,

dG := max
(v,w)∈V (G)

(
min

p∈Pv,w

l(p)

)
(44)

Lemma A.23. Let G1 and G2 be two undirected graphs with finite number of nodes. Let fG1
:

V (G1) → Rk and fG2
: V (G2) → Rk be node attribute functions over G1 and G2. Denote

by πGi
: G̃i → Gi and πG′′

i
: G̃i

′′ → G′′
i the universal covering maps for i = 1, 2. Then the

isomorphism h : G̃1 → G̃2 induces an isomorphism h′′ : G̃1
′′ → G̃2

′′
, and vice versa. If such

isomorphisms exist, then fG1
◦ πG1

= fG2
◦ πG2

◦ h if and only if fG′′
1
◦ πG′′

1
= fG′′

2
◦ πG′′

2
◦ h′′.

Proof. Let v ∈ V (G) be a node of an undirected graph G. We observe that a collection of finite
depth unfolding trees rooted at all nodes of a universal cover G̃ (or G̃′′) defines an open cover. It
hence suffices to show that for any l, two undirected depth l unfolding trees T l,un

v are isomorphic if
and only if two directed depth l unfolding trees T l

v are isomorphic. Note that by the construction of
finite depth unfolding trees, the result on equality of node attributes follows immediately.

As constructed from Definition A.12, we denote by T 1,un
v ⊂ G̃ the undirected depth 1 unfolding

tree rooted at v, and T 1
v ⊂ G̃′′ the directed depth 1 unfolding tree rooted at v. Note that the directed

tree T 1
v can be constructed from the undirected tree T 1,un

v by substituting all undirected edges with
directed edges from v to its neighboring nodes, adding a new copy of the node v itself, and adding a
new directed edge from v to its copy. This demonstrates that the statement holds for l = 1.

Suppose the isomorphism invariance of unfolding trees holds for l = k. As before, denote by
T k+1,un
v ⊂ G̃ the undirected depth k + 1 unfolding tree rooted at v, and T k+1

v ⊂ G̃′′ the directed

22

Published as a conference paper at ICLR 2023

Figure 8: A comparison between the universal cover G̃ and the induced universal cover G̃′′ of a graph
G constructed in Figure 3.

depth k+1 unfolding tree rooted at v. The directed tree T k+1
v can be constructed from the undirected

tree T k+1,un
v using the following procedure. For every node w ∈ V (T 1,un

v) \ {v}, substitute the
undirected tree T k,un

w rooted at w with the directed tree T k
w. We then add a disjoint copy of the

directed tree T k
v , and add a new directed edge from the root of the tree T k+1

v to the root of the newly
added tree T k

v (This corresponds to adding a new directed edge from v to its copy). The procedure
guarantees to map isomorphic undirected unfolding trees to isomorphic directed unfolding trees, and
vice versa. A visual illustration which compares the undirected and the directed rooted unfolding
trees can be found in Figure 8.

We recall the following two lemmas on isomorphism classes of finite depth unfolding trees. Both
lemmas are reformulations of Lemma 2.5 and Lemma 2.7 of Krebs & Verbitsky (2015), which proves
the statements for undirected finite depth unfolding rooted trees.

Lemma A.24. Let v, w ∈ V (G) be any pair of nodes such that for any l ≥ 1, the following conditions
hold.

1. The two directed unfolding trees T l−1
v and T l−1

w are isomorphic.

2. There exists a bijection of nodes gl : V (T 1
v) → V (T 1

w) such that for all u ∈ V (T 1
v), the two

directed unfolding trees T l
u and T l

gl(u)
are isomorphic.

Then the directed unfolding trees T l+1
v and T l+1

w are isomorphic.

Lemma A.25. Let G,H be two connected graphs with at most n nodes. Let d be the maximum of
the diameters of two graphs G and H , i.e. d := max(dG, dH). Then for any pair of nodes v ∈ V (G)
and w ∈ V (H), the directed unfolding trees T l

v and T l
w are isomorphic for any l ≥ 2d if and only if

T 2d−1
v and T 2d−1

w are isomorphic.

Proof. Note that any depth-d unfolding tree rooted at a node v ∈ V (G) or w ∈ V (H), as a subspace
of the universal covers G̃′′ and H̃ ′′, contains all pre-images of the set of nodes V (G) and V (H). This
implies that any depth-2d− 1 unfolding trees rooted at any node v ∈ V (G) or w ∈ V (H) contains
all possible rooted depth-d unfolding trees. It remains to invoke the ideas of the proof of Lemma 2.7
of Krebs & Verbitsky (2015) to further reduce the lower bound of l from 2n to 2d.

23

Published as a conference paper at ICLR 2023

Using the aforementioned lemmas, we are able to prove that the hidden node attributes obtained
from GNNs with l layers whose combination and neighborhood aggregation functions are injective
indicate the isomorphism classes of depth l unfolding rooted trees.
Lemma A.26. Let G and H be connected graphs with n nodes. Denote by fG : V (G) → Rk and
fH : V (H) → Rk the k-dimensional node attributes of G and H . Denote by πG′′ : G̃′′ → G′′ and
πH′′ : H̃ ′′ → H ′′ the universal covering maps of the induced directed graphs G′′ and H ′′.

Suppose a graph neural network GNN l with l layers satisfies the condition that for every m such
that 1 ≤ m ≤ l and for each node v̂ of any finite graph Ĝ, the functions AGGREGATE(m)

v̂ and
COMBINE(m) are injective.

For each v ∈ V (G), pick a bijection of set of nodes ϕv : V (G) → V (H) which induces an equality
(not an isomorphism) of depth-1 unfolding tree at v and ϕv(v), i.e. ϕv(T

1
v) = ϕv(T

1
ϕv(v)

). Then for

every 1 ≤ m ≤ l, the bijection ϕv induces an equality of hidden node attributes h(m)
v and h

(m)
ϕv(v)

obtained from GNN l for every node v ∈ V (G) if and only if the bijection ϕv induces isomorphisms
φv,m : Tm

v → Tm
ϕv(v)

that imply equality of node attributes over the trees Tm
v and Tm

ϕv(v)
. In other

words:
∃ φv,m:Tm

v →∼=Tm
ϕv(v) such that

(fG′′◦πG′′)|Tm
v

=(fH′′◦πH′′)|Tm
ϕv(v)

◦φv,m
⇐⇒ h(m)

v = h
(m)
ϕv(v)

∀1 ≤ m ≤ l. (45)

Note that the bijections {ϕv}v∈V (G) may not necessarily be a singleton set. We refer to Figure 9 for
an example of a pair of graphs G and H where one needs to choose distinct bijections ϕv for each
node v.

Proof. This lemma is a generalization of Lemma 2.6 of Krebs & Verbitsky (2015). We prove the
statement of the lemma by induction on l. The base case for l = 0 is trivial, as the statement of the
lemma simplifies to comparing the attributes of a given pair of nodes.

Suppose the equivalence relation holds up to l = l0. For each v ∈ V (G), let ϕv : V (G) → V (H)
be a bijection of set of nodes which induces an isomorphism of depth-1 unfolding trees rooted at v
and ϕv(v). Suppose the hidden node attributes obtained from GNN with at most l0 + 1 layers are
identical for every node, i.e. h(m)

v = h
(m)
ϕv(v)

for 1 ≤ m ≤ l0+1. By the induction hypothesis, for any
1 ≤ m ≤ l0, the following equivalence relation holds for each pair of nodes {(v, ϕv(v))}v∈V (G):

∃ φv,m:Tm
v →∼=Tm

ϕv(v) such that
(fG′′◦πG′′)|Tm

v
=(fH′′◦πH′′)|Tm

ϕv(v)
◦φv,m

⇐⇒ h(m)
v = h

(m)
ϕv(v)

(46)

Observe that for each 1 ≤ i ≤ l0, the isomorphism φv,i : T i
v → T i

ϕv(v)
induces the following

equivalence relations for all pairs of nodes {(u, φv,i(u))}u∈V (T 1
v)\V (T 0

v)
and for any 1 ≤ m ≤ l0:

∃ φu,m:Tm
u →∼=Tm

φv,i(u) such that

(fG′′◦πG′′)|Tm
u

=(fH′′◦πH′′)|Tm
φv,i(u)

◦φu,m
⇐⇒ h

(m)
πG′′ (u)

= h
(m)
πH′′ (φv,i(u))

(47)

Note that φv,i(u) = ϕv(u) because ϕv induces an isomorphism of depth-1 unfolding trees at v and
ϕv(v).

Consider the open cover of T l0+1
v by the directed trees {T l0

u }u∈V (T 1
v)

. The intersection of any two
trees satisfy

T l0
u ∩ T l0

u′ =

{
T l0−1
u′ if u ∈ V (T 0

v) and u′ ∈ V (T 1
v) \ V (T 0

v)

∅ otherwise
(48)

By Lemma A.24, the collection of isomorphisms
{φu,l0}u∈V (T 1

v)
∪ {φu,l0−1}u∈V (T 1

v)\V (T 0
v)

(49)

induces the isomorphism φv,l0+1 : T l0+1
v → T l0+1

ϕv(v)
.

Recall that the hidden node attributes h(l0+1)
v and h

(l0+1)
ϕv(v)

are identical. Then the following collections
of multiset of node attributes are identical.

p
T

l0+1
v

(
((fG′′ ◦ πG′′)(v))

v∈V (T
l0+1
v)\V (T

l0
v)

)
= p

T
l0+1

ϕv(v)

(
((fH′′ ◦ πH′′)(u))

u∈V (T
l0+1

ϕv(v)
)\V (T

l0
ϕv(v)

)

)
(50)

24

Published as a conference paper at ICLR 2023

Figure 9: A visual demonstration of the gluing procedure from the proof of Theorem A.26. One
can construct an isomorphism between a pair of depth l + 1 unfolding trees rooted at v and ϕv(v)
by identifying the isomorphism classes of depth l unfolding trees rooted at u and ϕv(u) for all
u ∈ V (T 1

v) and gluing the trees in accordance to their intersections, which are depth l − 1 unfolding
trees (48). Observe that the bijection of the set of nodes ϕv1 does not induce an equality (not an
isomorphism) of depth-1 trees at vi and ϕv1(vi) for i = 2, 3, 5, 6. For example, the set of nodes of
the undirected depth-1 unfolding tree at v2 is given by {v1, v2, v5}, whereas the set of nodes of the
undirected depth-1 unfolding tree at ϕv1(v2) is the set {ϕv1(v1), ϕv1(v2), ϕv1(v3)}. For such nodes,
different choices of the bijections of the set of nodes ϕvi are required.

The above equation follows from the condition that the functions AGGREGATE(m)
v and

COMBINE(m)
v are injective for all v ∈ V (G) and 1 ≤ m ≤ l0 + 1, which implies that the

function over the multiset of labels F l0+1
v as constructed from Theorem A.19 is an injective function.

The collection of isomorphisms from (49) further indicates that for any u ∈ V (T 1
v) \ V (T 0

v), the
following equality of node attributes over T l0

v , T l0
u , and their intersection T l0−1

u ,

(fG′′ ◦ πG′′)|
T

l0
v

= (fH′′ ◦ πH′′)|
T

l0
ϕv(v)

◦ φv,l0

(fG′′ ◦ πG′′)|
T

l0
u

= (fH′′ ◦ πH′′)|
T

l0
ϕv(u)

◦ φv,l0

(fG′′ ◦ πG′′)|
T

l0
v ∩T

l0
u

= (fG′′ ◦ π′′
G)|T l0−1

u

= (fH′′ ◦ πH′′)|
T

l0−1

ϕv(u)

◦ φu,l0−1 = (fH′′ ◦ πH′′)|
T

l0
ϕv(v)

∩T
l0
ϕv(u)

◦ φu,l0−1

(51)

extends to the equality of node attributes over T l0
v ∪ T l0

u :

(fG′′ ◦ πG′′)|
T

l0
v ∪T

l0
u

= (fH′′ ◦ πH′′)|
T

l0
ϕv(v)

∪T
l0
ϕv(u)

◦ φv,l0+1|T l0
v ∪T

l0
u
. (52)

Iterating the gluing procedure for all depth l0 trees {T l0
u }u∈V (T 1

v)\V (T 0
v)

results in the desired equality
of node attributes over T l0+1

v .

Now suppose that there exists an equality of node attributes between T l0+1
v and T l0+1

ϕv(v)
induced from

the unfolding tree isomorphism φv,l0+1 : T l0+1
v → T l0+1

ϕv(v)
. Theorem A.19 implies that there exists

a set theoretic function F l0+1
v : T l0+1

v → Rkl0+1 such that the node label at v obtained from graph
neural networks with l layers is given by

h(l0+1)
v = F l0+1

v

(
p
T

l0+1
v

(
((fG′′ ◦ π′′)(u))

u∈V (T
l0+1
v)\V (T

l0
v)

))
. (53)

25

Published as a conference paper at ICLR 2023

The conditions that AGGREGATE(l0+1)
v and COMBINE(l0+1)

v are injective imply that F l0+1
v is an

injective function. Therefore, the equality of hidden node attributes h
(l0+1)
v = h

(l0+1)
ϕv(v)

follows
immediately from the fact that the equality of node attributes between depth l0 + 1 unfolding trees
ensures the equality of collection of multiset of node attributes over V (T l0+1

v) \ V (T l0
v).

Using Lemma A.25 and A.26, we now prove Theorem 3.3.

Theorem A.21 (Theorem 3.3). For each v ∈ V (G), let ϕv : V (G) → V (H) be a bijection of set of
nodes of G and H which induces an equality of depth-1 unfolding trees at v and ϕv(v). Lemma A.26
implies that the following equivalence relation holds for every v ∈ V (G):

∃ φv,m:Tm
v →∼=Tm

ϕv(v) such that
(fG′′◦πG′′)|Tm

v
=(fH′′◦πH′′)|Tm

ϕv(v)
◦φv,m

⇐⇒ h(m)
v = h

(m)
ϕv(v)

∀v ∈ V (G) and 1 ≤ m ≤ 2d. (54)

Lemma A.25 implies that for any positive number l ≥ 2d, the following equivalence relation holds:

∃ φv,l:T
l
v→

∼=T l
ϕv(v) such that

(fG′′◦πG′′)|Tl
v
=(fH′′◦πH′′)|Tl

ϕv(v)
◦φv,l

⇐⇒ h(m)
v = h

(m)
ϕv(v)

∀v ∈ V (G) and 1 ≤ m ≤ 2d. (55)

Consider the open cover {T l
w}w∈V (G̃′′) consisting of directed depth l unfolding trees rooted at every

node of G̃′′. Note that for any w ∈ V (G̃′′), there exists a node v ∈ V (G) such that T l
w
∼= T l

v. For
any two nodes w1, w2 ∈ V (G̃), there exist injective lifts iG(w1) and i′G(w2) whose corresponding
depth l unfolding trees rooted at wi’s satisfy the following equation:

T l
w1

∩ T l
w2

=

Tm
w2

if ∃ m consecutive directed edges from iG(w1) to i′G(w2)

Tm
w1

if ∃ m consecutive directed edges from i′G(w2) to iG(w1)

0 otherwise
(56)

Hence there exists an isomorphism φ : G̃′′ → H̃ ′′ if and only if for some l ≥ 2d, there exists a
bijection ϕ : V (G) → V (H) which induces an isomorphism of directed depth l unfolding trees
φv,l : T

l
v
∼= T l

ϕ(v) for every v ∈ V (G). Furthermore, the induced node attributes fG′′ ◦ πG′′ and
fH′′ ◦ πH′′ are identical if and only if for some l ≥ 2d, there exists a bijection ϕv : V (G) → V (H)
which induces an equality of node attributes

(fG′′ ◦ πG′′)|T l
v
= (fH′′ ◦ πH′′)|T l

ϕv(v)
◦ φv,l (57)

imposed on directed depth l unfolding trees T l
v
∼= T l

ϕv(v)
for each v ∈ V (G). Therefore, we obtain

that
∃ φ:G̃′′→∼=H̃′′ such that
fG′′◦πG′′=fH′′◦πH′′◦φ ⇐⇒ h(m)

v = h
(m)
ϕv(v)

∀v ∈ V (G) and 1 ≤ m ≤ 2d. (58)

Because the graph readout function READOUT is injective, we obtain

h(m)
v = h

(m)
ϕv(v)

∀v ∈ V (G) and 1 ≤ m ≤ 2d ⇐⇒ hG = hH . (59)

Combining the two equations above proves the theorem.

Remark A.27. One can in fact use Theorem 3.3 to establish a notion of weak isomorphism between a
pair of graphs G1 and G2. Let G be the collection of finite connected undirected graphs. One may
define a weak equivalence relation among the elements of G by constructing a function F : G → X
from G to the space of regular cell complexes X with the property that two graphs G1 and G2 are
weakly isomorphic if and only if their images F (G1) and F (G2) are isomorphic as cell complexes.
We refer to Definition 8 of Bodnar et al. (2021a) for a related concept named “cellular lifting map”.
Theorem 3.3 proves that conventional GNNs establishes a weak isomorphism among graphs in G
using the lifting function F : G → Xuniv from G to the collection of universal covers of 1-dimensional
cell complexes Xuniv .

26

Published as a conference paper at ICLR 2023

A.5 PROOF OF THEOREM 4.3

We now prove that the Cycle-to-Clique graph networks are more powerful than graph neural networks
in distinguishing non-isomorphism classes of graphs.
Remark A.28. As stated in the main manuscript, there are four approaches that enrich the input data
structure of graphs the graph neural network may process to distinguish non-isomorphic classes of
graphs.

1. Unique assignment of node labels: We may distinguish distinct classes of graphs by
assigning unique (or randomized) choices of node labels. Practical implementations include
assigning node degrees as labels, imposing positional encoding, and implementing labeling
tricks.

2. Persistent homological methods: We may incorporate homological invariants of graphs to
GNNs by utilizing or constructing height functions over nodes and edges and constructing
the associated persistence diagrams. These diagrams allow one to keep track of variations
in the number of components and cycles throughout the filtration of graph dataset induced
from the choice of the height functions.

3. Topological Enrichment: We may enrich topological structures of graphs by attaching
simplicial and cellular complexes, or incorporating subgraph structures. Such actions allows
conventional GNNs to encapsulate particular topological substructures of graphs suitable
for classifying graph datasets of our interest, such as cliques within social media datasets or
cyclic subgraphs within molecular datasets.

4. Construction of non-isomorphic universal covers: We may incorporate homological
invariants of graphs, in particular cyclic subgraphs of graphs, to GNNs by constructing a
new graph structure induced from subgraphs isomorphic to cyclic graphs. It is advised that
the universal covers of newly induced subgraphs are not isomorphic to each other, thereby
allowing the graph neural network to represent a collection of cyclic subgraphs as distinct
vector representations.

Definition A.29. Denote by Cn the cyclic undirected graph without self-loops consisting of n nodes,
and Kn the undirected complete graph with n nodes without self-loops.

We state a simple result that the induced universal covers of Cn’s are isomorphic, whereas those of
Kn’s are not.

Lemma A.30 (Lemma 4.2). For any n ̸= m, C̃n
′′ ∼= C̃m

′′
, whereas K̃n

′′ ̸∼= K̃m
′′

.

Proof. The proof follows from the observation that any induced universal cover G̃′′ of a k-regular
graph G is isomorphic to a directed infinite 2k + 2 regular tree, where each node v is connected by
k+ 1 directed edges from source nodes to v, and by k+ 1 directed edges from v to target nodes.

Hence, the lemma suggests a natural procedure to allow graph neural networks to distinguish cyclic
graphs with distinct number of nodes: Substitute the cyclic graphs Cn with complete graphs Kn.
Using this observation, we may construct the Cy2C-GNN, as indicated in the main manuscript.

Before we recall the definitions of clique adjacency matrix and the architecture of the Cy2C-GNN,
we first state the definition of a cycle basis BG of a graph G.
Definition A.31. Let G := (V,E) be a finite graph. A cycle basis BG is a set of cyclic subgraphs of
G such that every cyclic subgraph of G can be represented by unions and complements of elements
in BG.

Given that G is connected, a canonical method to construct a cycle basis of a graph G is to find a
spanning tree T ⊂ G. It is a non-trivial result from algebraic topology that if G has n nodes and
m edges, then the cardinality of any cycle basis of G is equal to m − n + 1, see Theorem 2.44
of Hatcher (2002) for instance. Because T is a subgraph of G consisting of n nodes and n − 1
edges, we immediately obtain that the remaining m − n + 1 edges of G not lying in T generates
the elements of a cycle basis. Indeed, one can construct a cyclic subgraph by adding one of the
m− n+ 1 edges to the spanning tree T . Figure 10 illustrates an example how one can obtain a cycle

27

Published as a conference paper at ICLR 2023

Figure 10: An illustration which shows how a choice of a spanning tree of a graph gives rise to
a cycle basis BG of a graph (Definition A.31). We note that the first, second, and the fifth cyclic
subgraphs are chordless, whereas the third and the fourth cyclic subgraphs are not (Definition A.34).
The non-chordless cyclic subgraphs can be further decomposed into chordless cyclic subgraphs, as
shown in the new cycle basis B′

G. (Theorem 4.3)

basis associated to a choice of a spanning tree T . There are systematic protocols to obtain cycle
bases of graphs by conducting a standardized procedure in constructing spanning trees of a given
graph G, such as Paton’s algorithm which constructs spanning trees using the first or the last element
methods Paton (1969), and persistent homological techniques applied over the set of edges E(G)
with a predetermined total order Hofer et al. (2020).
Definition A.32 (Clique Adjacency Matrix (Definition 4.2)). Let G := (V,E) be an undirected
graph. Fix the cycle basis BG of G, the set of cyclic subgraphs of G which forms the basis of
the cycle space (or the first homology group) of G. The clique adjacency matrix of G, denoted as
AC , is the adjacency matrix of the union of #BG complete subgraphs, each obtained from adding
all possible edges among the set of nodes of each basis element B ∈ BG. Explicitly, the matrix
AC := {aCu,v}u,v∈V (G) is given by

aCu,v :=

{
1 if ∃ B ∈ BG cyclic s.t. u, v ∈ V (B)

0 otherwise
(60)

Given 3 ≤ c1 ≤ c2 < ∞, one may also define the bounded clique adjacency matrix AC |[c1,c2] :=
{aCu,v|[c1,c2]}u,v∈V (G) which only substitutes cycles of size between c1 and c2 to cliques:

aCu,v|[c1,c2] :=
{
1 if ∃ B ∈ BG cyclic s.t. u, v ∈ V (B), c1 ≤ |V (B)| ≤ c2
0 otherwise

(61)

For each node v ∈ V (G), we denote by C(v) the set of nodes w ∈ V (G) such that there exists a
cyclic subgraph C ∈ BG such that both v and w lie in C:

C(v) := {w ∈ V (G) | ∃ C ∈ BG s.t. v, w ∈ V (C)} (62)

Definition A.33 (Cy2C-GNN). Let G := (V,E) be a graph with n nodes and continuous node
attributes fG : V (G) → Rk. We denote by Cy2C-GNNl the cycle-to-clique graph neural network
comprised of a disjoint pair of two types of layers: A single neighborhood aggregating layer H(1)

C
utilizing the clique adjacency matrix AC : And l layers of conventional neighborhood aggregating
layers H(m) for 1 ≤ m ≤ l utilizing the adjacnecy matrix A. The Cy2C-GNN model admits the
following three matrices as inputs:

28

Published as a conference paper at ICLR 2023

• The adjacency matrix of a graph A ∈ Rn×n

• The node feature matrix X ∈ Rn×k obtained from the function fG

• The clique adjacency matrix AC ∈ Rn×n (possibly bounded) from Definition 4.2.

Each types of message passing layer is constructed in the following manner:

1. The first layer H(1)
C of the network constructs the hidden node attribute c(1)v using the clique

adjacency matrix AC and the following composition of functions:

c(1)v := COMBINE(1)
(
Xv,AGGREGATE(1)

v ({{Xu | u ∈ C(v)}})
)

(63)

As for the other type of the message passing layer, the m-th layer H(m) of the network for
each 1 ≤ m ≤ l constructs the hidden node attribute of dimension km, denoted as h(m)

v

using the following composition of functions:{
h
(m)
v := COMBINE(m)

(
h
(m−1)
v ,AGGREGATE(m)

v

({{
h
(m−1)
u | u∈V (G),u̸=v

(u,v)∈E(G)

}}))
h
(0)
v = Xv

(64)
For the two equations above, Xv is the initial node attribute at v, M (m)

v is the collection of
all multisets of km−1-dimensional real vectors with deg v elements counting multiplicities,
the aggregation function

AGGREGATE(m)
v : M (m)

v → Rk′
m (65)

is a set theoretic function of k′m-dimensional real vectors defined over Mv, and the combi-
nation function

COMBINE(m) : Rkm−1+k′
m → Rkm (66)

is a set theoretic function combining the attribute hm−1
v and the image of AGGREGATE(m)

v .
For obtaining the hidden attributes, identical aggregation and combination functions are
employed.

2. Denote by H(l) be the final conventional neighborhood aggregating layer of the network.

• The final hidden attribute Hv at node v ∈ V (G) obtained from Cy2C-GNNl is obtained
by concatenating the hidden attributes c(1)v and h

(l)
v at each v ∈ V (G) and composing

with multi-layer perceptrons (MLPs):

Hv = MLP(CONCAT(c(1)v , h(l)
v)). (67)

• For 1 ≤ m ≤ l, let M (m) be the collection of all multisets of km-dimensional vectors
with #V (G) elements. Let

READOUT(m) : M (m) → RK (68)

be the graph readout function of K-dimensional real vectors defined over the multiset
M (m). Then the vector representation of G, denoted as HhG,cG , is given by

HhG,cG = MLP(CONCAT(HhG
, HcG))

HhG
= READOUT(l)({{h(l)

v | v ∈ V (G)}})
HcG = READOUT(1)({{c(1)v | v ∈ V (G)}})

(69)

We end this section with the statement that Cy2C-GNN is more powerful than graph neural networks
satisfying the conditions of Theorem 3.3 in distinguishing non-isomorphic classes of graphs.

Definition A.34 (Chordless Subgraphs). Let H ⊂ G be a subgraph. We say that H is chordless if
there does not exist a cyclic subgraph C of G such that V (C) ⊊ V (H) (See Figure 10 for examples
of cyclic subgraphs which are chordless and not).

29

Published as a conference paper at ICLR 2023

Theorem A.35 (Theorem 4.3). Let G and H be graphs which have isomorphic universal covers,
endowed with node features fG : V (G) → Rk and fH : V (G) → Rk. Fix a cycle basis BG of G.
Suppose that there exists a chordless cyclic subgraph C ∈ BG such that any cycle basis BH does not
have any chordless cyclic subgraph of size equal to |V (C)|. Then Cy2C-GNN which utilizes bounded
clique adjacency matrices can distinguish G and H , whereas conventional GNNs cannot.

Proof. Let G and H be graphs satisfying the conditions of the theorem. Let C ∈ BG be the chordless
cyclic subgraph of our interest. If a cyclic subgraph CH ∈ BH has size equal to |V (C)|, then CH

is not chordless, i.e. there exist a set of chordless subgraphs CH,i ⊂ H such that CH = ∪iCH,i.
Because CH ∈ BH , we may substitute the element CH with one of the CH,i’s such that |V (CH,i)| <
|V (CH)| = |V (C)|. Therefore, we can assume that the cycle basis BH does not contain any elements
whose size is equal to |V (C)|. A visual illustration of the aforementioned argumentation can be
found in Figure 10, where one can obtain a new cycle basis comprised of chordless cyclic subgraphs
of strictly smaller sizes using the elements from a given cycle basis. We can hence apply a single layer
of Cy2C-GNN equipped with the bounded clique adjacency matrix A

[c1,c2]
C where c1 = c2 = |V (C)|.

This results in transforming G to be a non-trivial graph including the graph C, and transforming H to
be an empty graph. It is easy to see that the universal covers of such two graphs are not isomorphic to
each other.

We note that one may still use the usual clique adjacency matrix to distinguish some of the pairs of
graphs G and H satisfying the conditions of Theorem 4.3. One needs to verify, however, that the
resulting induced graphs associated to clique adjacency matrices of G and H have non-isomorphic
universal covers. The upcoming example gives exemplary pairs of graphs for every node |V (G)| ≥ 6
which are discernible by using Cy2C-GNN equipped with the usual clique adjacency matrix.
Example A.36. In this example, we explicitly construct a collection of isomorphism classes of graphs
with n nodes such that Cy2C-GNN can distinguish, whereas conventional GNNs cannot.

Consider the two connected graphs G and H with 6 nodes as shown in Figure 11. Theorem 3.3
implies that any GNN (including the Weisfeiler-Lehman test) cannot distinguish the two graphs
because the induced initial node attributes over the universal covers G̃′′ and H̃ ′′ are equal.

In fact, for any even number of nodes 2n ≥ 6, there exists a pair of two labelled connected graphs
with 2n nodes that any GNNs cannot distinguish. Consider a graph Gn constructed from gluing
two Cn+1 cyclic graphs along a distinguished edge. Consider another graph Hn constructed from
connecting a pair of distinguished nodes from two disjoint Cn cyclic graphs by an edge. Impose
identical attributes to nodes based on their degrees. Note that there are 2 nodes of degree 3 and
2n− 2 nodes of degree 2. Then the two universal covers G̃n

′′
and H̃n

′′
are isomorphic. Furthermore,

the node attributes over the universal covers induced from Gn and Hn are identical. Theorem 3.3
hence implies that any GNNs cannot distinguish Gn and Hn. However, the two graphs are clearly
not isomorphic.

Let Gn,1 be the graph obtained by substituting the two cyclic subgraphs Cn+1 with two complete
graphs Kn+1. Likewise, let Hn,1 be the graph obtained by substituting the two disjoint cyclic graphs
Cn with two complete graphs Kn. Among the nodes of Gn,1, there are 2n − 2 nodes of degree n
and 2 nodes of degree n+ 2. As for the nodes of Hn,1, there are 2n− 2 nodes of degree n− 1 and 2

nodes of degree n. Thus, ˜Gn,1
′′ ̸∼= ˜Hn,1

′′
(In fact, ˜Hn,1

′′
consists of two disjoint isomorphic copies

of infinite trees, each of which is not isomorphic to ˜Gn,1
′′

). Therefore, any GNNs satsifying the
conditions of Theorem 3.3 may distinguish the graphs Gn,1 and Hn,1. The Cy2C-GNN captures
the non-isomorphism of universal covers by admitting the clique adjacency matrices of G and H
as inputs. Note that the clique adjacency matrix of G (and H) is equal to the sum of the adjacency
matrix of Gn,1 (and Hn,1, respectively) and the identity matrix.

Likewise, there are a collection of finite graphs with many connected components that any graph
neural network cannot distinguish. Consider a collection of graphs G with n nodes consisting of
isomorphism classes of disjoint union of cyclic graphs

⊔
i∈I∑
mi

=n
Cmi

. See Figure 12 for instance.

The directed unfolding tree T l
v of depth l at each node v of the graph is isomorphic to a directed

3-regular rooted tree of depth l. If the node attributes are constant, then Theorem 3.3 implies that any
graph neural networks cannot distinguish all such disjoint union of cyclic graphs.

30

Published as a conference paper at ICLR 2023

Figure 11: An illustration of Definition 4.2 and Theorem 4.3. The two connected graphs have
identical associated universal covers, which implies that graph neural networks cannot distinguish
the two graphs. Nevertheless, Cy2CGN is able to distinguish them by adding complete graphs from
cycles of these graphs, whose universal covers are not isomorphic. The incorporation of cycle bases
of graphs to graph representations become feasible via admitting the clique adjacency matrices as
inputs.

31

Published as a conference paper at ICLR 2023

Figure 12: An illustration of Theorem 4.3. Each of the following pair of graphs with non-isomorphic
cyclic subgraphs have identical associated universal covers, which implies that graph neural networks
cannot distinguish the two graphs. Nevertheless, Cy2C-GNN is able to distinguish them by adding
complete graphs from cycles of these graphs, whose universal covers are not isomorphic.

32

Published as a conference paper at ICLR 2023

By substituting every disjoint cyclic graphs with complete graphs, however, we obtain non-isomorphic
classes of disjoint unions of universal covers. Therefore, even if the node attributes are constant,
Theorem 3.3 implies that Cy2C-GNN can distniguish all such disjoint union of cyclic graphs.
Remark A.37. One immediate result from Theorem 4.3 is that Cy2C-GNN can distinguish non-
isomorphism classes of graphs that 1,2,and 3-WL tests cannot distinguish. The proof of this claim
originates from the adaptation of the well-known arguments presented in Bodnar et al. (2021b;a). The
Rook’s 4×4 graph and the Shrikhande graph, which constitutes the only two elements of the strongly
regular graphs in family SR(16,6,2,2), are not isomorphic because the Shrikhande graph contains a
chordless cyclic subgraph of size 5, whereas Rook’s 4× 4 graph does not, see for instance Table 4 of
Bodnar et al. (2021a). Theorem 4.3 hence implies that Cy2C-GNN can distinguish these two graphs
by incorporating the cycle basis of the Shrikhande graph which contains a chordless cyclic subgraph
of size 5, and that of the Rook’s 4× 4 graph which does not contain such subgraphs.

We note that contemporary techniques which are known to be able to classify classes of graphs that
1,2 and 3-WL tests cannot possess capability in counting the number of nodes of a given cyclic or
clique subgraphs of G. Such results include Proposition 25 of Bodnar et al. (2021a), Proposition 2 of
You et al. (2021), Theorem 8 of Bodnar et al. (2021b), and Proposition 3.4 of Bouritsas et al. (2022).

While these previously studied GNNs and Cy2C-GNN share a common objective in distinguishing
cyclic substructures of graphs, the inherent algorithm which manifests such objectives are different.
To elaborate, Bodnar et al. (2021a) and Bouritsas et al. (2022) propose gluing higher dimensional cells
or complexes while preserving the 1-skeleton structure of a given graph. You et al. (2021) proposes
perturbing the feature of a designated node, which allows GNNs with sufficiently large number of
layers to distinguish cyclic substructures of graphs. Cy2C-GNN, on the other hand, circumvents
utilizing higher dimensional cells or perturbing the given node attributes by adding suitable edges, or
transforming the 1-skeleton structure of a graph. This procedure allows a wide range of classes of
graphs, in particular those with varying cyclic structures, with isomorphic universal covers to attain
additional non-isomorphic universal covers. Because neighborhood aggregating layers are effective
in distinguishing isomorphism classes of graphs up to their universal covers, Cy2C-GNN allows
conventional GNNs to detect such cyclic structures with a single neighborhood aggregating layer
utilizing clique adjacency matrices.

A.6 COMPUTATIONAL COMPLEXITY

The computation complexity of Cy2C-GNN method consists of two parts: An extraction algorithm
for extracting clique adjacency matrix from general description of graph: And the GNN model with
clique adjacency matrix. The extraction algorithm is equivalent to constructing a basis of cycles of
the first homology group of a given graph G. The classical algorithm proposed by Paton proves that
the time complexity of finding a cycle basis of a finite graph with n nodes is given by O(nγ) for
2 ≤ γ ≤ 3 Paton (1969). For random graphs with n nodes and density 0.5, the time complexity of
Paton’s algorithm is equal to O(n2). Indeed, as shown in Table 3 in Appendix B, the average sizes
of cycle bases BG for benchmark graph datasets are bounded above by their average numbers of
edges. There are other more efficient algorithms than Paton’s algorithm in obtaining a cycle basis of
a finite graph with n nodes. One may resort to using persistent homological techniques to construct
persistent diagrams associated to filtrations of a finite graph G with m edges, whose time complexity
is of order O(mα(m)) Horn et al. (2021). The function α(m) is the inverse Ackermann function,
which grows at an extremely slow rate in terms of m. In fact, it grows at such a slow rate that we may
even assume without loss of generality that α(m) is a constant in terms of m for any practical choice
of the number of edges m.

The latter architectural component of the Cy2C-GNN algorithm shares equivalent time complexities
to conventional GNNs, corresponding to O(mC + lm1), where l is the number of layers, mC is the
number of edges of a graph associated to the clique adjacency matrix AC , and m is the number of
edges of G. We recall that the Euler characteristic formula implies

#BG = #E(G)−#V (G) + 1

for any connected graph G. Hence, the time complexity of the Cy2C-GNN method is practically
equivalent to O(m), given that the number of layers is fixed and the number of nodes consisting each
cycle bases is bounded.

33

Published as a conference paper at ICLR 2023

We established that as long as one chooses a sufficiently efficient algorithm for computing cycle bases
of graphs, the time complexity to represent graphs with n nodes and m edges using Cy2C-GNN is
equivalent to O(m). Such a complexity is equivalent to that of conventional GNNs, and more efficient
than persistent homological techniques, while managing to capture cyclic substructures of graph data
sets. The time complexity of constructing persistence diagrams given an arbitrary height function
over the set of nodes and edges of a graph G is equal to O(n2w), where w is a positive number such
that O(nw) is the time complexity required for multiplying two n × n matrix Milosavljevic̀ et al.
(2011). We note that the time complexity of conventional matrix multiplication algorithm is given by
O(n3), with the best asymptotic complexity running in O(nw) with w ∼ 2.37 Alman & Williams
(2021). As for persistent homological techniques obtained from a predetermined height function over
G, there are classes of height functions whose time complexity to construct persistence diagrams is
equal to O(n2 log n), see for instance the work by Rieck et al Rieck et al. (2019). Nevertheless, such
persistent homological techniques may not necessarily distinguish all isomorphism classes of graphs,
as carefully studied in the work by Horn et al Horn et al. (2021). For example, consider the height
function h : G → R over a graph G with continuous node attributes fG : V (G) → Rk defined as{

h(v) = 0 for v ∈ V (G)

h(e) = ∥fG(v)− fG(w)∥p + τ for e = (v, w) ∈ E(G)
(70)

where ∥ · ∥p is the Lp-distance defined over Rk, and τ > 0 is a positive bias term. Let G and H be
two graphs as shown in Figure 4. Then one may observe that there exists a bijection between the
zeroth dimensional persistence diagrams (and first dimensional persistence diagrams, respectively)
obtained from filtrations of G and H with respect to the height function h.

B IMPLEMENTATION

The experiments were run on cloud provider, comprising of 16 physical cores (Intel Xeon Processor
(Skylake, IBRS) CPU processor @ 2.10GHz) with 2 NVIDIA Quadro RTX 6000 GPUs.

B.1 EXPERIMENTAL SETUP

Dataset We perform graph classification on the 3 bioinformatics(DD, PROTEINS(FULL), EN-
ZYMES), 3 social network datasets (COLLAB, IMDB-B, REDDIT-B), 3 small molecules datasets (
MUTAG, NCI1, NCI109), 3 datasets with edge features (BZR-MD, COX2-MD, PTC-MR) and 4
large datasets (REDDIT-M-5K, MOLHIV, MOLTOX21, MOLTOXCAST) from TU datasets Morris
et al. (2020) which are available in pytorch-geometric library Fey & Lenssen (2019) and Open
Graph Benchmark datasets Hu et al. (2021). We use one-hot encoding for discrete node features and
normalize the continuous node features before using GNNs. We make initial node features for the
social dataset by utilizing one-hot encoding of node degrees. The details of statistical properties of
benchmark data sets are summarized in Table 3 and 4. For ablataion study, we perform an ablation
study by utilizing the “CYCLES” and “NECKLACES” synthetic datasets from Horn et al. (2021).

Models We use three baseline models to compare the proposed methods comprised of GCN, GAT,
and GIN. The hidden dimension of each message passing layer is uniformly given by 136. The
number of heads in GAT is equal to 8, and each hidden size is equal to 17 for every benchmark dataset.
For implementing GCN and GAT, the element-wise mean pooling layer is used for constructing
the outputs of the final message passing layer. We use a classifier that consists of three MLPs for
classifying graph data sets. In the case of GIN, each layer passes the hidden attributes through
the element-wise sum pooling. Furthermore, summed graph representations of each layer are also
summed after passing MLPs to obtain the entire graph representation.

Cy2C-GNNs share identical architectural structures to GCN, GAT, and GIN, except for the additional
layer for clique adjacency matrix and the dimensions of the hidden state at the first MLP in the
classifier. All baseline models and Cy2C-GNNs include batch normalization Ioffe & Szegedy (2015)
and residual connection He et al. (2016). The hyperparameters of Cy2C-GNNs are optimized with
hidden dimensions from 32 to 256, weight decay from 0.0 to 0.01, the number of message passing
layer from 1 to 5, initial dropout rate from 0 to 0.8, dropout rate of message passing layer from 0 to 0.8
and the number of layer in classifier from 1 to 3. In case of large data sets, we implement Cy2C-GNN
models whose number of layers are between 1 and 7. We also consider both methods for classifier

34

Published as a conference paper at ICLR 2023

Table 3: A summary of statistics of bioinformatics, social network graph and small molecules datasets.
Cells notated as “-” indicate graph data set which do not have or use features in this paper. Numbers
in parentheses are dimension of features. The term “Average # H1 Cycles” indicates the average size
of the cycle bases of graphs. The term “Average Magnitude # Cycles“ denotes the average number of
nodes present in a cyclic subgraph of a graph.

BIOINFORMATICS SOCIAL NETWORK SMALL MOLECULES
DATA SETS D&D PROTEINS(FULL) ENZYMES COLLAB IMDB-B REDDIT-B MUTAG NCI1 NCI109
GRAPHS 1178 1113 600 5000 1000 2000 188 4110 4127
CLASS 2 2 6 3 2 2 2 2 2

AVERAGE # NODES 284.32 39.06 32.63 74.49 19.77 429.63 17.93 29.87 29.68
AVERAGE # EDGES 715.66 72.82 62.14 2457.78 96.53 497.75 19.79 32.30 32.13

AVERAGE # H1 CYCLES 432.36 34.84 30.75 2383.72 77.76 70.61 2.86 3.62 3.64
AVERAGE MAGNITUDE # CYCLES 7.21 3.72 3.69 3.04 3.00 5.412 6.24 5.94 5.92

GRAPH WITHOUT CYCLES 0 1 3 0 0 67 0 83 97
NODE FEATURES DIMENSION 89 29 18 - - - 7 37 38

Table 4: A summary of statistics for graph classification datasets with edge features and large datasets
including OGB. Numbers in parentheses are dimension of features. The term “Average # H1 Cycles”
indicates the average size of the cycle bases of graphs. The term “Average Magnitude # Cycles“
denotes the average number of nodes present in a cyclic subgraph of a graph.

DATASETS WITH EDGE FEATURES LARGE DATASETS
DATA SETS BZR-MD COX2-MD PTC-MR REDDIT-M-5K MOLHIV MOLTOX21 MOLTOXCAST
GRAPHS 306 303 344 4999 41,127 7,831 8,576
CLASS 2 2 2 5 2 2 2

AVERAGE # NODES 21.30 26.28 14.29 508.52 25.5 18.6 18.8
AVERAGE # EDGES 225.06 335.12 14.69 594.87 27.5 19.3 19.3

AVERAGE # H1 CYCLES 204.75 309.84 1.40 90.08 3.03 1.75 1.75
AVERAGE MAGNITUDE # CYCLES 3.0 3 4.30 7.73 5.65 4.55 4.53

GRAPH WITHOUT CYCLES 0 0 90 51 1582 1781 1956
NODE FEATURES (DIM) 8 7 18 - 9 9 9

with last layers outputs and with concatenated outputs of all layers. For classifying BZR-MD and
COX2-MD datasets, we require that Cy2C-GNNs incorporate edge attributes of respective data sets.
For classifying OGB and PTC-MR data sets, however, we implement both cases where Cy2C-GNNs
incorporate the given edge features or not.

Graph classification For classifying graph data sets, we adapted stratified 10-fold cross-validations
to evaluate the performance of baseline models and Cy2C-GNNs, while preserving the percentage
of the train, validation, and test samples for each class. Theses models are optimized by Adam
optimizer Kingma & Ba (2014) with a initial learning rate from 1 × 10−4 to 1 × 10−3. We use
ReduceLROnPlateau for the learning rate scheduler in Pytorch library, which multiplies the learning
rate by 0.8 when validation loss does not decrease with the patience of 25. Additionally, we use
the early stopping criterion when validation loss does not decrease during the 100 epochs. Training
sequences are stopped when the learning rate becomes below the minimum learning rate of 1× 10−6.
In case of OGB datasets, we perform overall experiments 10 times with original training/validation/test
dataset splits Hu et al. (2020) and batch size is set to 128. Cy2C-GNNs are also optimized by Adam
optimizer Kingma & Ba (2014). ReduceLROnPlateau are used, which multiplies the learning rate by
0.8 whenever the validation accuracy does not increase during the 25 epochs, along with the stopping
criterion of patience of 100.

B.2 DETAILS OF DATASET

Tables 1 and 2 summarizes the statistical properties of benchmark data sets utilized in demonstrating
the effectiveness of the proposed model.

The synthetic datasets “CYCLE” and “NECKLACE” are generated using the github repository
provided from Horn et al. (2021). Each dataset consists of 1000 synthetically generated graphs with
two distinct cyclic substructures, each class of which contains exactly half (for instance 500 graphs out
of 1000 graphs) out of all generated graphs. The objective is to verify whether the proposed GNN can

35

Published as a conference paper at ICLR 2023

Figure 13: An example of CSL data Murphy et al. (2019) with skip length 2 and 3. WL test and
Conventional GNNs cannot distinguish these graphs.

accurately implement binary classification by detecting differences in the proposed cyclic structures.
The “CYCLE” dataset consists of either a connected cyclic graph with large number of nodes or a
disconnected cyclic graphs with smaller number of nodes. The “NECKLACE” dataset consists of
two classes of graphs BG satisfying |BG| = 2 such that either the two elements C1, C2 ∈ BG have a
non-trivial intersection or are disjoint. A graphical description of the two datasets can be found in
Figure 1 of Horn et al. (2021).

B.3 DETAILS OF IMPLEMENTATION

Extraction algorithm We used the following extraction algorithm to construct the clique adjacency
matrix. First, we use the function cycle_basis Paton (1969) from NetworkX library Hagberg et al.
(2008) which returns a list of cycle basis elements of a graph. The node sets of cycle basis are used
for making new edges that transform each cycle to a clique. Then, the clique adjacency matrix is
obtained by masking edges that do not include any cycle and adding new edges from the adjacency
matrix. We refer to Figure 11 to recall how the clique adjacency matrix is constructed.

Running time analysis We performed additional experiments on measuring the running time of
the baseline GNNs and Cy2C-GNNs, including the pre-processing steps required for Cy2C-GNNs,
such as constructing clique adjacency matrices and detecting cycle bases. Since the REDDIT-M-5K
dataset has the highest average number of nodes and edges in our benchmark datasets, we selected
the dataset to compare additional experiments. First, the CPU’s running time for preprocessing steps
takes an average of 0.49 seconds for each graph and 2461.44 seconds for all graphs in the dataset.
For a fair comparison, we evaluate the GPU’s running time of baseline GCNs and Cy2C-GCNs
with 128 hidden dimensions in the train sequence. We perform five iterations of implementing
GCNs and Cy2C-GCNs with identical hyperparameters, and measure the average time spent for
reaching the same number of epochs to analyze additional computational costs derived from the
clique adjacency matrix. Table 5 shows the running time of baseline GCNs and Cy2C-GCNs with
different numbers of layers. Cy2C-GNNs with a single message passing layer takes approximately
1.5 times more time to represent graphs compared to baseline GCNs with the same number of layers.
Nevertheless, we observe that increasing the number of layers can significantly decrease the relative
computational costs of Cy2C-GNNs to baseline GCNs. This observation is suggested from the
fact that Cy2C-GNNs with five message passing layers takes approximately 1.2 times more time
to represent graphs compared to baseline GCNs with identical architectural structures, a marked
improvement in relative running time compared to the case where Cy2C-GNNs had a single message
passing layer.

The running time of Cy2C-GNNs, including preprocessing steps, is significantly longer than that
of the baseline GNNs. However, since preprocessing steps need to be performed only once for the
first time and can be parallelized, we can claim that Cy2C-GNNs have comparable computational
complexity to baseline GCNs.

Additional ablation studies We performed an additional ablation study to empirically shows the
expressive power of Cy2C-GNNs by comparing results of conventional GNNs, Relational Pool-
ing GIN(RP-GIN) Murphy et al. (2019) and our method obtained from Circular Skip Link(CSL)
dataset Murphy et al. (2019). Figure 13 shows the example of CSL data that have different skip length

36

Published as a conference paper at ICLR 2023

Table 5: Comparison of running time (in seconds) at 50, 100 and 150 epoch obtained from REDDIT-
M-5K.

BASELINE GCN-N
EPOCH N=1 N=2 N=3 N=4 N=5

50 30.6 37.4 44.7 52.1 59.4
100 60.0 74.8 89.4 103.8 119.5
150 89.0 112.7 133.7 156.2 179.1

CY2C-GCN-N
EPOCH N=1 N=2 N=3 N=4 N=5

50 43.2 50.1 58.4 65.4 72.5
100 85.7 100.6 115.8 131.3 145.4
150 129.2 150.7 173.3 196.7 217.8

Table 6: Classification resutls obtained from CSL dataset. Classification methods with grey color text
are cited from results obtained from pre-existing publication Murphy et al. (2019). The term “Baseline
GCN-N” denotes conventional GCNs with N layers, where N takes any value in {1, 2, 3, 4, 5}.

CSL DATASET
MODEL ACCURACY MAX MIN

GIN 10±0.0 10 10
RP-GIN 37.6±12.9 53.3 10

BASELINE GCN-N 10±0.0 10 10
CY2C-GCN-1 91.3±1.6 93.3 90

R. CSL dataset consists of graphs where R ∈ {2, 3, 4, 5, 6, 9, 11, 12, 13, 16} with 41 nodes that have
the same node features. We evaluate baseline GCNs and Cy2C-GCN-1 with 5-fold cross-validations
while preserving the percentage of the train and validation in reference Murphy et al. (2019). The
hidden dimension of each message passing layer is fixed by 16, and the batch size is set to 16.
Baseline GCNs and Cy2C-GCN-1 are optimized by Adam optimizer Kingma & Ba (2014) with a
learning rate from 1 × 10−4. Since only the train dataset and validation dataset exist, we choose
the best validation accuracy in terms of the accuracy of the train dataset. The results are listed in
Table 6. The results of baseline GCNs is consistent with the fact that the conventional GNNs cannot
distinguish graphs in CSL dataset Murphy et al. (2019). Cy2C-GCN-1 not only distinguishes graphs
in CSL dataset, but also shows much higher performance than the RP-GIN.

37

	Introduction
	Related Works
	GNNs and Universal Covers
	Cycle-to-Clique Graph Neural Networks (Cy2C-GNN)
	Experiments
	Conclusion
	Proofs
	Cell complexes and covering spaces
	Graph Neural Networks
	Hidden node attributes and universal covers
	Proof of Theorem 3.3
	Proof of Theorem 4.3
	Computational Complexity

	Implementation
	Experimental setup
	Details of Dataset
	Details of implementation

