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ABSTRACT

Federated Learning (FL) is a popular distributed machine learning paradigm that
enables collaborative model training without sharing clients’ data. Recent studies
show that federated learning can be vulnerable to backdoor attacks from malicious
clients: such attacks aim to mislead the global model into a targeted misprediction
when a specific trigger pattern is presented. Although various federated backdoor
attacks are proposed, most of them rely on the malicious client’s local data to in-
ject the backdoor trigger into the model. In this paper, we consider a new and
more challenging scenario that the attacker can only control the fake clients, who
do not possess any real data at all. Such a threat model sets a higher standard for
the attacker that the attack must be conducted without relying on any real client
data (only knowing the target class label). Meanwhile, the resulting malicious
update should not be easily detected by the potential defenses. Specifically, we
first simulate the normal client updates via modeling the historical global model
trajectory. Then we simultaneously optimize the backdoor trigger and manipulate
the model parameters in a data-free manner to achieve our attacking goal. Ex-
tensive experiments on multiple benchmark datasets show the effectiveness of the
proposed attack in the fake client setting under state-of-the-art defenses.

1 INTRODUCTION

In recent years, Federated Learning (FL) (McMahan et al., 2017; Zhao et al., 2018) has become a
popular distributed machine learning paradigm, where many clients collaboratively train a global
model without sharing their local data. After the clients utilize their local training data to train
the local models, FL helps aggregate a shared global model with improved performances. Despite
FL’s capability of joint model training, its formulation naturally leads to repetitive synchronization
between the server and the clients. In particular, since the server has little knowledge or control over
the client behaviors, it actually facilitates backdoor attacks (Gu et al., 2019), which aim to mislead
the model into a targeted misprediction when a specific trigger pattern is presented by stealthy data
poisoning. Backdoor attacks injected by the malicious clients can be easily implemented and hard
to detect from the server’s perspective.

Backdoor attacks on FL are first studied in (Bagdasaryan et al., 2020; Bhagoji et al., 2019). In these
works, malicious clients have strong incentives to compromise the shared global model by upload-
ing the local model trained with poisoned data samples (data attached with triggers pointing to the
target class). Prior works discover that the backdoor can survive even when various defenses are de-
ployed (Shejwalkar et al., 2022; Baruch et al., 2019). Some defenses check whether uploaded local
model updates or weights contain backdoor-related weights or neurons by anomaly detection (Rieger
et al., 2022; Ozdayi et al., 2020). Others are dedicated to purifying the potential backdoor from the
global model through approaches such as distillation (Sturluson et al., 2021; Xu et al., 2021) and
pruning (Liu et al., 2018).

Recent research on backdoor attacks focuses on improving the stealthiness and effectiveness of
attacks to evade the wide variety of federated backdoor defenses. Some works (Xie et al., 2019;
Sundar et al., 2022) decompose the trigger pattern into sub-patterns to perform distributed attacks
or adaptively resize the trigger during training. One line of research (Fang & Chen, 2023; Lyu
et al., 2023) attempts to strengthen the backdoor attack either by optimizing the backdoor-related
optimization objective or by directly manipulating the updates obtained from the training. Another
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line of research focuses on how backdoor attacks can be implemented under more stringent yet
practical settings. Zhang et al. (2022b); Wen et al. (2022) evaluate backdoor attacks in the realistic
regime where the number of clients is numerous and not consistently queried by the central server.
In terms of the data distribution, Zawad et al. (2021) shows that more non-i.i.d. data distribution
may result in overfitting at the local training of benign clients, and thus can be utilized by attackers
to disguise themselves and fool skewed-feature based defenses.

Despite the enormous works exploring how to enable backdoor attacks to stealthily bypass various
defenses, they share the same critical component, namely the access to local data. With local data,
the malicious clients can manipulate the updates (gradients) to achieve their attack goals. However,
in the real FL system, compromising the genuine clients with actual training data is usually at a high
cost that an attacker cannot afford. Even if the attacker can afford the cost of compromising a few
genuine clients, the server may only choose a small proportion of clients for aggregation (i.e., partial
participation), rendering it pointless to compromise those genuine clients at a high cost.

As an alternative, attacking with fake clients becomes lucrative for the attackers. A malicious at-
tacker participating in the training does not need to maintain a large amount of genuine clients with
possess to real data, but instead may control a group of fake devices (clients). These fake clients per-
form backdoor attacks locally in a data-free fashion. Since there is no need to actually train a model
locally on those fake clients, the attacker can actually create more malicious devices (compared to
the traditional federated backdoor attack scenarios) to increase the proportion of fake clients in the
client pool, thus having a higher chance of completing the backdoor attack to the global model.

Promising as it sounds, backdoor attacks with fake clients sets a higher standard for the attackers.
On one hand, the fake clients’ updates should be stealthy enough and look similar to those benign
updates to escape potential defense or countermeasures on the server. On the other hand, the mali-
cious attack must also successfully inject the backdoor into the global model to achieve the attacking
goal. However, when defense mechanisms are deployed on the server side, it is very hard for the
fake clients to disguise their identity due to the lack of training data (cannot produce a similar up-
date to those benign ones). Thus they attacks are more likely to be filtered (by anomaly-detection
defenses) or weakened (by robust aggregation defenses).

To solve the above-mentioned challenges, in this paper, we propose Fake Client Backdoor Attack
(FakeBA), a new backdoor attack scheme that relies on fake clients to circumvent federated back-
door defenses without access to any local training data. Specifically, the fake clients first simulate
the activities of benign clients, then make mild modifications on several model parameters to di-
rectly inject the backdoor without performing model training or fine-tuning. To rigorously evaluate
the robustness of current federated backdoor defenses under FakeBA, we conduct comprehensive
experiments and an in-depth case study on the proposed attack against state-of-the-art federated
backdoor defenses, we summarize our main contributions as follows:

1. We propose a backdoor attack for federated learning with fake clients, FakeBA, which is the
first federated backdoor attack that solely relies on fake clients that do not have access to any
local training data. Different from traditional backdoor attacks, our attack simulates benign
updates and selectively manipulates several model parameters to directly inject the backdoor.

2. The proposed attack does not possess any real training data, but achieves a higher attack success
rate without extra damage to its natural accuracy. The experiment results demonstrate the
superiority of the proposed attack over other backdoor attacks without data.

3. We evaluate FakeBA against recent federated backdoor defenses, the result shows that FakeBA
can either evade the federated backdoor defenses or lead to a large degradation in natural accu-
racy when applying the defense. These facts suggest that the threat of backdoor attacks from
fake clients is tangible in the practical federated learning system.

2 PRELIMINARIES

2.1 BACKDOOR ATTACKS FOR FEDERATED LEARNING

In federated learning, the participating clients train their local models and upload them to the server,
and the server aggregate these models to get a global model. For M participating clients, each of
which has its own dataset Di with size ni and N =

∑
i ni. At the t-th federated training round, the
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server sends the current global model θt to a randomly-selected subset of m clients. The clients then
perform K steps of local training to obtain θi,K

t based on the global model θt, and send the updates
θi,K
t − θt back to the server. Now the server can aggregate the updates with some specific rules to

get a new global model θt+1 for the next round. In the standard FedAvg (McMahan et al., 2017)
method, the server adopts a sample-weighted aggregation rule to average the m received updates:

θt+1 = θt +
1

N

m∑
i=1

ni(θ
i,K
t − θt). (2.1)

Assume there exists one or several malicious clients with goal to manipulate local updates to inject
a backdoor into the global model such that when the trigger pattern appears in the inference stage,
the global model would a give preset target prediction ytarget. In the meantime, the malicious clients
do not want to tamper with the model’s normal prediction accuracy on clean tasks (to keep stealthy).
Therefore, the malicious client has the following objectives:

min
θ

Ltrain(x,x
′, ytarget,θ) :=

1

ni

ni∑
k=1

ℓ(fθ(xk), yk) + λ · ℓ(fθ(x′
k), ytarget), (2.2)

where ∆ denotes the associated trigger pattern, and x′
k = (1 − m) ⊙ xk + m ⊙ ∆ is the data

attached with trigger for the backdoor task, m denotes the trigger location mask, and ⊙ denotes the
element-wise product. The first term in equation 2.2 is the common empirical risk minimization
while the second term aims at injecting the backdoor trigger into the model. The loss function ℓ is
usually set as the CrossEntropy Loss. λ controls the trade-off between the two tasks.

2.2 DIFFICULTY OF BACKDOOR ATTACKS WITH FAKE CLIENTS

Most existing backdoor attacks on FL (Bagdasaryan et al., 2020; Bhagoji et al., 2019; Xie et al.,
2019) are based on training over triggered data samples equation 2.2. This requires the malicious
client to have (part of) training data x locally so that they can attach triggers ∆ to implant a back-
door. However, for fake clients without any training data locally, such an attack mode is completely
inapplicable: First, the malicious clients cannot attach the trigger without training samples, and
hence cannot perform local training or bind the trigger to a target label. Secondly, when the server
applies various backdoor defenses, with no information on the training data distribution, it becomes
harder to make their updates stealthy. If fake clients need to perform a backdoor attack, they need to
carefully design a method to achieve stealthiness and keep attack utility simultaneously.

To the best of our knowledge, there is no research that has yet found an attack strategy with fake
clients. Some naive strategies may resort to simulating a dataset via model inversion attack (MI)
(Fredrikson et al., 2015) or introducing substitution dataset (SD) (Lv et al., 2023). Model inver-
sion attempts to recreate data samples through a predictive model by minimizing the loss of data
on the preset labels, while the substitution dataset directly finds another dataset similar to the orig-
inal dataset1. Although the above two strategies can provide the fake clients with simulated local
datasets, there are still several major downsides: (1) model inversion cannot precisely reconstruct
batches of input samples without the confidence value of prediction, also the inversed dataset is still
quite different from the real one and hence cannot directly replace the real data in the case of model
training; (2) As the distribution of the introduced dataset and the real training dataset are not ex-
actly the same, crafting a backdoored local model with substitution dataset usually requires a huge
amount of instances to avoid performance degradation caused by over-fitting or catastrophic forget-
ting, and it is also costly and time-consuming for fake clients to apply dataset reduction skills (Lv
et al., 2023).

3 PROPOSED METHOD

In this section, we describe our proposed FakeBA attack. First, we introduce the threat model
considered in our paper.

1For example, when each of the benign clients holds a non-overlapping portion of the ImageNet data as
local training samples, the fake clients can introduce CIFAR-100 as a substitution dataset to perform backdoor
injection as shown in equation 2.2.
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3.1 THREAT MODEL

Attacker’s Goal: The attacker’s goal is to inject a backdoor trigger to the global model: The global
model can still have a high prediction accuracy on the clean samples, when facing a data sample with
the specific trigger, it will give a prediction to the target class. Generally speaking, the attacker wants
to keep a high attack success rate on triggered data samples as well as keep a high test accuracy on
the clean samples.

Attacker’s Capability: We assume the attacker can inject a certain amount of fake clients into FL
systems, and can control the fake clients to send arbitrary fake updates to the server. when necessary,
these fake clients can pass information to each other (collude). Performing the attacks with these
fake devices requires much less computing resources as these devices do not really need to train on
local data (the server lacks the knowledge on these fake clients’ activities during local training).

Attacker’s Knowledge: We suppose that the injected fake clients do not have training samples
locally. Instead, the fake clients can simulate the activities of benign clients to disguise themselves.
The scenario is practical since the server can only get the trained model from clients without the
information on how the model is trained (or even crafted) and whether the received local models
are genuinely trained on actual data samples. Correspondingly, the malicious attacker is unable
to influence the operations conducted on the central server such as changing the aggregation rules
(defense schemes), or tampering with the model updates of other benign clients.

3.2 FAKE CLIENT BACKDOOR ATTACK FOR FEDERATED LEARNING

As is discussed in Section 2.2, constructing fake clients entirely without data poses three
main challenges: 1) Fake clients need to perform like benign clients to bypass potential de-
fenses/countermeasures; 2) The inserted backdoors need to achieve the attack objective without
any real training data; 3) For the scenario of FL with partial-participating clients, ensure that the
fake clients’ attack strategy is still applicable.

We carefully design our proposed FakeBA method tailored to these three challenges. First, we simu-
late benign updates through the trajectory of historical global models over multiple rounds. Then, we
insert backdoors by meticulously analyzing and modifying model parameters, thereby embedding
backdoors into the simulated benign parameters. Lastly, we extend our method to accommodate the
scenario of FL with partial-participating clients. Following this, we will discuss in detail how we
address these challenges.

Suppose the i-th client is a fake client, let us denote its received global model at the t-th round as
θt := {w[1],w[2], ..,w[L]} and each layer’s output as z[1](·), z[2](·), .., z[L](·). We take the full-
participation circumstance (all clients participate in the aggregation for each round) as an example
and introduce the details of FakeBA.

Simulating the Benign Updates on Fake Clients Our first step is to simulate the benign updates
on fake clients to disguise their identities. This is necessary since many defenses (Cao et al., 2021;
Zhao et al., 2022; Rieger et al., 2022) are adopting similarity-based anomaly detection techniques to
check whether the local updates are significantly different from the majority (other clients’ updates).
In order to simulate the benign updates, FakeBA aims to utilize the fake clients’ received historical
global models. Denote the model update difference as ∆θt = θt−θt−1. Based on the Cauchy mean
value theorem (Lang, 1964), we have the approximation of the global update in the t-th round:

gt = gt−1 + Ĥt · (θt − θt−1), (3.1)

where gt is the gradient of global model, Ĥt is an integrated Hessian for global model updates
in the t-th iteration. In practice, the participating clients usually adopt stochastic gradient descent
(SGD) as their local optimizer and perform multiple steps of SGD update locally before sending
back the updates to the server. Yet we can simply approximate the gradient here using the model
difference gt ≈ θt − θt−1. Meanwhile, we denote the global model update difference as ∇gt =

gt − gt−1. If observing the pairs of ∇gt and gt, we can actually approximate the value of Ĥt.
Specifically, let the latest Q rounds of model differences and model update differences from the t-
th round ∇Θt = {∇θt−Q,∇θt−Q+1, . . . ,∇θt−1} and ∇Gt = {∇gt−Q,∇gt−Q+1, . . . ,∇gt−1}.
The fake clients can adopt the L-BFGS algorithm to estimate Ĥt: Ĥt ≈ L-BFGS(∇Θt,∇Gt). With
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the approximated Ĥt, the fake client can simulate the global update ĝt as:

ĝt = gt−1 + Ĥt · (θt − θt−1). (3.2)

When the L-BFGS algorithm estimates the integrated Hessian precisely, the simulated benign update
is expected to be close to the global model update, thus our fake clients can simulate the benign
update the disguise their identities in this way.

Backdoor Injection Our next goal is to inject the backdoor into the model parameters in a data-
free fashion. Previous studies usually injected backdoors by training the model on triggered data.
For fake clients that do not access data, we need to explore other ways to inject the backdoors.
Our intuition here is to directly modify a small number of model parameters such that the modified
model would have a strong activation pattern (towards the target class) when facing any data with
the trigger pattern.

To achieve this, FakeBA starts by optimizing the backdoor trigger such that one specific neuron in
the first layer of the model would be very sensitive to the presence of the trigger, compared with
other neurons. For an initialized trigger pattern ∆, suppose we are to maximize its activation on the
first neuron z

[1]
1 (i.e., maximizing

∑
p(wp∆p + b) where b denotes the bias for the neuron and each

wp denotes the model parameters connected to the neuron), we have:

∆p =

{
αl, if wp ≤ 0

αu, otherwise
, (3.3)

where αl and αu are the upper and lower bound of element values for input samples x. Given fixed
model parameters, the optimized backdoor trigger ∆ will have the largest activation for that specific
neuron in the first layer.

Next, we aim to modify several parameters in the following layers to ensure the model output target
class when facing the optimized trigger and finish the attack. Consider the first neuron’s output, i.e.,
σ(
∑

p(wp∆p+b)), which is maximized for trigger ∆. Our goal here is to amplify its activation layer
by layer until the model outputs ytarget when trigger ∆ is presented. Again, we first select certain
neurons along which the activation for the trigger would be enlarged. Suppose s[l] is the selected
neuron in the l-th layer, where l = 2, 3, ..., L−1. We add γ∥ĝt∥∞ on the parameter weight between
s[l] and s[l+1] 2 where γ is a hyperparameter controlling the strength of the attack. As the global
model converges, ∥ĝt∥∞ becomes smaller, and thus our parameter manipulation (i.e., γ∥ĝt∥∞) also
becomes less obvious. This design naturally restricts the strength of our parameter manipulation as
the training progresses and keeps our attack stealthy.

Extension to Partial Participation FakeBA can similarly be extended to FL with partial-
participating clients where only part of the clients will be selected for aggregation in each training
round. The main difference with the full-participation FL is the definition of the historical model
differences ∇Θt and historical model update differences ∇Gt used in L-BFGS algorithm: In some
rounds for partial-participation FL, all selected clients are benign, and the fake clients can not get the
global model weights. In other cases, we have at least one malicious fake client being selected for
participation. Under such cases, since all the fake clients are controlled by a joint attacker and thus
can share their received global models and form a shared list of ∇Θt and ∇Gt. We can similarly
apply the L-BFGS algorithm to simulate benign updates and then attempt to backdoor the global
model following the same way as in full participation scenario.

4 EVALUATING FAKE CLIENT BACKDOOR ATTACK ON STATE-OF-THE-ART
FEDERATED BACKDOOR DEFENSES

4.1 DATASETS AND EXPERIMENT SETUPS

We evaluate our FakeBA on several state-of-the-art backdoor defenses for federated learning. Based
on the defense mechanism, we classify the tested federated backdoor defenses into two major cat-

2The manipulation can similarly apply to convolutional layers: if the s[l]-th filter is compromised in the l-th
layer, the compromised parameter in the l + 1-th layer is in the central of the s[l+1]-th filter’s[l]-th channel

5



Under review as a conference paper at ICLR 2024

egories: Byzantine-robust federated backdoor defenses 3 and Non-byzantine-robust federated back-
door defenses. We test our attack on CIFAR-10 dataset (Krizhevsky & Hinton, 2009) and Tiny-
ImageNet dataset (Le & Yang, 2015) under the non.i.i.d. data distribution. The performances of
the federated backdoor attacks are measured by two metrics: Attack Success Rate (ASR), i.e., the
proportion of triggered samples classified as target labels and Natural Accuracy (ACC), i.e., predic-
tion accuracy on natural clean examples. We test the global model after each round of aggregation:
use the clean test dataset to evaluate ACC, average all the optimized triggers as a global trigger and
attach it to the test dataset for ASR evaluation.

4.2 ATTACK SETTINGS

Our goal is to evaluate the probability of backdooring a global model in FL with fake clients. We
compare the FakeBA with Model Inversion (MI) and Substitution Dataset (SD) to test the effective-
ness. In each training round, we randomly pick half of the clients from a total of 40 clients (4 are
fake clients) to participate. The chosen benign clients train two epochs for their local data. The fake
clients can collude before they inject the backdoors into their local models. For more details, we set
the non-i.i.d. data with the concentration parameter h = 1.0 for our training dataset.

To show the impact of FakeBA on the model performance, in Table 1, we list the clean ACC of the
global model under these defenses before and after the FakeBA attack, which shows that FakeBA
causes only little loss of ACC on most defenses (0.5% to 1%).

CIFAR-10 FedDF FedRAD Fine-tuning RobustLR DeepSight FedInv FLTrust Bulyan
Before 73.65 72.81 70.96 68.55 73.05 72.58 70.02 65.92
After 73.14 72.20 70.90 68.17 72.91 72.50 69.81 66.10

Tiny-Imagenet FedDF FedRAD Fine-tuning RobustLR DeepSight FedInv FLTrust Bulyan
Before 32.45 31.88 29.92 30.90 32.01 32.02 30.08 27.90
After 31.80 31.65 29.79 30.59 31.64 32.01 28.84 27.25

Table 1: The clean accuracy before and after FakeBA attack.

4.3 ATTACKING NON-BYZANTINE-ROBUST FEDERATED BACKDOOR DEFENSES

FakeBA can evade distillation: Distillation leverages unlabeled data to achieve robust server-side
model fusion, aggregate knowledge from the received clients’ models. Figure.1(a) and figure.1(b)
show the result of FakeBA against FedRAD (Reddi et al., 2020) and FedDF (Lin et al., 2020).
The results show that FakeBA achieves high ASRs on two distillation-based defenses. FedDF and
FedRAD are designed to overcome data drift, yet their enhanced model robustness cannot fully
purify the backdoor injected. Since we maximize the activation on the neurons layer by layer, the
incurred high activation value towards the target label cannot easily erased (especially when the
server do not know the actual trigger pattern). Also, the server does not filter fake models before
aggregation, causing the predictions of these models for unlabeled samples to be aggregated as well,
which may hinder the purification.

FakeBA can evade fine-tuning: We also experiment to purify the backdoor through directly fine-
tuning the global model with labeled data. Despite with the ground-truth labels, we find that fine-
tuning still fails to defend our attack; Without knowing the actual trigger trigger, the client is unable
to target the compromised backdoor-associated model parameters and their activated neurons (same
as distillation-based defenses); Due to the nature of the non-i.i.d. data distribution in federated
learning, the server’s labeled data may be significantly deviate from those on the clients’ sides.
Based on the results defending our attack with fine-tuning leads to more the natural accuracy loss(5%
ACC damage compared with defending with distillation).
FakeBA keeps high natural accuracy: Based on figure.1, FakeBA improves more ASRs than Sub-
stitution Dataset and Model Inversion, but does not invoke an additional loss of ACC. Specifically,
when attack against fine-tuning, the global model injected with backdoor FakeBA retains apparently

3Byzantine-robust federated backdoor defenses come from the utilization of Byzantine-robust aggregation
methods. Some of the Byzantine-robust aggregation methods are originally proposed for defending model
poisoning attack (Byzantine robustness) yet they may also be used for defending backdoors.
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Figure 1: FakeBA (FC) against Non-Byzantine-robust federated backdoor defenses

higher ACC. This may be due to the fact that FakeBA’s simulated fake updates follow the trajec-
tory of historical global model differences, which better overcomes the data drift brought by the
server-side fine-tuning.

FakeBA outperforms Model Inversion and Substitution Dataset: We compare FakeBA with
Model Inversion and Substitution Dataset. Figure.2 shows that, when backdoor the global model
against the Non-byzantine-robust Federated Backdoor Defenses, our FakeBA incurs small classifi-
cation loss and achieves much higher ASR (nearly 100%) than other methods. Since fake clients
do not need to perform local trianing, their backdoor injection is much less time-consuming. In
general, FakeBA can backdoor the current Non-byzantine-robust federated backdoor defenses more
efficiently.
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Figure 2: FakeBA (FC) against Similarity-based Byzantine-robust federated backdoor defenses

4.4 ATTACKING BYZANTINE-ROBUST FEDERATED BACKDOOR DEFENSES

FakeBA can bypass similarity-based aggregation rules: A portion of the Byzantine-robust fed-
erated backdoor defenses use similarity metrics to exclude anomalous updates uploaded by fake
clients during aggregation (Zhao et al., 2022; Cao et al., 2021; Rieger et al., 2022). The server first
computes the pairwise distance (similarity) for the participating clients, ant then exclude the updates
far deviating from others. Figure 2 shows that FakeBA is quite resilient to similarity-based aggrega-
tion rules. Since it manipulates only a few model parameters, the uploaded fake updates would not
be significantly different from the benign updates under the criteria of cosine similarity (Deep-Sight,
FLTrust) and Wasserstein distance (FedInv). Consequently, to reduce the ASR of the FakeBA, the
server needs to enforce stronger robust aggregation rules.

FakeBA can evade Robust Learning Rate (RobustLR): RobustLR(Ozdayi et al., 2020) works by
adjusting the servers’ learning rate based on the signs of clients’ updates: it requires a sufficient
number of votes on the signs of the updates for each dimension to move towards a particular di-
rection. Figure.2(a) demonstrates that our attack is effective against such a sign-flipping defense
mechanism. It is easy to understand since FakeBA only compromises a very small fraction of model
parameters, it would not largely change the voting outcome. As long as the updates on the com-
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promised parameter may not be reversed in most rounds, the weght on the position of compromised
parameters still gradually accumulate, and let the global model finally be backdoored.
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Figure 3: FakeBA against Byzantine-robust federated backdoor defenses

Defending FakeBA sacrifices more natural accuracy: We test FakeBA on FLTrust and Bulyan.
FLTrust excludes the updates with negative cosine-similarity to its benchmark model update trained
from the server-side labeled data. For updates not excluded, it shrinks them to the same magnitude
as the benchmark global model update. Bulyan excludes clients’ updates far from the median of all
the proposed updates coordinate-wisely. Figure.3(a) and figure.3(b) show that the two defenses are
resilient to FakeBA. Bulyan can completely defend FakeBA due to the fact that FakeBA’s updates
on the compromised parameters are usually larger, thus are likely to be targeted by the coordinate-
based exclusion. Shrinking the updates as FLTrust also prevents the fake clients from dominating
the aggregated updates. However, these two defenses hinder federated learning to fully exploit the
data heterogeneity. Our experiments find that they lead to lower natural accuracy.

4.5 ABLATION STUDY

Impact of L-BFGS: We test the effectiveness of L-BFGS-simulated updates in the perspective of
cosine-similarity, since cosine-similarity has been widely applied to measure and exclude anomaly
updates (i.e., in FLTrust and Deep-Sight). For each client’s update, we compute the sum of the cosine
similarities with other updates in figure.4. We switch the defense from Deep-Sight to plain FedAvg
to avoid the clients being excluded. We compare the simulated updates estimated by LBFGS using
different number of historcial global models. The result shows that L-BFGS-simulated updates are
relatively more closed to other updates than a single benign client’s updates, and also better than
using the last model difference (using one model).
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Figure 5: FakeBA against
Deep-Sight under collusion

FC (a) FC (b) FC (c)
Case of Collusion

40

50

60

70

80

90

N
um

 o
f E

xc
lu

de
d 

C
lie

nt
s Fake

Benign

Figure 6: Number of ex-
cluded updates

Impact of Collusion between Fake Clients: We test FakeBA against Deep-Sight under three cases:
a) one attacker controls 4 fake clients; b) two attackers, each controls two disjointed fake clients);
c) four attackers, each controls a fake clients. An attacker’s fake clients can collude during the
federated learning. Figure.5 and Figure.6 show that a greater degree of collusion leads to higher
ACCs and ASRs, which bodes well for the feasibility of attackers implanting more fake clients. As
for attack against Deep-Sight, wider collusion can increase the number of excluded benign clients
yet decrease the number of excluded fake clients. If there are more fake clients to collude with, they
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are more likely receive the global model at each round (be selected for aggregation). As a result, the
historical global model information inputted to L-BFGS are in the consecutive rounds, which help
the simulated benign updates become more closed to real benign updates.

5 ADDITIONAL RELATED WORK

In this section, we review the most relevant works in general FL as well as the backdoor attack and
backdoor defenses of FL.
Federated Learning: Federated Learning (Konečnỳ et al., 2016) was proposed for the privacy-
preserving machine learning in distributed settings. FedAvg (McMahan et al., 2017) works by av-
eraging local SGD updates, of which the variants have also been proposed such as SCAFFOLD
(Karimireddy et al., 2020), FedProx (Li et al., 2020), FedNova (Wang et al., 2020b). Reddi et al.
(2020); Wang et al. (2022) proposed adaptive federated optimization methods for better adaptivity.
Recently, new aggregation strategies such as neuron alignment (Singh & Jaggi, 2020) or ensemble
distillation (Lin et al., 2020) have also been proposed.
Backdoor Attacks on Federated Learning: Bagdasaryan et al. (2020) injects the backdoor by pre-
dicting the global model updates and replaces them with the one that was embedded with backdoors.
Bhagoji et al. (2019) aims to achieve global model convergence and targeted poisoning attacks by
explicitly boosting the malicious updates and alternatively minimizing backdoor objectives and the
stealth metric. Wang et al. (2020a) shows that robustness to backdoors implies model robustness to
adversarial examples and proposed edge-case backdoors. DBA (Xie et al., 2019) decomposes the
trigger into sub-patterns and distributes them for several malicious clients to implant. Different from
traditional training (on triggered data) and rescaling (the malicious client model) based backdoor in-
jection, F3BA (Fang & Chen, 2023) directly modifies (a small proportion of) local model weights
to inject the backdoor trigger via sign flips, and jointly optimizes the trigger pattern with the client
model. Besides the effectiveness, Neurotoxin (Zhang et al., 2022b) selectively optimizes parameters
with maximum update magnitude to boost the durability of current backdoor attacks.
Backdoor Defenses on Federated Learning: Robust Learning Rate (Ozdayi et al., 2020) flips the
signs of some dimensions of global updates. Wu et al. (2020) designs a collaborative pruning method
to remove redundant neurons for the backdoor. Xie et al. (2021) proposed a certified defense that
exploits clipping and smoothing for better model smoothness. BAFFLE Andreina et al. (2021) uses
a set of validating clients, refreshed in each training round, to determine whether the global updates
have been subject to a backdoor injection. Recent work (Rieger et al., 2022; Zhang et al., 2022a)
identifies suspicious model updates via clustering-based similarity estimations or integrated Hessian.
Another related line of research is Byzantine Robust FL which may also be helpful here (Yin et al.,
2021; Fung et al., 2018; Cao et al., 2021). Krum (Blanchard et al., 2017) chooses local updates most
similar to the global update, while Trimmed Mean (Yin et al., 2018) aggregates the model parame-
ters by coordinates after discarding the ones with maximum or minimum values. Bulyan (Guerraoui
et al., 2018) integrates both Krum and Trimmed Mean to iteratively exclude updates. Pillutla et al.
(2019) proposed to replace the weighted arithmetic mean with a geometric median. Besides design-
ing aggregation rules, gradient inversion is also used to reverse the clients’ local data, of which the
pairwise similarity becomes the metric of aggregation rules (Zhao et al., 2022).

6 CONCLUSIONS

In this work, for the first time, we develop a backdoor attack with fake clients. Different from tra-
ditional federated backdoor attacks, our fake client attack do not possess any training data. Specifi-
cally, the fake clients first simulate the benign updates based on the historical global model updates
and then selectively compromise a small proportion of parameters to inject the backdoor trigger in
a data-free fashion. The experiment shows that our FakeBA attack can successfully evade multiple
state-of-the-art defenses under mild assumptions, while the methods that can defend against it come
at a high cost in terms of natural accuracy. Moreover, we perform comprehensive ablation studies
and find that the critical design in our method significantly boosts the attack. An interesting future
work is designing attacks that can actually defeat the median-based Byzantine robust backdoor de-
fenses, and the flip side is to look for defenses that can defend FakeBA with less damage on the
natural accuracy.
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