
THREAD: A Logic-Based Data Organization Paradigm for How-To
Question Answering with Retrieval Augmented Generation

Anonymous ACL submission

Abstract
Recent advances in retrieval-augmented gen-001
eration (RAG) have substantially improved002
question-answering systems, particularly for003
factoid ‘5Ws’ questions. However, significant004
challenges remain when addressing ‘1H’ ques-005
tions, specifically how-to questions, which are006
integral for decision-making and require dy-007
namic, step-by-step responses. The key limi-008
tation lies in the prevalent data organization009
paradigm, chunk, which commonly divides010
documents into fixed-size segments, and dis-011
rupts the logical coherence and connections012
within the context. To address this, we propose013
THREAD, a novel data organization paradigm014
enabling systems to handle how-to questions015
more effectively. Specifically, we introduce a016
new knowledge granularity, ‘logic unit’ (LU),017
where large language models transform docu-018
ments into more structured and loosely inter-019
connected LUs. Extensive experiments across020
both open-domain and industrial settings show021
that THREAD outperforms existing paradigms022
significantly, improving the success rate of han-023
dling how-to questions by 21% to 33%. Addi-024
tionally, THREAD demonstrates high adaptabil-025
ity across diverse document formats, reducing026
retrieval information by up to 75% compared to027
chunk, and also shows better generalizability to028
‘5Ws’ questions, such as multi-hop questions,029
outperforming other paradigms.1030

1 Introduction031

Question answering (QA) is a foundational re-032

search topic in human-machine interaction (Allam033

and Haggag, 2012). Among the most advanced034

techniques, retrieval-augmented generation (RAG)035

enhances QA systems by organizing external docu-036

ments into fixed-size chunks and retrieving relevant037

knowledge (Shao et al., 2023; Trivedi et al., 2023;038

Jiang et al., 2023; Asai et al., 2023). This rou-039

tine is particularly effective in handling the ‘5Ws’040

1Our code and data are available at https://
anonymous.4open.science/r/Thread.

questions, such as ‘When is Shakespeare’s birth- 041

day?’, which typically require the data organiza- 042

tion paradigm providing chunks containing the rel- 043

evant knowledge, e.g. triples or documents about 044

the topic entity (Yang et al., 2018; Jiang et al., 045

2019; Kwiatkowski et al., 2019; Stelmakh et al., 046

2022). However, the ‘1H’ questions, derived from 047

Aristotle’s Nicomachean Ethics (‘how-to’ ques- 048

tions, Crisp 2014), remain largely underexplored2 049

These questions are in high demand in practical 050

applications such as teaching us how to write code 051

to achieve specific goals. 052

Central to problem-solving (Polya and Pólya, 053

2014) and human learning (Learn, 2000), how- 054

to questions inherently involve complex processes 055

that require interpretation and analysis (Deng et al., 056

2023b). For example, answering the question in 057

Figure 1 ‘How to diagnose and fix a performance 058

issue in a web application?’ involves a step-by- 059

step decision-making process, i.e., first checking 060

server load and response time, followed by opti- 061

mizing server configuration based on user feedback. 062

This dynamic, stepwise nature necessitates RAG 063

systems to guide users through each step, adapting 064

to specific contexts and providing precise and logi- 065

cal information. However, prevalent chunk-based 066

data organization paradigm3 (Splitter, 2023; Chen 067

et al., 2023; Gao et al., 2023), which divides docu- 068

ments into fixed segments, disrupts the logical co- 069

herence of content. As a result, RAG systems (Asai 070

et al., 2023; Shao et al., 2023) struggle with how-to 071

questions, often generating excessive, fragmented 072

information that fails to maintain continuity be- 073

tween steps. To address this, a paradigm shift is 074

needed, one that preserves the logical structure and 075

stepwise nature of how-to questions. 076

In this paper, we propose THREAD, a new logic- 077

2The ‘5Ws’ represent What, Why, When, Where, and Who,
and the ‘1H’ stands for How.

3The term ‘chunk’ here refers to a general document split-
ting paradigm including chunks, sentences, phrases, etc.

1

https://anonymous.4open.science/r/Thread
https://anonymous.4open.science/r/Thread

How to diagnose and fix a performance issue in a web application?
Step1 Check the server load and response time.

If the server load is high, then optimize server configuration or scale up resources.

If the response time is slow due to database queries, then optimize indexes and queries.

Step2.1 Optimize server configuration or scale up resources. Step2.2 Optimize indexes and queries.

If upgrading server version does not work...

If increasing memory allocation and thread…

If the performance does not improve,
then review query structure again
and consider alternative indexing…

… …

Figure 1: An example of how-to questions with its decision-making process. We omit details such as the actions to
check the server load and response time due to limited space.

based data organization paradigm designed to han-078

dle how-to questions. The name THREAD evokes079

the idea of ‘Pulling on the thread, the whole mys-080

tery started to unravel like a sweater.’ (Garcia and081

Stohl, 2011). Specifically, we introduce a new082

knowledge granularity named ‘logic unit’, compris-083

ing five key components and four different types084

(see §2.1 and §2.2). We employ a two-stage process085

(depicted in §2.3) to extract logic units (LUs) from086

documents. The first, optional stage is reformulat-087

ing the original documents depending on their for-088

mat and style, and the second focuses on extracting089

and merging LUs. In this way, THREAD captures090

connections within the documents, breaking them091

into more structured and loosely interconnected092

logic units. When answering how-to questions, the093

system integrated with THREAD enables a dynamic094

interaction manner. First, it retrieves relevant LUs095

based on their indexed headers. Then, the body096

of the selected LU provides the necessary content097

to generate responses for the current step. With098

user feedback, the linker in LU dynamically con-099

nects to other LUs, allowing the system to adapt its100

responses until the how-to question is comprehen-101

sively addressed.102

We evaluate the effectiveness of THREAD103

through experiments in two open-domain, Web104

Navigation (Deng et al., 2023a), Wikipedia In-105

structions (Koupaee and Wang, 2018), and one in-106

dustrial setting, Incident Mitigation (Shetty et al.,107

2022). Experimental results demonstrate that while108

existing paradigms struggle with how-to questions,109

THREAD excels at handling consecutive steps and110

consistently outperforms them, particularly in real-111

world incident mitigation scenario, with success112

rate improvements ranging from 21.05% to 33.33%.113

Additionally, THREAD shows great superiority in114

processing diverse document formats, reducing115

both the number of retrieval units and the token 116

length required for generation. Finally, we further 117

validate the generalizability of THREAD on open- 118

domain tasks, where it outperforms the chunk- 119

based paradigm in handling multi-hop questions. 120

The main contributions of this paper include: 121

• We highlight the challenges faced by current 122

RAG systems in addressing how-to questions. To 123

address the limitation of chunk-based paradigm, 124

we propose THREAD, a novel data organization 125

paradigm that transforms original documents into 126

structured, interconnected logic units. 127

• Integrated with THREAD, our system follows a 128

dynamic interaction manner, guiding users incre- 129

mentally through each step and adapting to their 130

specific circumstances. Our system also brings 131

more possibilities for an automation pipeline, 132

solving how-to questions more efficiently. 133

• Experimental results demonstrate that THREAD 134

significantly outperforms existing data organi- 135

zation paradigms across three scenarios. Fur- 136

thermore, THREAD efficiently handles various 137

document formats, reducing the retrieval burden, 138

and generalizes effectively to open-domain tasks. 139

2 Methodology 140

In this section, THREAD leverages the internal logic 141

and coherence of documents to construct the knowl- 142

edge base, making it especially effective for ad- 143

dressing how-to questions. When converting docu- 144

ments into logic units, we classify how-to questions 145

into two types: linear and dynamic. Linear how- 146

to questions involve a fixed sequence of steps that 147

do not require feedback or decision-making based 148

on intermediate results. In contrast, dynamic how- 149

to questions require decision-making at each step, 150

2

with the process adapting dynamically based on151

previous actions, such as the example in Figure 1.152

Below we first introduce ‘logic unit’ (LU) with153

its components and types, then explain how to ex-154

tract LUs and construct the THREAD knowledge155

base, followed by an illustration of how THREAD156

integrates with existing systems.157

2.1 Logic Unit: Retrieval Unit of Thread158

Unlike the chunk-based paradigm, the logic unit159

consists of specially designed components that160

maintain the internal logic and coherence of a docu-161

ment, particularly when bridging consecutive steps162

in how-to questions. LUs serve as retrieval units163

that replace traditional chunks in RAG systems, en-164

suring a more structured and contextually relevant165

approach to information retrieval. Examples of LU166

in Table 9 further illustrate such structure.167

Prerequisite. The prerequisite component acts168

as an information supplement, providing the nec-169

essary context to understand the LU. For example,170

an LU may include domain-specific terminology171

such as entities or abbreviations. The prerequisite172

explains these terms and can generate new queries173

to retrieve LUs with more detailed information.174

Without this context, passing these LUs to an LLM-175

based generator could lead to hallucinations. Addi-176

tionally, the prerequisite can function as an LU fil-177

ter, containing constraints that must be met before178

the LU is considered in answer generation. This179

filtering ensures only relevant LUs are retrieved.180

Header. The header summarizes the LU or de-181

scribes the intention it aims to address, depending182

on the type of LU (refer to §2.2). For example, the183

header could be the name of a terminology if LU184

describes a terminology; if the LU describes ac-185

tions to resolve a problem, the header describes the186

intent or the problem LU aims to resolve. Different187

from chunk that indexes the entire content, we use188

the header for indexing which serves as the key for189

retrieving the LU based on a query.190

Body. The body contains detailed information191

on the LU, which is the core content fed into the192

LLM-based generator to generate answers. It in-193

cludes specific actions or necessary information194

such as code blocks, detailed instructions, etc. This195

detailed content helps resolve the query mentioned196

in the header or provides a detailed explanation.197

Linker. The linker acts as a bridge between logic198

units, enabling the dynamic process of how-to ques-199

tions. Unlike the chunk-based paradigm, which re-200

lies on previous retrieval units that often lack direct201

clues, the linker in THREAD provides necessary 202

information to generate new queries for subsequent 203

retrieval. Its format varies by LU type, serving as 204

either a query for retrieving other LUs (“If-Then" 205

condition) or an entity relationship. The edge of 206

knowledge graph in traditional factoid questions 207

is a special linker enabling navigation between re- 208

lated entities. When no further LUs are connected, 209

the linker remains empty, isolating the current LU. 210

Meta Data. The meta data includes information 211

about the source document from which the LU is 212

extracted, such as the document title, ID, date, and 213

other relevant details. This meta data is crucial for 214

updating LUs when the source documentation is 215

revised and reprocessed. 216

2.2 Logic Unit Type 217

When converting documents into logic units, 218

THREAD expands its scope beyond solving how-to 219

questions, as documents often contain more than 220

just solutions to these types of questions. Below 221

are the common LU types identified in our exper- 222

iments4, demonstrating THREAD’s versatility in 223

handling a wide range of document types: 224

Step. This is the most common type of LU for 225

resolving how-to questions. Each LU body encap- 226

sulates detailed actions, including code snippets 227

and resolution instructions. The LU prerequisite 228

specifies the conditions or actions that must be com- 229

pleted prior to executing the current LU, serving 230

a critical role in determining the appropriate entry 231

point for a solution. For instance, when encounter- 232

ing a problem, multiple resolution paths may exist 233

depending on the specific context. The prerequisite 234

functions as a filtering mechanism during the LU 235

selection process, eliminating candidates that do 236

not satisfy the required conditions. Samely, the 237

linker acts as a bridge between steps, directing the 238

flow to subsequent LUs based on the outcome of 239

the current step. 240

Terminology. This type provides detailed ex- 241

planations of domain-specific terminology. For 242

example, terms may share the same name or abbre- 243

viation in LU header but convey different meanings 244

in LU body. The prerequisites for terminology LUs 245

describe scenarios where the terminology typically 246

appears and linkers are usually empty unless refer- 247

encing extended terminology that depends on it. 248

4These LU types are summarized from our experiments
with both industrial and public datasets. Additional LU types
are provided in Appendix A.4, and more may emerge depend-
ing on the specific scenario.

3

How-to Questions Retriever Selector

LLM

Manual Execution

Plugins
APIs

Execution Engine

Tools

Auto Execution

Executable
Action

Non-Executable
Action

Results

{Linker}

If … Then …

If … Then …

Query

{Linker}
{…}

{…}
JSON

Retrieval

ExecutionQuery Generation

{Header}
{…}

{…}
JSON {…}

{…}
JSON

{Body}{Prerequisite}
{…}

{…}
JSON

Original Documents Structured Documents

LLM

Domain Knowledge Web Search
Refine

Reformulate

(a) Reformulate and Refine (b) Construct Thread

Add to

Merge LUs Thread

Extract LUs

(c) RAG System
with Thread

Figure 2: The upper part shows the construction process of THREAD, a two-stage process including reformulating
documents into structured ones (a) and extracting and merging logic units (b). The bottom (c) illustrates the RAG
system integrated with THREAD. It retrieves relevant LUs based on query-Header similarity and filters out LUs that
do not meet the current Prerequisites. The selected LUs are passed to LLMs to generate actions based on Body for
execution. After execution, the Linker matches the results and generates a new query for the next retrieval iteration.

2.3 Thread: LU-based Knowledge Base249

In practice, documentation is often unstructured250

and varies in format and style. Our approach to251

converting documentation into THREAD involves a252

two-stage process to obtain LUs, as shown in the253

upper part of Figure 2.254

Documentation Reformulation. This stage is op-255

tional, depending on the quality of the documenta-256

tion. For example, in software engineering, Trou-257

bleshooting Guides (TSGs) often vary in format,258

include diverse types of information, and lack read-259

ability and detail, negatively impacting productivity260

and service health (Shetty et al., 2022). Due to such261

format, where some are clearly outlined and others262

are disordered, we avoid directly extracting LUs263

from original documents.264

Instead, we first reformulate these documents265

into structured formats. By leveraging LLMs, we266

enhance the LLMs’ in-domain understanding by267

providing search capabilities and domain-specific268

context. This is followed by a refinement step to269

prevent overlooking details or hallucinating infor-270

mation. Figure 2 (a) shows the reformulation stage. 271

But it is unnecessary for well-written documents 272

like product help docs, which typically follow a 273

linear how-to format. We instantiate this process 274

by example in Appendix A.5. 275

LU Extraction and Merge. After reformulation, 276

multiple LUs of varying types can be extracted 277

from a single structured document (shown in Fig- 278

ure 2 (b)). Unlike chunk-based data organization 279

commonly with fixed chunk sizes, LU granular- 280

ity depends on content. For example, solutions 281

to linear how-to questions typically form a single 282

path from start to completion, with interconnected 283

steps and no multiple execution outcomes encapsu- 284

lated in one LU, such as an FAQ LU. However, for 285

dynamic how-to questions with multiple possible 286

outcomes, it is better to have one step per LU (Step 287

LU), with Linkers navigating to the next LUs. Note 288

that in dynamic how-to questions, not every step 289

has multiple execution outcomes. If only one next 290

step exists, the LUs can be merged to include both 291

current and subsequent steps. Additionally, LUs 292

4

Dataset #Docs #Tasks #Steps #Chunks #LUs Dynamic Executable

Mind2Web 490 252 2094 6210 1089 ✓ ✓
WikiHow 97 97 2140 4225 774 ✗ ✗
IcM 56 95 323 413 378 ✓ ✓

Table 1: The statistics and characteristics of datasets, including the number of documents, LUs, etc.

with similar Headers and Bodies should be merged,293

extending the Prerequisite and Linker. More details294

about merging are provided in Appendix B.2.1.295

LU update. In industry, documentation is often up-296

dated with each product version release. When this297

happens, we redo the above steps only for the up-298

dated documentation, identifying LUs in THREAD299

with their Meta Data and replacing outdated LUs.300

As we extract and merge LUs, the collection of301

LUs from all documents forms the knowledge base,302

which serves as an essential component compatible303

with the current RAG system.304

2.4 Integrate Thread with QA System305

To demonstrate how THREAD works, we use dy-306

namic how-to questions as an example. Figure 2 (c)307

shows the RAG system incorporating our THREAD308

data organization paradigm.309

LUs are indexed by their Headers. When an310

initial how-to question is submitted, the Retriever311

identifies the top-K most relevant LUs based on312

query-header similarity. The LLM-based Selec-313

tor then checks the prerequisites of these LUs and314

filters out those that do not meet the current pre-315

requisites, derived from the initial question or any316

available chat history. After selection, the body of317

the LUs is fed into the LLM-based Generator to318

produce an answer. If an execution engine is avail-319

able, actions can be executed automatically; other-320

wise, the answer/action is presented to the user for321

manual execution. Once the action is executed, the322

Linker matches one of the possible outcomes and323

generates a new query for the next retrieval round.324

Unlike traditional RAG systems, THREAD-325

enabled systems can be potentially fully or semi-326

automated when integrated with execution engines.327

This integration offers greater automation and flex-328

ibility, as updating LUs automatically updates the329

system, compared to manually designed pipelines.330

3 Experiments331

3.1 Scenarios and Datasets332

We evaluate THREAD on two open-domain scenar-333

ios: Web Navigation, Wikipedia Instructions, and334

one industrial setting: Incident Mitigation.335

Web Navigation. Mind2Web (Deng et al., 2023a) 336

is a dataset designed for web agents to perform 337

complex tasks on real-world websites based on 338

language instructions. Each task is treated as a 339

multi-choice question. At each step, the input con- 340

sists of HTML code, an instruction, and a set of 341

choices, while the output is the selected choice, 342

operation, and an optional value. We treat each 343

one as a ‘dynamic how-to question’, with multiple 344

possible outcomes depending on executed actions. 345

Wikipedia Instructions. WikiHow (Koupaee and 346

Wang, 2018)5 provides step-by-step procedural 347

guides, each titled ‘How to’, with a fixed sequence 348

of steps. This dataset is used to evaluate THREAD 349

on linear how-to questions. 350

Incident Mitigation. IcM (Shetty et al., 2022; 351

An et al., 2024) is critical for managing large- 352

scale cloud services, where engineers rely on Trou- 353

bleshooting Guides (TSGs) to resolve incidents. 354

Each step can lead to different outcomes based on 355

system states, making this dataset suitable for test- 356

ing THREAD on dynamic how-to questions. Unlike 357

the open-domain datasets, we conduct a human 358

evaluation with twenty on-call engineers (OCEs) 359

responsible for incident mitigation. Each OCE mit- 360

igates five incidents, with baseline methods ran- 361

domly assigned per incident to prevent familiarity 362

bias. Our RAG system attempts automated miti- 363

gation, and if a failure occurs, an OCE intervenes 364

before the system resumes6. 365

We collect documents from open sources, enter- 366

prises, and LLMs across scenarios. Appendix A.1 367

outlines the collection process, Appendix A.2 pro- 368

vides dataset examples, and Table 1 summarizes 369

dataset statistics. 370

3.2 Baselines and Metrics 371

Previous work on the Mind2Web dataset, such 372

as MINDACT (Deng et al., 2023a), has not ap- 373

proached it as how-to questions, instead using 374

In-Context Learning (ICL) or Supervised Learn- 375

ing (SL). For fair comparison with our LLM end- 376

5https://www.wikihow.com
6Varying across new-hire and experienced OCEs. Note

that one OCE’s data was contaminated during the experiment,
so we removed that OCE’s data.

5

https://www.wikihow.com

Mind2Web Cross-Task
Method Model Paradigm Ele. Acc Op. F1 Step SR SR

w/ GPT-3.5 ICL 40.69 49.66 33.91 1.59
w/GPT-4 ICL 62.80 60.37 51.81 10.32MINDACT (2023a)

w/ Flan-T5XL* SL 55.10 75.70 52.00 5.20

w/ GPT-4 Chunk 64.23 65.96 58.45 8.73
w/ GPT-4 Doc 63.80 65.89 58.36 11.51RAG
w/ GPT-4 THREAD 68.29 69.53 61.94 12.30

Table 2: Experimental results on Mind2Web. ‘*’ represents taking results from the original paper. Deng et al.
(2023a) formulate web navigation as a series of multiple-choice steps, where each step requires selecting the correct
HTML code and actions. SR refers to the overall Success Rate.

points,7 we re-implement MINDACT using the377

same demonstrations and include chat history as378

context. In this work, we treat Mind2Web as dy-379

namic how-to questions and address them with our380

RAG system (Appendix B.4 shows how we adapt381

Mind2Web into how-to questions.). We compare382

THREAD against document-based and chunk-based383

data organization paradigms, also used as baselines384

for the WikiHow and IcM datasets. Details on eval-385

uation metrics, experimental setup (prompts, etc.),386

and data organization paradigms are provided in387

Appendix A.3, B, and C, respectively.388

3.3 Main Results389

Web Navigation Table 2 presents the overall per-390

formance on Mind2Web, comparing our method391

with baselines and both doc-based and chunk-based392

RAG methods. We find that incorporating infor-393

mative documents, regardless of the data organiza-394

tion paradigm, significantly improves performance.395

RAG methods outperform both ICL and SL ap-396

proaches, with the doc-based RAG method achiev-397

ing results comparable to MINDACT’s best perfor-398

mance. Notably, THREAD surpasses all RAG base-399

lines, improving Ele. Acc by 4.06%, Step SR by400

3.49%, and SR by 3.57%. MINDACT-SL achieves401

the highest Op. F1 due to label imbalance8, biasing402

the model toward frequent operations.403

Incident Mitigation Table 3 highlights the ad-404

vantages of THREAD in handling complex dynamic405

how-to questions. Both chunk-based and doc-based406

RAG methods struggle with incident mitigation, as407

their low SR and P.F. Step SR scores indicate dif-408

ficulty in connecting subsequent steps based on409

the current state. In contrast, THREAD achieves410

the highest performance across all metrics, notably411

improving SR from 21.02% to 33.33%. More im-412

7We use GPT-3.5 and GPT-4 (version 1106-preview).
8Predicting all operations as “CLICK” results in an Op. F1

of 79.90%.

Incident Mitigation
Paradigm SR Step SR P.F. Step SR HI Turns

40.51 60.90 60.90 30.10 3.14Chunk 28.95 53.16 43.05 46.84 6.84

43.86 63.90 63.90 36.09 2.98Doc 31.58 57.89 42.11 42.11 6.53

77.19 88.72 84.21 11.28 2.56THREAD 52.63 84.21 68.95 15.79 5.74

Table 3: Experimental results on Incident Mitigation.
Incidents are divided into simple and hard groups. P.F.
Step SR: the perctenage of successful steps before the
first failure. HI: the steps requiring human intervention.

portantly, its superior P.F. Step SR demonstrates 413

its ability to dynamically link steps based on user 414

feedback, reducing human intervention. As a re- 415

sult, THREAD not only achieves the highest Step 416

SR but also minimizes interaction turns, effectively 417

mitigating both simple and complex incidents. 418

Wikipedia Instructions Table 4 compares dif- 419

ferent data organization paradigms on WikiHow 420

under two settings. For single-turn, where the 421

RAG system generates the entire plan in one step, 422

THREAD outperforms the doc-based by 5.15%, pro- 423

viding more concise and effective information. In 424

contrast, the chunk-based achieves a significantly 425

lower SR of 19.59%, highlighting the challenge of 426

retrieving relevant chunks without maintaining the 427

document’s logical flow. For multi-turn, iterative 428

retrieval improves performance over single-turn, 429

demonstrating the benefits of a step-by-step ap- 430

proach for how-to questions. The SR increases 431

from 58.76% to 68.04% for the doc-based and 432

from 63.91% to 72.16% for THREAD. As in single- 433

turn case, the chunk-based method disrupts internal 434

logic, resulting in a low SR of 20.62%. Overall, 435

THREAD achieves the highest SR of 72.16%, em- 436

phasizing its effectiveness in preserving and mod- 437

eling step dependencies. We also extend our exper- 438

iments to LLaMA3-70B to show the generalibity 439

of THREAD in Appendix B.4. 440

6

WikiHow
Paradigm SR Precision Recall F1

Single-Turn
Chunk 19.59 60.20 25.16 35.49
Doc 58.76 77.71 57.93 66.37
THREAD 63.91 83.43 71.48 76.99

Multi-Turn
Chunk 20.62 52.95 25.54 34.45
Doc 68.04 87.10 70.65 78.02
THREAD 72.16 89.77 73.36 80.74

Table 4: Experimental results on WikiHow with differ-
ent interaction manners and paradigms.

Paradigm Ele. Acc Op. F1 Step SR

ICL 62.80 60.37 51.81
w/o. historical steps 56.97 59.09 50.38

Chunk 59.94 62.58 54.39
w/o. chunk selection 64.23 65.96 58.45

THREAD 68.29 69.53 61.94
w/o. LU selection 67.05 68.43 60.79

Table 5: Ablation study of integrating chat history and
retrieval unit selection on Mind2Web.

4 Analysis441

4.1 Ablation on RAG System Settings442

This section presents an ablation study on key com-443

ponents of our RAG system, using the Mind2Web444

dataset. While retriever and generator variants have445

been explored in prior work (Gao et al., 2023), we446

utilize text-embedding-ada-002 (OpenAI, 2022) for447

retrieval and GPT-4 as the generator.448

Multi-turn Interaction. As shown in Table 4, the449

multi-turn setting outperforms the single-turn set-450

ting in answering how-to questions. We adopt the451

multi-turn setting for all scenarios.452

Chat History. Chat history enables the system to453

reference previous actions and results, improving454

decision-making. Table 5 shows that excluding455

chat history results in performance degradation.456

Therefore, we include chat history for all RAG-457

based methods in our experiments.458

Retrieval Units Selector. As described in §2.4, the459

Selector identifies the most relevant retrieval units460

from the top-K retrieved units. Table 5 illustrates461

the effect of the retrieval unit selector. Without462

the selector, performance drops by 4.29% in Ele.463

Acc and 3.38% in Op. F1. The selector improves464

all metrics when applied to THREAD. Unlike LU465

selection, which filters irrelevant LUs based on pre-466

requisites, chunk selection ignores inter-chunk con-467

nections and may exclude relevant chunks. Thus,468

we activate the selector only for THREAD.469

Paradigm Ele. Acc Op. F1 Step SR #Tokens in RU

Doc 63.80 65.89 58.36 663.84
Recursive 64.23 65.96 58.45 695.77
Semantic 65.14 67.30 59.93 1337.16
Proposition 62.37 64.78 56.78 790.14
GraphRAG 63.20 65.09 56.90 630.75

THREAD w/o. 67.05 68.43 60.79 772.67
THREAD 68.29 69.53 61.94 157.10

Table 6: Analysis of data organization paradigms.

4.2 Comparison with Different Paradigms 470

We compare several RAG data organization 471

paradigms (details in Appendix C), including 472

Semantic Chunking (Kamradt, 2024), Proposi- 473

tion (Chen et al., 2023), recursive chunking (Split- 474

ter, 2023) (chunk-based), entire document (doc- 475

based), and GraphRAG (Edge et al., 2024). As 476

shown in Table 6, THREAD outperforms all base- 477

lines across metrics. While Semantic and Propo- 478

sition merge semantically similar sentences us- 479

ing LLMs, they fail to capture logical relation- 480

ships. And GraphRAG underperforms on how- 481

to questions due to its focus on entity-level rela- 482

tions over document logic. In contrast, THREAD 483

retrieves smaller, logic-driven units, yielding higher 484

efficiency and accuracy. Appendix D.2 illus- 485

trates the difference when handling the question 486

in Table 9 between GraphRAG and THREAD, 487

with GraphRAG producing flawed outputs. Ap- 488

pendix D.3 analyzes THREAD ’s cost and scalabil- 489

ity, confirming its high performance at acceptable 490

costs and potential for large-scale datasets. 491

4.3 Superiority over Different Doc Formats 492

As real-world documents vary in format, we test 493

our LU extraction method on diverse structures, 494

including structured markdown, hierarchical guide- 495

lines, tabular checklists, and narrative documents 496

(details in Appendix B.2). Table 7 demonstrates 497

that THREAD consistently outperforms the chunk- 498

based paradigm across all metrics, improving Ele. 499

Acc by up to 9.61%, Op. F1 by up to 8.43%, and 500

Step SR by up to 8.51%. These results underscore 501

THREAD’s ability to effectively handle a variety of 502

real-world document resources. Notably, THREAD 503

achieves the highest performance with structured 504

documents, which facilitate the creation of a higher- 505

quality knowledge base. 506

4.4 Generalization to Open Domain Questions 507

To explore whether THREAD can be extended to 508

open-domain questions, we evaluate THREAD on 509

7

Format Paradigm Ele. Acc Op. F1 Step SR

Chunk 64.23 65.96 58.45Structured THREAD 68.29 69.53 61.94

Chunk 60.60 63.46 55.06Hierarchical THREAD 66.57 67.89 60.08

Chunk 56.30 59.26 51.43Tabular THREAD 65.71 67.69 59.55

Chunk 56.63 60.39 51.66Narrative THREAD 66.24 68.22 60.17

Table 7: Analysis of different document formats.

F1 EM Acc0

10

20

30

40
Chunk
Thread

Figure 3: Experimental results on the generalization of
THREAD to 2WikiMultiHopQA.

multi-hop questions, 2WikiMultiHopQA (Ho et al.,510

2020). Specifically, we sample 200 questions of511

two types, ‘inference’ and ‘compositional’ type,512

like “Who is the maternal grandfather of Abraham513

Lincoln?” and “Who is the founder of the com-514

pany that distributed La La Land film?” In our ex-515

periment, we use the relations between entities as516

‘Linker’. The findings from Figure 3 demonstrate517

that THRED largely surpasses the chunk-based518

paradigm on multi-hop questions, validating the519

generalization of THREAD on diverse questions.520

5 Related Work521

Data Organization Paradigm in RAG The data522

organization process is a critical pre-stage of RAG523

methods where documents are segmented follow-524

ing certain data organization paradigms. The most525

common data organization paradigm is splitting526

documents into retrieval units (Gao et al., 2023).527

These retrieval units vary in granularity such as528

phrases, sentences, propositions (Chen et al., 2023),529

chunks (Kamradt, 2024), etc. Coarser-grained units530

contain more information but introduce redundant531

noise, while finer-grained units have lower seman-532

tic integrity and often require retrieving more units533

to gather comprehensive information. However, the534

chunk-based data organization paradigm ignores535

the logical and relational connections between536

chunks, potentially disrupting the inherent logic537

flow in documents. Another paradigm constructs538

documents into knowledge graphs (KG), where539

retrieval units include entities, triplets, etc. (Gaur 540

et al., 2022; Sen et al., 2023; He et al., 2024; Wang 541

et al., 2024). While these approaches emphasize 542

semantic and lexical similarities between retrieval 543

units, their effectiveness on how-to questions re- 544

mains limited. This is largely due to the inher- 545

ent difficulty in capturing the logical structure re- 546

quired by such questions. In particular, current 547

methods such as GraphRAG(Edge et al., 2024), 548

primarily model relationships between different 549

chunks, which fails to account for the more com- 550

plex, logic-driven connections between chunks that 551

go beyond entity-level similarity. 552

Information Retrieved by RAG The effective- 553

ness of RAG methods depends on the generator’s 554

ability to utilize retrieved information and the qual- 555

ity and quantity of that information. Insufficient 556

question-relevant information can cause halluci- 557

nations in LLM-based generators (Li et al., 2023; 558

Zhang et al., 2023), making it crucial to improve 559

the retrieval process. Traditional one-round re- 560

trieval methods (Guu et al., 2020; Lewis et al., 561

2020) often fail to gather all necessary informa- 562

tion due to their reliance on the similarity between 563

query and retrieval units (Gan et al., 2024). Ad- 564

vanced RAG methods use query rewriting and ex- 565

pansion (Shao et al., 2023; Trivedi et al., 2023; 566

Kim et al., 2023) or iterative retrieval (Shao et al., 567

2023; Jiang et al., 2023; Asai et al., 2023) to col- 568

lect more information. However, these approaches 569

still struggle with how-to questions, which require 570

making next-step decisions based on the current 571

retrieved units, unless the current retrieved units 572

contain clues that lead to the next step. The main 573

issue is the lack of connections between retrieval 574

units, which prevents effective retrieval and the 575

gathering of sufficient information. 576

6 Conclusion 577

In this paper, we address the overlooked cate- 578

gory of handling how-to questions in QA systems 579

by proposing THREAD, a novel data organization 580

paradigm that captures logical connections within 581

documents. By introducing a new knowledge gran- 582

ularity called ‘logic unit’, THREAD restructures 583

documents into interconnected logic units that are 584

compatible with RAG methods. Extensive exper- 585

iments show that THREAD significantly outper- 586

forms existing paradigms, improving performance 587

while reducing the knowledge base size and mini- 588

mizing the information needed for generation. 589

8

Limitations590

This work focuses on evaluating the effectiveness591

of THREAD by designing how-to questions in three592

specific scenarios, covering both linear and dy-593

namic how-to questions. However, several limi-594

tations point to future directions. First, as our logic-595

based knowledge base can coexist with the original596

chunk-based knowledge base, we only extend our597

method to multi-hop questions, more open-domain598

tasks should be considered. Next, while extracting599

logic units involves an initial cost in terms of LLM600

usage, this is a one-time process. Once the knowl-601

edge base is constructed, it provides significant602

advantages for industrial applications, particularly603

in terms of subsequent updates and maintenance.604

References605

Ali Mohamed Nabil Allam and Mohamed Hassan Hag-606
gag. 2012. The question answering systems: A sur-607
vey. International Journal of Research and Reviews608
in Information Sciences (IJRRIS), 2(3).609

Kaikai An, Fangkai Yang, Liqun Li, Zhixing Ren, Hao610
Huang, Lu Wang, Pu Zhao, Yu Kang, Hua Ding,611
Qingwei Lin, et al. 2024. Nissist: An incident mitiga-612
tion copilot based on troubleshooting guides. arXiv613
preprint arXiv:2402.17531.614

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and615
Hannaneh Hajishirzi. 2023. Self-rag: Learning to616
retrieve, generate, and critique through self-reflection.617
CoRR, abs/2310.11511.618

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu,619
Kaixin Ma, Xinran Zhao, Hongming Zhang, and620
Dong Yu. 2023. Dense X retrieval: What retrieval621
granularity should we use? CoRR, abs/2312.06648.622

Roger Crisp. 2014. Aristotle: nicomachean ethics.623
Cambridge University Press.624

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,625
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.626
2023a. Mind2web: Towards a generalist agent for627
the web. Preprint, arXiv:2306.06070.628

Yang Deng, Wenxuan Zhang, Weiwen Xu, Ying Shen,629
and Wai Lam. 2023b. Nonfactoid question answer-630
ing as query-focused summarization with graph-631
enhanced multihop inference. IEEE Transactions632
on Neural Networks and Learning Systems.633

Darren Edge, Ha Trinh, Newman Cheng, Joshua634
Bradley, Alex Chao, Apurva Mody, Steven Truitt,635
and Jonathan Larson. 2024. From local to global: A636
graph rag approach to query-focused summarization.637
arXiv preprint arXiv:2404.16130.638

Chunjing Gan, Dan Yang, Binbin Hu, Hanxiao Zhang, 639
Siyuan Li, Ziqi Liu, Yue Shen, Lin Ju, Zhiqiang 640
Zhang, Jinjie Gu, et al. 2024. Similarity is not all 641
you need: Endowing retrieval augmented genera- 642
tion with multi layered thoughts. arXiv preprint 643
arXiv:2405.19893. 644

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 645
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo, 646
Meng Wang, and Haofen Wang. 2023. Retrieval- 647
augmented generation for large language models: A 648
survey. CoRR, arXiv:2312.10997. 649

Kami Garcia and Margaret Stohl. 2011. Beautiful 650
Chaos. Hachette UK. 651

Manas Gaur, Kalpa Gunaratna, Vijay Srinivasan, and 652
Hongxia Jin. 2022. Iseeq: Information seeking ques- 653
tion generation using dynamic meta-information re- 654
trieval and knowledge graphs. In Proceedings of 655
the AAAI Conference on Artificial Intelligence, vol- 656
ume 36, pages 10672–10680. 657

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, 658
and Ming-Wei Chang. 2020. Retrieval augmented 659
language model pre-training. In Proceedings of the 660
37th International Conference on Machine Learning, 661
ICML 2020, 13-18 July 2020, Virtual Event, volume 662
119 of Proceedings of Machine Learning Research, 663
pages 3929–3938. PMLR. 664

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla, 665
Thomas Laurent, Yann LeCun, Xavier Bresson, and 666
Bryan Hooi. 2024. G-retriever: Retrieval-augmented 667
generation for textual graph understanding and ques- 668
tion answering. arXiv preprint arXiv:2402.07630. 669

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, 670
and Akiko Aizawa. 2020. Constructing a multi-hop 671
qa dataset for comprehensive evaluation of reasoning 672
steps. arXiv preprint arXiv:2011.01060. 673

Kelvin Jiang, Dekun Wu, and Hui Jiang. 2019. Free- 674
baseqa: A new factoid QA data set matching trivia- 675
style question-answer pairs with freebase. In Pro- 676
ceedings of the 2019 Conference of the North Amer- 677
ican Chapter of the Association for Computational 678
Linguistics: Human Language Technologies, NAACL- 679
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, 680
Volume 1 (Long and Short Papers), pages 318–323. 681
Association for Computational Linguistics. 682

Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, 683
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie 684
Callan, and Graham Neubig. 2023. Active retrieval 685
augmented generation. In Proceedings of the 2023 686
Conference on Empirical Methods in Natural Lan- 687
guage Processing, EMNLP 2023, Singapore, Decem- 688
ber 6-10, 2023, pages 7969–7992. Association for 689
Computational Linguistics. 690

Greg Kamradt. 2024. The 5 levels of text splitting for 691
retrieval. 692

9

https://doi.org/10.48550/ARXIV.2310.11511
https://doi.org/10.48550/ARXIV.2310.11511
https://doi.org/10.48550/ARXIV.2310.11511
https://doi.org/10.48550/ARXIV.2312.06648
https://doi.org/10.48550/ARXIV.2312.06648
https://doi.org/10.48550/ARXIV.2312.06648
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
http://proceedings.mlr.press/v119/guu20a.html
http://proceedings.mlr.press/v119/guu20a.html
http://proceedings.mlr.press/v119/guu20a.html
https://doi.org/10.18653/V1/N19-1028
https://doi.org/10.18653/V1/N19-1028
https://doi.org/10.18653/V1/N19-1028
https://doi.org/10.18653/V1/N19-1028
https://doi.org/10.18653/V1/N19-1028
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495
https://www.youtube.com/watch?v=8OJC21T2SL4
https://www.youtube.com/watch?v=8OJC21T2SL4
https://www.youtube.com/watch?v=8OJC21T2SL4

Gangwoo Kim, Sungdong Kim, Byeongguk Jeon, Joon-693
suk Park, and Jaewoo Kang. 2023. Tree of clarifica-694
tions: Answering ambiguous questions with retrieval-695
augmented large language models. In Proceedings of696
the 2023 Conference on Empirical Methods in Natu-697
ral Language Processing, EMNLP 2023, Singapore,698
December 6-10, 2023, pages 996–1009. Association699
for Computational Linguistics.700

Mahnaz Koupaee and William Yang Wang. 2018. Wik-701
ihow: A large scale text summarization dataset.702
CoRR, abs/1810.09305.703

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-704
field, Michael Collins, Ankur P. Parikh, Chris Alberti,705
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-706
ton Lee, Kristina Toutanova, Llion Jones, Matthew707
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob708
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-709
ral questions: a benchmark for question answering710
research. Trans. Assoc. Comput. Linguistics, 7:452–711
466.712

How People Learn. 2000. Brain, mind, experience, and713
school. Committee on Developments in the Science714
of Learning.715

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-716
tus, Fabio Petroni, Vladimir Karpukhin, Naman717
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,718
Tim Rocktäschel, Sebastian Riedel, and Douwe719
Kiela. 2020. Retrieval-augmented generation for720
knowledge-intensive NLP tasks. In Advances in Neu-721
ral Information Processing Systems 33: Annual Con-722
ference on Neural Information Processing Systems723
2020, NeurIPS 2020, December 6-12, 2020, virtual.724

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and725
Ji-Rong Wen. 2023. Halueval: A large-scale hal-726
lucination evaluation benchmark for large language727
models. In Proceedings of the 2023 Conference on728
Empirical Methods in Natural Language Process-729
ing, EMNLP 2023, Singapore, December 6-10, 2023,730
pages 6449–6464. Association for Computational731
Linguistics.732

OpenAI. 2022. https://openai.com/index/new-and-733
improved-embedding-model/.734

George Polya and George Pólya. 2014. How to solve735
it: A new aspect of mathematical method, volume 34.736
Princeton university press.737

Priyanka Sen, Sandeep Mavadia, and Amir Saffari. 2023.738
Knowledge graph-augmented language models for739
complex question answering. In Proceedings of740
the 1st Workshop on Natural Language Reasoning741
and Structured Explanations (NLRSE), pages 1–8,742
Toronto, Canada. Association for Computational Lin-743
guistics.744

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie745
Huang, Nan Duan, and Weizhu Chen. 2023. En-746
hancing retrieval-augmented large language models747

with iterative retrieval-generation synergy. In Find- 748
ings of the Association for Computational Linguis- 749
tics: EMNLP 2023, Singapore, December 6-10, 2023, 750
pages 9248–9274. Association for Computational 751
Linguistics. 752

Manish Shetty, Chetan Bansal, Sai Pramod Upad- 753
hyayula, Arjun Radhakrishna, and Anurag Gupta. 754
2022. Autotsg: learning and synthesis for incident 755
troubleshooting. In Proceedings of the 30th ACM 756
Joint European Software Engineering Conference 757
and Symposium on the Foundations of Software En- 758
gineering, ESEC/FSE 2022, Singapore, Singapore, 759
November 14-18, 2022, pages 1477–1488. ACM. 760

Text Splitter. 2023. Recursively split by character. 761

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming- 762
Wei Chang. 2022. ASQA: Factoid questions meet 763
long-form answers. In Proceedings of the 2022 Con- 764
ference on Empirical Methods in Natural Language 765
Processing, pages 8273–8288, Abu Dhabi, United 766
Arab Emirates. Association for Computational Lin- 767
guistics. 768

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, 769
and Ashish Sabharwal. 2023. Interleaving retrieval 770
with chain-of-thought reasoning for knowledge- 771
intensive multi-step questions. In Proceedings of 772
the 61st Annual Meeting of the Association for Com- 773
putational Linguistics (Volume 1: Long Papers), 774
ACL 2023, Toronto, Canada, July 9-14, 2023, pages 775
10014–10037. Association for Computational Lin- 776
guistics. 777

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, 778
Rangan Majumder, and Furu Wei. 2023. Improving 779
text embeddings with large language models. arXiv 780
preprint arXiv:2401.00368. 781

Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi 782
Zhang, and Tyler Derr. 2024. Knowledge graph 783
prompting for multi-document question answering. 784
In Proceedings of the AAAI Conference on Artificial 785
Intelligence, volume 38, pages 19206–19214. 786

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben- 787
gio, William W. Cohen, Ruslan Salakhutdinov, and 788
Christopher D. Manning. 2018. Hotpotqa: A dataset 789
for diverse, explainable multi-hop question answer- 790
ing. In Proceedings of the 2018 Conference on Em- 791
pirical Methods in Natural Language Processing, 792
Brussels, Belgium, October 31 - November 4, 2018, 793
pages 2369–2380. Association for Computational 794
Linguistics. 795

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, 796
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang, 797
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei 798
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song 799
in the AI ocean: A survey on hallucination in large 800
language models. CoRR, abs/2309.01219. 801

10

https://doi.org/10.18653/V1/2023.EMNLP-MAIN.63
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.63
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.63
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.63
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.63
https://arxiv.org/abs/1810.09305
https://arxiv.org/abs/1810.09305
https://arxiv.org/abs/1810.09305
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.397
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.397
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.397
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.397
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.397
https://openai.com/index/new-and-improved-embedding-model/
https://openai.com/index/new-and-improved-embedding-model/
https://openai.com/index/new-and-improved-embedding-model/
https://doi.org/10.18653/v1/2023.nlrse-1.1
https://doi.org/10.18653/v1/2023.nlrse-1.1
https://doi.org/10.18653/v1/2023.nlrse-1.1
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.1145/3540250.3558958
https://doi.org/10.1145/3540250.3558958
https://doi.org/10.1145/3540250.3558958
https://python.langchain.com/v0.1/docs/modules/data_connection/document_transformers/recursive_text_splitter/
https://doi.org/10.18653/v1/2022.emnlp-main.566
https://doi.org/10.18653/v1/2022.emnlp-main.566
https://doi.org/10.18653/v1/2022.emnlp-main.566
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.18653/V1/2023.ACL-LONG.557
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219

A Scenarios and Datasets802

A.1 Documents under Each Scenario803

As the Mind2Web dataset lacks relevant documents,804

we create retrieval documents tailored to the RAG805

system. Assuming that each website has help docs806

applicable across different tasks, we use the "Cross-807

Task" test set, selecting examples from the training808

set to craft informative documents for each website.809

And we follow Wang et al. (2023) to brainstorm810

different formats of documents. More details about811

collecting documents are shown in Appendix B.2.812

For the WikiHow dataset, we utilize publicly813

available Windows Office Support Docs9 as re-814

trieval documents. We select around 100 tasks815

from WikiHow tagged with Microsoft products like816

Word, PowerPoint, and Teams, each containing 10817

to 40 steps related to Windows operations.818

For the IcM dataset, we collect 56 TSGs from819

an enterprise-level engineering team responsible820

for a large-scale cloud platform. The selected inci-821

dents in the IcM dataset can be resolved using the822

knowledge provided in these TSGs.823

A.2 Example of Each Dataset824

We list one example of each dataset in Table 8,825

and we distinguish how-to questions into ‘linear’826

and ‘dynamic’ types, where linear how-to ques-827

tions often involve a fixed sequence of steps that828

do not require feedback or decision points based829

on intermediate outcomes.830

A.3 Evaluation Metrics under Each Dataset831

We adapt the evaluation metrics from (Deng et al.,832

2023a), which include: Element Accuracy (Ele.833

Acc) to evaluate the chosen HTML element; Oper-834

ation F1 (Op. F1) to calculate the token-level F1835

score for predicted operations such as “CLICK”,836

“TYPE IN”, etc.; Step Success Rate (Step SR),837

where a step is successful if both the selected el-838

ement and predicted operation are accurate; and839

Success Rate (SR), where a task is successful only840

if all steps are successful.841

For the WikiHow dataset, which contains ground842

truth steps, we leverage LLMs to extract “Ac-843

tion Items” from each ground truth step and gen-844

erated step, and we use the following metrics:845

Precision (P = #matched_items
#total_generated_items); Recall846

(R = #matched_items
#total_groundtruth_items); F1; and Success847

9https://github.com/MicrosoftDocs/
OfficeDocs-Support

Rate (SR) to assess if the generated steps can suc- 848

cessfully complete the task, using LLMs to evaluate 849

(Appendix B.3 shows the evaluation prompt). 850

For the IcM dataset, which involves task execu- 851

tion, we perform evaluations with OCEs (refer to 852

§3.1) using five metrics: Success Rate (SR) indicat- 853

ing the percentage of incidents mitigated automat- 854

ically by the system without human intervention; 855

Step Success Rate (Step SR) representing the per- 856

centage of successful steps out of all task steps; 857

Pre-Failure Step Success Rate (P.F. Step SR) repre- 858

senting the percentage of successful steps before 859

the first failure; Human Intervention (HI) measur- 860

ing the percentage of steps requiring human inter- 861

vention; and Average Turns (Turns) to measure the 862

average interaction turns between OCEs and the 863

system during incident mitigation. 864

A.4 Remaining LU Types 865

FAQ. This type provides frequently asked ques- 866

tions, supplementing the knowledge base. These 867

LUs are typically isolated, with the LU body offer- 868

ing solutions through sequential steps that address 869

linear how-to questions not reliant on dynamic 870

states. They save time by avoiding the need for 871

sequentially retrieving LUs for common questions. 872

Appendix. This type provides additional informa- 873

tion relevant to the scenario of LUs, such as exam- 874

ples, background, lookup tables, etc. These LUs 875

serve as supplementary knowledge for LLMs when 876

generating responses or executable plans. 877

A.5 Instantiation of THREAD 878

In Table 9, we provide an example of the construc- 879

tion process of THREAD including the original doc- 880

ument, reformulated document, and its correspond- 881

ing logic unit. 882

11

https://github.com/MicrosoftDocs/OfficeDocs-Support
https://github.com/MicrosoftDocs/OfficeDocs-Support

Dataset Example

Mind2web
(Dynamic) <html> ... </html>

Based on the HTML webpage above, try to complete the following task
Task: Book the lowest-priced and quickest flight for 5 adults and 1 child on May 20

from Mumbai to any airport near Washington.
Previous actions:
None
What should be the next action?
Please select from the following choices (If the correct action is not in the page

above, please select A. 'None of the above'):
A. None of the above
B. <div id=0> <input radio triptype roundtrip true /> <label>
C. <label id=1> Search flights one way One
D. <h3> Celebrate World Wish Day </h3> <p> Support
E. <h2 id=3> Help </h2>
F.
C. Action: CLICK

WikiHow
(Linear) "Problem": "How to Add Captions to Tables in Microsoft Word",

"Solution Steps": [
"Select the table to which you want to add a caption.",
"Using your mouse, click and drag over the entire table to select it.",
"Right-click (or ctrl-click) the table and select Insert Caption.",
"Enter your caption.",
"Type the caption for this table into the \"Caption\" field.",
"Select a caption label.",
"Customize your caption numbers (optional).",
"Choose where to place your caption.",
"Click the \"Position\" drop-down menu, and choose whether to place the caption

above or below the table.",
"Click OK to add your caption to the table.",
"Format your captions."

]

IcM
(Dynamic) How to Investigate Service A-To-Service B Connection?

Step 1: Check Pull Task Execution From the Cluster

The direct impact of connection failure is pull task execution will not work. If
Service A can continue to pull from Service B, then the incident can be dismissed
as false alarm, the feature owner can investigate further to see why Echo fails.
This can be visualized by pull task count over time in the last 8 hours in the

following query:
```kusto
<Code Block>
```

Disregard the last data point, if the data point is always above zero, then consider
the alert as false alarm. If the chart sometimes drops to zero one hour ago and
the number is low in general (for instance less than 20), it means the customer
traffic in the cluster is low. In this case, observe for a longer period of time.
If the data point is zero consistently in the past 30 minutes, then it is a real
problem, and please Check if Other Clusters In the Region are Impacted.

Otherwise, continue to observe since Service A is pulling Service B just fine.

Table 8: Examples of each dataset. For Mind2Web, although the test set has fixed options for each step, there are
different execution methods for the same task on each website, so it is essentially dynamic.

12

Trouble Shooting Guide: How to Investigate Service A-To-Service B Connection?

Original ### Step 0: Determine the Region and Cluster Name
The region and cluster name can be found in the incident title.
Step 1: Check Pull Task Execution From the Cluster

The direct impact of connection failure is pull task execution will not work. If Service A can continue to
pull from Service B, then the incident can be dismissed as false alarm, the feature owner can investigate
further to see why Echo fails. This can be visualized by pull task count over time in the last 8 hours in
the following query: ***
Disregard the last data point, if the data point is always above zero, then consider the alert as false
alarm. If the chart sometimes drops to zero one hour ago and the number is low in general (for instance
less than 20), it means the customer traffic in the cluster is low. In this case, observe for a longer period
of time. If the data point is zero consistently in the past 30 minutes, then it is a real problem, and please
Check if Other Clusters In the Region are Impacted. Otherwise, continue to observe since Service A is
pulling Service B just fine.
...

Reformulated ## 1.Check Pull Task Execution From the Cluster.
Prerequisite
The region and cluster name can be found in the incident title.
Header
Check Pull Task Execution From the Cluster
Body
Run the following query to check pull task execution from the cluster (please use the cluster name from
the previous step) ***
Linker
- If the data point is always above zero, then consider the alert as false alarm.[MITIGATE]
- If the chart sometimes drops to zero one hour ago and the number is low in general, it means the
customer traffic in the cluster is low. In this case, observe for a longer period of time.[MITIGATE]
- If the data point is zero consistently in the past 30 minutes, then it is a real problem, and please Check
if Other Clusters In the Region are Impacted.[CONTINUE]
- Otherwise, continue to observe since Service A is pulling Service B just fine.[MITIGATE]
...

Logic Unit
{

"#type#": "step",
"#meta data#": {

"#title#": "How to Investigate Service A-To-Service B Connection",
"#id#: "",
"#date#": ""

},
"#prerequisite#": "The region and cluster name are given.",
"#header#": "Check Pull Task Execution From the Cluster.",
"#body#": "Run the following query to check pull task execution from the cluster (

please use the cluster name from the previous step):***",
"#linker#": "If the data point is always above zero, then consider the alert as

false alarm.[MITIGATE] If the chart sometimes drops to zero one hour ago and
the number is low in general, it means the customer traffic in the cluster is
low. In this case, observe for a longer period of time.[MITIGATE] If the
data point is zero consistently in the past 30 minutes, then it is a real
problem, and please Check if Other Clusters In the Region are Impacted.[
CONTINUE] Otherwise, continue to observe since Service A is pulling Service B
just fine.[MITIGATE]",

"#default_parameters#": {
"<TIME>": "",
"<CLUSTER NAME>": ""

}
}

...

Table 9: An example of reformulated TSG and its corresponding Logic Unit of THREAD.

13

B Experimental Details883

B.1 Incident Mitigation884

We take the scenario of incident mitigation to show885

the instructions about how to construct our knowl-886

edge base, including document reformulation, code887

template extraction, and logic unit selection10.888

Instruction that formulates the original unstruc-
tured troubleshooting guide into structured
one.
[System]
You are a helpful troubleshooting guide assis-
tant who helps the user formulate the man-
ual unstructured troubleshooting guide <TSG>
into a structured one. The <TSG> is in mark-
down format, with the first level header de-
scribing the incident or problem, and the fol-
lowing second level header providing informa-
tion related to the incident or problem.
Each second-level subsection can be catego-
rized into the following types: Terminology,
FAQ, STEP, and Appendix. Your reformula-
tion should strictly comply with the following
definition:
- Terminology: firstly, it should be the relation-
ship or connection between terminology about
the incident, if not, it can be the explanation or
concept of the incident. Sometimes it should
be extracted and summarized by yourself.
- FAQ: frequently asked questions that help to
understand the incident.
- STEP: the processes to resolve the incident,
and you should make sure its completeness.
Usually, steps have causal inner connection,
the former step will trigger the next step.
- Appendix: the supplement of the incident
that is not important or labeled by TSG,
usually providing additional resources, data,
links and so on.

1. You need to identify each second-level
subsection, including third-level subsection if
needed, analyze its content or purpose, and cat-
egorize it accordingly. For those belonging to
Step, you should capture the inner connections,
such as Causality or Temporal relations, and
present them in the correct order.

889

10The selection strategy is the same for both chunk and LU
selections, which leverages LLMs to select the most relevant
retrieval element from the retrieved top-K retrieval elements.

2. Your returned formulated TSG should be in
JSON format. Make sure that the keys origi-
nate from these categories: Terminology, FAQ,
STEP ad Appendix. Each value should be a
list of dictionaries. The keys for them are "pre-
requisite", "header", "body", and "linker". All
values within the lists need to align with the
original context, with truthful meaning and
necessary **code block**.
3. Importantly, the "linker" is used to imply
the dual role of providing the action’s result
and connecting to the next step using the "if-
then" sentence format. You should formulate
each step’s linker to be "If any results are ob-
tained by executing the corresponding action
in the previous step, then **the true intent of
the following step** provided here". Implicit
linkers like "proceed to the next step." or "then
the intent of the following step should be taken
into consideration." should be avoided.
4. For each "if" condition at every step in
the STEP, it is necessary to add a special to-
ken behind the "then" condition within the
"linker". The options for these tokens are
"[CONTINUE]", "[CROSS]", and "[MITI-
GATE]". - The token "[CONTINUE]" indi-
cates that the actions corresponding to this "if"
condition are part of the continuum within the
same TSG’s STEPs. - The token "[CROSS]"
signifies that the subsequent actions require
a transition to a different set of steps that are
external to the current TSG’s STEPs. - The
token "[MITIGATE]" implies that the actions
following the "if" condition convey that the
incident is mitigated, or necessitate communi-
cation with on-call engineers or teams.
The use of this special token is instrumental
in verifying the completeness and structural
integrity of the STEP section.

<TWO EXAMPLES HERE>

[User]
Here is the <TSG> you need to formulate:
{TSG}

890

14

Instruction that extracts code template and de-
fault parameters from the source code.

[System]
You are a helpful assistant that extracts the
code template and the default parameters
from the provided code instance in <CODE>.
<CODE> is a code block that contains
several parameters. You should replace those
parameters with placeholders and output the
code template with placeholders and default
parameters.

<ONE EXAMPLE HERE>

Your response should be in the JSON format
as below:
{

"#CODE_TEMPLATE#": where you replace the
parameters in <CODE> with placeholders
,

"#DEFAULT_PARAMETERS#": where you keep the
parameters in <CODE> as default values
.

}

[User]
Here is the <CODE> you need to extract:
{CODE}

891

Instruction that selects the most relevant logic
unit based on user query and chat history.

[System]
You are a helpful assistant that selects the most
relevant element from <LU_LIST> based on
the user’s query in <QUERY> and chat history
in <CHAT_HISTORY>. Please respond with
the JSON format.
Each element in <LU_LIST> is in json format
and contains the following fields:
{

"#type#": "the type of the element, select
from the following types: Terminology,
FAQ, Step, and Appendix.",

"#meta data#": "the description of the
troubleshooting guide.",

"#prerequisite#": "The prerequisite of this
step, before taking the current step,
the prerequisites should be finished
.",

"#header#": "The information describes the
intent of the <INFO>.",

"#body#": "The action is the content which
troubleshoots the incident or explain
the #header#. the action may contain
code blocks in markdown format, and
parameters are replaced with
placeholders",

"#linker#": "the expected output after
taking the #action#. It is defined in
the following format in markdown: -If

condition, then **should_do**. It
can contain multiple if-then cases.",

"#default_parameters#": "the default
parameters that could fill in

892

placeholders in code blocks in #body
#."

}

- The elements in <LU_LIST> contain possible
information that can answer the user’s query
in <QUERY>. However, they may not be all
relevant to the query or useful to answer the
user’s query. You should select the most rele-
vant element from the <LU_LIST> based on
the user’s query in <QUERY>.
- In particular, you should focus on the follow-
ing fields in the element: #header#, #body#.
Most importantly, the <QUERY> needs to
match with the #intent# and the #body# has
to provide actions to reach the goal of the
<QUERY>, please ignore the #linker# and do
not map the <QUERY> with #linker#.
- As you choosing from <LU_LIST>, you need
to check if all the #prerequisite# are met in
previous history. If the #prerequisite# is not
finished, then it should not be chosen.
- Try to select only one element from
<LU_LIST>. If it is not possible to select only
one element, you can select multiple elements
from <LU_LIST>:
[

{
"INDEX": the index of the element in <

LU_LIST>.
"INTENT": the #header# of the element,

the index starts from 0.
"EXPLANATION": justify why you select

this node.
}

]

- If there is no element in <LU_LIST> that can
answer the user’s query in <QUERY>, you
should try to select the most relevant element
to the user’s query considering that the user
might use the wrong terminology:
[

{
"INDEX": the index of the element in <

LU_LIST>.
"INTENT": the #header# of the element,

the index starts from 0.
"REPHRASED_QUERY": the rephrased query

that you think the user is asking
about.

"EXPLANATION": justify why you select
this node.

}
]

- Unless you are confident that there is no ele-
ment in <LU_LIST> that is even close to the
user’s query:
{

"NO_INFO_EXPLANATION": where you give your
explanation.

}

893

15

- Your answer should be in the JSON format in
a list after <RESPONSE>.

[User]
<LU_LIST>: {LU_LIST}
<QUERY>: {QUERY}
<CHAT_HISTORY>: {CHAT_HISTORY}

894

B.2 Mind2web895

We show the details about the document genera-896

tion instruction we use, the different formats of897

documents, and the examples we generate.898

Instruction that generates specific format of
document for Mind2web dataset.
[System]
You are adept at performing website navi-
gation tasks, and you will be provided with
simulation data from Mind2Web, designed for
developing and evaluating generalist agents
capable of following language instructions to
complete complex tasks on any website.

The data includes a step-by-step execution
process, each step encompassing HTML code,
Tasks, Previous Actions, and the Element and
Action of this step. Note that the Element
comes from the HTML code, and if the correct
action is not present on the current page, the
Element is None, and you should retrieve it
from next step’s Previous Actions.

Now your task is to write a comprehensive and
adaptable reference document that outlines the
general process for completing tasks like the
given task. This document should serve as a
guide for others to perform similar tasks on
the same website in the future. So it should
not be limited but can use this data to be the
example, and should be general enough.

Please return the complete reference document
that adheres to these guidelines.

[User]
The format of the documents should be as fol-
lows: {FORMAT}
The given execution process is as follows:
{EXAMPLE}

899

We follow Wang et al. (2024) to brainstorm di-900

verse formats of documents for Mind2web dataset901

used for retrieval, and the results are listed in Table 902

10. 903

B.2.1 Details about LU Merge 904

For LU merge, we first identify the similar logic 905

units by using the SpaCy library to calculate the 906

textual similarity of LU headers. Then we leverage 907

LLM to merge LUs with the following prompt: 908

Instruction that merges logic units with similar
header.
[System]
You are tasked with a set of Logic Units
that contain information about different
steps in web navigation task. Each unit
includes components like type, title, header,
prerequisite, body, and linker. Some units
have similar intents and can be merged to
streamline the process and reduce redundancy.

Your task is to merge logic units with similar
header into a single unit that combines their
prerequisite, body and linker in a logical and
coherent manner.

- Most importantly, as merging, you should
concentrate on the linker, you need to unite
the linker with similar intent, and carefully
compare their "if" conditions. These condi-
tions should now depend on the title specifics,
guiding the user to the appropriate next action
based on the context of the task.
- And for prerequisite, you should synthesize
the prerequisites from the individual units,
preserving the original logic and ensuring that
the merged unit sets the necessary conditions
for the subsequent steps.

The purpose of this merge is to create a more
efficient set of instructions that can handle
multiple scenarios without repeating steps.

Here is an example:

Please only return the merged unit in JSON
format, keeping the same structure with the
input.

[User]
The logic units you need to merge are as fol-
lows: {units}

909

16

Format Description

Structured
Markdown

- The document must be structured into sections in markdown format.
- It should include a task overview, introduction, process steps, and conclusion.
- Each step in the process includes detailed explanations for Intent, Prerequisite, HTML Code Reference,
Action, Reason, and Result.
- The Prerequisite is to specify any conditions or prior actions that must be met or completed before
proceeding with the current step in the process.
- Ensure that each step is explicitly connected to the next one, and the result is written in the "if-then"
schema where the "Intent" of this step is completed, and the outcome "then" is the next step’s Intent.
- The HTML Code Reference gives hints of the Action like some ’<button>’, ’’, or other
elements or attributes. You need to use the given task as an example.
- The Action comes from "Click", "Type", "Hover", "Press Enter".

Hierarchical
Guideline

- A structured text document with numbered steps for each task.
- Each step includes a title, description, the HTML code involved, and the action to be taken.
- Previous actions are referenced where necessary, with hyperlinks to the relevant steps.
- Appendices for HTML code references, glossary of terms, and FAQs.

Tabular
Checklist

- A printable checklist with each task and subtask, including checkboxes for completion.
- Each checklist item includes a code snippet and the action required.
- A troubleshooting section that lists common problems and their solutions.
- Tips for what to do when the expected element or action is not available.
- References to more detailed instructions or external resources for complex tasks.

Narrative
Document

An entire description of the execution process without special structures.

Table 10: The description of different formats of documents on Mind2web.

B.3 Wikihow910

Instruction that evaluates the generated answer
compared with ground truth for Wikihow.

[System]
You are a helpful and precise assistant for
checking the quality of the answer. We would
like to invite you to evaluate the performance
of the system in answering a user’s question
in <Question>.

I will give you the answer generated by the
system in <Generation> and the ground truth
answer in <Ground Truth> respectively. Your
evaluation will contain five sub-evaluation
tasks:

1. Both two answers contain a list of steps.
Your task is to extract action items from the
provided steps in both answers. The action
item is defined as a combination of action and
element. Compare the action items to identify
similarities. Output the similar action items.
Count the count of similar action items.

- Your answer should contain the extracted
two action item sets (in the format as a list of
strings).
- Your answer should contain a set of similar911

action items (in the format of a list of strings).
Similar action items are those sharing similar
intent or achieving similar goals. Each similar
action pair in the list should be in the format
of "similar action item from action item set1
/ similar action item from action item set2"
- Your answer should contain the count of
similar action items.

2. Can <Generation> completely solve the
user’s question?
- Your answer should be "Yes" or "No".
- Your answer should contain the reason(s)
for your choice. You should not focus on
the length of the answer or the details of the
answer, but you should focus on whether the
steps could solve the user’s question and the
quality of the steps compared with the ground
truth.

Your output should be in the following format
in JSON:
{

"Subtask1": {
"Action items in Generation": ["action

item 1", "action item 2", ...],
"Action items in Ground Truth: ["action

item 1", "action item 2", ...],
"Similar action items": ["similar

action item 1", "similar action
item 2", ...],

"Count of similar action items": 2
},

912

17

"Subtask2": {
"Choice": "Yes" or "No",
"Reason": "reason for your choice"

}
}

[User]
Here is the user’s question <Question>: {Ques-
tion}
The answer from system <Generation> is:
{Generation}
The ground truth answer <Ground Truth> is:
{Ground Truth}

913

B.4 Details about RAG System914

We take the scenario of Mind2web to show the915

instructions we use in our RAG-based QA system.916

Instruction that is used for the baselines of
RAG system on Mind2web.

[System]
You are a helpful assistant who is great at
website design, navigation, and executing
tasks for the user. Now please proceed
with the <CURRENT_STEP> and make
your choice, remember that only based on
the helpful document information from
<DOC_CONTEXT> and the previous step
chat history between user and assistant in
<CHAT_HISTORY>.

Your response should be in the format of "An-
swer: C. Action: SELECT Value: Pickup".
The answer is A, B, C..., the Action comes
from [CLICK, TYPE, SELECT] and the Value
is not always needed.

[User]
<DOC_CONTEXT>: {DOC_CONTEXT}
<CHAT_HISTORY>: {CHAT_HISTORY}
<CURRENT_STEP>: {CURRENT_STEP}

917

Instruction that is used for the RAG system
utilizing THREAD Paradigm on Mind2Web.

[System]
You are a helpful assistant who is great at
website design, navigation, and executing
tasks for the user. Now please proceed with
the <CURRENT_STEP> and make your
choice, remember that only based on the
helpful structured document information
from <LOGIC_UNIT>, and the previous step

918

chat history between user and assistant in
<CHAT_HISTORY>.

Your response should be in the format of
JSON:
{

"CHOICE": the choice you make from A B C
...,

"ACTION": the corresponding action choosing
from ['CLICK', 'TYPE', 'SELECT'],

"VALUE": the corresponding value if needed,
"INTENT": the intent of the next step,

which should be retrieved and judged
from the "if" conditions in #output#
from <LU> according to the current
step and actions and choose the
corresponding "then" outcome, do not
guess it based on current Task in <
CURRENT_STEP> by yourself unless the <
LU> is irrelevant to <CURRENT_STEP>,

}

[User]
<LOGIC_UNIT>: {LOGIC_UNIT}
<CHAT_HISTORY>: {CHAT_HISTORY}
<CURRENT_STEP>: {CURRENT_STEP}

919

18

SR P R F10

20

40

60

80

100 Chunk

SR P R F10

20

40

60

80

100 Doc

SR P R F10

20

40

60

80

100 Thread
GPT-4
LLama3-70B

Figure 4: Analysis of using different LLMs on WikiHow (GPT-4 v.s. LLaMA3-70B).

C Current Data Organization Paradigm920

From Gao et al. (2023), current data organization921

paradigms can be categorized into phrases, sen-922

tences, propositions, chunks, and so on. In our923

paper, we choose chunks 11 and propositions to924

compare with our proposed THREAD12.925

Recursive Chunk. This chunking method splits926

the original documents using a list of separators,927

then reassembles them according to specified chunk928

sizes and overlap sizes. In our experiment, we929

use different chunk sizes for each dataset: 1000930

for Mind2Web, 2000 for IcM, and 300 for Wik-931

iHow. The chunk overlap sizes also vary 50 for932

Mind2Web, 100 for IcM, and 30 for WikiHow.933

Entire Document. This method sends the entire934

document directly into the model, constrained by935

the document’s length and structure.936

Semantic Chunk. Kamradt (2024) proposes split-937

ting chunks based on semantic similarity. The hy-938

pothesis is that semantically similar chunks should939

be grouped together. By comparing the semantic940

similarity between adjacent sentences, the method941

identifies “break points”. If the similarity in the942

embedding space exceeds a certain threshold, it943

marks the start of a new semantic chunk.944

Agentic Chunk (Proposition). Chen et al.945

(2023)13 introduces the concept of the Proposition946

Paradigm, which involves extracting independent947

propositions from original documents. The Agen-948

tic Chunk method is based on this paradigm. It949

first splits the documents into paragraphs, then ex-950

tracts propositions from each paragraph, and at last951

11We use the implementation by LangChain https://
python.langchain.com/v0.2/

12Note: For chunks, we retrieve the top-5 at each time, and
for documents, we only retrieve the top-1.

13For proposition paradigm, we use agentic chunker
since the input token of Flan-T5 is limited to 512, https:
//github.com/FullStackRetrieval-com/
RetrievalTutorials.

merges similar propositions into chunks. 952

GraphRAG. GraphRAG (Edge et al., 2024) is 953

a data organization approach proposed for those 954

query-based summarization, e.g., ‘what is the 955

theme of this dataset’, which constructs KG by ex- 956

tracting entities from chunks and then constructing 957

relationships between them. 958

D Additional Experimental Results 959

In all our experiments, we set the temperature of 960

LLMs to 0 and top_p to 1 for results reproduction. 961

D.1 Different LLMs as backbone 962

We further conduct experiments on LLaMA3-70B, 963

as shown in Figure 4. Although LLaMA3-70B 964

is less powerful than GPT-4, it still demonstrates 965

competitive performance with the help of THREAD. 966

Results indicate that LLaMA3 struggles with Wiki- 967

How questions applying chunk-based or doc-based 968

paradigms. However, with the integration of 969

THREAD, LLaMA3 not only achieves much better 970

performance in SR, but also narrows the gap with 971

GPT-4. Specifically, LLaMA3 achieves SR and F1 972

scores of 60.82% and 72.84%, respectively, com- 973

pared to GPT-4’s scores of 72.16% and 80.74%. 974

This indicates that while a performance gap re- 975

mains, particularly with the chunk-based and doc- 976

based paradigms, our THREAD considerably re- 977

duces this disparity between GPT-4 and LLaMA3. 978

These findings highlight the value of our proposed 979

paradigm in enhancing the performance of different 980

LLMs, showcasing its generalizability, robustness, 981

and efficiency in handling how-to questions. 982

D.2 Case Study 983

We compare the outputs from systems equipped 984

with THREAD and GraphRAG that handles how- 985

to question given in Table 9, ‘How to Investigate 986

Service A-To-Service B Connection?’. 987

19

https://python.langchain.com/v0.2/
https://python.langchain.com/v0.2/
https://github.com/FullStackRetrieval-com/RetrievalTutorials
https://github.com/FullStackRetrieval-com/RetrievalTutorials
https://github.com/FullStackRetrieval-com/RetrievalTutorials

Paradigm Chat Tokens
(I/O) / Doc

Embedding
Tokens / Doc Price / Doc ($) Chat Model API

Call / Doc Ele. Acc

Recursive (Chunk) - 838 0.000084 - 64.23
Semantic - 3802 0.00038 - 65.14
Proposition 61836 / 388 978 0.63 28.8 62.37
THREAD 2553 / 654 654 0.045 1 68.29

Table 11: Cost of different paradigms on Mind2Web.

Dataset Total Tokens Original
Tokens / Doc

Chat Tokens
(I/O) / Doc

Embedding
Tokens / Doc Price / Doc ($) ∆ Ele. Acc

Incident Mitigation 112K 2002 2814 / 1464 1464 0.072 23.68%-36.68% ↑
WikiHow 200K 2066 4608 / 778 778 0.069 44.3%-51.54% ↑
Mind2Web 410K 838 2553 / 654 654 0.045 4.06% ↑

Table 12: Scalability across different scenarios.

THREAD can progressively mitigate such questions988

as follows:989

Step1:990
When investigating the connection between Service A991

and Service B, the first step is to check pull992
task execution from the cluster. Please run the993
following query to check:994

*****995
996

- If the data point is always above zero, then997
consider the alert as false alarm.998

- If the data point is zero consistently, then it is999
a real problem, and please Check if Other1000

Clusters In the Region are Impacted.1001
1002

(the outcome of step1: data point is zero1003
consistently)1004

Step2:1005
To determine the list of clusters, the quickest way1006

is to check IcM by running1007
the following query to get the incidents in the last1008

day:1009
*****1010
- If the incident count is one, ..1011
- If the incident count is more than one, ..1012

1013
Step3:1014
...1015

However, the response generated by GraphRAG1016

is highly flawed. It not only distorts the inter-1017

nal logic within the documents but also retrieves1018

chunks that contain the entities "Service A" and1019

"Service B". After that, it misuses this retrieved1020

information to generate steps that are entirely irrel-1021

evant, seemingly getting stuck at start.1022

To investigate a connection issue between Service A1023
and Service B, you can follow this step:1024

1025
Verify if Service A is actually making a connection1026

call to Service B.1027
You can generally do this by checking the logs or1028

telemetry data where outbound requests are1029
recorded using a Kusto Query:1030

***1031
1032

If the connection attempts are not present in the1033
logs, ensure that Service A is configured1034
correctly to make calls to Service B.1035

If attempts are recorded, you can investigate1036
further based on the `ResultCode` to determine1037
if there are timeouts, rejections, or any other1038
issues that could indicate a problem with the1039

connection.1040

D.3 Cost and Scalability 1041

We analyze the preprocessing overhead for con- 1042

structing the final knowledge base using the 1043

Mind2Web dataset and compare THREAD to other 1044

paradigms that also leverage LLMs during pre- 1045

processing. From Table 11, THREAD achieves 1046

the highest element accuracy (68.29%) with a bal- 1047

anced trade-off between cost and performance. 1048

While its cost is higher than the Chunk and Se- 1049

mantic paradigms, it is significantly lower than the 1050

Proposition paradigm, making it suitable for real- 1051

world applications. Additionally, in Figure 4, we 1052

show that Llama3-70B achieves comparable perfor- 1053

mance with GPT-4, further emphasizing THREAD’s 1054

effectiveness and generability. 1055

More importantly, to evaluate THREAD’s scal- 1056

ability, we curate datasets by transforming exist- 1057

ing datasets (e.g., Mind2Web) and collecting data 1058

from the internet (e.g., WikiHow) and examined 1059

its performance on three datasets with different 1060

sizes. Table 12 shows that THREAD consistently 1061

outperforms the Chunk paradigm across datasets 1062

of varying scales, achieving higher element ac- 1063

curacy while maintaining acceptable costs. This 1064

demonstrates THREAD’s scalability in handling 1065

both longer documents and larger corpora. 1066

20

	Introduction
	Methodology
	Logic Unit: Retrieval Unit of Thread
	Logic Unit Type
	Thread: LU-based Knowledge Base
	Integrate Thread with QA System

	Experiments
	Scenarios and Datasets
	Baselines and Metrics
	Main Results

	Analysis
	Ablation on RAG System Settings
	Comparison with Different Paradigms
	Superiority over Different Doc Formats
	Generalization to Open Domain Questions

	Related Work
	Conclusion
	Scenarios and Datasets
	Documents under Each Scenario
	Example of Each Dataset
	Evaluation Metrics under Each Dataset
	Remaining LU Types
	Instantiation of Thread

	Experimental Details
	Incident Mitigation
	Mind2web
	Details about LU Merge

	Wikihow
	Details about RAG System

	Current Data Organization Paradigm
	Additional Experimental Results
	Different LLMs as backbone
	Case Study
	Cost and Scalability

