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ABSTRACT

Fine-tuning a language model often results in a degradation of its existing perfor-
mance on other tasks, due to a shift in the model parameters; this phenomenon is
often referred to as (catastrophic) forgetting. We are interested in mitigating this,
in settings where we only have access to the model weights but no access to its
training data/recipe. A natural approach is to penalize the KL divergence between
the original model and the new one. Our main realization is that a simple process -
which we term context-free generation - allows for an approximate unbiased esti-
mation of this KL divergence. We show that augmenting a fine-tuning dataset with
context-free generations mitigates forgetting, in two settings: (a) preserving the
zero-shot performance of pretrained-only models, and (b) preserving the reasoning
performance of thinking models. We show that contextual synthetic data, and even
a portion of the pretraining data, are less effective. We also investigate the effect
of choices like generation temperature, data ratios etc. We present our results for
OLMo-1B for pretrained-only setting and R1-Distill-Llama-8B for the reasoning
setting.

1 INTRODUCTION

It is now common practice for (so-called) “foundation" large language models (LLMs) to be trained,
with great care and at great expense, so as to be broadly performant. Specifically, these models
possess very good zero-shot performance on a wide variety of tasks, including ones they may not
have been specifically trained for; indeed models are now compared against each other based on
how this zero-shot performance places them on multiple leaderboards. It is also common for such
foundation models to be “made public", in a very specific sense of the word: the model weights are
publicly accessible and usable, but the training data, recipe etc. used to make the model are not only
unavailable, but often unspecified. This means that such models can be freely used and modified,
without knowledge of how they were developed.

That being said, there are often some tasks or scenarios (e.g. involving specialized domains, or new
previously unavailable data) where foundation models may not work well zero-shot. A natural and
common practice in such cases is to fine-tune the model on new data aligned with these new tasks,
so as to improve its performance on them. However, it is now well recognized that doing so can
result in a degradation of the model’s original zero-shot performance – often, the very metrics on
which it was judged to be a good model – due to a shift in the model weights. This phenomenon is
colloquially termed as “catastrophic" forgetting, and there are now a host of methods that attempt to
mitigate forgetting; we review them in detail in our related work section. We are especially interested
in methods applicable to the setting where we do not have access to the model’s training data or
recipe, which has been termed the data-oblivious setting.

Forgetting occurs because model weights shift during fine-tuning; attenuating this shift attenuates
forgetting, while also possibly attenuating the new-task gains from fine-tuning. This is the realization
underlying several existing methods to mitigate forgetting in the data-oblivious setting; these include
adding an ℓ2 regularization penalty to the change in weights Kirkpatrick et al. (2017); Kumar et al.
(2023), deliberately using LoRA while freezing weights in the main model Hu et al. (2022); Biderman
et al. (2024), freezing subsets of parameters Chen et al. (2024); Panda et al. (2024), model-averaging
Wortsman et al. (2021), selecting easy samples during fine-tuning Sanyal et al. (2025) etc.
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Figure 1: We finetune Olmo-1B Groeneveld et al. (2024) model on MetaMathQA Yu et al. (2023)
dataset with the aim of improving GSM8K accuracy while maintaining it’s pre-existing (i.e., pre-
trained) abilities (kindly refer to Sec 3.1 for details). Our method CFS, augments the downstream
data with context-free synthetic data (Sec 2) and performs better than the considered baselines.
Pretrain-Aug augments MetaMathQA with pretraining data, LoRA trains a low-rank adaptation,
l2 regularization regularizes model towards it’s initialization and Wise-FT does post-hoc model
averaging of Finetuned and Base.

Our approach starts from a simple premise: to minimize forgetting, add a penalty function that
directly minimizes the shift between the resulting model and the original model. Viewing a language
model as a probability distribution over sequences of tokens, a natural such penalty function would be
the “KL-divergence" between the two distributions. Of course, this is not a directly practicable idea,
since there is no real way to measure/quantify this KL divergence. However, as we show below, if
one could (in principle) generate an unconditional sample from the original model, one could develop
an unbiased estimate of this KL divergence in a strict mathematical sense.

However, it is not a-priori clear what it means to have an “unconditional sample" from an LLM.
Recall that inference in LLMs is typically in “input-output" mode, i.e. outputs are produced based on
a provided input context – i.e. typical LLM inference is conditional generation. Our key realization is
that having the model generate when given only just the appropriate “begin of sentence token" but an
otherwise empty input (we describe the process in detail in Section 2 for our models) serves as an
effective surrogate to unconditional generation for our purpose. We term such generations context-
free synthetic data (CFS). Under the assumption that a context-free generated string represents an
unconditional sampling from the original model, an all-token pre-training-style loss on this string
represents an unbiased estimate of the KL-divergence between the distributions represented by the
original model and the new model, respectively.

Our resulting method is straightforward: given a model whose abilities we need to not forget, and a
fine-tuning dataset, first (a) generate context-free synthetic data from the model, and (b) update the
model using a weighted combination of the standard fine-tuning loss on the fine-tuning dataset, and
an all-token pretraining-style loss on the context-free synthetic data. Figures 1 and 2 demonstrate
the forgetting problem, and also the ability of our method to mitigate it (both in absolute, and in
comparison to other popular methods for the same setting).

Our work doesn’t claim novelty in proposing synthetic data augmentation for mitigating forgetting.
Our aim with this work is to show that our simple context-free generations from a language model are
(surprisingly) better suited for mitigating forgetting (in context of LLMs) than intuitive naive choices
including : (a) domain-specific contextual generations : here the input context for generation are
given by the input prompts of the finetuning data itself. (b) pretraining data : for settings where we
consider pretrained-only model with open access to it’s pretraining data, our results show that context-
free generations outperform augmentation with the pretraining data as well (which is equivalent to
data-replay augmentation). We highlight that work is focused on evaluating the effectiveness of
different sources of data for mitigating forgetting and doesn’t address practical challenges like cost of
generation etc.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our main contributions are:

• We consider the task of mitigating catastrophic forgetting in the data oblivious setting: we
are given a model to finetune on a downstream dataset but without degrading its existing
capabilities, and without access to the model’s original training data.

• We develop a new approach, based on viewing LLMs as probability distributions over
strings. The idea behind our approach is to add a penalty term to the standard finetuning loss,
where the penalty term is the KL divergence between the two distributions. We show that this
KL divergence can be effectively unbiasedly estimated if one could generate unconditional
samples from the LLM distributions.

• Based on this realization, we propose the use of context free synthetic data generation –
basically, LLM inference from a vacuous input context – as a surrogate for unconditional
generation. We show that this results in KL-penalization becoming our simple 2-step
method: first generate context-free synthetic data, and then fine-tune with a weighted
combination of the standard fine-tuning loss on the downstream dataset and a pre-training
style loss on the new synthetic data.

• We first demonstrate the efficacy of this method when adding a new task to a pre-trained
only model; specifically, we consider the Olmo-1B Groeneveld et al. (2024) model1, which
is then fine-tuned on the MetaMathQA dataset Yu et al. (2023) in an attempt to improve its
performance on GSM8K. We show that our method works better than other benchmark data-
oblivious methods like ℓ2 regularization, LoRA and model averaging, as well as data-aware
methods like replay. See Figure 1 and Section 3.1.

• We then turn our attention to reasoning models, and ask the question of whether fine-tuning
degrades reasoning capacity (it does), and how to prevent this forgetting. Specifically, we
investigate the effect on math reasoning performance of R1-Distill-Llama8B DeepSeek-AI
(2025) when it is fine-tuned on the medical MedReason Wu et al. (2025) dataset. Here
again we show that our method improves on other benchmark data-oblivious methods in
mitigating forgetting. See Figure 2 and Section 3.2 for details.

Mitigating forgetting in the data-oblivious setting is a natural and pertinent problem in the modern
environment of open-weights but closed-everything-else models that are both expensive to train and
need to be specialized to downstream tasks; we hope this paper adds to our understanding of this
problem.

1.1 RELATED WORK

Catastrophic forgetting Wang et al. (2024); Zheng et al. (2025) has a rich literature, highlighting the
importance of the problem. Methods to mitigate forgetting, termed as continual learning methods can
broadly be classified as data-oblivious approaches (i.e., they don’t assume access to prior data used
to train the model) and data-dependent approaches (assume access to some subset of the data). Our
focus in this paper is on the data-oblivious setting and we review relevant works in this section.

Regularization-based approaches A class of well known and intuitive approaches for mitigating
forgetting in data-oblivious setting constrain the learned model weights to be close to the initial model
weights in a suitable metric. A simple idea is to constraint the learned weights to be close in the
ℓ2 norm Kumar et al. (2023); Kirkpatrick et al. (2017). LoRA Hu et al. (2022) enforces a low rank
difference between the weight matrices of the learned weights and the initial weights. Biderman
et al. (2024) shows that LoRA indeed mitigates forgetting, though can also hurt effective adaptation
to new tasks. Another line of work doesn’t constraint the problem while training, but instead post-hoc
averages (or a smarter convex combination) the learned model weights with initial weights to tradeoff
between learning and forgetting Lubana et al. (2021); Wortsman et al. (2021); Ilharco et al. (2023);
Lin et al. (2023); Kleiman et al. (2025).

Synthetic data-based approaches A line of work in data-dependent approaches focuses on caching
samples from previously seen tasks and augmenting using these samples when finetuning for the new

1We chose the Olmo-1B model because it’s pretraining data is actually available, and we wanted to benchmark
the efficacy of our data-oblivious method against classical “replay based" continual learning approaches Rolnick
et al. (2019) that need and use pre-training data.
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Figure 2: We finetune R1-Distill-Llama-8B DeepSeek-AI (2025) model on MedReason Wu et al.
(2025) dataset with the aim of improving it’s medical abilities, while maintaing it’s reasoning
performance (kindly refer to Sec 3.2 for details). Our method CFS, augments the downstream data
with context-free synthetic data (Sec 2) and performs better than the considered baselines, namely
LoRA which trains a low-rank adaptation, which regularizes model towards it’s initialization and
Wise-FT which does post-hoc model averaging of Finetuned and Base.

task de Masson D’Autume et al. (2019); Rolnick et al. (2019). Since the data-oblivious setting is a
more realistic scenario, prior work propose using a generative model to stand-in for the previously
seen data. Specifically, they jointly train both a generative model and a classifier with the generative
model standing in as a proxy for previously seen tasks Wu et al. (2018); Kemker & Kanan (2018);
Smith et al. (2021); Yin et al. (2020). Huang et al. (2024) proposes a similar setup using language
model. It prompts the language model to synthesis examples similar to ones seen in the previous
tasks.

Other data-agnostic methods Apart from theses techniques, Sanyal et al. (2025) explores reweigh-
ing data for mitigating forgetting. Specifically, they use the base model’s own likelihood for finetuning
to re-weigh samples before finetuning. They up-weigh easy samples and show that this mitigates
forgetting. Chen et al. (2024); Panda et al. (2024) also propose data-agnostic methods for continual
learning which leverage gradient and other information to select a subset of parameters to update
while finetuning. Similar to our work, Yang et al. mitigates forgetting by a KL divergence term
between the output token probability of the base model and the learned model. We consider a more
general setup where we minimize KL-divergence over the set of all strings.

While recent works on aligning language models Shao et al. (2024); DeepSeek-AI (2025) have
extensively explored training on model’s own responses, with some verification in loop, how model
generated synthetic data can help mitigate forgetting is still under-explored. We show that particularly
context-free generations are helpful for mitigating forgetting.

2 CONTEXT-FREE SYNTHETIC DATA

We now first describe the intuition behind our method, and then provide its formal specification.

Setup Let us denote, as is the convention, a language model by pθ, with θ being the weights;
in particular pθ(x) denotes the probability2 the model assigns to a string x. With this notation,
pretraining a model on a dataset D can be written as

min
θ

Ex∼D [− log pθ(x) ] starting from rand init (1)

Now suppose we are given a fine-tuning dataset F of (x, y) pairs; let pθ(y|x) denote the conditional
probability of a string y when x is given as input context. Given a starting model p∗θ , standard

2In particular, the standard notion of LLM probability of a sequence is the product of the logits the model
assigns to each token in the sequence.
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fine-tuning on a given fine-tuning dataset F of (x, y) pairs involves solving

min
θ

E(x,y)∼F [− log pθ(y|x) ] starting from θ∗

Note that here the maximization of the conditional probability denotes the fact that the loss is only
calculated on the intended outputs y, while in pretraining (1) we are maximizing the unconditional
probability pθ(x) itself.

In this setting, forgetting happens because the above process results in θ making large moves away
from the starting θ∗ – which then means that the resulting distribution pθ will be far from the
original pθ∗ even for other data unrelated to/far from F . Conceptually at least, a natural approach to
mitigating this would be to add a penalty for how much the overall distribution shifts:

min
θ

E(x,y)∼F [− log pθ(y|x) ] + λKL(pθ∗∥pθ) starting from θ∗ (2)

where KL(pθ∗∥pθ) stands for the Kullback-Liebler divergence between the original model pθ∗ and the
new model pθ (and λ is a penalty parameter). Of course, the problem with this conceptual approach
is that it is not clear what a term like KL(pθ∗∥pθ) operationally means, or how to calculate it.

Our main idea is that we can approximately estimate this KL divergence by first generating uncon-
ditional “context-free" synthetic samples from the existing model pθ∗ , and then update the model
via a weighted combination of the standard fine-tuning loss of F , and a “pretraining style" loss (i.e.
where the loss is applied to the entire string) on the synthetic samples. To see how this happens, if X
denotes the “set of all possible strings", we have that

KL(pθ∗∥pθ) =
∑
x∈X

pθ∗(x) log

(
pθ∗(x)

pθ(x)

)
= Ex∼pθ∗

[
log

(
pθ∗(x)

pθ(x)

)]
= Ex∼pθ∗ [log pθ∗(x)] + Ex∼pθ∗ [− log pθ(x)]

Here the x ∼ pθ∗ term denotes a (for now still hypothetical) sampling process for which the
probability that a sample string x is drawn from the set X is pθ∗(x).

Note now the first term in the last equation above does not depend on θ; thus, minimizing KL(pθ∗∥pθ)
is equivalent to minimizing the second term. Putting this back into (2) yields the following

min
θ

E(x,y)∼F [− log pθ(y|x) ] + λEx∼pθ∗ [− log pθ(x)]

Notice that the second term above is basically a pre-training style loss like (1); thus the overall loss
combines standard finetuning on F and pretraining style loss on the new x ∼ pθ∗ samples.

We now address the issue of what does it operationally mean to draw a sample x ∼ pθ∗ . Recall that
pθ∗ is an autoregressive generative language model; however, the way language models are typically
used is to provide an input context and sample from the conditional output. However, what the above
requires is an unconditional sample, with no (or, empty) input context - we term this context-free
synthetic data. Table 1 specifies how we achieve context-free generation in the two models considered
in this paper: Olmo-1B, and R1-Distill-Llama-8B.

With this in hand, our method can be summarized as follows: Given a model θ∗ (which we want to
finetune without forgetting) and a finetuning dataset F

(1) Generate context-free synthetic data x ∼ p∗θ from the model, as described above, and
(2) Update the model via a weighted combination of the standard fine-tuning loss on the samples

in F and pre-training style all-token loss on the context-free synthetic data.

Note that our method is data-oblivious, in the sense that we only have the starting model θ∗ but do
not have the data used to train it. There are a few details under the hood: e.g. how many synthetic
samples should one use, the temperature one should use to generate them, etc.; we study these in
ablations (Sec 3.1).

Connections to other approaches: We now discuss connections and differences to other approaches
to mitigate forgetting. We also compare against these in our experiments.
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Model Input Prompt Examples for Context-Free Generation

Olmo-1B <|endoftext|>
The coronavirus pandemic has caused changes
in people’s life as never before, with many
people avoiding public spaces and adhering ...

R1-Distill-Llama-8B <|begin_of_sentence|>
Cary imprint is marked on this copy.
However, but cary hasn’t yet been
assigned to the book. \n\n Wait, let me

Table 1: For each model we consider, we present the input prompt we use to generate context-free
synthetic data. Our input prompt is essentially the model’s bos_token i.e., beginning of sentence
token. We can see that when prompted with just the model’s corresponding bos_token token,
we are able to generate coherent samples which have high likelihood under the model and capture
model’s text distribution. For e.g., context-free generations from R1-Distill-Llama-8B often contain
the Wait token, enough though we don’t provide any query to the model.

(1) ℓ2 penalization: while our penalty term KL(pθ∗∥pθ) penalizes shift in distributions, one could
instead directly penalize a shift in the parameters themselves, i.e. have a penalty term ∥θ− θ∗∥22. One
disadvantage of this method is that it needs to keep two sets of model weights (θ and θ∗) in memory
while training, while ours does not; one disadvantage of our method is that synthetic data generation
may be slow because it is sequential.
(2) Conditional generation: A natural synthetic data approach one may think of is to augment the
fine-tuing data with condtional generation; that is, for every (x, y) in F , generate a ŷ ∼ pθ∗(y|x)
by giving the x as an input context to the model θ∗; and apply the standard fine-tuning loss on both
the original (x, y) and the new (x, ŷ). We show that this performs quite poorly; this is because it is
pushing the model in different directions for the exact same input context.
(3) Replay: The idea of experience replay Rolnick et al. (2019), in our context, involves retaining
some portion of the past data used to train θ∗, and adding it in during fine-tuning. Of course this is not
data-oblivious, and is often not applicable in modern “open weights but not open data" regimes. For
one the models in this paper - Olmo-1B - the pretraining data is available, and we compare against
this for that model; the other two models are “weights only" models and hence we cannot implement
replay for them.
(4) LoRA and weight averaging: Fine-tuning using LoRA is seen to forget less and learn less (since
the expressivity of the search space is lower than in full finetuning). Weight averaging on the other
hand first does standard fine-tuning, and then averages the model weights between the new model
and the original θ∗. Both methods are efficient and data-oblivious, but both perform worse than our
method (and, also worse than ℓ2 penalization)

3 EXPERIMENTS

We consider two different experimental setups to evaluate: (a) pretrained-only models, and (b)
reasoning models. In each of these setups, we first identify the following ingredients:
(A) a publicly available (i.e. “open weights" ) model,
(B) an evaluation of its zero shot performance on pre-existing tasks, and
(C) a fine-tuning dataset that helps the model to improve on a new downstream task, but doing so
degrades its performance on pre-existing tasks
In such settings, our task is to mitigate the degradation of performance on pre-existing tasks, while
still benefiting the performance on downstream tasks.

Context-free synthetic data Recall that a key step in our method is context-free data generation.
For context-free generations we prompt the model with it’s bos_token,i.e., beginning of sentence
token. Operationally, for the two models we investigate in this paper, Table 1 shows the input prompts
used for the generations. We use a sampling temperature of 1.0 unless otherwise specified, and top-p
of 0.95 (we ablate on the temperature hyperparameter in our experiments). We use vLLM Kwon et al.
(2023) for generation. Another choice for generating synthetic samples is contextual generations.
For contextual generations, we generate model responses for each input prompt in the finetuning
dataset and use the model’s responses (along with the input prompts) as the augmented samples.
For contextual-generations we use sampling temperature of 0.6 and probability threshold (top-p)
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of 0.95. For pretrained-only models, we also explore augmenting with their pretraining corpus.
Specifically, for Olmo we subsample 400K rows (equal to number of samples in MetaMathQA) from
it’s pretraining corpus Dolma dataset Soldaini et al. (2024).

Methods and models The tables in this paper study the performance of models developed using
the following methods (all of which, like ours, are data-oblivious - except P, which in our setup is
equivalent to data-replay):

Base This refers to the zero-shot performance of the base model (Olmo-1B for pre-trained-only
or R1-Distill-Llama-8B for reasoning)

FT This refers to the model that results when standard supervised fine-tuning is applied to the
Base model.

P We chose the Olmo-1B model because we have access to its pretraining data, which allows
us to compare against the data replay approach Rolnick et al. (2019) – i.e. training a model
on a combination of the standard fine-tuning loss on the finetuning dataset, and pretraining
loss on a (random subset of) the pretraining data. Since Olmo-1B is a pretrained-only model,
this approach is exactly equivalent to data-replay.

CS This refers to contextual generation – i.e. for each sample in the fine-tuning dataset, make a
new sample which contains the same input context but now paired with what the old model’s
generated answer to that input. Fine-tune on all samples in this augmented dataset.

CFS This is our method, based on context-free synthetic data.

LoRA This refers to the model that results when LoRA Hu et al. (2022) is used in the standard
supervised fine-tuning stage; this is based on the paper Biderman et al. (2024) which shows
that LoRA can mitigate forgetting; this is thus a baseline method we compare against.

Wise-FT Taken from Wortsman et al. (2021), this is another baseline method, based on model
averaging. In particular, it advocates first doing standard fine-tuning, and then devising a
weighted combination of α× original model weights and (1− α)× new model weights.

ℓ2 As described in Kumar et al. (2023); Kirkpatrick et al. (2017), this is our final baseline; it
advocates adding the ℓ2 distance between the old model weights and the new model weights
into the loss. Note that this involves needing to store two full models in memory during
training, which becomes cumbersome for large models.

Training Details We wish to investigate the effect of different augmentation sources on model
performance. We use 1:1 mix of finetuning data and augmented samples, unless otherwise specified
(we ablate on the mix of finetuning data and temperature in our experiments). For a fair comparison
between different mix of datasets, we control for number of gradient steps, i.e. the size of dataset is
inversely proportional to the number of epochs we use it for. We use the AdamW optimizer with a
cosine learning rate schedule with a peak learning rate of 5e− 6 and warmup steps of 3% of total
training steps and train for 2-4 epochs (see Supp B). We have an effective batch size of 128 (following
Wu et al. (2025); Yuan et al. (2025)). See Supp B for additional training details.

We acknowledge the simplicity of our setup. We focus our experiments to investigate the effect
of different augmentation sources in the data-mix for continual learning. Hence we simplify many
details. We only investigate finetuning on a single downstream task as opposed to a sequential
multi-task continual learning setup. We present numbers with just one CFS generation prompt,
specifically the model’s bos_token. Our early experiments investigated other suitable prompts like
the newline token and the space token. Qualitatively we observed that using the newline token biased
the data towards code generation.

3.1 PRETRAINED-ONLY MODELS

Setup For our first setting of pre-trained only models, we have the following ingredients:
(A) We consider Olmo-1B Groeneveld et al. (2024). Olmo has publicly available pretraining
data Soldaini et al. (2024), and is known to be not pretrained on math Groeneveld et al. (2024); hence
it’s 0-shot GSM8K numbers are bad.
(B) Following Groeneveld et al. (2024); et al. (2024) we measure the model’s performance on pre-
existing tasks through eight commonsense reasoning metrics (averaged as commonsense) along with
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Pre-existing Tasks

Commonsense MMLU BB Hard AGIEval Avg. GSM8K

Base 50.35 24.36 25.56 17.73 29.50 1.59
FT 40.89 23.06 11.49 18.77 23.55 29.49
CS 42.97 24.16 14.77 18.28 25.05 19.71
P 46.67 23.01 10.69 18.56 24.73 15.09
CFS 47.40 23.38 19.37 19.37 27.38 26.00

Table 2: This table studies the pretrained-only (i.e. Olmo-1B, MetaMathQA, GSM8K) setup described
in Section 3.1. We see that standard finetuning FT is better than on the downsream task (GSM8K)
but worse on the pre-existing tasks; this is forgetting. The remaining three rows show that our method
CFS is much more effective at mitigating forgetting as compared to the other two data-augmentation-
based methods P and CS.

Pre-existing Tasks

Commonsense MMLU BB Hard AGIEval Avg. GSM8K

Base 50.35 24.36 25.56 17.73 29.50 1.59
FT 40.89 23.06 11.49 18.77 23.55 29.49
LoRA (r = 256) 48.41 23.71 21.87 18.72 28.18 20.17
ℓ2 regularization 47.43 23.03 18.92 19.76 27.28 28.43
Wise-FT(α = 0.5) 45.53 23.10 19.64 18.85 26.78 14.56
CFS (50%) 46.96 23.29 23.19 19.52 28.24 29.34

Table 3: This table studies the pretrained-only (i.e. Olmo-1B, MetaMathQA, GSM8K) setup described
in Section 3.1. Here we compare our data-augmentation based method CFS to the popular weight-
space approaches LoRA, ℓ2 and Wise-FT. Each of these three baselines have hyper-parameters
which we optimized over (see appendix); we report their best numbers here. We similarly ablate over
the amount of context-free samples in our method (and find 50% – i.e. half as many synthetic as the
number in the finetuning dataset to be optimal). While all these methods mitigate forgetting, our CFS
seems the most effective.

general aggregate tasks like BigBench Hard (BB Hard), AGIEval and MMLU (see Supp C for further
details).
(C) We train Olmo on MetaMath-QA Yu et al. (2023), and evaluate the downstream improvement
by GSM8K. Fine-tuning on this dataset helps the model improve on this benchmark, but leads to
forgetting of its pre-existing performance; this sets the stage for evaluating our (and other) methods.

Comparison against data-augmentation methods In Table 2, we see that standard finetuning of
Olmo on MetaMathQA leads to big increase in it’s GSM8K performance, though it’s pretraining
abilities go down - this is forgetting. Including contextually generated data into the mix – i.e. CS –
hurts GSM8K evaluation. This is intuitive as augmenting with contextually generated data brings
incorrect solutions to MetaMathQA questions into the mix. Context-free generation help the model
to retain it’s pretraining abilities and learn the downstream task. Surprisingly context-free generations
are better than including model’s pretraining data into the mix. Note that Olmo-1B is a pretrained-only
model. Hence, mixing with pretraining data is equivalent to data-replay methods in continual learning.
Our results suggest that in context of LLMs, context-free generations can outperform even data-replay.
We hypothesize that the high variance and the noisy inherent in the pretraining data might be be the
reason for the sub-optimal performance.

Comparing against weight-space methods In Table 3 we compare our method with relevant
baselines. The main results are encapsulated in the table’s caption. Importantly we see that we
are better than the relevant baselines. For l2 regularization we take the the regularization penalty
as 1e− 3. We do a through sweep over the hyper-parameters for baselines and report the relevant
numbers here. Specifically we sweep over the ranks of the low-rank matrices in LoRA (Table 8), over
regularization penalty for l2 (Table 10) and over averaging rations α for Wise-FT (Table 11. CFS
provides a better trade-off than these methods.
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Model Avg. GSM8K

Base 29.50 1.59
FT 23.55 29.49
T = 0.6 27.38 25.47
T = 0.8 26.89 26.31
T = 1.0 27.40 26.00
T = 1.2 26.98 26.54

Model Avg. GSM8K

Base 29.50 1.59
FT 23.55 29.49
10% 27.59 28.43
50% 28.24 29.34
100% 27.38 26.00
200% 27.81 22.52

Table 4: In these tables, we ablate over sampling temperature (Left) and number of generated
synthetic samples (Right) for the pretrain-only setup of Section 3.1. Each table reports the model’s
average pre-existing tasks performance as Avg. and it’s GSM8K accuracy. We see that our method is
robust to choice of temperature (Left) used to sample, attenuating forgetting nonetheless. For the
number of samples table (Right), different rows here correspond to different percentages (compared
to downstream dataset size) of generated samples. For e.g., for 10% we generate a total of 10% of
MetaMathQA dataset size = 40K samples for augmentation. FT can also be considered to be 0%. We
see just 10% samples are enough for attenuating forgetting.

Medical Reasoning (Pre-existing tasks)

MedQA MBOP4 MBOP5 Avg. AIME MATH LCB GPQA-D

Base 47.84 44.81 32.14 41.60 45.00 84.00 46.62 48.99
FT 56.09 45.45 42.86 48.13 35.83 81.80 47.09 43.43
Wise-FT (0.5) 59.78 51.95 43.83 51.85 40.00 83.20 44.66 43.94
LoRA (r = 256) 54.20 44.81 41.88 46.96 34.17 82.00 40.86 39.39
CS 53.89 48.38 38.31 46.86 40.00 82.40 44.65 43.43
CFS 59.07 51.30 47.08 52.48 51.67 84.60 49.75 44.44

Table 5: In this table we study the reasoning setting described in Section 3.2 for the R1-Distill-Llama-
8B model on MedReason. FT improves on Base on medical tasks, but loses its existing performance
on math tasks. Among weight-space methods Wise-FT seems to outperform LoRA; and as opposed
to the pre-trainng setting here conditional generation CS also works decently. Our method CFS
outperforms all these methods. Note we could not run ℓ2 because our GPU constraint made the
simultaneous loading two copies of the 8B model problematic.

Ablating on number of generated samples We study our methods performance on ablating the
number of samples we generate for augmentations. Main results are encapsulated in the caption of
Table 4. The number of synthetic data samples used for augmentations display the expected trend
with the pre-existing task average increasing and the GSM8K performance decreasing as we increase
the augmentation data. We fix the number of samples to be 100%, i.e., equal to dataset size for our
experiments. We would like to highlight that in the regime when the generation budget is limited (i.e.,
just 10% of the size of the finetuning data), CFS is still able to effectively mitigate forgetting.

Ablating on generation parameters We study our methods performance on ablating the sampling
temperature in Table 4. We see that our method is robust to choice of temperature used to sample,
attenuating forgetting nonetheless. We choose T = 1 for rest of our experiments. We skip the
ablations on other generation parameters like nucleus sampling parameter and the CFS generation
prompt.

3.2 REASONING MODELS

Setup For the setting of reasoning models, we show that fine-tuning on a medical reasoning dataset
results in degradation of the model’s math capabilities. We have the following ingredients:
(A) We consider R1-Distill-Llama-8B DeepSeek-AI (2025). R1-Distill-Llama-8B is made by finetun-
ing Llama-3.1-8B-Instruct et al. (2024) on R1 reasoning traces and is a state-of-the-art 8B reasoning
model.
(B) We evaluate it’s existing performance on the standard reasoning benchmarks like AIME24
and MATH500, denoted by AIME and MATH resp. for math reasoning. LiveCodeBench
(easy,medium,hard) with average denoted as LCB for code reasoning, and GPQA-Diamond for

9
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Model Corrections Gen. Length

Base 4.89 6737.21
FT 2.37 3933.80
Wise-FT 3.75 5239.71
LoRA 3.11 5301.22
CS 3.38 5826.27
CFS 4.22 5644.58

Table 6: For R1-Distill-Llama-8B finetuned on different augmented versions of MedReason (i.e.,
Table 5), we analyze model responses for queries in MedQA, MBOP4 and MBOP5. Corrections
denote the number of times the model self-corrects itself, measured by occurrences of the Wait token.
Gen. Length denotes the average generation length per query. We see that while the base model has a
relatively high number of self-corrections, finetuning reduces this. Context-free augmentations help
retain self-correction, performing better than standard finetuning in Table 5.

science reasoning. See Supp C for other evaluation details.
(C) We finetune R1-Distill-Llama-8B on the MedReason dataset Wu et al. (2025) following the
setup of Wu et al. (2025). We evaluate the model’s medical abilities by MedQA Jin et al. (2021),
MedBulletsOp4 (MBOp4), MedBulletsOp5 (MBOp5) Wu et al. (2025). MedReason dataset has
32K samples and is constructed by converting medical question-answer pairs into reasoning steps
grounded in medical knowledge-graph. This is done by structured prompting of state-of-the-art
LLMs3.

Results We present our main results in Table 5. CFS forgets less and learns medical tasks better
than the relevant baselines. Note forgetting baselines like Wise-FT and our method are better than
standard finetuning on MedReason. We argue that this is due to fact that evaluation benchmarks
like MedQA require self-correction ability to get good accuracy. Standard finetuning leads to a
decrease in model’s self-correction abilities, while improving it’s medical knowledge. Finetuning
while attenuating forgetting helps the model reason with the learned knowledge. We measure different
model’s average generations (i.e., response) length and number of self-corrections on our medical
benchmarks in Table 6. We quantify the number of self-corrections as the frequency of occurrence of
Wait token per response.

We also lack a comparison with ℓ2 regularization for this setup. This is because ℓ2 requires loading
two models onto the GPU (the initial model and the fine-tuned model) while training. For making
training these large models feasible we use DeepSpeed Zero3 parameter partition which we found
is not amiable to accessing the target model parameters while training. We defer this and is on our
future work.

4 LIMITATIONS

While our method is well-motivated, we consider two model settings: the Olmo-1B pretrained-only
model (where it preserves its pretrain-model-metrics) and R1-ll-Llama-8B (where it preserves math
reasoning). It would be good to see if the method works for a broader set of models and datasets.
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A COMPUTE DETAILS

Each training run is done on a single GH200 GPU of size 96GB. Each individual run in our paper
takes around 8 hours for training and about 1-2 hours for evaluation.

B TRAINING DETAILS

We use the 8bit AdamW (from bitsandbytes). We finetune Olmo on MetaMathQA for 2 epochs.
R1-Distill-Llama-8B is finetuned on Medreason for 4 corresponding to approx. 1000 gradient steps.
We limit the training sequence to be of length 1024 for R1-Distill-Llama-8B and of length 512 for
Olmo.

For MedReason we format the reasoning traces inside a <think>. . .<\think> block, which is
preceded by the question in MedReason and followed by the answer. This follows R1-Distill’s general
reasoning data format and hence we use this. We don’t use a system prompt either for training or
evaluation.

For MetaMathQA we format question as "Question : {question}, Answer : {answer}".

C EVALUATION DETAILS

Olmo evaluation details :

• We use LMEval4 for evaluating pretraining abilities.
• Commonsense reasoning datasets : Following Groeneveld et al. (2024) we average the

performance on the following datasets for commonsense reasoning : 1. ARC-challenge, 2.
ARC-easy, 3. Boolq, 4. Hellaswag, 5. Openbookqa, 6. Piqa, 7. Siqa, 9. Winogrande

• We borrow the setup from et al. (2024) and report numbers considered in their "general
language tasks" table for pretrained models. Since Olmo is not pretrained on math and
code we don’t report those numbers and we found reading comprehension numbers for the
models to be unreliable.

• We here report the exact LMEval metrics we evaluate : For GSM8K we evaluate it’s stan-
dard 5 shot performance i.e., we report gsm8k/exact_match,strict-match , for
AGIEval we consider only the english subset i.e. agieval_en/acc. For BigBenchHard
we use bbh/exact_match,get-answer and for MMLU we use mmlu/acc.

R1-Distill-Llama-8B evaluation details :

• We uses two codebase for our evaluation : SkyThoughts5 for reasoning tasks i.e., AIME24,
MATH500, LiveCodeBench and GPQA-Diamond. We use MedReason6 for medical bench-
marking.

• We use the standard sampling params (from DeepSeek-AI (2025)) for evaluating reasoning
performance : temperature = 0.6, and probability threshold of 0.95. We generate for max
length of 32768. We use vLLM for generating responses and inherit the reproducibility
issues in it’s generation. We also append a <think> token to the query whenever we are
generating a response.

4https://github.com/EleutherAI/lm-evaluation-harness
5https://github.com/NovaSky-AI/SkyThought
6https://github.com/UCSC-VLAA/MedReason
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• For evaluating medical benchmarks we use the specified hyperparameters in MedReason,
i.e. max generation length of 2048 tokens, and temperature of 0.6 and probability threshold
of 0.95.

• For AIME24 we sample 4 different solutions for each prompt making the effective test
set size equal to 120. For other datasets we only use only one sample per prompt MATH,
GPQA-Diamond.

Dataset Effective Size
AIME 120

MATH500 500
GPQA-Diamond 198

LiveCodeBench v2 511
MedQA 1273

MedBulletsOp4 308
MedBulletsOp5 308

Table 7: Evaluation dataset sizes

• Our reported numbers are worse than Deepseek numbers : SkyThoughts uses regex parsing
for verifying model answers and hence is under-reports the model’s accuracy. Gold standard
evaluation uses light models OpenAI-o1-mini to comparing the answers, which we omit for
computational and financial considerations.

Pretraining Abilities

Commonsense MMLU BB Hard AGIEval Avg. GSM8K

rank=64 47.44 23.68 21.07 18.46 27.66 13.04
rank=128 47.83 24.33 21.33 18.59 28.02 17.66
rank=256 48.41 23.71 21.87 18.72 28.18 20.17
rank=64+CFS* 48.94 24.45 22.49 18.28 28.54 8.42
rank=128+CFS* 48.91 23.76 23.59 18.22 28.62 9.63
rank=256+CFS* 49.03 24.16 23.68 18.61 28.87 11.83

Table 8: LoRA hyperparameter sweep for Olmo. We also include numbers of combining CFS with
LoRA.

Medical Reasoning

MedQA MBOP4 MBOP5 Avg. AIME MATH LCB GPQA-D

r = 256 54.20 44.81 41.88 46.96 34.17 82.00 40.86 39.39
r = 512 52.47 43.51 38.64 44.87 32.50 82.60 44.96 43.94

Table 9: LoRA ranks tried for R1-Distill-Llama-8B. Since LoRA proves to be less expressive for our
setup, we only experiment with high values of r.

D FINETUNING DATASET DETAILS

MedReason is a medical reasoning dataset designed for explainable medical problem-solving in
large language models (LLMs). It utilizes a structured medical knowledge graph (KG) to convert
clinical QA pairs into logical chains of reasoning, which trace connections from question elements
to answers via relevant KG entities. Each path is validated for consistency with clinical logic and
evidence-based medicine. They consider medical questions from 7 medical datasets, resulting in a
dataset of 32,682 question-answer pairs.
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Pretraining Abilities

Commonsense MMLU BB Hard AGIEval Avg. GSM8K

1e− 1 47.81 23.41 20.87 17.86 27.49 6.90
1e− 2 47.64 23.49 21.59 18.41 27.78 18.57
1e− 3 47.43 23.03 18.92 19.76 27.28 28.43

Table 10: ℓ2 regularization penalty sweep for training Olmo on MetaMathQA.

MetaMathQA is a large mathematical problem solving dataset. Given a meta-question, a question
in train set of GSM8K, it generates a series of variants of the question. Specifically, they perform
three types of question bootstrapping. They also performa answer augmentation, leading to the 400K
sample MetaMathQA dataset. MetaMathQA focusing on elementary mathematical problem-solving

E COMPLETE TABLES

E.1 LORA COMPLETE TABLE

See Table 8 for LoRA rank sweep for Olmo and Table 9 for LoRA rank sweep for R1-Distill-Llama-
8B. Across both tables we see that LoRA is not able to perform at par with finetuning on downstream
evaluation. We keep the the alpha parameter in LoRA equal to it’s rank.

E.2 L2 COMPLETE TABLE

See Table 10 for ℓ2 hyperparameter sweep for Olmo. 1e−1 proves to be too strong of a regularization,
we take 1e− 3 as having the best of both worlds.

E.3 MODELAVG COMPLETE TABLE

See Table 11 for Model averaging results for pretrained models and Table 12 for model averaging
for reasoning models. For computational reasons, we evaluate less number of averaging factors for
reasoning models, but the results are informative nonetheless. For Table 12 We can see that as we
go from a high value of α to a lower value, i.e. from the base model to finetuned model, we see a
U-shape in the downstream performance, instead of the expected straight line we see in Table 11. We
believe this is due to reasons discussed in Sec 3.2, specifically, having some base model capabilities
like self-reflections and correction help the model be more accurate on the downstream evaluation.

Pretraining Abilities

Commonsense MMLU BB Hard AGIEval Avg. GSM8K

α = 0.1 41.63 23.07 14.27 19.18 24.54 28.73
α = 0.2 42.55 23.10 15.93 19.29 25.22 28.58
α = 0.3 43.26 23.12 17.32 19.24 25.73 25.70
α = 0.4 44.37 23.06 19.15 19.13 26.43 20.39
α = 0.5 45.53 23.10 19.64 18.85 26.78 14.56
α = 0.6 46.62 23.19 21.24 18.33 27.34 8.04
α = 0.7 47.66 23.90 23.36 17.81 28.18 3.34
α = 0.8 48.62 24.36 24.37 17.37 28.68 2.12
α = 0.9 49.54 24.40 25.14 17.21 29.07 2.20

Table 11: Model Averaging results for Olmo finetuned on MetaMathQA.
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Medical Reasoning

MedQA MBOP4 MBOP5 Avg. AIME MATH LCB GPQA-D

α = 0.1 58.99 49.68 46.43 51.70 40.00 80.20 46.22 39.39
α = 0.3 58.60 52.27 47.08 52.65 49.17 81.40 46.05 43.94
α = 0.5 59.78 51.95 43.83 51.85 40.00 83.20 44.66 43.94
α = 0.7 55.22 52.27 39.61 49.04 45.83 86.00 48.20 45.96
α = 0.9 52.55 45.45 37.66 45.22 48.33 85.40 47.99 50.00

Table 12: Model Averaging results for R1-Distill trained on MedReason dataset.
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