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Fig. 1: Overview. DexGarmentLab includes three major components: Environment, Automated Data Collection and Generalizable
Policy. Firstly, we propose Dexterous Garment Manipulation Environment with 15 different task scenes (especially for bimanual
coordination) based on 2500+ garments. Because of the same structure of category-level garment, category-level generalization is accessible,
which empowers our proposed automated data collection pipeline to handle different position, deformation and shapes of garment with task
config (including grasp position and task sequence) and grasp hand pose provided by single expert demonstration. With diverse collected
demonstration data, we introduce Hierarchical gArment manipuLation pOlicy (HALO), combining affordance points and trajectories to
generalize across different attributes in different tasks.

Abstract— Garment manipulation is a critical challenge
due to the diversity in garment categories, geometries, and
deformations. Despite this, humans can effortlessly handle
garments, thanks to the dexterity of our hands. However,
existing research in the field has struggled to replicate this
level of dexterity, primarily hindered by the lack of realistic
simulations of dexterous garment manipulation. Therefore, we
propose DexGarmentLab, the first environment specifically
designed for dexterous (especially bimanual) garment manip-
ulation, which features large-scale high-quality 3D assets for
15 task scenarios, and refines simulation techniques tailored
for garment modeling to reduce the sim-to-real gap. Previous
data collection typically relies on teleoperation or training
expert reinforcement learning (RL) policies, which are labor-
intensive and inefficient. In this paper, we leverage garment
structural correspondence to automatically generate a dataset
with diverse trajectories using only a single expert demon-
stration, significantly reducing manual intervention. However,
even extensive demonstrations cannot cover the infinite states

of garments, which necessitates the exploration of new al-
gorithms. To improve generalization across diverse garment
shapes and deformations, we propose a Hierarchical gArment-
manipuLation pOlicy (HALO). It first identifies transferable
affordance points to accurately locate the manipulation area,
then generates generalizable trajectories to complete the task.
Through extensive experiments and detailed analysis of our
method and baseline, we demonstrate that HALO consistently
outperforms existing methods, successfully generalizing to pre-
viously unseen instances even with significant variations in
shape and deformation where others fail. Our project page
is available at: https://wayrise.github.io/DexGarmentLab/.

I. DEXGARMENTLAB ENVIRONMENT

In this section, we present the construction of DexGar-
mentLab, the first environment specifically designed for
dexterous (especially bimanual) garment manipulation and
built upon IsaacSim 4.5.0.

https://wayrise.github.io/DexGarmentLab/
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Fig. 2: Automated Data Collection Pipeline. Given a single expert demonstration, we can get demo points, demo task
sequences and demo grasp poses for the specific task. Category-level garment (w/ or w/o deformation) has almost the same
structure, base on which we can train Garment Affordance Model (GAM) with category-level generalization. With GAM
(refer Supp.I), we match demo points from the demo garment point cloud O to a new garment point cloud O′ and control
robot to execute the specific task based on the demo task sequences (through trajectory retargeting) with dexhands’ movement
guided by demo hand grasp poses (through PD controller based on joint positions). ’Fold Tops’ task is shown as example
in this figure.

A. DexGarmentLab Physcial Simulation

Simulation Method. To achieve realistic simulation, we
employ methods tailored to the physical properties of gar-
ments. Large garments (e.g., tops, dresses, trousers, etc.)
are simulated using Position-Based Dynamics (PBD) [3],
while small, elastic items (e.g., gloves, hats) are modeled via
the Finite Element Method (FEM) [1]. We provide detailed
introduction and selection reason about PBD and FEM in
Supp.III. Human avatars are represented by articulated skele-
tons with rotational joints and a skinned mesh for lifelike
rendering.

Key Design for Physical Garment Simulation. PBD is
widely used for simulating most garments, but its loosely
connected particles often allow grippers to penetrate the gar-
ment without achieving effective lifting. GarmentLab intro-
duces attach blocks to address this, enabling garment-gripper
attachment (Website Fig.2, left). However, this approach
fails to capture realistic interactions, resulting in unnatural
sagging when applied to dexterous hands (Website Fig.2,
middle). Moreover, even minimal contact—such as a single
finger block touching the garment—can establish attachment
and lift the garment, which is clearly unreasonable.

Therefore, we introduce adhesion (between particle and
rigid), friction (between particle and rigid) and particle-scale
(between particles) parameters to enhance realism. Bene-
fiting from friction and adhesion, dexhands can grasp and
lift garments based on physical force without attach blocks
(Website Fig.2, right), while particle-adhesion (or -friction)-
scale stabilizes the particle system, preventing excessive self-
collisions between particles which cause garments to become

disorganized (Website Fig.3). We provide more details in
Supp.III.

B. Asset Selection and Annotation
We use garment models from the ClothesNet dataset [6],

which contains over 2,500 garments across 8 categories (e.g.,
tops, coats, trousers, dresses, etc.), and build environment-
interaction assets (such as hangers, pothooks, humans, etc.).
We provide plain meshes customizable with colors and
textures for garments to support both realistic and controlled
experimental setups. Controlled randomness in placement for
both garments and environment-interaction assets—through
limited rotations and translations—maintains task feasibility
while enhancing generalization in policy learning.

C. DexGarmentLab Tasks
Dexterous (especially bimanual) garment manipulation is

vital for domestic applications, yet it has not been thoroughly
explored in existing research. To address this, we introduce
15 tasks across 8 garment categories (shown in our web-
site Fig.4). Further details on these tasks are available in
Supp.XIV.

II. AUTOMATED DATA COLLECTION

Collecting data through teleoperation or RL is highly
labor-intensive, especially for dexterous garment manipula-
tion tasks, due to the diverse shapes and deformations of
garments and the high-dimensional action space of dexterous
hands. This makes automated data collection essential, with
the key challenges being: 1) identifying appropriate manipu-
lation points across different garment configurations, and 2)
generating task-specific hand poses accordingly.



Interaction-Object Point Cloud
（optional）

Hanger HumanPothook

STAGE Ⅰ
Generalizable Affordance Points

Demo 
Point Cloud

D
em

o 
Po

in
ts

Operated
Point Cloud

Garment Affordance
Model

POINTNET++ concatenate

STAGE Ⅱ  Generalizable Trajectories       Structure-Aware Diffusion Policy 

Environment

Perception DecisionINPUT

CALCULATE LOSS

INPUT

EXECUTE

Train
Process

Evaluation
Process

Compact
Scene Feature 

Robot
State

Feature

conditioning

Noised Action ��
� 

Input Compact
Scene 

Feature

Final Action ��
� 

Output

P E R C E P T I O N D E C E S I O N

Expert 
Demonstrations

M
ax Pooling

Max Pooling
Environment
Point Cloud

Feature

demo point for 
left hand

demo point for 
right hand

Target Point (Left)
Affordance Heatmap

Target Point (Right)
Affordance Heatmap

Generate
Guide

Move to Target 
Manipulation Area

Operated Garment
Point Cloud

POINTNET++

MLP

target
point
(left)

affordance

target
point
(right)

affordance

Fig. 3: Generalizable Policy. We adopt hierarchical structure to implement Generalizable Policy. Firstly, we use GAM
to generate generalizable affordance points, which will be used for robots to locate and move to target area. Secondly,
we introduce Structure-Aware Diffusion Policy (SADP), which extracts features from garment point cloud (with left and
right point affordances as binding features), interaction-object point cloud, environment point cloud and robot joint states as
condition to generate joint actions (including 24 DOF for each hand and 6 DOF for each arm, totally 60 DOF).

In our proposed automated data collection pipeline, for a
given task, we begin with a single expert demonstration to
extract key information: hand grasp poses, task sequences,
and demo grasp points on the garment. Leveraging the
Garment Affordance Model, we use affordance to identify
target grasp points on novel garments with diverse deforma-
tions corresponding to demo grasp points. Then, the pipeline
executes the task sequence based on inferred points and
hand grasp poses, thereby enabling efficient and scalable data
collection. Details about GAM and whole procedure can be
found in Supp.I.

III. GENERALIZABLE POLICY

When dealing with garments, which exhibit highly com-
plex deformation states, current mainstream imitation learn-
ing (IL) algorithms (e.g. Diffusion Policy [2], Diffusion Pol-
icy 3D [5]) show relatively poor generalization (as evidenced
by our experimental results shown in Supp. Tab.I). The main
issue is that IL-based trajectories fail to accurately reach the
target manipulation points on garments with new shapes and
deformations, while also being unable to generate suitable
trajectories based on the garment’s own shape and structure,
ultimately leading to manipulation failures.

To address this, we propose Hierarchical gArment ma-
nipuLation pOlicy (HALO), a generalizable policy to solve
the manipulation of garments with complex deformations
and uncertain states. HALO is decomposed into two major
stages, as shown in Fig. 3.

In the first stage, we use GAM to accurately locate the
manipulation area of the garment, addressing the limitation
of previous IL in grasping brand-new clothes at the correct
position. Refer Supp.I for GAM’s details. We next focus on

the design of the Structure-Aware Diffusion Policy (SADP).
Due to the poor generalization ability of current main-

stream methods such as DP and DP3 for complex and vari-
able garment manipulation scenarios, we propose Structure-
Aware Diffusion Policy (SADP), a garment-environment-
generalizable diffusion policy that improves the generaliza-
tion for different garment shapes and scene configurations,
thereby enabling the smooth generation of subsequent tra-
jectories after moving to the target manipulation area guided
by GAM.

SADP fundamentally follows the framework of Diffusion
Policy [2], with the primary distinction lying in its observa-
tion representation, denoted as s, which is elaborated below.

With operated garment point cloud and left / right target
point affordances generated by GAM, we concatenate them
together and use PointNet++ [4] to extract garment feature
Fgarment, while using MLP-based Feature Extractors to ex-
tract interaction-object feature Fobject. Fgarment and Fobject

are concatenated into a compact scene feature Fscene. At
each timestep, the full environment point cloud Oenvironment

and the robot state Ostate are encoded using MLP and fused
with Fscene to form the denoising condition s for SADP.
As for Garment-Self-Interaction tasks without interaction-
object point cloud, we only use Fgarment to be Fscene,
which means interaction-object point cloud is optional. Here,
Fgarment captures current garment state (position, shapes,
structure, etc.), while Fobject reflects current interaction-
object state (position, etc.).

Through experimental validation, HALO exhibits better
generalization capabilities. We will further illustrate this
advantage with experimental results in Supp.II. Training
details can be found in Supp.XI.
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