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Abstract

Large language models are known to memorize parts of their training data, posing
risk of copyright violations. To systematically examine this risk, we pretrain lan-
guage models (1B/3B/8B) from scratch on 83B tokens, mixing web-scale data with
public domain books used to simulate copyrighted content at controlled frequencies
at lengths at least ten times longer than prior work. We thereby identified the offset
effect, a phenomenon characterized by two key findings: (1) verbatim memoriza-
tion is most strongly triggered by short prefixes drawn from the beginning of the
context window, with memorization decreasing counterintuitively as prefix length
increases; and (2) a sharp decline in verbatim recall when prefix begins offset from
the initial tokens of the context window. We attribute this to positional fragility:
models rely disproportionately on the earliest tokens in their context window as re-
trieval anchors, making them sensitive to even slight shifts. We further observe that
when the model fails to retrieve memorized content, it often produces degenerated
text. Leveraging these findings, we show that shifting sensitive data deeper into the
context window suppresses both extractable memorization and degeneration. Our
results suggest that positional offset is a critical and previously overlooked axis
for evaluating memorization risks, since prior work implicitly assumed uniformity
by probing only from the beginning of documents or training sequences.

1 Introduction

Large language models (LLMs) have demonstrated the capacity to reproduce substantial portions of
their training data verbatim, raising serious concerns about copyright violations [Chang et al.| 2023,
Karamolegkou et al.,|2023]] and privacy breaches [Huang et al., [2022]]. This capability has fueled
increasing legal challenges, with high-profile cases, such as the New York Times lawsuit against
OpenAl, highlighting the potential misuse of proprietary content [Freeman et al.| 2024]. Industry
leaders have not denied these risks, and instead called for regulatory exemptions that would allow
LLM training on copyright-protected material [Brodkinl 2025]]. Against this backdrop, understanding
how LLMs memorize and regurgitate legally sensitive content is no longer a niche technical concern,
but a central requirement for the responsible and legal development of LLMs [Rosenthal and Veraldi,
2025]] and informed policymaking on this subject.

Existing work has begun to study memorization in LLMs, but key gaps remain. First, most mitigation
strategies are applied post-training via fine-tuning, decoding constraints, or unlearning methods.
However, recent studies show that these approaches can be bypassed [Park et al., 2024, [Nasr et al.,
2025]], indicating that they are better suited as complementary defenses rather than standalone
solutions. This highlights the need to address memorization proactively during pretraining, where
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retention first happens. Second, prior analyses typically focus on short suffixes prompted from the
beginning of training sequences, implicitly assuming that memorization behavior is uniform across
the context window. This methodological choice overlooks the reality that user inputs may appear at
arbitrary offsets in the content window, and that memorization may vary significantly with position.

In this work, we revisit memorization from a legally motivated perspective, focusing on long-form
text segments drawn from published books (via Project Gutenberg) to simulate high-risk copyright
scenarios. We pretrain LLaMA-style models (1B, 3B, and 8B) from scratch on 83B tokens, combining
curated book data with web-scale educational corpora. This setup grants precise control over training
dynamics (such as model scale and batch size), data composition (such as exposure frequency and
placement of sensitive content), and evaluation configuration (such as prefix length and position
within the context window). Compared to the most extensive memorization analysis to date by Hans
et al.|[2025]], which also targets pretraining-time mitigation, our study employs full-context sequences
four times longer and evaluates suffixes at least ten times longer. Together, these design choices
enable an unprecedented, comprehensive, and fine-grained memorization analysis.
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Figure 1: Positional fragility in LLMs measured with two complementary metrics: (a) Rouge-L scores
quantify verbatim memorization, demonstrating a sharp decline as offset increases; (b) MAUVE
scores capture overall language coherence, revealing text degeneration with increasing offset. The
dense model results are derived from a 1B model trained exclusively on 10K Gutenberg sequences
seen 80 times each, while sparse model results are derived specifically from the frequency-128
bucket of our FM-Probe methodology. All experiments used 500-token prefixes and evaluated on
500-token suffixes. Verbatim memorization and language coherence both degrade sharply as prefix
offset increases, except for language coherence in 1B Dense case, revealing positional fragility.

Our main contributions are:

* We identify the offset effects: verbatim memorization is most effectively triggered by
short prefixes at the beginning of the context window. Memorization recall drops sharply
as prefixes are shifted further into the sequence. We attribute offset effects to positional
fragility: LLMs are highly sensitive to positional shifts as they disproportionately rely on
early tokens as retrieval anchors (§ ).

* We show that memorization failures cause degeneration. Under offset or low-frequency
conditions, the model produces repetitive and semantically incoherent output, establishing a
link between memorization breakdown and text degeneration (§ [3).

* We show that positional fragility can be leveraged to mitigate memorization: shifting
sensitive sequences deeper into the context window significantly reduces extractability
without compromising general performance (§ 7).

* We find that batch size influences retention: smaller batches with more frequent updates
modestly reduce memorization under identical compute budgets. (§[§).

* We reproduce and scale previous studies in more controlled and legally relevant settings,
using longer sequences to better reflect the risks of copyright in the real world (Appendix



2 Problem Setup

To facilitate the discussion around verbatim memorization we introduce the following nomenclature:

BOD Document (8,191 tokens) |

Text Segment: A sequence of 8192 tokens from
the training corpus, beginning with a BOD token,
that fits exactly the context window of the model. B‘"’- S

from the training corpus.
True Suffix s: The text sequence that immediately par="-~-" ]:m

follows the prefix in the original text segment, rep- ...

resented as s = (s1, ..., $;,) With m consecutive !

tokens. P Swapped Part (4,000 tokens) | Retained Part (4,191 tokens) |
Generated Suffix y: The text sequence pro- .

duced by the model given prefix x, where y = Eoﬁset]:m
(y1, ---, Ym ), that matches the length of the ground Tea 500 500
truth suffix m.

Offset o: The number of tokens to skip in the text

segment from the beginning-of-document token
BOD before starting prefix extraction.

Prefix z: The input text sequence provided to the | 500 500

model to probe memorization, represented as £ = g ---

(21, ..., x,) with n tokens extracted consecutively of's_et_l:“
' 64 500 500

Figure 2: Illustration of prefix-suffix extraction
with varying offsets from the document start in
Sparse Gutenberg, and from the retained part in
Swapped Gutenberg. Not to scale.

Quantifying Verbatim Memorization We follow Nasr et al.| [2025]]’s definition of verbatim
memorization, providing a model with a prefix x from training data and measuring how closely its
greedy continuation y matches the true continuation s. Prior work predominantly focuses on short
prefix probing, using prefixes of size 20 [Carlini et al.l [2021]], 32 [Biderman et al.| [2023] [Huang
et al., 2024} |Duan et al., [2025]], 50 [Karamolegkou et al., 2023} Duan et al., 2025/ [Ippolito et al.,
2023]], 50-500 [Carlini et al.,|2023]], and 1998 [Hans et al.,[2025]]. Suffix lengths are likewise short,
typically ranging from 25 to 50 tokens. Nearly all evaluations extract prefixes from the beginning of
the document, with only |Carlini et al|[2021] sampling prefixes from arbitrary positions, but they only
report the highest-recall case. To address these limitations, our evaluation spans prefix lengths from 50
to 5000 tokens, sampled at offsets ranging from 0 to 2048, with suffixes between 50 and 8000 tokens.
We report similarity using three metrics that capture increasing levels of verbatim reproduction:
Rouge-L (longest common subsequence relative to reference length) [Lin} 2004], LCCS (longest
common contiguous substring) [Freeman et al.l 2024]], and EM (exact match of the entire suffix).

Measuring Text Degeneration We evaluate output quality using three complementary metrics.
Type-token ratio (TTR) measures lexical diversity as the fraction of unique tokens in the generated suf-
fix [Kettunen, |2014f]. MAUVE quantifies distributional similarity between model outputs and human-
written text [Pillutla et al.| 2023]]. As a baseline, unrelated suffix pairs yield a ROUGE-L of approx-
imately 0.18. We also report perplexity on the reference suffix to assess how well the model predicts
the ground-truth continuation. Given a prefix @ = (21, ..., z,) and its true suffix s = (s1,..., Sm),
perplexity is defined as PPL(s | ) = exp (—= >/ log P(s; | #,5<;)). Intuitively, perplexity
reflects how many next-token candidates the model finds plausible at each step [Jelinek et al., 2005].
For downstream performance evaluation, we utilize lm-eval-harness [[Gao et al., [2024].

3 Design

Data & Model We train a decoder-only transformer model following the Llama architecture
[Grattafiori et al.| 2024], with complete architectural and training details provided in Appendix [A.2]
Our training corpus combines two complementary sources: (1) Project Gutenberﬂ used to simulate
potential copyright infringement via literary texts; and (2) Fineweb-Edu [Penedo et al., 2024], a
curated dataset of high-quality educational web content typical in modern LLM pipelines. A 13-gram
contamination analysis confirmed a negligible 0.34% overlap between the two datasets, ensuring
observed memorization is attributable to our experimental controls.

'https://huggingface.co/datasets/manu/project_gutenberg
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Dense Gutenberg: Extreme Memorization Study Inspired by the setup of |Hans et al.| [2025], we
establish an extreme memorization scenario, where models are trained exclusively on our curated
subset of Project Gutenberg text segments comprising 10,000 sequences of 8,192 tokens each.
Each epoch constitutes a complete traversal of the entire corpus, with model checkpoints saved
at logarithmically spaced intervals (powers of 2) as well as at the final 80th epoch. Since each
sequence appears exactly once per epoch, the checkpoint number directly corresponds to the number
of exposures to each training sequence, providing a direct measure of how repetition influences
memorization behavior.

Sparse Gutenberg: Realistic Copyright Memorization Simulation To create a more realistic
scenario, we designed a mixed corpus training configuration where Project Gutenberg excerpts
represent just 2% (1.74B tokens) of the training data, with the remaining 98% (81.82B tokens) sourced
from FineWeb-Edu. For analyzing how exposure frequency affects memorization, we developed
Frequency-Varied Memorization Probe Buckets (FM-Probes), with each bucket containing 500
distinct and randomly sampled Gutenberg sequences that appear at precisely controlled frequencies
ranging from 1 to 128 repetitions. By performing a single training pass through this carefully
structured corpus, our FM-probe methodology enables concurrent evaluation of memorization patterns
across multiple exposure levels without requiring separate training runs.

Pretraining Factors Within the Sparse Gutenberg framework, we systematically investigate several
key factors that potentially influence memorization dynamics during pretraining. First, we examine
batch size variations (0.5M, 1M, 1.5M and 2M tokens) to assess how optimization granularity affects
memorization tendencies. Second, we analyze model scale effects by comparing memorization
patterns across architecturally consistent models of 1B, 3B, and 8B parameters. Third, we evaluate
how exposure frequency impacts memorization propensity through our FM-Probe methodology.

4 Offset: The Missing Dimension in Memorization Evaluation

Despite increasing attention to memorization risks in LLMs, most literature evaluates memorization
using prefixes extracted from the beginning of documents [Hans et al., |2025| |Carlini et al.| 2023
Kiyomaru et al.l 2024]]. However, memorized content can appear anywhere within a document—not
just at the start. At the same time, little attention has been paid to how the absolute position of the
prefix within the model’s context window—the offset—affects memorization behavior. In this section,
we show that both verbatim memorization and language generation quality are highly sensitive to
offset, and whether longer prefixes increase verbatim recall is itself offset-dependent.

4.1 Shorter Prefixes Outperform Longer Ones in Triggering Memorization

Rouge-L
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Figure 3: Impact of prefix length on positional fragility across LLaMA models (1B, 3B, 8§B), measured
by Rouge-L scores on frequency-128 bucket with 500-token suffixes under Sparse Gutenberg setup.
With zero offset (blue), smaller models show memorization degradation as prefix length increases,
while the 8B model maintains high scores. At non-zero offsets (red, green), all models require longer
prefixes to trigger substantial memorization, with the 3B model showing slightly higher memorization
than the 8B model at offsets 64 and 128, indicating larger models do not worsen positional fragility.



While previous research suggests that longer prefixes can enhance verbatim recall, we find that this
observation is incomplete and potentially misleading. Our results reveal a more efficient condition
for triggering memorization: using short prefixes that align with the beginning of the context window
during training. As shown in Figure[3] at offset 0, short prefixes yield the highest recall, particularly
in smaller models, whereas longer prefixes and longer offsets reduce extractable memorization.
Note that this result does not contradict previous work. As we show in Table[I] with a fixed prefix of
50 tokens, we can induce perfect reproduction of suffixes of up to 8,000 tokens long, especially when
the target sequence is frequently encountered during training. However, such an evaluation does not
take into account larger prefixes and non-zero offsets.

Table 1: Suffix length and sample counts of perfect matching by model size and repetition frequency
at offset 0, given a fixed 50-token prefix. Frequencies under 8 showed no verbatim memorization
over 50 tokens and are therefore omitted.

Freq. LLaMA 1B LLaMA 3B LLaMA 8B
Length Count | Length Count | Length Count
8 - 0 - 0 50 2
16 50 1 500 4 5,000 2
32 3,000 1 7,000 1 8,000 46
64 5,000 1 7,000 3 8,000 131
128 7,000 1 8,000 3 8,000 248

With non-zero offsets, longer prefixes substantially improve memorization, suggesting that they
could partially compensate for positive offsets. However, as illustrated by the red and green lines
in Figure 3] even with extended prefix length, memorization at disadvantaged positions never fully
matches the level observed at offset 0. Moreover, the 3B model achieves higher verbatim recall at
offsets 64 and 128 compared to the 1B model, but memorization plateaus from 3B to 8B, indicating
that larger models do not mitigate positional fragility and suffer similarly at suboptimal positions.

This inversion of optimal prefix length under offset conditions highlights a key property of verbatim
memorization in realistic settings: it is strongly tied to positional cues, especially the beginning of
the context window. Our findings align with the “atfention sink” mechanism discovered by |X1ao
et al.| [2024], where initial tokens disproportionately influence attention distribution and serve as
computational anchors. Nasr et al.|[2025] has also shown that the token that represents the document
boundary, such as end-of-document (EOD) marker, can trigger memorization (in our case BOD). This
raises a key question: is the verbatim memorization driven by the positional role of the initial tokens
in general or by the special representational status of the BOD token itself? To disentangle these
two factors, we design controlled ablation experiments that isolate the BOD token’s contribution to
verbatim recall.

4.2 BOD or Initial Tokens: An Ablation Study

We isolate the impact of the BOD token by retraining our 1B model with its attention masked, thereby
effectively removing it from the input. In this setting, if memorization persists, it suggests that
positional cues alone are sufficient; if it degrades, the BOD token likely serves as a dedicated retrieval
anchor. To explore whether this change interacts with positional fragility, we evaluated memorization
performance at three context-window offsets: 0, 50, and 100 tokens.

Figure {4 illustrates the impact of masking the BOD token on the model’s memorization capability
at the 1B scale. At offset O (left panel), where the prefix begins at the start of the context window,
masking the BOD token yields negligible differences in verbatim recall. This suggests that the initial
textual content alone can serve as an effective cue for memorization without an explicit BOD.

Interestingly, masking the BOD token leads to moderately higher verbatim recall in high-frequency
buckets under offset conditions. At a 50-token offset, the BOD-masked model achieves up to 8%
higher Rouge-L scores for prefixes between 750-2000 tokens—equivalent to roughly 40 additional
tokens recalled verbatim. This suggests that, without an explicit BOD, the model leans more on
local context, making it slightly more robust when recalling sequences from non-initial positions.
Nonetheless, it continues to exhibit positional fragility (see Appendix [D.I).
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Figure 4: Effect of isolating the BOD token on the memorization capability of the 1B model measured
by Rouge-L scores, computed over 500-token suffixes conditioned on varying prefix lengths (50-5000
tokens). Subplots from left to right correspond to context window offsets of 0, 50, and 100.

To ensure that this improvement in recall is not simply a byproduct of degraded generation quality—a
symptom of degeneration discussed in §5}—we evaluated the model using the MAUVE metric at
longer prefix lengths (1000-5000 tokens), corresponding to regions with increased memorization.
We also assessed downstream performance (see Table in the appendix). In both cases, the
BOD-masked model performed on par with the baseline, indicating that increased recall does not come
at the cost of linguistic ability.

S Memorization: Under-Explored Cause of Text Degeneration

Our experiments reveal a connection between memorization capabilities and text degeneration in
language models. While previous research observed repetitive patterns in training data as the primary
cause of degeneration, highlighting a “repetition in, repetition out” phenomenon [Li et al.| 2023, our
findings suggest that limitations in how models encode and retrieve memorized information represent
a more fundamental and previously unexplored mechanism underlying text degeneration. Rather than
attributing repetitive outputs solely to repetitive training data, we demonstrate that deficiencies in
memorization can also lead to text degeneration.

5.1 Context Window Offsets Reduces Output Text Quality

We find that the position of prefixes within the model’s context window during pretraining influences
the quality of the generated suffixes. As shown in Fig. [I] in the dense Gutenberg setting, where the
model is trained on 10K sequences for 80 epochs, we observe that verbatim memorization effectively
vanishes, while language modelling capabilities remain stable at larger offsets. In contrast, under
the sparse Gutenberg setting with FM-probe bucketing, the model’s output degrades in both lexical
diversity and language coherence. An example is shown in Fig. [I0]

This complements the “repetition in, repetition out” hypothesis by |Li et al.[[2023]]. Their work
specifically revealed a strong correlation between the repetition rate of 2-gram in training data and the
repetitive generation in the model’s output. Nevertheless, our results suggest that text degeneration
may not be solely driven by repetition in training data.

5.2 Lower Exposure Frequency Reduces Output Text Quality

In addition to context window offsets, the training frequency of a sequence during training indepen-
dently influences lexical diversity and language coherence. As illustrated in Fig. [5 sequences seen
less frequently exhibit pronounced degradation in the model’s linguistic capabilities across all model
scales (Examples are shown in [TT). However, larger models demonstrate greater resilience, achieving
higher TTR and MAUVE scores than smaller counterparts, particularly at low frequencies, indicating
that model scale modestly enhances linguistic capability.
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Figure 5: Impact of exposure frequency on text quality metrics for Llama models of different sizes,
measured with two complementary metrics: (a) TTR scores quantify lexical diversity, showing
improvement as training frequency increases; the ground truth TTR lies in the range 0.535-0.541;(b)
MAUVE scores capture overall language quality and coherence, reaching near-perfect scores at high
frequencies. All experiments used 500-token prefixes and were evaluated on 500-token suffixes with
a zero offset.

5.3 Insufficient Memory Retrieval: A contributing Factor to Text Degeneration

Our empirical findings from and converge on a nuanced understanding of text degeneration
in language models. Specifically, they reveal that imbalances in training data frequency can lead to
distinct generation issues. High-frequency exposure often results in verbatim memorization, where the
model reproduces training data verbatim. Conversely, low-frequency exposure does not necessarily
enhance diversity; instead, it can exacerbate degeneration, manifesting as repetitions or thematic loops.
This suggests a link between limited memory retrieval capabilities and degenerative text patterns.

The analysis of context window offsets further supports this relationship. As models attempt to
continue text from distant positions, they tend to fall into thematic looping. This position-dependent
degradation in linguistic ability supports that insufficient memory retrieval can cause text degeneration,
particularly when memorisation targets must compete with diverse training data. This connection
between retrieval limitations and text degeneration warrants further investigation in future work.

6 Probing the Robustness of Positional Fragility

Our primary analysis revealed positional fragility using greedy decoding on models trained from
scratch. To ensure that this phenomenon reflects an inherent model behavior rather than an experi-
mental artifact, we further examine its robustness across decoding strategies and training paradigms.

Robustness Across Decoding Strategies To evaluate the robustness of positional fragility under
alternative decoding configurations, we re-ran inference on the repetition-128 FM-Probe bucket using
our 8B model under the Sparse Gutenberg setting with two additional decoding methods: (1) beam
search (k=5), reporting the top-ranked hypothesis, and (2) nucleus sampling (top-p=0.9). Table[2]
shows that beam search, a deterministic probability-maximizing strategy, achieves nearly perfect
memorization at shallow offsets (e.g., ROUGE-L = 0.999 at offset 0). However, when recall fails
at deeper offsets, it exhibits the most severe degeneration, supporting our claim that failed retrieval
leads to incoherent outputs. In contrast, nucleus sampling yields lower memorization at shallow
offsets but shows a much milder decline in lexical diversity at large offsets (e.g., TTR = 0.460 at
offset 2048), suggesting that decoding strategy influences the severity of degeneration while leaving
the offset-dependent pattern of positional fragility unchanged.

Persistence Under Continued Pretraining We further examine whether positional fragility persists
under a continued pretraining paradigm. Starting from the official Llama 3.2 1B model pretrained
on 9T tokens, We continued pretraining using otherwise identical settings to the Sparse Gutenberg
configuration, but with a smaller learning rate 1 x 10~5. As shown in he continued-pretrained 1B



model exhibits slightly stronger memorization (higher ROUGE-L) and more diverse generations
(higher TTR) than the from-scratch 1B model, while preserving the same offset-dependent decay
pattern, confirming that positional fragility holds across training paradigms.

Table 2: Robustness of positional fragility across decoding methods and training paradigms.
Top: Decoding strategies on the 8B model. Bottom: 1B continued pretrained model with greedy
decoding. All evaluations conducted on the repetition-128 FM-Probe bucket using 500-token prefixes
to generate 500-token suffixes. Across all settings, memorization (ROUGE-L) consistently declines
with increasing offset, confirming that positional fragility persists regardless of decoding method or
training paradigm.

Decoding Strategies (8B Model) ROUGE-L | TTR 1
Offset Greedy Beam Nucleus Greedy Beam Nucleus
0 0.965 0.999 0.877 0.538 0.541 0.536
8 0.864 0.951 0.701 0.519 0.524  0.523
32 0.652 0.800 0.495 0.474 0469  0.503
128 0.330 0.507 0.247 0.391 0.361 0.477
512 0.208 0.244 0.186 0.305 0.237  0.461
2048 0.192 0.186 0.180 0.279 0.196  0.460
Training Paradigms (1B Model) ROUGE-L | TTR 1
Offset Scratch  Continue  Scratch Continue
0 0.744 0.669 0.521 0.521
8 0.463 0.569 0.491 0.498
32 0.346 0.426 0.465 0.482
128 0.219 0.249 0411 0.437
512 0.191 0.202 0.345 0.364
2048 0.185 0.188 0.293 0.340

7 Leveraging Positional Fragility to Mitigate Verbatim Memorization

To demonstrate that positional fragility can be leveraged to mitigate verbatim memorization, we
designed a Proof-of-concept (POC) experiment which we refer to as Swapped Gutenberg. For each
sequence in our FM-Probe buckets, we replace the first 4,000 tokens (the swapped part) with tokens
from randomly selected Project Gutenberg excerpts within our 10,000-sequence corpus. Thus, the
initial segment becomes diverse and contextually unrelated, while the remainder (the retained part)
maintains controlled repetition frequencies (1 to 256 repetitions). Each sequence includes only one ini-
tial BOS token, with no additional special tokens between swapped and retained segments (see Fig. [2)).
We train 1B and 8B models and evaluate verbatim memorization using prefixes from the retained part.

Table[3]|shows that the principle demonstrated in this POC works surprisingly well regardless of model
scale, keeping verbatim recall consistently low even at the highest exposure frequency. ROUGE-L
and LCCS scores remain near the baseline similarity between unrelated texts across all frequencies,
indicating little to no extractable memorization. As repetition increases, perplexity steadily declines,
particularly in the 8B model, yet without corresponding gains in verbatim overlap. Both TTR and
MAUVE remain stable, with the 8B model producing more coherent and lexically rich outputs. These
results confirm that shifting sensitive content away from the context window’s beginning is a simple
but effective principle for mitagation at all scales.

Our POC mitigation strategy also neutralizes the offset effects entirely. Recall that this effect
manifests in two ways: (1) shorter prefixes are most effective at triggering memorization when taken
from the beginning of the context window, and (2) even short prefixes lose their efficacy when shifted
to later positions, though longer prefixes can partially compensate. However, both effects disappear
when the memorization target is displaced 4,000 tokens deep, as in the Swapped Gutenberg setup.
Table 9] shows that increasing prefix length no longer improves memorization, and Table [I0]reveals
consistent recall across offsets from 0 to 2048 tokens.



Table 3: Comparison of text generation metrics under Swapped and Sparse Gutenberg settings. Each
row reports performance on 500-token suffixes generated from 500-token prefixes at offset 0. Selected
exposure frequencies (1, 8, 64, 128) are shown to highlight transitions in memorization behavior.
Rows 1-4 correspond to Swapped Gutenberg, where prefixes are offset relative to the retained part
of the sequence; rows 5-8 correspond to standard Sparse Gutenberg. Full results for each setting and
frequency range are provided in Table [T1]in the Appendix.

Rouge-L| LCCS| Perplexity TTRT MAUVE?T

Freq.

1B 8B 1B 8B 1B 8B 1B 8B 1B 8B

0.178 0.176  0.009 0.009 40.793 82.206 0.348 0.467 0.779 0.970
8 0.180 0.179 0.008 0.009 30.621 12.841 0350 0.467 0.805 0.934
64 0.182 0.184 0.009 0.011 16356 3.670 0377 0469 0.851 0.905
128 0.181 0.181 0.009 0.011 16.017 3.636 0.377 0.468 0911 0.958

1 0.181 0.185 0.008 0.009 26.036 16.089 0.225 0245 0.231 0.418
8 0.183 0.191 0.008 0.016 12.698 3430 0.231 0.384 0.312 0.898
64 0.522 0.888 0415 0.858 1.125 1.023 0497 0.530 0.985 0.998
128 0.744 0.965 0.682 0951 1.051 1.012  0.521 0.538 0.984 1.000

This disappearance results from two key design choices: the swapped segment is randomly sampled
across sequences that break fixed positional associations; and the memorization target is embedded
far from the model’s typical retrieval anchor near the beginning of the context window.

Furthermore, this method not only suppresses memorization but we also find that it improves
generation quality. Unlike the sparse Gutenberg setting, where prompting from offset positions
leads to lexical degradation and thematic looping, Swapped Gutenberg maintains high coherence and
diversity across all conditions. As shown in Table [3f MAUVE and TTR scores remain stable and
high, in stark contrast to the quality collapse observed in Sparse Gutenberg setting (also see Figure[Tb|
and[5). These findings highlight a central implication of our study: by decoupling sensitive content
from early-context anchors, it is possible to suppress extractable memorization while preserving
generation quality and downstream task performance (see Table[I2)) across model scales and training
regimes. This provides a compelling justification for future research into developing more practical,
production-ready mitigation techniques based on this principle. Examples are shown in Fig.[12]

8 Batch Size Impact

Our experiments reveal a clear advantage to pretraining language models with smaller batch sizes,
which necessitates more iterations given a fixed compute budget. This advantage manifests as reduced
verbatim recall (Fig. [6a)), improved language coherence (Fig. [6b), and enhanced performance across
most downstream benchmarks (Appendix [D.2)). Notably, these improvements emerge despite main-
taining both a constant proportion of Gutenberg sequences in each batch and consistent total training
tokens across all experiments. To the best of our knowledge, this has not been shown in prior work.

9 Related Work

Factors Known to Affect Memorization Several factors are known to influence a model’s tendency
to memorize and reproduce training data verbatim. (1) Model scale: larger models tend to memorize
more due to their greater capacity to fit specific examples [Carlini et al., 2021} [Lesci et al.,[2024]]. (2)
Repetition frequency: memorization probability increases roughly log-linearly with the number of
times a sequence appears during training [Carlini et al.||2023]]; we confirm both effects in our setting
(Appendix[C.T)). (3) Complexity: complex sequences seen only once can be latently memorized and re-
trieved via small parameter perturbations [Duan et al.,|2025]]. (4) Timing of exposure: sequences seen
later in training are more likely to be retained than those encountered earlier [[Kiyomaru et al.| 2024,
Lesci et al., 2024]. (5) Prefix length: while longer prefixes improve recall in prior work [[Carlini et al.|
2023]], we find this effect depends heavily on the prefix’s position within the context window (§ (4.1).
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Figure 6: Impact of batch size on verbatim memorization and language coherence for 1B models,
as measured by Rouge-L (left) and MAUVE scores (right) across repetition frequencies. Models
were trained with batch sizes ranging from 0.5MT to 2.0MT, maintaining constant total training
tokens. As batch size increases, we observe enhanced language coherence (MAUVE) at low repetition
frequencies, while verbatim memorization (Rouge-L) increases most significantly for sequences
seen more than 32 times. The gap between smallest and largest batch sizes reaches up to 0.15 in
Rouge-L score at high repetition frequencies, corresponding to approximately 90 fewer tokens being
memorized verbatim in the 500-token continuations. This suggests smaller batch sizes with more
update steps reduce exact memorization while preserving language quality.

Preventing Verbatim Memorization During Pretraining Pretraining-based strategies have
demonstrated promising results in reducing verbatim memorization without sacrificing model per-
formance. One prominent strategy is data deduplication, which removes duplicate or near-duplicate
sequences from the training corpus. Lee et al.| [2022]] showed that deduplication substantially reduces
memorization while preserving downstream performance. [Kandpal et al.[[2022] further demonstrated
that it lowers the success rate of extraction attacks. Another promising strategy is the recently
proposed Goldfish Loss [Hans et al., |2025]], which selectively masks tokens within n-gram windows
during training. By consistently omitting these tokens from the loss computation, it prevents the
model from learning exact token-to-context mappings, thereby disrupting extractable memorization
while retaining language modeling capabilities.

10 Conclusion

We demonstrate that LLMs exhibit a pronounced positional bias in their memorization behavior,
with verbatim recall most easily triggered by prefixes near the start of the context window. This
offset effect not only distorts standard memorization risk assessments but also offers a new
mitigation pathway: simply shifting sensitive content deeper into the context suppresses extractable
memorization without degrading generation quality. Our findings further reveal that when retrieval
fails—due to offset or insufficient exposure—models often degenerate into repetitive, low-diversity
output, linking memorization to generation stability. These insights position offset as a critical and
previously underexplored axis in the study of memorization, and suggest simple, scalable mitigation
strategies that complement existing techniques. Limitations of our study and directions for future
work are discussed in Appendix
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract accurately reflects the main contributions, while the Introduction
includes additional findings of practical relevance to the study of verbatim memorization.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes we mentioned the limitations of our work in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We use larger batch sizes for efficiency, which may introduce minor numerical
differences, but these do not affect the conclusions. For fully deterministic outputs, one can
run our scripts with a fixed seed and a batch size of 1 on the same GPU type (e.g., GH200).

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release our pretrained checkpoint on HuggingFace, and include
inference code, evaluation scripts, and FM-Probe buckets after the rebuttal.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We present our experiment settings in § [3|and Appendix [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Observed effects exhibit consistently large effect sizes across over 10 distinct
pretraining runs (including 1B/3B/8B sparse, 1B dense, 1B/8B swap, batch size variations,
and BOD ablation) and numerous subsequent evaluations. Formal statistical significance
testing for all comparisons was therefore computationally prohibitive given this extensive
experimental matrix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, Appendix [A.T]details information for the computer resources for each
experiment.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research is conducted with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses negative societal impacts like privacy breaches and
copyright violations stemming from LLM memorization throughout the introduction. The
work aims for positive impact by proposing mitigation strategies for these risks.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite all datasets and code packages used in the paper. The original
sources and papers are referenced in the main text, and the corresponding licenses and terms
of use are explicitly detailed in the Appendix.

Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were only used to assist with language editing and improving clarity.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

A.1 Computing Infrastructure

All experiments were conducted on the Alps supercomputer at the Swiss National Supercomputing
Centre (CSCS)E] Each compute node includes four NVIDIA GH200 Grace Hopper Superchips, with
each GH200 integrating a 72-core ARM-based Grace CPU and a Hopper H100 GPU, interconnected
via NVLink-C2C. Each GPU provides 96 GB of CUDA memory.

Pretraining For most of our pretrain runs, we utilized a 15-node configuration. Each GPU processed
a maximum micro-batch size of 3 sequences, each consisting of 8,192 tokens. Only one specific
experiment, involving the 1B model trained with a global batch size of 240 sequences, required
a larger setup of 30 nodes. Pretraining of the 1B, 3B, and 8B LLaMA models was orchestrated
exclusively using Data Parallelism (DP). Given that the 8B model parameters comfortably fit into the
memory of a single GH200 GPU, neither tensor parallelism nor pipeline parallelism was necessary
for efficient training. The throughput and compute for each model scale are summarized in Table 4]

Table 4: Aggregate pretraining throughput (tokens per second across all 60 GPUs) and total GPU
hours required for pretraining each model scale.

Model Scale Throughput (tokens/s) GPU Hours

1B 2,308,935 ~600
3B 936,003 ~1,440
8B 450,017 ~3,060

Inference & Evaluation Inference Time: On a single node, processing one FM-probe bucket
(500-token prefix and 500-token suffix) takes ~1.5 minutes for the 1B model and ~3 minutes for
the 8B model, including both text generation and evaluation (Perplexity, LCCS, EM, ROUGE-L,
TTR). MAUVE is computed separately and takes ~34 minutes per bucket of the same size on a single
GH200.

A.2 Model

We pretrain our models using an adapted version of NVIDIA Megatron-LM [Shoeybi et al., [2020],
incorporating modifications described in the main paper. Table [5|details the architectural specifica-
tions and training hyperparameters of our LLaMA-based models. The tokenizer we utilised is the
OpenMath2-Llama3.1-8

A.3 Reproducibility

To enhance reproducibility, we fix the global random seed to 42 across all experiments. However, this
alone does not ensure strict determinism in deep learning workflows. In particular, using different
batch sizes may trigger different optimized CUDA kernels, leading to minor numerical variations and
non-deterministic outputs despite identical seeds and initialization ﬂ For guaranteed reproducibility,
running inference and downstream evaluation with a batch size of 1 on the same GPU type (NVIDIA
GH200) using our provided scripts yields identical results. Due to time constraints and the scale of
our experiments, we instead use a batch size of 20 for model generation to maximize throughput, and
4 for downstream evaluation.

"https://www.cscs.ch/computers/alps/
*https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B
*https://pytorch.org/docs/stable/notes/numerical _accuracy.html
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Table 5: Architectural specifications and training hyperparameters of the LLaMA-based models.
Hyper-parameters are the default value from Megatron-LM.

Parameter 1B 3B 8B
Shared Input-Output Projections Yes Yes No
Hidden Size 2,048 3,072 4,096
Intermediate Size 8,192 8,192 14,336
Number of Layers 16 28 32
Number of Attention Heads 32 24 32
Number of Key-Value Heads 8 8 8
Head Dimension 64 128 128
ROPE scaling factor 32.0 32.0 8.0
RoPE base frequency 500,000

Max Positional Embeddings 131,072

Vocabulary Size 128,256

Warmup Steps 2,000 2,000 200
Initial Learning Rate 3x107% 3x107* 22x107¢
Weight Decay 0.01 0.01 0.1
Min. Learning Rate 3x107° 3x107° 22x107°
Batch Size 60

Optimizer Adam

B Limitations and Future Directions

B.1 Limitations

While our proof-of-concept mitigation validates the principle that positional displacement can sup-
press extractable memorization, it assumes prior knowledge of which training segments are sensitive
and thus does not establish a directly actionable workflow for large-scale pretraining pipelines. Future
work may explore how to operationalize this principle—e.g., by combining positional fragility with
automated sensitivity detection or data-curation strategies—to mitigate memorization at scale in
realistic training environments.

Moreover, our corpus, while comprising approximately 83B tokens, remains several orders of
magnitude smaller than real-world foundation model datasets trained on trillions of tokens. As such,
our findings may not fully capture the memorization dynamics present at production scale.

Finally, our study lacks formal privacy or generalization guarantees (e.g., differential privacy [Anil
et al.}2022]) and is limited to left-to-right autoregressive models trained from scratch. The empirical
scope does not extend to fill-in-the-middle or retrieval-augmented architectures, which may exhibit
distinct positional behaviors.

B.2 Future Directions

Our analysis is limited to conventional left-fo-right autoregressive models following the LLaMA
architecture. We do not study models trained with Fill-in-the-Middle (FIM) objectives, such as Ope-
nAl Codex [Bavarian et al.l 2022]] and DeepSeek-V3 [DeepSeek-Al et al., 2025]], which reconstruct
missing spans from both preceding and following context. This bidirectional formulation enables
flexible anchoring and contextual recombination, and is conceptually similar to our mitigation strategy
of displacing sensitive content deeper in the context window. We leave the study of positional fragility
and memorization in FIM-trained models to future work.

More broadly, it remains an open question whether similar offset-sensitive memorization behaviors
emerge in non-text modalities such as code, images, or audio, and whether comparable mitigation
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strategies are effective. Extending offset-aware analysis to these domains may shed light on the
generality of positional fragility and its broader implications for memorization and generation quality.

C Reproducing and Extending Prior Work

C.1 Exposure Frequency & Model Size: Interconnected Memorization Dynamics

As shown in Figure[7a] our analysis reveals a significant inverse relationship between model scale and
memorization threshold. Following the vertical axis (repetition frequency), the 1B model requires
approximately 64 exposures to demonstrate substantial verbatim recall of suffix tokens. This threshold
decreases to approximately 32 exposures for the 3B model, and further reduces to only 16 exposures
for the 8B model. This systematic pattern suggests that memorization efficiency scales inversely
with model size. Extrapolating this trend, a 70B model, without specific memorization mitigation
strategies, might memorize sequences after just 2-3 exposures.
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(b) Goldfish Loss

Figure 7: Comparison of verbatim memorization across language models (1B, 3B, and 8B) with
varying prefix lengths under Sparse Gutenberg Scenario. The heatmaps display Rouge-L scores
computed for 500-token suffixes at offset 0, across different prefix lengths (50-5000 tokens, x-axis)
and repetition frequencies (1-128, y-axis).. By comparing Figures [7a] and [Tb] we observe that
Goldfish Loss effectively reduces verbatim recall. Nevertheless, despite employing Goldfish Loss,
larger models or higher exposure frequencies still exhibit trends toward memorizing training data.

Complementing this frequency effect, the horizontal axis (prefix length) reveals how different-sized
models leverage contextual information. For smaller models (1B and 3B), shorter prefixes of around
50 tokens triggered the strongest verbatim memorization, supporting the hypothesis that initial tokens
disproportionately influence memorization patterns. In contrast, the 8B model maintained consistent
memorization even with longer prefixes, demonstrating that larger models develop more sophisticated
contextual memory mechanisms that operate effectively across varied input lengths.
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These dual observations regarding decreased repetition requirements and enhanced contextual pro-
cessing in larger models together demonstrate that scaling fundamentally transforms memorization
capabilities. This explains why larger language models demonstrate both improved generalization
and increased memorization risk: their enhanced capacity enables them to memorize more efficiently
while simultaneously developing more nuanced representations of linguistic patterns. Our results
complement to [Carlini et al., [2023].

C.2 Goldfish Loss

We reproduce the extreme and standard memorization scenarios originally proposed by [Hans et al.
[2025]], adapting them to our dense and sparse Gutenberg experiments, respectively. However, our
implementation substantially scales up the original design by pretraining from scratch with sequences
that are 4x longer and drawn from 100x more documents. We use the dense Gutenberg setting to
tune the optimal Goldfish hyperparameters for the sparse Gutenberg, yielding a dropout ratio of 2%
(k = 50) and a context width (k) of 50 tokens.
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Figure 8: Comparison of Rouge-L distributions between standard and Goldfish Loss LLaMA models
of sizes 1B, 3B, and 8B, evaluated with a 50-token prefix and a 500-token suffix at offset 0. The
histograms display Rouge-L overlap scores across varying training exposures (1, 8, 32, 64, and 128).

The sparse Gutenberg results confirm that Goldfish Loss effectively mitigates verbatim memorization
across all model sizes. As shown in Figure [7bland Figure[8] models trained without memorization
mitigation and evaluated with zero positional offset exhibit pronounced verbatim recall abilities that
systematically increase with both exposure frequency and model scale. The standard-trained 8B model
achieves Rouge-L scores above 0.95 for most test sequences after 128 exposures, while Goldfish
Loss models maintain scores consistently below 0.4 even under the most favorable memorization
conditions.

Table 6: Downstream Task Performances: Despite training with 2% tokens being dropped, model
trained with goldfish loss still shows comparable even superior downstream performance then model
trained with standard cross-entropy loss.

Wiki. Hella. ARC-c ARC-¢e PIQA Wino. CSQA MMLU

Model

ppld acc?T norm?T accT norm?T accT norm? accT accT accT acc?T

Standard 1B 18.71 4043 52.31 33.36 35.15 68.10 63.13 71.00 5391 21.79 23.65
Goldfish 1B 18.96  40.44 52.41 32.08 32.25 67.68 63.38 71.11 53.43 19.00 25.10

Standard 3B 1542 46.13 59.93 38.40 40.44 73.65 68.01 73.99 57.06 21.87 25.69
Goldfish 3B 15.01  46.01 59.89 36.52 40.10 71.84 67.76 73.72 58.41 20.72 25.42

Standard 8B 13.15  49.74 65.74 4224 45.99 75.97 72.18 7552 61.88 20.56 24.53
Goldfish 8B 1244 50.29 66.61 43.00 46.67 76.89 73.78 75.63 6243 20.39 26.98
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Beyond verbatim memorization examination, the sparse Gutenberg framework reveals that Goldfish
Loss effectively prevents verbatim memorization without compromising downstream performance.
In fact, models trained with Goldfish Loss maintain competitive performance across all benchmarks,
with this advantage becoming more pronounced as model scale increases. The 8B Goldfish model
demonstrates this trend most clearly, outperforming its standard counterpart on several tasks , as
shown in Table[f] This exciting result demonstrating that pretraining-based memorization mitigation
can simultaneously address copyright concerns and enhance model capabilities.

D Additional Results

D.1 BOD or Initial Tokens Ablation
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Figure 9: Verbatim memorization of the 1B model trained with BOD attention masked, under the
Sparse Gutenberg setup. Heatmaps show Rouge-L scores for 500-token suffixes across prefix lengths
(50-5000 tokens, x-axis) and repetition frequencies (1-128, y-axis), evaluated at offsets 0, 50, and
100 (left to right). Memorization degrades consistently as the offset increases, highlighting persistent
positional fragility despite masking the BOD token.

Table 7: Downstream task performance of the baseline 1B model compared to its variant trained with
BOD attention masked (-B0OD).

Wiki. Hella. ARC-c ARC-e PIQA  Wino. CSQA  MMLU

Model
ppld accT norm?T accT norm?T accT norm?T accT accT accT acc?T

Baseline 18.71 40.43 52.31 33.36 35.15 68.10 63.13 71.00 53.91 21.79 23.65
-BOD  17.89  40.98 52.10 31.40 33.96 68.06 64.65 71.16 54.54 20.88 24.06

D.2 Batch Size Impact on Downstream Performance

Larger batch sizes correspond to higher perplexity scores on validation data, with the 240 GBS
(global batch size) model showing a perplexity of 22.86 compared to 18.71 for the 60 GBS model —
a 22.2% degradation in predictive performance despite seeing identical training content. These same
models demonstrate poorer performance as the batch size increases. The 60 GBS model consistently
outperforms larger batch variants on reasoning-intensive benchmarks; for example, it achieves 33.36%
accuracy on ARC-c compared to just 29.52% for the 240 GBS model, where the baseline random
guess is 25%.

Our findings resonate with established patterns documented in deep learning research regarding
batch size impact. When models train with smaller batches, the resulting gradient calculations
introduce natural variability between updates. This inherent noise effectively serves as an implicit
regularization mechanism, as each weight adjustment follows a slightly different trajectory, preventing
overspecialization to training examples. This aligns with [Masters and Luschi, 2018]] that reduced
batch sizes promote more robust generalization through stochastic optimization pathways, ultimately
yielding superior performance on evaluation tasks.

27



Table 8: Downstream task performance of models trained with varying batch sizes. Gradient updates
indicate the number of optimization steps taken during pretraining.

Model Grad. Wiki. Hella. ARC-c ARC-e PIQA  Wino. CSQA MMLU

Updates ppld accT norm?T accT norm? accT norm? accT accT accT accT

60 GBS 170,005 18.71 4043 52.31 33.36 35.15 68.10 63.13 71.00 53.91 21.79 23.65
120 GBS 85,002 18.75 39.85 51.02 30.97 33.36 67.80 61.62 70.13 55.88 19.74 23.18
180 GBS 56,668 20.74  39.62 49.83 32.25 34.22 67.76 62.54 69.86 53.20 19.98 24.78
240 GBS 42,501 22.86  39.09 49.40 29.52 31.66 67.13 60.94 70.02 52.80 19.49 23.73

Viewed from another angle, our work shows that fewer parameter updates yield reduced model
generalization and increased verbatim memorization. This finding aligns with [Hoffer et al.| 2017,
which attributes large batch performance deficits primarily to reduced update frequency rather than
batch size itself. The considerably fewer parameter updates with larger batches (42,501 at 240
GBS compared to 170,005 at 60 GBS) may accelerate verbatim memorization while simultaneously
compromising broader generalization capabilities.

D.3 Swapped Gutenberg

Table 9: Impact of prefix length on text generation metrics for 1B and 8B models, evaluated on
500-token suffixes after 256 exposures at offset O under Sparse Gutenberg setting. The perplexity
remains relatively stable across different prefix lengths, indicating that increasing prefix length does
not substantially compensate for our method’s effectiveness. For reference suffixes, the TTR ranges
between 0.535 and 0.541.

Rouge-L| LCCS| Perplexity| TTR?T MAUVE?T

Prefix

1B 8B 1B 8B 1B 8B 1B 8B 1B 8B

50 0.172 0.174 0.007 0.009 15.085 3.620 0.356 0.451 0.809 00914
500 0.181 0.183 0.009 0.011 14.880 3.530 0.380 0.470 0.907 0.948
1000 0.181 0.183 0.009 0.011 15.682 3464 0386 0472 0914 0.985
2000 0.181 0.183 0.009 0.012 15613 3.678 0392 0480 0.882 0.947
3000 0.184 0.188 0.010 0.014 15.625 3.844 0.398 0476 0.934 0.945
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Table 10: Impact of offset position on text generation metrics for 1B and 8B models after 256
exposures, evaluated on 500-token suffixes generated from corresponding 500-token prefixes. For
reference suffixes, the TTR ranges between 0.537 and 0.541. Rouge-L and LCCS scores remain
flat across all offsets and hover around the unrelated-text baseline, confirming that our mitigation
neutralizes the offset effect. Generation quality (TTR, MAUVE) remains stable, indicating no
degradation in fluency or coherence.

Offset Rouge-L| LCCS| Perplexity] TTR?T MAUVE?T
1B 8B 1B 8B 1B 8B 1B 8B 1B 8B

0 0.181 0.183 0.009 0.011 14.880 3.530 0.380 0.470 0.907 0.970
1 0.182 0.182 0.009 0.011 14.862 3.525 0.384 0471 0.862 0.959
2 0.182 0.183 0.009 0.011 14.866 3.518 0384 0.469 0.939 0.947
4 0.181 0.183 0.009 0.011 14.847 3.526 0379 0466 0.833 0.959
8 0.181 0.182 0.009 0.011 14.846 3.512 0381 0.470 0.900 0.968
1

6 0.182 0.184 0.009 0.012 14773 3534 0379 0469 0.876 0.963
32 0.182 0.183 0.009 0.011 14775 3.573 0373 0468 0.876 0.951
64 0.180 0.183 0.009 0.011 14.843 3.528 0373 0464 0.899 0971
128 0.181 0.183 0.009 0.011 15.047 3.621 0378 0.468 0.900 0.975
256 0.181 0.183 0.009 0.011 15385 3.763 0375 0.466 0.870 0.948
512 0.181 0.182 0.009 0.011 15806 3917 0368 0466 0.934 0.937
1024 0.180 0.182 0.008 0.010 16.247 4278 0.372 0467 0.874 0.944
2048  0.181 0.183 0.009 0.011 16.619 4595 0373 0466 0934 0.962

Table 11: Impact of exposure frequency on text generation metrics for 1B and 8B models evaluated
on 500-token suffixes generated from corresponding 500-token prefixes at offset 0. The upper section
shows results under Swapped Gutenberg setting, while the lower section shows results under Sparse
Gutenberg setting. For reference suffixes, the TTR ranges between 0.535 and 0.541.

Freq Rouge-L| LCCS| Perplexity/ TTRT MAUVE?T
1B 8B 1B 8B 1B 8B 1B 8B 1B 8B

1 0.178 0.176  0.009 0.009 40.793 82.206 0.348 0.467 0.779 0.970

2 0.179 0.176  0.008 0.008 40.710 63.966 0.349 0467 0.854 0.969

4 0.178 0.178 0.008 0.009 35.502 34.562 0.350 0462 0.784 0910

8 0.180 0.179 0.008 0.009 30.621 12.841 0.350 0467 0.805 0.934

16 0.181 0.182 0.009 0.010 24.063 5.008 0355 0466 0.759 0.965
32 0.181 0.181 0.009 0.011 18585 3970 0374 0470 0.940 0.958
64 0.182 0.184 0.009 0.011 16356 3.670 0377 0469 0.851 0.905
128 0.181 0.181 0.009 0.011 16.017 3.636 0377 0468 0911 0.958
256 0.181 0.183 0.009 0.011 14.880 3.530 0380 0.470 0.907 0.948

0.181 0.185 0.008 0.009 26.036 16.089 0.225 0245 0.231 0.418
0.182 0.184 0.008 0.009 24.474 13.902 0.227 0257 0.276 0.343
0.184 0.184 0.008 0.009 19.065 9.047 0.228 0.286 0.322 0.466
0.183 0.191 0.008 0.016 12.698 3.430 0.231 0.384 0.312 0.898
16 0.183 0372 0.010 0.232 5.741 1229 0323 0472 0.737 0973
32 0.250 0.710 0.086 0.637  1.565 1.054 0443 0512 0918 0.991
64 0.522 0.888 0.415 0.858 1.125 1.023 0497 0.530 0.985 0.998
128 0.744 0965 0.682 0951 1.051 1.012  0.521 0.538 0.984 1.000

® AN =
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Table 12: Downstream Task Performances for Swapped Gutenberg experiments.
Wiki. Hella. ARC-c ARC-e PIQA Wino. CSQA MMLU

Model

ppld accT norm?T accT norm?T acctT norm?T accT accT accT accT

Swapped 1B 22.31 41.13 5222 31.83 34.56 68.73 63.51 71.93 55.01 20.56 23.27
Swapped 8B 15.71 49.41 65.48 42.06 44.11 75.88 71.93 75.79 61.09 20.64 25.89
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Rouge-L Score: 10000

Line True Sequence Line Model Generation
1 moved they came as conquerors among other races. 1 nmoved they came as conquerors among other races.
2 2
3 In their primeval home and probably before the year B.C. 3000, they had 3 In their primeval home and probably before the year B.C. 3000, they had
4 already acquired a fair degree of civilization. They built houses, 4 already acquired a fair degree of civilization. They built houses,
5 ploughed the land, and ground grain into flour for their baking. The 5 ploughed the land, and ground grain into flour for their baking. The
6 family relations were established among them; they had some social 6 family relations were established among them; they had some social
7 organization and simple form of government; they had learned to worship 7 organization and simple form of government; they had learned to worship
8 agod, and to see in him a counterpart of their tribal ruler. 8 agod, and to see in him a counterpart of their tribal ruler.
9 9
10 From their upland farms they must have looked eastward upon yet higher 10 From their upland farms they must have looked eastward upon yet higher
11 mountains, rising impenetrable above the snowline; but to north and 11 mountains, rising inpenetrable above the snowline; but to north and
12 south and west they might turn to lower regions; and by degrees, perhaps 12 south and west they might turn to lower regions; and by degrees, perhaps
13 as they grew too numerous for comfort, a few families wandered off along 13 as they grew too numerous for comfort, a few families wandered off along
14 the more inviting routes. Whichever way they started, their adventurous 14 the more inviting routes. Whichever way they started, their adventurous
15 spirit led them on. We find no trace of a single case where hearts 15 spirit led then on. We find no trace of a single case where hearts
16 failed or strength grew weary and the movement became retrograde, back 16 failed or strength grew weary and the movement became retrograde, back
17 toward the ancient home. Spreading out, radiating in all directions, it 17 toward the ancient home. Spreading out, radiating in all directions, it
18 is they who have explored the earth, who have measured it and marked its 18 is they who have explored the earth, who have measured it and marked its
19 bounds and penetrated almost to its every corner. It is they who still 19 bounds and penetrated almost to its every corner. It is they who still
20 pant to complete the work so long ago begun. 20 pant to complete the work so long ago begun.
2 2n
22 Before B.C. 2000 one of these exuded swarms had penetrated India, 22 Before B.C. 2000 one of these exuded swarms had penetrated India,
23 probably by way of the Indus River. In the course of a thousand years or 23 probably by way of the Indus River. In the course of a thousand years or
24 so, the intruders expanded and fought their way slowly from the Indus to 24 so, the intruders expanded and fought their way slowly from the Indus to

25 the Ganges. The earlier and duskier inhabitants gave way before them or 25 the Ganges. The earlier and duskier inhabitants gave way before them or

26 became incorporated in the stronger race. A mighty Aryan or Hindu empire 26 becane incorporated in the stronger race. A mighty Aryan or Hindu empire
27 was formed in India and endured there until well within historic times. 27 was formed in India and endured there until well within historic times.
28 28

20 Yet its power faded. Life in the hot and languid tropics tends to 29 Yet its power faded. Life in the hot and languid tropics tends to

weaken, not invigorate, the sinews of a race. Then, too, a formal
religion, a systen of castes(8] as arbitrary as among the Egyptians,
laid its paralyzing grip upon the land. About B.C. 600 Buddhism, a new
and beautiful religion, sought to revive the despairing people; but they
were beyond its help. [9] Their slothful languor had become too deep.

30 weaken, not invigorate, the sinews of a race. Then, too, a formal
31 religion, a systen of castes(8] as arbitrary as among the Egyptians,

32 laid its paralyzing grip upon the land. About B.C. 600 Buddhism, a new
33 and beautiful religion, sought to revive the despairing people; but they

34 were beyond its help. [9] Their slothful languor had become too deep.
35 From having been perhaps the first and foremost and most civilized of 35 From having been perhaps the first and foremost and most civilized of
36 the Aryan tribes, the Hindus sank to 36 the Aryan tribes, the Hindus sank to

(a) Sequence 0, Offset 0, Frequency 128

Rouge-L Score: 0.1940
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1 to north and 1 to north and
2 south and west they might turn to lower regions; and by degrecs, perhap, 2 south and west they might turn to lower regions; and <o, wi aid
3 as they grew too nunerous for confort, a few fanilies wandered off along 3 the sun, they might reach new heavens arth: N T
4 the more inviting routes. Whichever way they started, their 4 long journey, ha § traditio ansmit
5 spirit led them on. We find no trace of a single case whe 5 no _f 0 hopes, no fears, only a
6 failed or stre y nd the movement becan g 6 er, in the heart of the Chinese mountain
7 toward the ancient home, Spreading out, radiating in all direc 7 y may have curiously pictures of
8 is they who ha or arth have measured it and marked it 8 ancient past, bear in their veins the trace of some degree of intellectua
9 bounds and penetrated alnost to its every corner. It is they who stil 9 culture. Their homes are Chinese, their customs are Chinese, their
10 pant to conplet ork so long ago begu 10 sorrow inese, an folk-lore i ey W to
1 11 be thenselves, and they know how to for others, In so far, at any
12 Before B.C. 2000 one of the § penetrated India, 12 rate, as the Chinese clain their country, they have certainly made a
13 probably by way of fus R rse of a thousand years or 13 beginning
14 so, the intrud anded and lowly from the Indus to 1
15 the Ganges. The earlier and duskier inhabitants gave way before then or 15
16 became incorp in i nger race. A mighty Aryan or Hindu empire 16 THE PERIOD OF T N
17 vas for t1a and endure U within hi ine 17
18 18 Fror plendidly su ul civilization, the Chinese, like the
19 Yet its power faded. Life in ot and languid tropics tends to 19 Greeks and Romans, fell back in a period of a hundred years, The
20 weaken, not invigorate, the sinews of a race. Then, too, a formal 20 d thenselves to the verge of poverty and obscurity, and the
21 religion, a system of castes(8] as arbitrary as anong the Egyptians, 21 other European nations, gla : prosperity, cane to
22 taid its paral grip upon the land. About B.C. 600 Buddhism, a ne 22 their rescue. But, like the Scythians, the Chinese, the Persians, the
23 and beautiful religion, sought to revive the despairing pe but they 23 Macedonians, even the Romans, were not able to hold their hgain
its help. (9] T bthful languor had become too dee 24 Nature and Tine. Their enpire wa: up, and the nations that were
! rhaps the first and forenost and most civilized of 2 only strong men in the world at the beginning of our era
ibes, the Hindus sank to be degenerate m of the roce 2% oun. Yet, with the Chine ansitio rd one;
to ook on them again in a later period; but they will be 27 owed their willing but their unwilling ignorance. They we
a ! 28 naturally strong and vigorous, and self-possessed. They had the gift of
29 sensibility, and nade the best of their power for the nd night of
See _The Formation of the Castes_, page 52 30 history. They were brave and vigorous—and yet ere always firn
31 and dead to what they believed to be right. They had a hig !
he Foundation of Buddhisn_, page 160. 32 manhood, and selfhood in itself; they had a nobl n of courage;
33 they knew el the value of ts adv ; they knew
her wanderers from the Aryan home appea i and 3 the nature of peace, a indeed their last and
even the fierce Tartars are an Aryan race, nuch altered 35 great period of freedon best of all po
Uing anong the yellow peoples. One tribe, the Persians, 36 conditions.
y west, and became neighbors of the already noted Semit 37
38 The Chinese ver t manufacturers, and cou
(b) Sequence 0, Offset 128, Frequency 128
Rouge-L Score: 0.1840
True Sequence Model Generation
‘the people quite ignored. iie sce the hero 1 the people of the Lo h their
ri tle in their chariots, guarded by shield and f 2 generals and their counsels, liad_ and the _Odyssey_, !
lourishing sword and spear, We learn what Ulysses did not know of 3 unlike those of the Phoenicians, are mc eresting t "
oreign lands.. We hear Achil anid the dead, and 4 nere tale e Trojan war. We are interested in the Greek race as
the vague glimmering idea of a future life, the Greeks had cught 5 awho ve come down to the time whe Greek race e
perhaps from the Egyptians, perhaps from the suggestive land of dream 3 or of the world. The Romans, the modern Euro
7 nations, are the direct descendants of the Greek race, and
With the year B.C. 776 e in contac a clear marke 8 ndants of the ancient Greeks. T ti e th
chronolooy. The Greeks themselves reckoned fron that date by neans 9 nts of the Greeks, and it is in then that we find the real
slynpiads or interva ween the Olympic ganes. The story becone 10 history of the world, We nust study then dn order to understand the
Clear. T ocratic little city kings, governing alnost as they 11 history of our race. We nust study
pleased, have everywhere been displaced by oligarchies. The few le 2
obles may name one of themselves to bear rule, but the real pover 13 e ont cattered remnants of the Greek race
vided anong the class. Then, with the growing prominence of the 14 Greeks thenselves uc U Greeks. The
Pythian games[15] we come upon a new stage of national development. The 15 s were Greeks, the Spania Greeks,
ous cities be b allian recognize the fact that th 16 Spaniards and rench were Greeks. The
17 nay be nade safer r by a larger national life, The sense 17 reck, the first to nan, the © :
18 brotherhood begin yond the circle of personal acquaintan 18 the first to be Greek-speaking, the first
19 19 ks vere the first to be ci i+ The
20 (Footno e _Pythian Games hi_, page 18 20 Greeks were the first to be barbarians. The Greeks were the first
2 21 nations. The Greeks were the first to be the first conquerors. The
22 This period was one of lawmaking, of experimenting, The traditions, the 22 Greeks were the first to be the first conquerors, The Greek the
23 sinpl s of the old kingly days, were no longer . the 23 t to have been bo race ks vere the o b
24 guidance of the larger cities, the more complicated circ ociety, 24 Christian. The Greeks were the to be Greek-speaking
25 which were growing up. It was no longer possible for a man who did not 25
26 like his tribe to abandon it and wander elsewhere with his fanily and 26 The Greeks were the first to be the first conquerors. onans were the
27 herds. The land was too fu opled for that, The dissatisfied coul 27 t to be the first barbarians, The Romans wer irst ve
28 only endure e and rebel. One systen of law after another was 28 b rn as a Gre e the first to have bee
29 tried and . The ¢ on whon in practice a rule 29 Christian. The Gre to have been the first conc
30 hard, would refuse longer assent to it. There were uprisings, tumults, 30 The Greeks were the 1 born as a race. The Greeks were
31 bloody fray 31 ve been born as a race. The Greeks were the f
2 En he Greeks were the first to been born as a race
33 Sparta, at this tine the most proninent of the Greek volved a 33
34 code which made her in some ways the wonder of ancie . The st 34 The Gree e the first to have been born as a race. The Romans were
35 was made all-powerful; it took entire possession of zen, with 35 the
36 the purpose of making hin a fighter, a strong defender of himself and of 36

(c) Sequence 0, Offset 2048, Frequency 128

Figure 10: Demonstration of verbatim memorization decay and text degeneration as offset increases
in the Sparse Gutenberg setting. Each example shows a 500-token suffix generated from a 500-token
prefix by 1B model, with the highlighted span indicating the tokens used for ROUGE-L calculation.
At offset 0, the model reproduces the training suffix nearly perfectly. At offset 128, memorization is
limited to the initial few tokens. By offset 2048, only scattered fragments are recalled, and the output
shows thematic looping—e.g., repetitive structures such as “The xxx were the first to...” emerge in
place of coherent continuation. 31



Model Generat

3 True Sequence
1 quns on their shoulders, and wore high 1 been the men who had been driven from the

2 boots and the high-crowned conventional brigand hats. Ever since we le 2 mountain, and they were the best. The one who was talking to the ma

3 Florence we had seen at intervals in the fields and woods a notice with 3 with the hammer was not a man who had seen the country before, but one
4 the words, "_E vietata la bandita_," which we interpreted as a warnin 4 who had ived through it. The other man was a little taller, and as tall
5 against the bandits or convicts for whom our Florentine friends had 5 a » face that was as white as a sheet, and

6 prepared us. And now we seened to have come face to face with two o 6 the branches of a tree. He was a man who had

7 these brigands. But it turned out that there was little of the bandi 7 a soldier, and he had come to the mountains with his family. The

8 about then save their appearance. Their guns wer rds, and lote 8 na s standing there was a young girl, and we were

9 on we learned that alarning signs were merely to forbid the 9 whether she was a girl or a child, and the voice of the ma

10 trespassing of these very gentlemen 10 child, but it was not a child, The man was a man who had been a soldie
1n 11 and had been a sold een a mother. The
2 Illustration: A SLIGHT OBSTRUC ] 12 wonan was a woman, an e both talking of
13 13 th he g was not. He had
14 A mile or two farther on, the roa go down again. We were both 14 bee and h ad been a father, and
15 glad to be on the machine after c . We could see to the bottom o 15 he b 1d. The man had been a man, and the girl was a girl, and
16 the hill, and there was no one in sight. J. let go the brake. None but 16 she and the man was a man, and they we alking of
17 cyclers know the delight of a five-minutes coast after hours of up-h 17 the nountains. The girl wa: nt, but the man wa: ud, and hi
18 toiling. They, ho ynpathize with our pleasure in the 18 hands were very strong. He swung his hammer, and he swung )

19 nountains near Siena. But when it was at its fullest, and the machine 19 and he swung his hand. He threw down his hanmer and he threw up his gu
20 was going at e of about twenty miles an hour, and neither brake 20 and his gun was ready. He swung his hand and he swung the gun. The

21 nor back-pedalling could bring it to a sudden halt, a man (or the fou 21 o man with the hammer swung the gun, and it was a gun. The

22 fiend hinse rove a flock of sheep ron the woods a few feet 22 of the man with the gun swung the gun, and it was a gun. The man
23 front of then we reached them only the first had crossed the road; 23 with hamner swung the gun, and it was a gun. The ma
24 of course, all the rest had to follow. They tried to go on right through 24 did not know what to do. He not know that the hand

25 the wheels, but only succeeded in getting under them, setting 25 could fire a gun. He thought of the mountains, and

26 nachine to pi i hip in a heavy u d o ; 26 kn st to do." He had not been in the mount ong €

27 stood on the pedals and sc t ke down; the Little whec 27 what to do. The wonan had been silent for a long tine, and

28 scattered the sheep like the cow-catcher of an engine, and we brought up 28 said, I am a man,

29 in the gutter. Before we stopped, J. began a moral lecture to the 29

30 shepherd, and was showing hin how, if the machine had gone over, the 30

31 consequences would have been worse for us than for flock. T 31

32 lecture end er _in_morally with _accidente voi_, and _inbecile_, 32

33 the deadliest of all Italian maledictic 3

Rouge-L Score: 0.2100

Line
1 nt of
2 Pervyse, His summer home is s e. His wife, which was in in the
ok s wounded and

ght to the
to the ho

e been in the habit of visiting the wounded in Fra
o the sane pla I have bee
the h h Army, and to

4
5

6 and the older child and hid in another closet. The
7 house, looted it and set it on fire. As they left
8 L ) place.

cellar, The mother rushed from he
9 found th

9 in Paris, and t

er money and the fanily jewels, one

10 husband's family and 10  in the habit of vis ounded in France,
1u 1 e s ave been to the
2 12 and o the French Army, and to the
13 days, they walked. The raw 13 hospital in Paris, and to Paris.
1 way were unfit for the lit ut money, and 1
15 il and weakened, they reached Holland. This lady is in a safe place 15 T have been in the habit of visiting the wounded in France, and of
16 now, and her testinony in person is available 16 returning to the same n the trenches, and of going to the hospital
7 17 in Paris, and to the al of the French Army, and to the tal
18 (Illustration: THE GREEN P USED ONLY BY SOLDIERS HE 18 in Paris, and to the hospital of the French Army, and to the !
19 BELGIAN ARMY. 19 in Paris, and wounded in Fran d to the wounded of the
20 20 French Arny, and e wounded of nch Army, and to the wounded
21 It gives passage to the trenches at any hour. The writer, by holding 21 of the French Army.
22 this, and working under the Prine Minister's son, becane 2
23 stretcher-bearer dn the Belgian Arny.] 23 been in the habit of visiting the wounded in France, and of
2 rning to the same place in the trenches, and of going to the hospital

eign of frightful say that war is 25 in Paris, and of going to the hospital of the Frenc
runken soldiers have always broken 26 returning to the sane place in the hes, and of visiting the wounded
27 loose and committed terrible acts. This defense does not meet the 27 in France, and to the hospital of the French Army, and to the hospita

neither the official
of proved murders.

or the cold method, nor 28 in France, and to the wounded of the French Army
was ordered from 29

30 the top ried out by of cally, under 30 1 have been to the hospital of the French Army, and to the hospital of
31 discipline Book, iss J and used 31 the Frenct and to the hospital of the French Army, and to the

32 by office es these acts. They are recorded by the 32 hospital of the French Army, and to the wounded of the French Army

33 Germa n their diaries, of which photographi 3

34 reproductions are obtainable i any large library. The diaries were 34 1 have been in the habit of visiting the wounded in France, and of

35 found on the pe of dead and wounded Germans. The nane of the man 35 returning to the same place in th hes, and of going to the hospital

the French Army, and of

36 and his company are giver 36 in Paris, and of going to the hospita
37 37 returning to the same place in the trenches, and of visiting the wounded
38 on Sunday 38 in France, and to the wounded of the French

(b) Sequence 470, Offset 0, Frequency 4

Figure 11: Demonstration of verbatim memorization decay and text degeneration for low exposure
frequency sequences in the Sparse Gutenberg setting. Each example shows a 500-token suffix
generated from a 500-token prefix by 1B model, with the highlighted span indicating the tokens
used for ROUGE-L calculation. For the generated suffix (right), we show clear evidence of thematic
looping and repetitive generations.
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Rouge-L Score: 0.1940

Line True Sequence Line Model Generation
1 Nachvak 1 Nachvak._
2 ] 2
3 3
4 4 th
5 th e 5 we
6 a 6 a
7 of of 7 of : of
8 + and in 8 and in
9 scarcely our , and when 9 scarcely
10 10 our , when
1n 2 on the the 1 3 on the
2 in the at 12 : the in the at
13 13 )
1 ) as at Y 1 at
15 , and proved to us. had 15
16 D the 16 . proved to 2 had
7 , and a to J 17 g the
18 that 18 ) and
19 ) that they 19 a to 8
20 ” a 20 that J but that they
2 2 , ata
2 22 Esquinaux, and they at
23 Esquinaux " 23 " we
2 and 2 the
25 they 2 to
2 26 the to not
27 27 in the 3 )
28 at L e 28 the Esquinaux
29 the J to the 29 P in
30 to not 30 in the
31 the 31
2 } " " 2 they in the
33 33
3 the Esquinaux, in 34
35 in 35
36 36
37 the they in the 37
38 38

Rouge-L Score: 0.1660

Line True Sequence Line Model Generation
1 and 1 and
2 to . s and be 2 to
3 3 and be
4 4
5 and 5 and to be to
6 6 to
7 to be to 7 is should be
to is should be 8 that
9 that such 9 such
10 10 to and to
1n to 1 to all of they
12 and to 12 and be
13 to all 13
14 of they 1
15 ' be. 15 this and
16 Do this, and you have a of 16 have a of
17 of . 17 of and
18 and 18
19 . . 19 should be
20 should be 20 be
2 be sure that the 2 sure that the
2 L Nor 15 2 LIt ds
23 to of and 23 to
2 2 of and of all is
25 25 of the
26 of all 26 the use of
27 is 27 is
28 28
29 29 that the
30 30 of the
31 B
2 32 s and that the use of
3 3
3 34
35 35
36 36
37 37
38 38
39 of the the of 39
0 40
a a
2 is a2
43 that the of the 43
4 and by that 44
45 the of a5

(b) Sequence 440, Offset 0, Frequency 256

Figure 12: Demonstration of how displacing legally sensitive content deeper into the context window
effectively suppresses verbatim memorization while preserving semantic fidelity in the Swapped
Gutenberg setting. Each example shows a 500-token suffix generated from a 500-token prefix by
1B model, with the highlighted spans indicating portions used for ROUGE-L calculation. (a) Both
the true suffix (left) and the model-generated suffix (right) describe interactions and encounters with
the Esquimaux community upon arrival at Nachvak, discussing their behavior, hospitality, and local
surroundings. Despite thematic similarity, the generated text diverges notably in specific narrative
details—such as dates of arrival (July 16th vs. November 8th) and described observations (presence
of drift-ice versus whale sightings)—illustrating effective suppression of verbatim memorization with
maintained lexical richness and narrative coherence. (b) The true suffix focuses primarily on parenting
advice regarding child behavior, education, and guidelines to prevent inappropriate sexual behavior
and maintain chastity, whereas the generated suffix addresses the use of tobacco among children
and discusses its potential dangers and harmful effects, highlighting clear thematic divergence and
effective memorization suppression.
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