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Abstract
Computer-aided synthesis planning approaches
have allowed a greater exploration of potential
synthesis routes, however, these methods are gen-
erally developed to produce linear routes from
a singular product to a set of proposed building
blocks and are not designed to leverage potential
shared paths between targets. These convergent
routes allow the simultaneous synthesis of com-
pounds, reducing the time and cost of synthesis
across compound libraries. We introduce a novel
planning approach to develop convergent synthe-
sis routes, which can search multiple products
and intermediates simultaneously, enhancing the
overall efficiency and practical applicability of
retrosynthetic planning. We evaluate the multi-
step synthesis planning approach using extracted
convergent routes from Johnson & Johnson Elec-
tronic Laboratory Notebooks (J&J ELN) and pub-
licly available datasets and observe that solvability
is generally very high across those routes, being
able to identify a convergent route for over 90%
of the test routes and showing an individual com-
pound solvability of over 98%.

1. Introduction
Compound synthesis is a crucial starting point in early-stage
drug discovery to validate hit compounds coming out of a
target screening exercise. Exploring the structure-activity
relationship (SAR) space involves the identification of a
synthesis path typically through a process known as ret-
rosynthesis. Retrosynthesis involves hypothetically break-
ing down a compound into progressive reactants until a set
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of purchasable or easily synthesizable compounds is reached
(Corey, 1991). Multiple approaches have been developed to
address retrosynthesis from a machine-learning perspective,
which aims to aid experts in the task of selecting a sequence
of chemical reactions that can be applied to a compound to
arrive at commercially available starting materials.

Within retrosynthesis approaches, there are two main as-
pects, the single-step model, which suggests which reaction
is most relevant to a molecule, and the multi-step synthe-
sis planning algorithm which guides the search to establish
the combination and order of the reactions (Zhong et al.,
2023). For the latter, different approaches have emerged to
address the expansive search, generally following a heuristic
to guide the search with approaches such as proof-number
search (Heifets & Jurisica, 2012; Kishimoto et al., 2019),
Monte-Carlo Tree Search (Segler et al., 2018; Lin et al.,
2020; Ishida et al., 2022) which relies on a combination of
exploration and exploitation to explore the search, A* search
(Chen et al., 2020; Xie et al., 2022) which takes a global
view of the task aiming towards synthesizable molecules,
and self-play approaches (Kim et al.; Schreck et al., 2019)
which train a learned policy through multiple simulated ex-
periences. However, there is an important caveat with these
synthesis planning approaches, medicinal chemists typically
work in libraries of compounds, where multiple compounds
are designed and synthesized simultaneously to explore the
activity space of a target of interest (Dandapani et al., 2012;
Brown & Boström, 2018; Seneci, 2018). This library syn-
thesis is not reflected in common multi-step approaches
which generally focus on the synthesis of a singular com-
pound rather than the synthesis of multiple compounds via
common intermediates leading to convergent routes. Few ap-
proaches have explored the mutual synthesis of compounds
of interest, commonly as a post-hoc analysis step (Gao et al.,
2020; Fromer & Coley, 2023; Pasquini & Stenta, 2023) or
by altering the search with select examples (Molga et al.,
2019; Xie et al., 2022), differing from running the synthesis
search concurrently or producing an extensive showcase of
compound libraries.

In this work, we develop a graph-based multi-step approach
to identify retrosynthetic routes for multiple compounds
simultaneously producing convergent routes. This approach
prioritizes routes applicable to all target molecules where
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possible, as well as routes for those compounds which can-
not be convergently synthesized. Moreover, to ensure the
chemical feasibility of our approach we develop a dataset
of convergent routes based on the USPTO dataset (Lowe,
2012) and further compare this to convergent routes identi-
fied in Johnson & Johnson Electronic Laboratory Notebook
data (J&J ELN). The multi-search approach is guided by a
single-step retrosynthesis model, using a fine-tuned Chem-
former (Irwin et al., 2022). By additionally implementing
batch inference we can produce convergent retrosynthesis
routes for up to hundreds of molecules, identifying a singu-
lar convergent route for multiple compounds in over 90%
of compound sets.

2. Methods
2.1. Convergent Routes Dataset

Convergent routes are synthesis routes comprised of multi-
ple target molecules resulting from common intermediates,
we develop a pipeline to identify and extract these conver-
gent routes from reaction data. Starting from the reaction
data we clean and standardize all reactions using RDKit
(Landrum) and then identify products and reactants based
on the atom-mapping from GraphormerMapper (Nugmanov
et al., 2022). The reaction data is then split based on doc-
ument identifiers so that reactions that were carried out
together are considered a joint document. Importantly, the
reaction data is not deduplicated at this stage given that the
same reaction can occur across multiple documents.

For each document we create a directed graph where the
molecules are represented as nodes (V ) and reactions be-
tween molecules are represented as edges (E), we defer
from adding additional reaction nodes as in previous works
(Genheden & Bjerrum, 2022; Mo et al., 2021). The graph is
set up from a retrosynthetic standpoint where the children
of a node are the reactants required for the synthesis of the
parent node. Each reaction from a document is added to the
graph by adding the molecules individually as nodes and
connecting those with the relevant edges for the reaction.
Once all reactions are added to the directed graph, the graph
is then traversed to identify weakly connected components,
each extracted subgraph is treated as an individual synthesis
graph.

The target molecules and building blocks of each synthesis
graph can then be identified. Given a node, vi, if vi has no
incoming edges then it will be considered a target molecule
since the node is not developed further. If vi has no outgoing
edges then the node will be considered a building block
since it does not have any prior reactions. If vi has multiple
incoming edges, from multiple target molecules, then it is
considered a common intermediate. Given the focus on
convergent routes, all synthesis graphs which do not contain

any common intermediates are discarded. Additionally, in
reaction data there are cases in which a single compound
was synthesized more than once through different reaction
pathways, leading to a cycle within the synthesis graph, in
this case, the synthesis graph is discarded since the more
optimal reaction path cannot be easily established, ensuring
that all synthesis graphs are directed acyclic graphs (DAGs).
Lastly, once the cleaned convergent synthesis graphs have
been established, we ensure that the target molecules within
each graph are not simply stereoisomers and that there are
no duplicated graphs across the convergent routes dataset.

2.2. Multi-Step Synthesis Planning

The multi-step search is based on a directed graph, contain-
ing two types of nodes, molecule nodes and reaction nodes.
The search is guided by a single-step model which proposes
reactants given a product. The top K proposed reactants
are added to the search for each product. The probabilities
of the proposed reactants are used to select the top N most
promising nodes at each iteration. Promising nodes are se-
lected based on the product of the model probabilities along
the linear path between each target molecule and a given
end node. End nodes must have no outgoing edges, not form
part of the building block set nor be at the maximum route
length from the closest target molecule. For each end node,
the probabilities are averaged across all target molecules for
which a path is present. The top N end nodes with the high-
est score are considered promising nodes and are followed
up by the single-step model. The multi-step search is imple-
mented such that the single-step model can use the native
GPU inference setting allowing for faster batch inference of
the top N most promising nodes.

When starting a retrosynthetic search, all target molecules
are instantiated simultaneously as molecule nodes (Supp
Fig. S1). At the first iteration, K sets of reactants are pro-
posed for each target molecule. For each target molecule,
K child reaction nodes are created (deg+(vi) = K). There,
from each reaction node, a molecule node is added for every
molecule from the proposed reactant set (R) (deg+(vj) =
|R|), such that every molecule node will have a maximum
of K outgoing edges and every reaction node will have the
same number of outgoing edges as the number of molecules
in the proposed reactant set. If a molecule node already
exists in the search, then the reaction node will be linked
to the existing molecule node. In the case that any of the
proposed reactants for a reaction node are considered in-
valid then no molecule nodes will be added to the reaction
node. Similarly, if any of the proposed reactants return to a
molecule node which already forms part of the path between
the molecule node and the target molecule then the molecule
nodes will not be added to the reaction node. The same pro-
cess is carried out until any of the stop criteria are reached,
these include maximum time or iterations per molecule or



Improving Route Development Using Convergent Retrosynthesis Planning

all potential molecule nodes being explored and flagged as
either building blocks or the maximum route length. Both
maximum time and iterations are set according to the num-
ber of target molecules in the compound library, due to
the use of batch inference the total number of iterations is
further divided by the batch size.

Once the search is finalized, the proposed routes must be
extracted. First, the search graph is pruned to remove any
paths which do not end in building blocks since a route
which does not end in building blocks cannot be consid-
ered solved. The proposed building blocks in the search
graph are scored by the product of the probabilities of the
single-step model at each reaction step from every target
molecule to a given building block, averaged across all tar-
get molecules. The building blocks with the highest score
are explored first. We parse the search graph to extract the
relevant route by identifying the most highly scored linear
route from each unexplored molecule to an end node. The
process continues until a complete synthesis tree is estab-
lished. This is carried out until all potential building blocks
are explored, or the maximum time limit is reached. The
proposed routes are ranked using the product of the single-
step model probabilities of each reaction step within the
route.

2.3. Evaluation

To assess the multi-step planning approach, we create and
use a convergent routes dataset. We create two types of
convergent routes datasets, based on J&J ELN (Neves et al.,
2023) data and USPTO (Lowe, 2012) data. For the USPTO
dataset, we use the full reaction dataset, including both ap-
plications and grants subsets. In the case of USPTO, we as-
sume that all data shows positive yield, for J&J ELN data we
select only reactions with yield ≥ 5% to ensure previously
successful retrosynthetic routes. We create a convergent
routes dataset for each reaction dataset, using the project
identifier for J&J ELN and patent identifier for USPTO to
delimit documents. From J&J ELN and USPTO, we select
500 and 1000 convergent routes from the respective datasets
to create a convergent route hold-out test set.

To train the single-step model, we clean and standardize
all reactions, defining products and reactants as with the
convergent routes dataset. We remove all reactions which
form part of routes in the respective convergent routes test
set, then deduplicate the remaining reactions, removing any
reactions with multiple products. With each reaction dataset,
we carry out a random 90%/10%/10% train/validation/test
split. We fine-tune the Chemformer (Irwin et al., 2022)
model, based on each reaction dataset.

For the multi-step search, we set a maximum of 2 min-
utes and 300 iterations per molecule, using a maximum
route length of 8 steps. Additionally, we set a maximum

of 300 target molecules per convergent search. We con-
sider the target molecules from each convergent route a
library of molecules, giving one compound library per con-
vergent route. The building block set is composed of all
end nodes across each route from the respective convergent
test set, comprised of almost 5000 molecules for J&J ELN
and 10,239 molecules for USPTO convergent test sets. We
explore 10 molecule nodes of interest (N ) at each iteration
and set the beam size (K) of the single-step model to 5 since
accurate next reaction steps are commonly found within the
top 5 suggestions of the single-step model (Torren-Peraire
et al., 2024). All multi-step searches are run on a single
Tesla T4 GPU with 8 CPU nodes.

The analysis of the proposed routes is conducted using solv-
ability, accuracy and F1 score as metrics. We address two
types of solvability, complete and partial. Complete solvabil-
ity refers to whether the top-N route is a singular convergent
route which jointly synthesizes all target molecules within
a search. Partial solvability refers to whether all target
molecules feature in at least one route up to top-N, irrespec-
tive of whether the compounds are synthesized conjointly.
Accuracy assesses if there is an exact match between the
proposed route at top-N and the experimentally validated
route from the convergent routes test set by comparing the
reactions (edges) of both routes. We further analyze the
intermediate accuracy, which scores whether we identify
the same common intermediate in both the proposed and
experimentally validated route. Accuracy is a very strin-
gent metric particularly in retrosynthesis given that a slight
change in a molecule e.g. a different halogen, will lead the
route to be deemed inaccurate. F1 score can be used to
quantify the similarity between the proposed routes and the
experimentally validated route, we combine two F1 scores,
based on the reactions (edges) and the molecules (nodes).
In the case of the reaction F1 score true positives are defined
as reactions that are correctly identified in the route, false
negatives are reactions that are not present in the proposed
route compared to the experimentally validated route and
false positives are reactions that are present in the proposed
route but not the experimentally validated route. The same
concept applies to the node F1 score with the exception that
the target molecules are not included in the comparison to
avoid positively skewing the metric towards short routes
with multiple target molecules.

3. Results & Discussion
3.1. Convergent Routes Dataset

Using J&J ELN and USPTO data separately we create a
convergent route dataset of each reaction dataset. Conver-
gent routes are particularly prevalent in medicinal chemistry,
we find that 79% of all reactions from J&J ELN form part of
a convergent route, with 85% of all documents containing



Improving Route Development Using Convergent Retrosynthesis Planning

Figure 1. Distribution of the number of target molecules and aver-
age route length for convergent routes, per convergent route, from
J&J ELN and USPTO. Example routes highlighted in green are
shown in Supp Fig. S2.

at least one convergent route. Within USPTO we identify
94,833 convergent routes across all 3.7 million original reac-
tions. We find that 70% of all USPTO reactions are involved
in convergent routes with 37% of all documents, patents,
containing at least one convergent route. This lower docu-
ment coverage reflects the skewed distribution of the number
of reactions per patent within the USPTO dataset, with 27%
of all USPTO patents having only one associated reaction
and over half of all projects containing 4 or less reactions
(Supp Fig. S3), with previous works (Genheden & Bjerrum,
2022) extracting single molecule retrosynthetic routes, also
retrieving a relatively low number of patents.

Convergent routes are generally complex routes, with 61%
and 72% of J&J ELN and USPTO routes having more than
2 target molecules and more than 2 reaction steps depth (Fig.
1). Across both J&J ELN and USPTO, most convergent
routes have a single common intermediate across all target
molecules (Supp Fig. S4). Interestingly J&J ELN conver-
gent routes tend to have a larger number of target molecules
whereas USPTO routes tend to be longer in depth. Impor-
tantly, convergent routes are often applied to reduce the
number of reactions that are necessary to synthesize a set
of target molecules, thus also reducing the time and cost of
the synthesis. In the case of USPTO, we find that we can
reduce the number of reactions required for the synthesis
of 988,476 molecules by 40%, going from 2,883,640 reac-
tions when using individual synthesis routes to 1,770,237
reactions through a convergent route approach.

3.2. Multi-step search

We develop a new multi-step synthesis planning frame-
work which instantiates multiple target molecules simul-
taneously, with the aim of convergent route development.
Using the convergent route datasets developed for J&J ELN
and USPTO we can search convergent routes for real com-
pound libraries to assess the utility of the approach. We
randomly select 500 and 1000 convergent routes from J&J

ELN and USPTO respectively as the multi-step test set. We
train a single-step retrosynthesis model based on the remain-
ing data, fine-tuning the pre-trained Chemformer on each
dataset.

Both single-step models show a similar pattern of accuracy
across the top N, achieving high accuracy by the top-10,
particularly in the case of the J&J ELN-trained model. The
J&J ELN single-step model reaches 85% accuracy at top-10
whereas USPTO reaches 75% accuracy at top-10, with this
pattern of 10% difference present across all top-N (Supp
Fig. S5). In the case of USPTO, we see that the model per-
formance is lower as compared to the evaluation on USPTO-
PaRoutes (Torren-Peraire et al., 2024), which undergoes
further data preparation steps. We use these models to guide
the respective multi-step synthesis planning for each library
of target molecules from the J&J ELN and USPTO test sets.

J&J ELN test set routes show a greater complexity than
USPTO convergent routes, given that J&J ELN convergent
routes tend to have a higher number of target molecules and
common intermediates (Supp Table 1). However, USPTO
routes tend to have a higher number of building blocks,
potentially due to using less advanced molecules as start-
ing points. When applying the compound libraries to the
multi-step search, the approach proposes 53 and 81 routes
per compound library on average for J&J ELN and USPTO
respectively. Interestingly, for each compound library, we
have a large variety of potential common intermediates iden-
tified, with 23 unique common intermediate molecule com-
binations for J&J ELN and 30 unique common intermediate
molecule combinations for USPTO within the top 100 routes
for each compound library. This shows that the proposed
routes have a high diversity, producing multiple options for
the potential synthesis of the compound library. Within the
proposed routes, the highest ranked route tends to have a
similar number of building blocks yet a lower number of
common intermediates on average, compared to the exper-
imentally validated routes, in the case of J&J ELN (Table
1). In both J&J ELN and USPTO the proposed routes have
a higher number of reactions showing that additional steps
are used in the proposed routes leading to longer synthesis
paths.

Table 1. Average statistics of the highest-ranked proposed retrosyn-
thetic route for J&J ELN and USPTO compound library test sets.

J&J ELN USPTO

Fraction solved molecules 88.6% 89.7%
Common intermediates 3.1 4.2
Building blocks 6.3 9.3
Molecules 27.9 38.1
Reactions 19.8 26.1
Reactants per reaction 1.4 1.5
Target molecules per intermediate 3.3 3.6
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Figure 2. Solvability, accuracy and combined F1 score of proposed retrosynthetic routes using J&J ELN (top) and USPTO (bottom)
compound library test sets. Accuracy and combined F1 score are calculated compared to the extracted experimentally validated
retrosynthetic routes.

Using these libraries of target molecules as test compounds,
the multi-step search is almost always able to identify a
route to convergently synthesize all target molecules within
each library. This shows that the approach can efficiently
produce convergent routes within a single search, leading
to more streamlined and cost-effective synthesis. Using the
convergent route multi-step search approach we can produce
a single convergent route for 91.4% of all explored libraries
in the case of J&J ELN (Fig. 2), rising to 93.4% when
considering solvability for all explored target molecules
within each library, irrespective of whether the molecules
are synthesized across one or more routes. For USPTO
routes, we find a convergent synthesis route for 97.0% of all
compound libraries, rising to 98.3% for compound libraries
where all target molecules are not identified in the same
synthesis route. The small difference between complete
and partial solvability shows that the approach can suggest
convergent routes in the majority of cases, with a lack of
route solvability, i.e. reaching building blocks, being a larger
bottleneck than identifying convergence.

Importantly, this approach proposes routes for as many
target molecules as possible, irrespective of whether they
are conjointly synthesized, such that we can maximize the
utility of the retrosynthetic routes. As such, when consid-
ering the solvability of individual compounds across all
compound libraries, we identify retrosynthetic routes for
98.8% and 99.8% of all individual compounds for J&J ELN

and USPTO respectively. This highlights using convergent
routes search to increase the solvability of the multi-step
search given that the convergent approach can aid in resolv-
ing a greater number of target molecules.

Using the convergent route dataset we can further explore
the accuracy of the proposed retrosynthetic routes, a much
harder challenge given the numerous alternatives that can
be used for compound synthesis (Schneider et al., 2016).
We exactly replicate 17.4% of the experimentally validated
routes within the top 15 proposed routes for J&J ELN, with
a slightly higher accuracy of 18.5% for USPTO routes (Fig.
2). Interestingly, we correctly identify the common inter-
mediate for 42.2% for J&J ELN and 45% for USPTO of
the target molecule sets within the top 15 proposed routes.
This implies the suggested routes do not follow identical
reaction steps as the experimentally validated route however
they suggest routes similar to those within the experimen-
tally validated routes. Using the F1 score we can further
quantify the similarity of proposed and experimentally val-
idated routes. By calculating and averaging the F1 score
of the proposed edges and nodes, we find that over 50% of
all libraries have a combined F1 score higher than 0.5 by
top-5 (Fig. 2) and more than 36% of routes within the top
15 having a combined F1-score over 0.7 in both datasets.
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4. Conclusion
Convergent routes, producing the synthesis of multiple tar-
get molecules from a shared synthetic path, are a central and
common part of medicinal chemistry. Here, we introduce a
multi-step synthesis planning approach to develop conver-
gent synthesis routes, which can search multiple products
and intermediates simultaneously, enhancing the overall effi-
ciency and practical applicability of retrosynthetic planning,
reducing the time and cost of synthesis across compound
libraries. We evaluate the multi-step synthesis planning ap-
proach using a novel dataset of extracted convergent routes
from industry-relevant and publicly available datasets, be-
ing able to identify a convergent route for over 90% of the
test routes and producing a synthesis route for over 98% of
compounds found within the compound libraries. Moreover,
the approach shows promising results with the proposed
routes being similar to the experimentally validated routes
in over a third of the compound libraries.
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